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ON THE (STRICT) POSITIVITY OF SOLUTIONS OF THE STOCHASTIC HEAT

EQUATION

GREGORIO R. MORENO FLORES

Abstract. We give a new proof of the fact that the solutions of the stochastic heat equation, started
with non-negative initial conditions, are strictly positive at positive times. The proof uses concentration of
measure arguments for discrete directed polymers in Gaussian environments, originated in M. Talagrand’s
work on spin glasses and brought to directed polymers by Ph. Carmona and Y. Hu. We also get slightly
improved bounds on the lower tail of the solutions of the stochastic heat equation started with a delta
initial condition.

A very well known theorem proved by Mueller insures the strict positivity of the solution of the
Stochastic Heat Equation (SHE) with non-negative initial data [9].

Mueller’s theorem has gained new attention due to the links between the SHE and the Continuum
Directed Polymer (CDP) [2], and, more generaly, with the KPZ equation (see the review [5]). In particular,
it implies the positivity of the partition function of the CDP. This random measure on paths is defined
by

µx,T (Xt1 ∈ dx1, · · · ,Xtk ∈ dxk) =
1

Z(0, 0;T, x)

k
∏

j=0

Z(tj , xj ; tj+1, xj+1)Z(tk, xk;T, x)dx1 · · · dxk,

where Z(s, u; t, v) is obtained as the solution of

∂tZ(s, u; ·, ·) = 1
2∆Z(s, u; ·, ·) + Z(s, u; ·, ·)W ,

Z(s, u; s, ·) = δu(·).
The SHE arises as the limit of the renormalized partition function of discrete directed polymers [1] and
the CDP as the weak limit of the discrete directed polymer path measure (see [4] for a general review on
directed polymers).

A proof of the positivity of the solutions of the SHE contained inside the theory of directed polymers
is hence desirable. This is the approach we will follow in this note. Our proof, together with providing
a more straightforward argument, also improves existing bounds on the tails of the solution of the SHE.
Our methods are strongly inspired by Talagrand’s use of Gaussian concentration in spin glasses (see [3]
where these ideas are applied to directed polymers in Gaussian environment).

1. Results

In the following, unless stated otherwise, Z(t, x) is the continuous modification of the solution of the
stochastic heat equation

∂tZ = 1
2∆Z + ZW ,(1)

Z(0, x) = δ0(x),(2)

where W is a space-time white noise.

Theorem 1. a) There exists a locally bounded function c(t, x) > 0 such that

P

[

Z(t, x) < c(t, x) e−u/c(t,x)
]

≤ e−u2/2,(3)

hence, for all p > 0, there is a locally bounded function κp(t, x) such that,

EZ(t, x)−p ≤ κp(t, x) exp{ p2/κp(t, x)}, ∀ t > 0, x ∈ R.(4)
1
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b) We have

P[Z(t, x) = 0, for some t > 0, x ∈ R ] = 0.(5)

Remark 1. A few remarks are in order:

(1) We note that, in [10], an estimate similar to (3) is proved, but the right hand side is exp{−u3/2−ε}.
It is expected that the optimal bound is exp{−u3}. Our bound exp{−u2} comes from Gaussian
concentration arguments and is unlikely to be improved with the methods of this work.

(2) The AKQ theory described in Section 2.1 can be trivially extended to cover the case of the SHE

∂tZ = 1
2∆Z + bZ + σW Z,

for a bounded drift b = b(t, x) and some nice σ = σ(t, x). The drift can be handled using
the comparison arguments of Proposition 1 (see [10], Proof of Theorem 2, where this argument is
presented) and the arguments of our proof will also follow with minor modifications. More general
positive initial conditions can be handled by integrating the solution of (1)-(2) against the initial
condition and we would be able to recover the full strength of Mueller’s theorem.

(3) We also note that Mueller’s theorem is usually stated for x ∈ [0, 1] with Dirichlet boundary
conditions. However the techniques in [9] and [10] carry on to our setting as well.

