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Singular parabolic p-Laplacian systems under non-smooth

external forces. Regularity up to the boundary.

H. Beirão da Veiga

Abstract

We study the regularity of the solutions to initial-boundary value prob-

lems for N−systems of the p-Laplacian type, in n ≥ 3 space variables,

with square-integrable external forces in the space-time cylinder. So, the

ellipticity coefficient remains unbounded. The singular case µ = 0 is

covered.

Keywords: Initial-boundary value problems, p-Laplacian parabolic singular
systems, regularity up to the boundary.

1 Introduction and main result.

In the sequel we consider the evolution problem

(1.1)





∂t u− ∇ ·
(
(µ+ | ∇u| )p−2 ∇u

)
= f(t, x) , in (0, T )× Ω ,

u = 0 on (0, T )× ∂Ω ,
u(0) = u0 in Ω ,

where p ∈ (1, 2] , T ∈ (0, ∞] , and µ ≥ 0 are constants. Here u is an
N−dimensional vector field, N ≥ 1 , defined in QT ≡ (0, T ) × Ω where
Ω ⊂ R

n, n ≥ 3 , is a regular, bounded open set. The main point here is that
the external force f is only square-integrable in QT . This low integrability
prevents boundedness of | ∇u(t, x)| (which holds, for instance, if f ∈ Lq(QT ) ,
q > n + 2 ). So, the ellipticity coefficient ( (µ + | ∇u| )p−2 keeps unbounded.
This obstacle is here by-passed, due to a simple, but fruitful, idea (which has a
more wide range of application, as shown in a forthcoming work).

Let us illustrate the kind of results proved in the sequel, by the following
example. Assume that p satisfies the condition (1.19), where K (see below) is
a positive constant, independent of p . Then, the second order space derivatives
satisfy

(1.2) D2u ∈ L2 (p− 1 )(0, T ; Lq̂(Ω) ) ,

where q̂ is defined by (1.7).

The proof of our main result appeals to a regularity theorem, see the theorem
2.1 below, proved in reference [2] for the stationary problem

(1.3)

{
−∇ ·

(
(µ+ | ∇u| )p−2 ∇u

)
= f in Ω ,

u = 0 on ∂Ω .
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Actually, we need the above regularity result for the value q = q̂ < 2 , see (1.7)
below. However, values smaller then 2 are out of the range considered in the
statement of theorem 2.1, even though the proof applies to a range of values
which includes q̂ < 2 . The check of this claim is straightforward. However,
for the readers convenience, after the statement of the extension result to the
q̂ < 2 case (see proposition 2.1 below) we made a couple of comments plentifully
sufficient to adapt the proof given in [2] to the q̂ case. To minimize the number
of alterations, assume that

(1.4)

{
2n
n+2 < p ≤ 2 , if n > 3 ,

5
4 < p , if n = 3 .

In particular, the inclusion

(1.5) L2(Ω) ⊂ W−1, p′

(Ω)

holds. Actually, the assumption (1.4) is not strictly essential in the following.

We start by recalling that scalar multiplication of both sides of (1.1) by u ,
followed by classical manipulations, lead to the well known a priori estimate

‖ u ‖2L∞(0, T ;L2(Ω) ) + ‖ u ‖p
Lp(0, T ;W 1, p(Ω) )

≤ c
(
‖ u0 ‖2L2(0, T ;L2(Ω) ) + ‖ f ‖p

′

Lp′(0, T ;W−1, p′(Ω) )

)
.

This estimate, useful in proving the existence of the weak solution, lead us to
assume that

(1.6) f ∈ Lp′

( 0, T ; W−1, p′

(Ω) ) .

For the existence of the above weak solution we refer the reader to the Theorem
1.1, Chap. II, in [16].

Let us introduce the core exponent

(1.7) q̂ =
2n ( p− 1 )

n− 2 ( 2− p )
.

As shown below, the central role of this exponent is due to the particular relation

(1.8) r(q̂) = 2 ,

see (2.1). Our assumptions on p implies that q̂ ∈ (1, 2] , and also that the
immersion

(1.9) W 2, q̂(Ω) ⊂ W 1, p(Ω)

is compact.
Finally we recall the well known inequality

(1.10) ‖D2 v‖q ≤ C2(q) ‖∆v‖q ,

for v ∈ W 2,q(Ω) ∩W 1,q
0 (Ω) . Actually, there is a constant K , independent of q,

such that

(1.11) C2(q) ≤ K q ,

at least for q > 2n
n+2 (see [18]).

