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Abstract

Let R = k[x1 . . . xr] and M a multigraded R−module. In this work
we interpret M as a multipersistent homology module and give a multi-
graded resolution of it. The construction involves cellular resolutions
of monomial ideals and reflects the combinatorial structure of multi-
persistence homology modules. In the one critical case, a multifiltra-
tion is represented by a labelled cellular complex. A multipersistence
homology module measures the defect of acyclicity of the associated
multigraded cellular chain complex.

1 Introduction

The theory of Persistent Homology is a very recent and active branch of
algebraic topology. Although the theory has a wide range of applications
varying from data analysis and shape recognition to network theory, we will
focus on it’s theoretical framework.

Given an increasing sequence of simplicial complexes, parameterized by
the natural numbers, persistent homology detects topological features that
are in the simplicial complexes for many values of the parameter, for a com-
plete exposition we refer to [6],[7],[9],[10]. Multipersistent homology is a
generalization of persistent homology in which the sequence of simplicial
complexes is indexed by vectors in Nr, first introduced by Carlsson and
Zomorodian in [5], [8]. In short, the problem of multipersistent homology
is about calculating the simplicial homologies of the spaces and confronting
them using the maps induced in homology by the inclusions. From a dy-
namical point of view, we want to study how homology evolves along the
sequence of spaces, restricting to the case when the process is stationary.
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The study of multipersistent homology is carried in [5] and [8] through
multigraded modules over the polynomial ring R := k[x1 . . . xr] called mul-
tipersistent modules.

In this work we highlight how, in analogy to simplicial homology, mul-
tipersistent homology modules are the homologies of the chain complex of
n−chain modules. The module of n− chains can be composed as a direct
sum of monomial ideals.

This characterization, provides a presentation of multipersistent homol-
ogy modules by generators and relations that reflects the topological and
combinatorial nature of the problem. In a special case, called one-critical in
[8], the chain complex is a chain complex of free R−modules. This free chain
complex is isomorphic to a cellular resolution if it is acyclic. In most cases
anyway the complex is not acyclic and multipersistent homology modules
measure the defect of acyclicity.

Using our presentation and tools from homological algebra we then build
a free multigraded resolution for multipersistent homology modules. As a
constructive theorem [5] states that every multigraded R-module can be
realized as a multipersistent homology module, this resolution applies to all
multigraded R-modules.

The second section of this article is dedicated to notation and back-
ground information. The central part of the article is the third section in
which we give a presentation of multipersistent homology modules and build
a standard free resolution for such modules, other resolutions for multigraded
R-modules with combinatorial meaning can be found in [3], [17]. Cellular
resolutions of monomial ideals [13],[1],[2] are used in two ways through the
article: firstly they are used in the construction of our resolution of multi-
persitent homology modules; secondly we show how, in the one critical case,
multipersistent homology modules measure the defect of aciclicity of cellular
chain complexes constructed for cellular resolutions.

2 Background

2.1 Multigraded modules

In this section we recall some notions from topology, homological and com-
mutative algebra that will be used in the article.

Throughout the article k will denote an arbitrary field of characteristic
0 and V ctk the category of k-vector spaces and linear maps. For a commu-
tative finitely generated k−algebra A, we denote with ModA the category
of A−modules and A−module homomorphisms. For us A will be the field
k or the algebra of polynomials in r variables R := k[x1 . . . xr].

The R-modules we will encounter are multigraded by Nr. We consider
Nr as a partially ordered set by setting v � w for v = (v1, . . . , vr) and
w = (w1, . . . , wr) if vi ≤ wi for all i = 1, . . . , r.

2



Given v = (v1 . . . vr) ∈ Nr, we denote the monomial xv11 · · ·xvrr with xv.
The polynomial algebra R has a multigraded decomposition as

R =
⊕
v∈Nr

k · xv. (2.1)

Definition 2.1. A multigraded module over R is a module M with a vec-
tor space decomposition M =

⊕
v∈Nr Mv such that Rw · Mv ⊆ Mw+v for

all v, w ∈ Nr. A homomorphism of modules that preserves the multigrad-
ing is a homomorphism of multigraded modules. Multigraded modules and
homomorphisms determine a category.