The proof of Theorem 1 using concentration of measure is given in Section 3. Section 2 provides useful
preliminaries, while the technical estimates are deferred to the appendix.

2. Some preliminaries

2.1. Directed polymers and the AKQ theory. Let P be the law of the simple symmetric random
walk St on Z, let {ω(i, x) : i, x} be a collection of real numbers (the environment) and let

ZN,x(β) = P
[

eβ
∑N

i=1 ω(i,Si)|SN = x
]

.(6)

be the partition function of the directed polymers in environment ω at inverse temperature β > 0. Note
that logEZN (β) = N

2 β
2 if the ω’s are chosen to be independent standard normal random variables. Define

ZN (t, x) := e−
1
2 t

√
N ZtN,x

√
N (N−1/4) =

ZtN,x
√
N (N−1/4)

EZtN,x
√
N (N−1/4)

.(7)

Theorem 2. [1] For each t > and x ∈ R, we have the convergence in law,

ZN (t, x) ⇒ Z(2t, x),(8)

where Z is the solution of (1)-(2). Furthermore, the convergence holds at the process level in t and x.

This convergence has been extended in [8] to cover more general initial conditions. Consider a sequence
of boundary conditions {ϕN (i) : i ∈ Z} such that

ΦN (x) := N−1/4
x
√
N

∑

i=0

ϕN (i) ⇒ ϕ(x),

for some process ϕ(·). Define a new environment

ωϕ(i, j) =







ω(i, j) if |j| < i

ω(i,±i) + ϕN (±i) +N1/4 log 2 + 1
2N

−1/4
(9)

Assume that supx e
−c|x|

E[exp{2ΦN (x)}] < +∞ for some c > 0 (the reader familiar with the SHE will
recognize such a natural technical condition). Let

Zϕ
N (t, x) = e−

1
2 t

√
NP

[

eN
−1/4

∑tN
i=1 ω

ϕ(i,Si)1{SN=x
√
N}

]

(10)
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Theorem 3. [8] We have the convergence in law

Zϕ
N (t, x) ⇒ Zϕ(2t, x),(11)

as processes in t and x, where Zϕ solves the SHE

∂tZ = 1
2∆Z + ZW ,(12)

Z(0, x) = exp{ϕ(x)}.(13)

From this, it is easy to obtain comparison inequalities for the SHE. These are usually proved by
discretizing the SHE and applying comparison arguments for diffusions. Our argument is more direct.

Proposition 1. Let Z(1)
0 (x) ≤ Z(2)

0 (x), ∀x ∈ R and b(1)(t, x) ≤ b(2)(t, x), ∀ (t, x) ∈ R+ × R and

∂tZ(i) = 1
2∆Z(i) + b(i)Z(i) + Z(i)

W ,(14)

Z(i)(0, x) = Z(i)
0 (x),(15)

i = 1, 2. Then, P [Z(1)(t, x) ≤ Z(2)(t, x), ∀ t ≥ 0, x ∈ R] = 1.

Proof. From the initial conditions above, we can easily built suitable boundary conditions for directed
polymers. Also the drift term b(i) can be obtained by an easy modification of the environment. This can
be done in such a way that the comparison inequalities hold path by path at the discrete level, and take
the limit. �

2.2. Gaussian concentration. We borrow the following from [11] (Lemma 2.2.11). Let d(·, ·) denote
the usual euclidean distance.

Theorem 4 (Talagrand). Let ω be an R
m-valued Gaussian vector with covariance matrix I. Then, for

any measurable set A ⊂ R
m, if P[ω ∈ A ] ≥ c > 0, then, for any u > 0,

P

[

d(ω,A) > u+
√

2 log(1/c)
]

≤ e−
u2

2 .(16)

The distance appears naturally when we compare the partition function over different environments.
Define the partition function and the polymer measure in a fixed environment ω by

ZN (ω, β) = E
[

eβ
∑N

t=1 ω(t,St)
]

,(17)

〈F (S)〉N,ω =
1

ZN (ω, β)
E
[

F (S) eβ
∑N

t=1 ω(t,S(t))
]

,(18)

where we just disregard the dependence on the end-point of the paths. Denote the expected value over

two independent copies of the polymer over the same environment by 〈·〉(2)N,ω and, for two paths S1 and

S2, let LN (S1, S2) =
∑N

t=1 1S1(t)=S2(t) be the overlap.