Our main result is the following.
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Theorem 1.1. Let p satisfy (1.4), and define q̂ by (1.7). Further, assume

that

(1.12) (2 − p)C2(q̂) < 1 ,

where C2(q̂) is defined by (1.10). Let u0 ∈ W 1, p
0 (Ω) and assume that, for some

T ∈ ] 0, +∞ ] , f satisfies (1.6) and

(1.13) f ∈ L2(0, T ; L2(Ω) ) .

Then the weak solution u of problem (1.1) enjoys the following properties:

(1.14) u ∈ L∞(0, T ; W 1, p
0 (Ω) ) ,

(1.15) ∇ ·
(
(µ+ | ∇u| )p−2 ∇u

)
∈ L2(0, T ; L2(Ω) ) ,

(1.16) ∂t u ∈ L2(0, T ; L2(Ω) ) ,

and

(1.17) u ∈ L2 (p− 1 )(0, T ; W 2, q̂(Ω) ) .

Note that, if n = 3 and p > 3
2 , then

u ∈ L2 (p− 1 )(0, T ; C 0, α(Ω) ) ,

where α =
p− 3

2

p− 1 .

Remark 1.1. Due to (1.11), the condition (1.12) holds if

(1.18) (2− p)q̂ <
1

K
,

at least by assuming p > 2 − 2
n

(as required by Yudovic assumption on n,
actually, not strictly necessary). Further, straightforward calculations show
that (1.18) holds if

(1.19) 2− n

2nK + 2
< p ≤ 2 .

So, (1.19) by itself, is a sufficient condition to guarantee the results claimed
in theorem 1.1. The main point is that this condition depends only on p , via
Yudovic’s constant K.

Sharp estimates for the norms of the left hand sides of the above equations,
in terms of data norms and µ , follow immediately from the proofs. For a more
detailed discussion see sections 3 and 4. We state here these estimates in the
singular case µ = 0 . One has the following result:
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Theorem 1.2. Consider the singular parabolic problem

(1.20)





∂t u− ∇ · ( | ∇u|p−2 ∇u ) = f(t, x) , in (0, T )× Ω ,

u = 0 on (0, T )× ∂Ω ,
u(0) = u0 in Ω .

Let the hypothesis assumed in Theorem 1.1, concerning p , q̂ , and f , hold.
Then, one has

(1.21)
2

p
‖∇u ‖p

L∞(0, T ;Lp(Ω) ) ≤
2

p
‖∇u0 ‖pp + ‖ f ‖2L2(0, T ;L2(Ω) ) ,

(1.22) ‖∇ · ( | ∇u |p−2 ∇u ) ‖2L2(0, T ;L2(Ω) ) ≤
2

p
‖∇u0 ‖pp + ‖ f ‖2L2(0, T ;L2(Ω) ) ,

(1.23) ‖ ∂t u ‖2L2(0, T ;L2(Ω) ) ≤
2

p
‖∇u0 ‖pp + 2 ‖ f ‖2L2(0, T ;L2(Ω) ) ,

and

(1.24)

‖ u ‖2
L2(p−1)( 0, T ;W 2, q̂(Ω) ) ≤ C T

2− p

p− 1

(
‖∇u0 ‖pp + ‖ f ‖2L2(0, T ;L2(Ω) )

)

+C
(
‖∇u0 ‖

p

p− 1
p + ‖ f ‖

2
p− 1

L2(0, T ;L2(Ω) )

)
.

It is worth noting that, for p = 2 , the above estimates turn into the classical
”heat equation” estimates. For instance, (1.24) reduces to

(1.25) ‖ u ‖2L2( 0, T ;W 2, 2(Ω) ) ≤ C
(
‖∇u0 ‖22 + ‖ f ‖2L2(0, T ;L2(Ω) )

)
.

For related results we refer, for instance, to the well-know monographs [5],
[12], [16], and to references [3], [4], [5], [7], [8], [9], [10] [13], [14], [15].

In references [7], [8] (see [5] chapters IX, X) local Hölder continuity in
(0, T )× Ω of the space gradient of local weak solutions is proved. Regularity
results, up to the boundary, are stated in the chapter X of [5] (see the Theorems
1.1 and 1.2 therein). In particular, in the Theorem 1.2, the Hölder continuity
up to the parabolic boundary (where u = 0 ) of the spatial gradient of weak
solutions u is proved. However, regularity results, up to the boundary, for the
second order space derivatives in Lq(Ω) spaces, for solutions to the parabolic
singular system (1.20), were not know in the literature. Actually, the two types
of estimates are not comparable. It is worth noting that in the elliptic case, see
[2], the W 2, q(Ω) estimates imply C1, α(Ω) regularity, since q > n is admissi-
ble.