To a family of vector spaces {Mv}v∈Nr and linear maps ϕv,w : Mv →Mw

for all v � w, such that ϕv,w = ϕz,w ·ϕv,z, for all v � z � w, we can associate
the vector space M =

⊕
vMv with R-module action

xi : Mv −→ Mv+ei 0 ≤ i ≤ r
m −→ ϕv,v+ei(m)

where ei is the vector with i−th entry equal to 1 and 0 elsewhere. This
gives, as it is easy to check, an equivalence of categories between functors
from Nr to V ctk and multigraded R-modules.

In particular a N2−graded module is a lattice of k−vector spaces and
commuting linear maps. The correspondence between families of vector
spaces and multigraded modules has been studied also in other contexts, see
[16].

2.2 Homology

We write ChA to denote the category of chain complexes of A-modules
i.e. (C, ∂) = (Cn, ∂n)n∈Z with Cn ∈ ModA and ∂n∂n+1 = 0, and chain
maps α = {αn} : (Cn, ∂n) → (Dn, δn) i.e. αn : Cn → Dn are A−modules
morphisms such that δnαn = αn−1∂n.

Fixed a chain complex C = (Cn, ∂n)n∈Z, the kernel of ∂n is the module
of n-cycles of C, denoted Zn = Zn(C); the image of ∂n+1 : Cn+1 → Cn is
the module of n-boundaries of C, denoted Bn = Bn(C).

Definition 2.2. The n-th homology module of C is the A−module

Hn(C) = Zn(C)/Bn(C). (2.2)

The assignment C → Hn(C) induces a covariant functor from ChA to
ModA, see [18].

A chain complex C is said exact if Hn(C) = 0 for all n.
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Definition 2.3. Let M be a R-module. A multigraded free resolution of
M is a chain complex (C, ∂) of multigraded free R-modules with Ci = 0 for
i < 0, together with a homomorphism ε : C0 →M so that the chain complex

· · · → C2
∂2→ C1

∂1→ C0
ε→M → 0

is exact. The resolution of M is often denoted as C →M .

When multigraded free resolutions in the category ModR will be used
we denote by R(−v) the free R-module with one generator in multidegree
v ∈ Nr.

We will now briefly introduce simplicial homology with coefficients in k,
a general treatment of the subject can be found in [15].

A simplicial complex is a non empty family K of finite subsets, called
faces, of a universal set; such that if σ ∈ K and σ′ ⊂ σ, then σ′ ∈ K. The
faces of cardinality one are called vertices. We assume that the vertex set
is finite and totally ordered. A face of n + 1 vertices is called n−face and
denoted by [p0, . . . , pn]. The dimension of a simplicial complex is the highest
dimension of the faces in the complex. A simplicial map is a map between
simplicial complexes with the property that the image of a vertex is a vertex
and the image of a n−face is face of dimension ≤ n. Simplicial complexes
and simplicial maps determine a category that we denote by SC. Fixed a
simplicial complex K of dimension d, we denote by Kn the set of n-faces in
K, for n = 0, . . . d. The set of n−faces and (n− 1)−faces are linked by n+ 1
set maps

di : Kn −→ Kn−1 0 ≤ i ≤ n
[p0, . . . , pn] → [p0, . . . , pi−1, pi+1, . . . , pn].

The vector space Cn(K) on the set Kn is called vector space of n−chains.
The set maps di yield linear maps Cn(K)→ Cn−1(K) which we also call di.
This data defines a functor Cn : SC → V ctk.

Definition 2.4. The simplicial chain complex of K with coefficients in k is
the chain complex

CK : 0→ Cd
∂d→ Cd−1

∂d−1→ · · · → C1
∂1→ C0 → 0. (2.3)

with the differential operator ∂j =
∑n

i=0(−1)idi for j = 1 . . . d.

The assignment K → CK induces a functor from SC to Chk.

Definition 2.5. The n−th homology group of the simplicial complex K is
the n−th homology of the simplicial chain complex CK.

In terms of categories, simplicial homology is the restriction of the func-
tor Hn to simplicial chain complexes.
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2.3 Multipersistence Homology Modules

In this article we will follow the way traced by [5], [8] to study multipersistent
homology through multigraded modules over the polynomial ring.

As in [5], we call a topological space X multifiltered if we are given a
family of subspaces {Xv}v = {Xv}v∈Nr , so that Xv ⊆ Xw whenever v � w.
The family {Xv}v is called a multifiltration.