Lemma 1. Let ω and ω′ be two environments and let dN (ω, ω′) denote the distance between these envi-
ronments in the box {(t, x) : 0 ≤ t ≤ N, |x| ≤ t}. Then,

logZN (ω′, β, ) ≥ logZN (ω, β)− β dN (ω, ω′)
√

〈LN (S1, S2)〉(2)N,ω.(19)

Proof. We start computing

ZN (ω′, β) = E
[

eβ
∑N

t=1 ω(t,St)eβ
∑N

t=1(ω
′(t,St)−ω(t,St))

]

(20)

= ZN (ω, β)〈eβ
∑N

t=1(ω
′(t,St)−ω(t,St))〉N,ω(21)

≥ ZN (ω, β)eβ〈
∑N

t=1(ω
′(t,St)−ω(t,St))〉N,ω ,(22)



4 GREGORIO R. MORENO FLORES

by Jensen’s inequality. Now,
∣

∣

∣

∣

∣

〈
N
∑

t=1

(

ω′(t, St)− ω(t, St)
)

〉N,ω

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

t=1

∑

x

(

ω′(t, x)− ω(t, x)
)

〈1St=x〉N,ω

∣

∣

∣

∣

∣

(23)

≤
(

∑

x

N
∑

t=1

(

ω′(t, x)− ω(t, x)
)2

)1/2(
∑

x

N
∑

t=1

〈1St=x〉2N,ω

)1/2

(24)

= dN (ω, ω′)
√

〈LN (S1, S2)〉(2)N,ω(25)

�

3. Proof of Theorem 1

In the following, we will omit the dependence on the end-point from the notation when it is equal to
0. Let E2 denote the expected value with respect to two independent walks. Define the event

A =

{

ω : ZN (ω, β) ≥ 1

2
EZN (β), 〈LN (S1, S2)〉(2)N,ω ≤ C

4

√
N

}

,(26)

Lemma 2. Take β = N−1/4. For C > 0 large enough, there exists δ > 0 such that P[A] ≥ δ, ∀N ≥ 1.

Proof. The key to prove this fact is the estimate (47) proved in Section 4. LetHN (S1, S2) =
∑N

t=1 ω(t, S1(t))+
ω(t, S2(t)).

P[A] = P

{

ZN (β) ≥ 1

2
EZN (β), E2 [LN (S1, S2) exp{βHN (S1, S2)}] ≤

C

4

√
N (EZN (β))2

}

(27)

≥ P

{

ZN (β) ≥ 1

2
EZN (β)

}

(28)

−P

{

E2 [LN (S1, S2) exp{βHN (S1, S2)}] >
C

4

√
N (EZN (β))2

}

(29)

We treat the first summand: by Paley-Zygmund’s inequality (see for example [11], Proposition 2.2.3),

P

{

ZN (β) ≥ 1

2
EZN (β)

}

≥ 1

4

(EZN (β))2

EZN (β)2
=

1

4

1

EZ2
N

,(30)

if we take β = N−1/4. Now, by an application of Fubini’s theorem together with logEeβω = β2/2 if ω is

standard normal, we have EZ2
N = E2[expN

−1/2LN (S1, S2)]. The estimate (46) then provides a constant
0 < L < +∞ such that

EZ2
N ≤ L, ∀N ≥ 1.(31)

This gives

P

{

ZN (β) ≥ 1

2
EZN (β)

}

≥ 1

4L
, ∀N ≥ 1 when β = N−1/4.(32)

For the second summand above, using Chebyshev followed by Fubini

P

{

E2

[

LN (S1, S2) exp{N−1/4HN (S1, S2)}
]