A classical related subject, in the case N = 1 , are the Harnack’s inequalities.
See references and results in the recent monograph [6]. We learned in reference
[5] that the first parabolic versions of Harnack’s inequality are due to Hadamard
[11] and Pini [17].

NOTATION: We follow the notation introduced in reference [2]. By Lp(Ω)
and Wm,p(Ω), m nonnegative integer and p ∈ (1,+∞), we denote the usual
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Lebesgue and Sobolev spaces, with the standard norms ‖ · ‖p and ‖ · ‖m,p . We

set ‖ · ‖ = ‖ · ‖2. We denote by W 1,p
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(Ω) , and

by W−1,p′

(Ω), p′ = p/(p− 1), the strong dual of W 1,p
0 (Ω) with norm ‖ · ‖−1,p′ .

The symbols c, c1, c2, etc., denote positive constants that may depend on
µ; by capital letters, C, C1, C2, we denote positive constants independent of
µ ≥ 0 (eventually, µ bounded from above). The same symbol c or C may
denote different constants, even in the same equation. we set ∂t u = ∂ u

∂ t
.

2 The stationary problem. Known results.

As already referred, a main ingredient used here to prove the core estimate
(1.17) concerns the stationary problem (1.3). The following result was proved in
reference [2], in collaboration with Francesca Crispo (we also recall the previous
work [1], by the same authors).

Theorem 2.1. Let p ∈ (1, 2] and q ≥ 2 , q 6= n , be given. Assume that

(2 − p)C2(q) < 1 , where C2(q) satisfies (1.10). Further, assume that µ ≥ 0.
Let f ∈ Lr(q)(Ω) , where

(2.1) r(q) =

{ nq

n(p− 1) + q(2− p)
if q ∈ [ 2, n] ,

q if q ≥ n ,

and let u be the unique weak solution of problem (1.3). Then u belongs to

W 2,q(Ω). Moreover, the following estimate holds

(2.2) ‖u‖2,q ≤ C

(
‖f‖q + ‖f‖

1
p−1

r(q)

)
.

The reader directly interested in the above result is refereed to [2], where
significance and range of application of the above statement are discussed.

In reference [2] the authors assume that q ≥ 2 since they were mainly
interested in maximal regularity. However results and proofs hold also for values
q ∈ (1, 2) , at most under some small modification. Here we need the above
result only for the particular value q = q̂ < 2 . For simplicity, we take into
account only this value, and show the single points in the proof given in [2]
where some small remark may be useful to adapt the proof to the value q̂ .

Proposition 2.1. Let be µ ≥ 0 , and let p satisfy (1.12) and (1.4). Assume

that f ∈ L2(Ω) . Then, the weak solution u to the problem (1.3) belongs to

W 2,q̂(Ω). Moreover,

(2.3) ‖u‖2,q̂ ≤ C

(
‖f‖q̂ + ‖f‖

1
p−1

2

)
.

Proof. Clearly, we assume that the reader have in hands the proof of theorem
2.1 given in reference [2]. The unique real modification to be made in this proof,
in order to adapt it to the present situation, is the following. In reference [2],
at the end of section 3, the authors prove the following convergence

(2.4) f (µ+ |∇ vm|)2−p → f (µ+ |∇ v|)2−p
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in the L
q

2 norm. This is not suitable here, since q = q̂ < 2 . However, as
remarked in [2], convergence in the distributional sense is obviously sufficient.
As in [2], one has

| (µ+ |∇ vm| )2−p − (µ+ |∇ v| )2−p | ≤ 2− p

µp− 1
|∇ vm − ∇ v| .

In particular, it follows that (2.4) holds a.e. in Ω .

On the other hand, (µ+ |∇ vm|)2−p is bounded in Lt , where t := q̂∗
2− p

>
n
2 . So, it follows from Lemma 1.3, in Chap.1, [16] that

(µ+ |∇ vm|)2−p → f (µ+ |∇ v|)2−p
,

weakly in Lt . Moreover, (1.4) implies that (n2 )
′ ≤ 2 . Consequently, f ∈ L(n

2 )′ .
It readily follows that (2.4) holds in the distributional sense.