From now on we denote with X a multifiltered simplicial complex and
with {Xv}v a multifitration of it.

Consider the functor of n chains Cn : SC → V ctk applied to the mul-
tifiltration {Xv}v, we have a family of vector spaces {Cn(Xv)}v and linear
inclusions between them {Cn(Xv ↪→ Xw)}v�w. Sometimes, for the sake of
simplicity, we shorten Cn(Xv) by Cn(v).

These determine an R−module Cn :=
⊕

v Cn(v) with module action

xw := Cn(Xv ↪→ Xv+w) : Cn(v)→ Cn(v + w),

for v, w ∈ Nr.

Definition 2.6. The n−chain module of the multifiltration {Xv}v is the
multigraded R−module Cn.

Consider now the n−homology functor Hn : SC → V ctk applied to
the multifiltration {Xv}v, we have a family of vector spaces {Hn(Xv)}v and
linear maps (not necessarily inclusions) between them {Hn(Xv ↪→ Xw)}v�w.
Again, we will write Hn(v) for Hn(Xv) when X is clear from the context.

These determine an R−module Hn :=
⊕

vHn(v) with module action

xw := Hn(Xv ↪→ Xv+w) : Hn(v)→ Hn(v + w),

for v, w ∈ Nr.

Definition 2.7. The n−multipersistent homology module is the multigraded
R−module Hn.

Exploiting this module structure, we will investigate the structure of
multipersistent homology modules and their link to n−chain modules in the
context of combinatorial commutative algebra.

3 Main results

The first step in our analysis of multipersistence homology modules consists
in studying the structure of n−chain modules.

Definition 3.1. A multifiltration {Xv}v is stationary if there is v′ ∈ Nr
such that for all v ∈ Nr with vi ≥ v′i for some i, one has Xv+kei = Xv, for
all k ∈ N.
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Being the complex X finite, any multifiltration of X is stationary. Let’s
consider Bn(v) the basis of Cn(Xv) with elements corresponding to the
n−faces in Xv. The set of bases {Bn(v)}v∈Nr is such that

xwBn(v) ⊆ Bn(v + w), (3.1)

for all v, w ∈ Nr.

Definition 3.2. Let σ ∈ Bn(v′) be a basis element corresponding to a
n−face in X. A critical coordinate for σ, is a minimal v ∈ Nr such that
there is τ ∈ Bn(v) with xv

′−vτ = σ. The element τ is a fundamental element
associated to σ.

In general, the critical coordinate and fundamental element for σ ∈
Bn(v′) are not unique. We denote by Fσ the set of fundamental elements
associated to σ ∈ Bn(v′) and F =

⋃
σ∈Bn(v′)Fσ.

As the vector spaces Cn(v) are all finite dimensional for all v ∈ Nr and
the multifiltration is stationary, the module Cn is finitely generated. By
construction the set F minimally generates Cn. We denote by deg τ the
degree of the generator τ ∈ F , i.e if τ ∈ Bn(v) then deg τ = v.

Lemma 3.3. The first syzygy module of Cn is minimally generated by bi-
nomials of the form

xc−deg aa− xc−deg bb,

where a, b ∈ Fσ, c ∈ Nr with ci = max((deg a)i, (deg b)i) for i : 1 . . . r, and
σ ∈ Bn(v′).

Proof. As Cn is a multigraded module, all the relations in Cn are homoge-
neous and a relation in degree v is of the form∑

m∈F
λmx

v−degmm

with λm ∈ k.
Furthermore, one can easily check that given a, b ∈ F , for c defined as in

the statement, if c � v, it holds xv−deg aa = xv−deg bb if and only if a, b ∈ Fσ
for some σ ∈ Bn(v′). Therefore∑

m∈F
λmx

v−degmm =
∑

σ∈Bn(v′)

(
∑
m∈Fσ

λm)mσ

where mσ ∈ Bn(v) is the unique basis elements corresponding to σ ∈ Bn(v′).
Hence

∑
m∈Fσ λm = 0 and the result follows.

Theorem 3.4. The module of n−chains can be decomposed as a direct sum
of monomial ideals in the following way:
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Cn ∼=
⊕

σ∈Bn(v′)

< (xdeg a)a∈Fσ > .

where < (xdeg a)a∈Fσ >is the R−ideal generated by the monomials xdeg a

for a ∈ Fσ.