>
C

4

√
N (EZN (β))2

}

(33)

≤ 4

C
√
N (EZN (β))2

EE2

[

LN (S1, S2) exp{N−1/4HN (S1, S2)}
]

(34)

=
4

C
√
N

E2

[

LN (S1, S2) exp{N−1/2LN (S1, S2)}
]

(35)

≤ 4K

C
,(36)
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thanks to (47), where we also used

EE2

[

LN (S1, S2) exp{N−1/4HN (S1, S2)}
]

= (EZN (β))2 E2

[

LN (S1, S2) exp{N−1/2LN (S1, S2)}
]

.

Overall, we have P[A] ≥ 1
4L − 4K

C =: δ, which is positive provided we choose C large enough. �

Proof of Theorem 1- a). Recall the distance dN (·, ·) from Lemma 1. By Lemma 2 and Talagrand’s theo-
rem,

P
[

ω : dN (ω,A) > u+C ′] ≤ e−u2/2,(37)

for all u > 0 and some explicit constant 0 < C ′ < +∞ depending on C, K and L. In particular, for any
ω′ ∈ A, if ω is any environment, by Lemma 1,

logZN (ω, β) ≥ logEZN (β)− log 2− β dN (ω, ω′)
√

〈LN (S1, S2)〉N,ω′(38)

≥ logEZN (β)− log 2− βN1/4
√
CdN (ω, ω′),(39)

≥ logEZN (β)− log 2−C ′′dN (ω, ω′),(40)

for some 0 < C ′′ < +∞, if β = N−1/4. Hence, for c2 = C ′′ and c1 = log 2 + C ′C ′′,

P [logZN (ω, β) ≤ logEZN (β)− c1u− c2] ≤ P [dN (ω,A) ≥ u] ≤ e−u2/2.(41)

This proves the following intermediate result: remember ZN = ZN/EZN , hence for all u > 0, N ≥ 1,

P
[

ZN < C2e
−c1u

]

≤ e−u2/2.(42)

with C2 = e−c2 . Using that ZN → Z(1, 0) in law, we get

P
[

Z(1, 0) < C2e
−c1u

]

≤ e−u2/2.(43)

for all u > 0. This proves Theorem 1-a) when the end-point is taken to be 0. Finally, observe that, if we

take the end-point of the path to be x
√
N and the length of the polymer to be tN , the proof is unchanged,

and the estimates of Section 4 imply that the constants C ′ and C ′′ above are uniformly bounded for (t, x)
in a compact. �

Proof of Theorem 1- b). We will use the following standard estimate:

E|Z(t, x)−Z(s, y)|p ≤ C
(

|x− y|p/2 + |t− s|p/4
)

,(44)

for any p > 1. See for example [7], where these estimates are used to show the existence of a continuous
extension of the solution of the stochastic heat equation.

As Z is continuous, the only possible singularities of Z−1 correspond to zeros of Z. We will show that
Z(·, ·)−1 has a continuous modification as well. We estimate

E|Z(t, x)−1 −Z(s, y)−1|M = E

∣

∣

∣

∣

Z(t, x)−Z(s, y)

Z(t, x)Z(s, y)

∣

∣

∣

∣

M

≤ E
[

|Z(t, x) −Z(s, y)|2M
]1/2

E
[

Z(t, x)−4M
]1/4

E
[

Z(s, y)−4M
]1/4

.

By (4), the moments of order −4M are locally bounded. Together with (44), we conclude that, for each
compact K ⊂ (0,+∞)× R, there is a constant CK < +∞, such that

sup
(t,x),(s,y)∈K

E|Z(t, x)−1 −Z(s, y)−1|M < CK

(

|x− y|M/2 + |t− s|M/4
)

.(45)

Hence, by Kolmogorov criterion, {Z(t, x)−1 : (t, x) ∈ K} has a continuous modification Y(·, ·), and hence
stays bounded. It follows that Y−1 cannot assume the value 0 in K. This proves (5). �
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4. Appendix: Overlap Estimates

The goal of this section is to prove the needed overlap estimates. These estimates are very familiar in

the context of homogeneous pinning models. Recall that LN (S1, S2) =
∑N

i=1 1S(1)
i =S

(2)
i

.