Just for the reader’s convenience we add two (we believe dispensable) re-
marks:

i) The set

K = {v ∈ W 2, q̂(Ω) : ‖∆ v‖q̂ ≤ R , v = 0 on ∂Ω} ,

introduced in [2], section 3, is still contained in W 1, p
0 (Ω) , since p > 2n

n+2 .
ii) As at the very beginning of section 4 in [2], one still has here p < q∗ .

So, as in [2], uµ converges to u in W 1,p(Ω).

3 A more general setting.

Besides proving the theorem 1.1, we also want to show that the statement may
be extended to other systems of equations of the form

(3.1)





∂t u− ∇ · S(∇u ) = f(t, x) in (0, T )× Ω ,

u = 0 on (0, T )× ∂Ω ,
u(0) = u0 in Ω ,

where S(·) is given by

(3.2) S(∇u ) := B( |∇u| )∇u .

Note that the N−dimensional vector field vector∇· S(∇u ) has components
given by

(3.3) (∇ · S(∇u ) )j =
∑

i

∂i
(
B( |∇u| ) ∂i uj

)
.

In the sequel we show that the above extension is possible, provided that
proposition 2.1 applies to the corresponding stationary problem

(3.4)

{
−∇ ·

(
B( |∇u| )∇u

)
= f in Ω ,

u = 0 on ∂Ω .
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This last possibility was, rightly, claimed in reference [2]. So, in this section, we
consider the system (3.1), and assume that a suitable extension of proposition
2.1 to the system (3.4) holds. Further, we introduce the following notation,
suited to treat the general situation.

We set, for y > 0 ,

(3.5) A(y) := B(
√
y ) ,

and define, for y ≥ 0 ,

(3.6) G(y) :=

∫
A(y) dy .

Furthermore, we assume that there are positive constants c0 and c1 such that

(3.7) c0 y
p − c1 ≤ G(y2) ≤ c̃0 y

p + c̃1 ,

for y ≥ 0 .
In this section we show the following result.

Proposition 3.1. Assume that the solutions to the stationary problem (3.4) en-
joy the regularity result stated in proposition 2.1, and that (3.7) holds. Further,

assume that f ∈ L2(0, T ; L2(Ω) ) , for some T ∈ ]0, +∞ ] . Then
(3.8)
c0 ‖ u ‖p

L∞(0, T ;W 1, p
0 (Ω) )

≤ c̃0 ‖ u0 ‖p
W

1, p
0 (Ω)

+ ‖ f ‖2L2(0, T ;L2(Ω) ) + (c1 + c̃1) |Ω | ,

(3.9)
‖∇ ·S(∇u ) ‖2L2(0, T ;L2(Ω) ) ≤ c̃0 ‖ u0 ‖p

W
1, p
0 (Ω)

+ ‖ f ‖2L2(0, T ;L2(Ω) )+(c1+ c̃1) |Ω | ,

(3.10)
‖ ∂t u ‖2L2(0, T ;L2(Ω) ) ≤ c̃0 ‖ u0 ‖p

W
1, p
0 (Ω)

+ 2 ‖ f ‖2L2(0, T ;L2(Ω) ) + (c1 + c̃1) |Ω | ,

and

(3.11) ‖ u ‖
L

2(p−1)
T

(W 2, q̂(Ω) )
≤ C

(
T

1
2(p− 1) + c̃

1
2(p− 1)

0 ‖ u ‖
p

2(p− 1)

W
1, p
0 (Ω)

+

‖ f ‖
1

(p− 1)

L2
T
(L2(Ω))

+
(
(c1 + c̃1) |Ω |

) 1
2(p− 1)

)
.

Proof. By scalar multiplication of booth sides of the first equation (3.1) by
−∇ ·

(
B(| ∇u|)∇u

)
, followed by integration in Ω , one gets

(3.12)

1

2

∫

Ω

B(| ∇u|) ∂t | ∇u|2 dx+

∫

Ω

| ∇ · S(∇u ) |2 dx =

−
∫
Ω
f · (∇ · S(∇u ) ) dx .

Recall (3.3). We have appealed to an integration by parts and to the fact that
∂t u = 0 on ∂Ω . Next, we write the equation (3.12) in the form

(3.13)

1

2

d

d t

∫

Ω

G(| ∇u|2) dx +

∫

Ω

| ∇ · S(∇u ) |2 dx =

−
∫
Ω f · (∇ · S(∇u ) ) dx ,

7



Note that, if f = 0 , the quantity

∫

Ω

G(| ∇u(t)|2) dx

is decreasing with respect to time. For instance, in the singular case (1.20), the
norm ‖∇u(t) ‖p decreases with time.