Proof. Let Cn,σ be the submodule of Cn generated by the set Fσ. First we
prove the decomposition Cn =

⊕
σ∈Bn(v′)Cn,σ. Since Cn is generated by

F = ∪Fσ it is clear that the canonical map
⊕

σ Cn,σ → Cn is onto. The
claim follows by the very proof of previous Lemma 3.3. We show now that
the submodules Cn,σ are isomorphic to monomial ideals.

The following defines an injective homomorphism of R−modules,

Cn,σ → R

Fσ 3 a → xdeg a.

Consider the free R−module Fσ generated by Fσ. The assignment a→
xdeg a, for all a ∈ Fσ defines a homomorphism of R−modules ϕ : Fσ → R.
We denote by Iσ the kernel of the natural homomorphism Fσ → Cn,σ. By
the previous Lemma 3.3 it follows that Iσ ⊂ kerϕ and it is easy to see that
actually they coincide. This gives an isomorphism Cn,σ ∼= ϕ(Fσ) and the
latter is clearly a monomial ideal.

Let d = dimX, theR−modules Cn fit in the chain complex ofR−modules

C : 0→ Cd
∂d→ . . .→ C1

∂1→ C0 → 0. (3.2)

which is the direct sum of the simplicial chain complexes CXv , see Def.2.4.
Indeed, if a ∈ Bn(v) corresponds to σ ∈ Xv ⊂ X, then xeja corresponds to
the same face. Thus xej ·∂n = ∂n ·xej . By construction ∂n(Cn(v)) ⊂ Cn−1(v)
and xej (Cn(v)) ⊂ Cn(v + ej). Thus C is doubly graded

C =
d⊕

n=0

Cn =
d⊕

n=0

(
⊕
v∈Nr

Cn(v)) =
⊕
v∈Nr

(
d⊕

n=0

Cn(v)) =
⊕
v∈Nr

C(v). (3.3)

Fixing n we have Cn, the n-th chain module of C; fixing v we have the
simplicial chain complex C(v) of Xv.

This gives, in the obvious way, boundaries and cycles modules, Bn(C) =⊕
v Bn(v) and Zn(C) =

⊕
v Zn(v), which turn out to be multigraded finitely

generated R−modules as Cn.
As observed also in [8], multipersistent homology modules are the ho-

mologies of a chain complex.

Proposition 3.5. Multipersistent homology modules are the homology mod-
ules of C.
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Proof. It is enough to recall that homology functors commute with direct
sums, i.e. ⊕

v

Hn(Xv) = Hn(
⊕
v

Xv) = Hn(C)

In analogy with the standard case, in which simplicial homology modules
are calculated from the simplicial chain complex, we use C to calculate mul-
tipersistence homology modules. In this sense multipersistence homology
modules can be thought as the simplicial homology of a multifiltration.

Opposite to the chain modules, multipersistent homology modules are
not monomial, in general. Every multigraded R-module can be realized as
a multipersistent homology module, as claimed in [5]. The next step is to
exploit our presentation to build a resolution for multipersistent homology
modules, from cellular resolutions of monomial ideals.

3.1 Combinatorial Resolution

In this subsection we construct a free resolution of Hn(C), in the category
of multigraded R-modules, in terms of resolutions of Cn and Zn(C). This
construction exploits cellular resolutions of monomial ideals.

We need to introduce a new actor on the scene.

Definition 3.6. If α : F → G is a map between the chain complexes (F,ϕ)
and (G, η), the mapping cone M(α) of α is the chain complex with compo-
nents M(α)j = Fj−1⊕Gj and differentials ∂αj : Mj(α)→Mj−1(α) given by
the matrices

∂αj :=

(
−ϕj−1 0
αj−1 ηj

)
The map ∂n is morphism of multigraded R−modules for all n. Therefore

Zn(C) and Bn(C) are multigraded R−submodules of Cn and the natural
inclusion in : Zn(C)→ Cn is a homomorphism of multigraded R−modules.
Let us then consider the short exact sequence of R-modules

0→ Zn(C)
in→ Cn

∂n→ Bn−1(C)→ 0. (3.4)

This can be lifted to a chain map between resolutions of Zn(C) and Cn using
the Comparison Theorem.