Lemma 3. There is a locally bounded function κ(t, x) ∈ (0,+∞) such that

sup
N≥1

E2

[

eN
−1/2LtN (S1,S2)|S(1)

tN = S
(2)
tN = x

√
N
]

≤ κ(t, x),(46)

sup
N≥1

1√
N
E2

[

LtN (S1, S2)e
N−1/2LtN (S1,S2)|S(1)

tN = S
(2)
tN = x

√
N
]

≤ κ(t, x).(47)

Proof. As the estimates will be clearly uniform for 0 < t ≤ T , we specify to t = 1. We will first show that
we can reduce to consider the overlap up to time n/2: abbreviate Lm = Lm(S1, S2). Then,

E
[

LNeβLN |S(i)
N = x

√
N, i = 1, 2

]

≤ 4E
[

LN/2e
2βLN/2 |S(i)

N = x
√
N, i = 1, 2

]

E
[

eβLN/2 |S(i)
N = x

√
N, i = 1, 2

]

,

E
[

eβLN |S(i)
N = x

√
N, i = 1, 2

]

≤ 2E
[

e2βLN/2 |S(i)
N = x

√
N, i = 1, 2

]

E
[

eβLN/2 |S(i)
N = x

√
N, i = 1, 2

]

.

This shows that it is enough to prove (46) and (47) for the overlap up to time N/2. Now, we can reduce
to consider the overlap of two unconditioned random walks with a suitable drift. Define,

Px,N [S0 = 0] = 1, Px,N [Si+1 = a± 1|Si = a] =
1

2

(

1± x√
N

)

.(48)

An application of the local limit theorem shows that S[0,N/2] under P [·|Sn = x
√
N ] and S[0,N/2] under

Px,N [·] are absolutely continuous. Furthermore, the Radon-Nykodim derivative is locally bounded in x,

uniformly in N . It is therefore enough to prove (46) and (47) with respect to Px,N [·]. Let Yi = S
(1)
i −S

(2)
i

where S(i) are two independent walks with law Px,N . Then, Y0 = 0 and

Px,N [Yi+1 − Yi = 0] =
1

2

(

1 +
x2

N

)

, Px,N [Yi+1 − Yi = ±2] =
1

4

(

1− x2

N

)

.(49)

The problem is now reduced to estimate the local time at 0 for the walk Y , which is a homogeneous
pinning problem. Accordingly, we introduce some notions and results from [6]. Let

zN (x, β) = Ex,N

[

eβ
∑N

i=1 1Yi=0

]

.(50)

From [6] (1.6) and the proof of [6] (2.12), it follows that, for any compact K, there are two finite constants
c1, c2 > 0 such that

zN (x, β) ≤ c1 e
c2β2N , ∀x ∈ K.(51)

Taking β = N−1/2 yields (46). For (47), all we need is a bound on the derivative of zN (x, β) with respect
to β. Notice that g(u) = zN (x, u) is an increasing and convex function with g(0) = 1 and

g′(u) = E2

[

LNeuLN
]

,(52)

where LN =
∑N

i=1 1Yi=0. By convexity,

1 + ug′(u) ≤ g(u) + ug′(u) ≤ g(2u)(53)

and consequently,

1
2g

′(u) ≤ g(2u) − 1

2u
.(54)

Together with (51),

1
2∂uzN (x, u) ≤ g(2u) − 1

2u
≤ c1e

4c2Nu2 − 1

2u
≤ 4c3Nue4c2Nu2

,(55)

with c3 = c1c2. The last inequality follows from the convexity of expCNu2. Remember these estimates
are uniform for x ∈ K. Taking u = N−1/2 in the string of inequalities above ends the proof of (47). �
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