From (3.13), it follows that

(3.14)
d

d t

∫

Ω

G(| ∇u|2) dx+

∫

Ω

∣∣∇ ·
(
A(| ∇u|2)∇u

) ∣∣2 dx ≤
∫

Ω

| f |2 dx .

By integration with respect to t , one gets
(3.15)∫

Ω

G( | ∇u(t)|2)dx+
∫ t

0

∥∥∇·S(∇u(s) )
∥∥2
2
ds ≤

∫

Ω

G( | ∇u0|2)dx+
∫ t

0

‖ f(s) ‖22 ds .

From (3.15) and (3.7), by appealing to well know manipulations, one proves
(3.8), (3.9), and (3.10). Note that (3.10) follows immediately from the identity

∂t u = ∇ · S(∇u ) + f(t, x) .

In the above estimates W 1, p
0 (Ω) is endowed with the norm ‖∇u ‖Lp(Ω) .

Finally, we prove (3.11). By assumption, the solutions to the stationary
problem (3.4) enjoy the regularity results stated in proposition 2.1. So, it follows
from equations (3.1), (2.3), (3.9), and (3.10) that

(3.16) u ∈ L2( p− 1 )(0, T ;W 2, q̂(Ω) ) .

More precisely, by appealing to (2.3), one gets, for a.a. t ∈ (0, T ) ,

‖ u(t)‖2(p− 1)
2, q̂ ≤ C

(
‖ ∂t u− f ‖2(p− 1)

2 + ‖ ∂t u− f ‖22
)
.

Note that, for p = 2 , we get the classical estimate.
Since 2( p− 1 ) ≤ 2 , we may replace the above estimate simply by

‖ u(t)‖2(p− 1)
2, q̂ ≤ C

(
1 + ‖ ∂t u− f ‖22

)
.

So, with obvious notation,

(3.17) ‖ u ‖
L

2(p− 1)
T

(W 2, q̂ )
≤ C T

1
2(p− 1) + C ‖ ∂t u− f ‖

1
p− 1

L2
T
(L2 )

.

Hence, by the assumptions on f together with (1.16), one gets (3.11). This
completes the proof of proposition 3.1.

Note that proposition 3.1 is only a partial extension of theorem 1.1 to more
general systems of the form (3.1) since, in this last case the proposition 2.1 was
not proved. However, the corresponding extension should be routine.
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4 Proof of Theorem 1.1.

To prove the theorem 1.1, we simply assume that B is given by

(4.1) B(| ∇u|) = (µ+ | ∇u| )p−2 .

It remains to show that, in the case of equation (1.1), an estimate like (3.7)
holds.

Lemma 4.1. Set, for y ≥ 0 ,

(4.2) A( y) = (µ+ y
1
2 )p−2 .

It follows that

(4.3) G( y2) =
2

p
(µ+ y )p − 2µ

p− 1
(µ+ y )p− 1 .

in particular

(4.4)
1

p
(µ+ y )p − C1 µ

2 ≤ G(y2) ≤ 2

p
(µ+ y )p ≤ 2p

p
( yp + µp ) ,

where C1 = 2p

p (p− 1) .

The second inequality (4.4) follows by setting z = µ+ y ,where z ≥ 0 , and
by writing

2

p
zp − 2µ

p− 1
zp− 1 =

1

p
zp +

( 1
p
zp − 2µ

p− 1
zp− 1

)
.

The minimum of the function between open brackets is attained for z = 2µ .
It readily follows that the estimates (3.8), (3.9), (3.10), and (3.11) hold by

setting, for instance,

c0 =
1

p
, c1 = C1 µ

2 , c̃0 = c̃1 =
2p

p
.

In the singular case (1.20) one has G( y2) = 2
p
yp . Straightforward manipula-

tions lead to the estimates claimed in the theorem 1.2.

References

[1] H. Beirão da Veiga and F. Crispo, On the global regularity for nonlin-

ear systems of the p-Laplacian type, to appear in Discrete and Continuous
Dynamical Systems - Series S., Online arXiv:1008.3262v1 [math.AP], 19
August 2010.

[2] H. Beirão da Veiga and F. Crispo, On the global W 2, q regularity for non-

linear N−systems of the p-Laplacian type in n space variables, Nonlinear
Analysis-TMA , 75 (2012), 4346-4354. DOI: 10.1016/j.na.2012.03.021
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