Theorem 3.7 (Comparison Theorem [18]). Let M and N be R-modules,
P

ε→ M be a projective resolution of M and f ′ : M → N a morphism of
R-modules. Then for every resolution Q

π→ N of N there is a chain map
f : P → Q lifting f ′ in the sense that

π ◦ f0 = f ′ ◦ ε. (3.5)

8



where f0 : P0 → Q0. The chain map is unique up to chain homotopy
equivalence.

We have seen that Cn is a direct sum of monomial ideals. Monomial
ideals admit cellular resolutions, for explanations we refer to [13], [1], [2],
[14]. Cellular resolutions are constructed in a completely combinatorial way
from a labelled cellular complex associated to the monomial ideal. We then
consider cellular resolutions for the components of Cn and their direct sum
(Pn, ϕn) is resolution of Cn.

The module Zn(C) of n−cycles is not a direct sum of monomial ideals
because a set of bases of the homogeneous components with the property
3.1 cannot be defined. Let (Qn, ηn) be any resolution of Zn(C).

We denote by In : Pn → Qn the chain map induced by in (see (3.4)) on
the resolutions.

Lemma 3.8. The mapping cone M(In) with differential

∂
M(In)
j =

(
−ϕnj−1 0

Inj−1 ηnj

)
is a free resolution of Bn−1(C).

Proof. For a complex C, we denote by C[−n] the shift of the chain complex
such that C[−n]k = Ck−n.

The short exact sequence

0→ Qn →M(In)→ Pn[−1]→ 0 (3.6)

induces a long exact sequence in homology with connecting homomorphism
the map induced in homology by In,

. . .→ Hk(Q
n)→ Hk(M(In))→ Hk−1(P

n)
Hk−1(I

n)
→ Hk−1(Q

n) . . . . (3.7)

From 3.7 we deduce that Hk(M(In)) = 0 for k ≥ 1 because the chain
complexes Pn and Qn are acyclic and that the following sequence is exact

0→ H1(M(In))
ν→ Zn(C)

H0(I)→ Cn → H0(M(In))→ 0.

Because of 3.5, H0(I) = in hence Imν = ker ν = 0 and also H1(M(I)) =
0.

We can use this resolution to construct a free resolution of Hn(C).

Proposition 3.9. The chain complex

. . .→ Pn+1
j−2 ⊕Q

n+1
j−1 ⊕ P

n
j

δj→ . . .→ Qn+1
0 ⊕ Pn1

δ1→ Pn0 (3.8)

with differential

δj(x, y, z) = (ϕn+1
j−2 (x),−In+1

j−2 (x)− ηn+1
j−1 (y), Lj−1(x, y) + ϕnj (z)) (3.9)

is a finite free multigraded resolution of Hn(C).
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Proof. Consider the short exact sequence of R-modules

0→ Bn(C)
l→ Zn(C)→ Hn(C)→ 0 (3.10)

and resolutions (M(In+1), ∂M(In+1)) of Bn(C) and (Pn, ϕn) of Zn(C).
Repeating the mapping cone argument, l induces a chain map L : M(In+1)→

Pn. The mapping cone M(L) is the desired free resolution for Hn(C).

3.2 Example

We will now write the chain complex C and the combinatorial resolution for
the example considered in [5].

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2)   (2,2) (3,2)

In this example:

C0 '< 1 > ⊕ < xy, x3, y2 > ⊕ < y, x2 >,

C1 '< x2 > ⊕ < y2, x2y > ⊕ < xy2, x3 >,

C2 '< x3y2 > .

The free resolution for H0(C) is

0→ R(−3,−1)⊕R(−1,−2)2 ⊕R(−2,−1)2 ⊕R(−3, 0)⊕R(0,−2)⊕R(−2, 0)→
→ R(−3, 0)⊕R(0,−2)⊕R(−1,−1)⊕R(−2, 0)⊕R(0,−1)⊕R(0, 0)→ 0.

The free resolution for H1(C) is

0→ R(−3,−2)2 → R(−2,−2)⊕R(−3,−1)→ 0.

Remark 3.10. The presentation matrix δ1 shows how cycles are identi-
fied and when they become boundaries so it can be used to detect persistent
features in the sequence of simplicial complexes.
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3.3 One-critical case

For a class of multifiltrations the algebraic setting is particularly simple and
the chain complex C has an explicit combinatorial meaning.

Definition 3.11. Let {Bn(v)}v be canonical. If an element σ ∈ Bn(v′) has
a unique critical coordinate, then it is called one critical. If every Bn(v′) is
one critical then M called one critical too.

The simplification in the one-critical case relies in the following propo-
sition

Proposition 3.12. The module M is one-critical if and only if M is a free
R-module.

Proof. A module M is one-critical if and only if {Fσ} is a one element set
for all σ ∈ Bn(v′). If we denote by mσ the unique fundamental element in
{Fσ}, then we have Mσ ' R(−degmσ).

Definition 3.13. We say that a multifiltered complex X is one critical if
its chain modules Cn are one critical for all n.

This definition is equivalent to the definition of multifiltered complex
given in [8].

Definition 3.14. A labelled simplicial complex is a simplicial complex X
with a function m : X → Nr.

In the one critical case the multifiltration can be studied by means of a
single labelled simplicial complex.

Definition 3.15. To a one-critical filtration {Xv}v we associate the simpli-
cial complex X, with faces labelled by their critical coordinate. We denote
X labelled as X̃ to distinguish it from the original X.

Remark 3.16. This construction is not possible in the general case because
the critical coordinate of a face is not in general unique.

In the example
the associated labelled simplicial complex is represented in Fig.2.
Following the construction in [2] for cellular resolutions, we now associate

to X̃ the multigraded complex of free R-modules:

FX̃ : 0→ Fd
δd→ . . . Fn

δn→ . . .
δ1→ F0 → 0 (3.11)

Where d is the dimension of X, Fn is the multigraded free R-module
generated by the n-faces in X̃, the multigrading is given by the labels.

The differential δn acts on a n-face a labelled by xm(a) as

δn(a) =

n∑
i=0

(−1)i
xm(a)

xm(di(a))
di(a). (3.12)

11



(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

(4,1)

(4,0)

(4,2)

(4,3)

Figure 1: A one critical multifiltration

Remark 3.17. The labelled complex X̃ is more general than the ones built
for cellular resolutions in [2] because the label of a face is not necessarily the
lowest common multiple of the labels of its facets.

The observation that a one-critical filtration is equivalent to a labelled
simplicial complex is made more precise in the following proposition.

Proposition 3.18. If {Xv}v is a one-critical filtration, the chain complex
C is equal to FX̃ .

Proof. By construction Cn = Fn as R− modules, for n : 0 . . . d. The differ-
ential in FX̃ is also the same as the one in C but expresses a coface of the
face a as a multiple of the corresponding fundamental element.

Remark 3.19. Chain complexes built from labelled cellular complexes are
resolutions of monomial ideals under conditions of acyclicity of X̃ [13]. In
our case C is certainly not acyclic and multipersistent modules measure this
defect.

In our example the chain complex C is

0→S(−3,−3)
⊕
S(−4,−2)

⊕
S(−2,−1)

δ2→S(−3,−2)
⊕
S(−3,−1)

⊕
S(−4,0)

⊕
S(−1,−2).

S(−2,−1)
⊕
S(−1,−1)2

⊕
S(−1,0)

δ1→S(0,−1)2
⊕
S(−3,0)

⊕
S(−1,0)

⊕
S(0,0)→0

12



(0,1)

(0,0)

(0,2) (2,1)

(1,0)

(3,0)

(4,2)

(0,1)
(1,1)

(1,0)

(4,0)

(1,1)

(3,2)

(4,2)

(3,3)

(2,1)

(3,1)

Figure 2: Labeled simplicial complex associated to the filtration in Figure 1

with differentials

δ1 =


x xy 0 xy2 0 x3y 0 0
0 0 0 −xy x2 0 0 0
0 −x −x 0 −x2 0 −x3y 0
−1 0 y 0 0 0 0 x3

0 0 0 0 0 −y y2 −x

 and δ2 =


xy 0 x3y2 0
−x −x2y2 0 −x3y
x 0 0 0
0 0 0 0
0 0 0 0
0 y2 −xy xy
0 y 0 x
0 0 y2 0


and homology modules

H0 ' coker

(−xy xy2 −x2y x3y x4 x3y2

0 xy x2 0 0 0
x 0 0 0 0 0
0 0 0 −y −x −y2

)
and H1 ' coker

( x 0 0 0
0 0 0 0
0 −y −x 0
0 0 0 y

)
and the resolution of H1(C) is
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