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Abstract

In a planar infinite strip with fast periodically oscillating boundary we con-
sider an elliptic operator assuming that both the period and the amplitude of the
oscillations are small. On the oscillating boundary we impose Dirichlet, Neumann
or Robin boundary condition. In all cases we describe the homogenized opera-
tor, establish the uniform resolvent convergence of the perturbed resolvent to the
homogenized one and prove the estimates for the rate of convergence. These re-
sults are obtained as the order of the amplitude of the oscillations is less, equal or
greater than that of the period. It is shown that under the homogenization the
type of the boundary condition can change.

Introduction

There are many papers devoted to the homogenization of the boundary value problems
in the domains with fast oscillating boundary. The simplest example of such boundary
is given by the graph of the function x2 = η(ε)b(x1ε

−1), where ε is a small positive
parameter, η(ε) is a positive function tending to zero as ε → +0, and b is a smooth
periodic function. The parameter ε describes the period of the boundary oscillations
while η(ε) is their amplitude.

Most of the papers on such topic are devoted to the case of bounded domains with
fast oscillating boundary. Not trying to cite all papers in this field, we just mention
[30, Ch. III, Sec. 4], [19], [20], [21], [3], [17], [18], [4], [1], [2], [23], [28], [27], [29], [16],
[25], [26], see also the references therein. Main results concerned the identification of
the homogenized problems and proving the convergence theorems for the solutions. The
homogenized (limiting) problems were the boundary value problems for the same equa-
tions in the same domains but with the mollified boundary instead of the oscillating
one. The type of the condition on the mollified boundary depended on the original
boundary condition and the geometry of the oscillations. If the amplitude of the os-
cillations is of the same order as the period (i.e., in above example η ∼ ε), then the
homogenized boundary condition is of the same type as the original condition on the
oscillating boundary. In the case of Robin or Neumann condition the homogenization
gives rise to an additional term in the coefficient in the homogenized boundary condi-
tion; this term reflected the local geometry of the boundary oscillations. If the period
of the boundary oscillations is smaller (in order) of the amplitude then the boundary
is highly oscillating. To authors knowledge, such case was considered in [18] and [23].
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In [23] the model was the spectral problem for the biharmonic operator with Dirichlet
condition, while in [18] the Robin problem for the Poisson equation was studied. In the
former case in particular it was shown that the homogenized boundary condition was
the Dirichlet one while in the latter the authors discovered that in the case of highly
oscillating boundary the homogenized boundary condition is also the Dirichlet while
the perturbed problem involved the Robin condition.

Most of the results on the convergence of the solutions were established in the sense of
the weak or strong resolvent convergence, and the resolvents were also treated in various
possible norms. In some cases the estimates for the convergence rate were proven. It
was also shown that constructing the next terms of the asymptotics for the perturbed
solutions one get the estimates for the convergence rate or improves it [20], [21], [4],
[29], [26], [29], [23], [27], [16]. In some cases even complete asymptotic expansions were
constructed [2], [3], [22], [28].

One more type of the established results is the uniform resolvent convergence for
the problems. Such convergence was established just for few models, see [30, Ch. III,
Sec. 4], [29]. The estimates for the rates of convergence were also established. In
both papers the amplitude and the period of oscillations were of the same order. At
the same time, the uniform resolvent convergence for the models considered in the
homogenization theory is a quite strong results. Moreover, recently the series of papers
by M.Sh. Birman, T.A. Suslina and V.V. Zhikov, S.E. Pastukhova have stimulated the
interest to this aspect, see [5], [6], [7], [8], [15], [31], [32], [35], [37], [38], [34], [36], the
references therein and further papers by these authors. It was shown that the uniform
resolvent convergence holds true for the elliptic operators with fast oscillating coefficients
and even the estimates for the rates of convergence were obtained. Similar results were
also established for some problems in bounded domains, see [37]. Similar results but
for the boundary homogenization were established in [14], [11], [10], [12], [13]. Here
the Laplacian in a planar straight infinite strip with frequently alternating boundary
conditions was considered. Such boundary conditions were imposed by partitioning
the boundary into small segments where Dirichlet and Robin conditions were imposed
in turns. The homogenized problem involves one of the classical boundary conditions
instead of the alternating ones. For all possible homogenized problems the uniform
resolvent and the estimates for the rates of convergence were proven and asymptotics
for the spectra were constructed.

In the present paper we also consider the boundary homogenization for the elliptic
operators in unbounded domains but the perturbation is a fast oscillating boundary.
As the domain we choose a planar straight infinite strip with a periodic fast oscillat-
ing boundary where a general self-adjoint second order elliptic operator is considered.
The operator is regarded as an unbounded one in an appropriate L2 space. On the
oscillating boundary we impose Dirichlet, Neumann or Robin condition. Apart from a
mathematical interest to this problem, as a physical motivation we can mention a model
of a planar quantum or acoustic waveguide with a fast oscillating boundary.

Our main result is the form of the homogenized operator and the uniform resolvent
convergence of the perturbed operator to the homogenized one. This convergence is
established in the sense of the norm of the operator acting from L2 into W 1

2 . The
estimates for the rate of convergence are provided. We show that in the case of the
Dirichlet condition of the oscillating boundary the homogenized problem involves the
same condition on the mollified boundary no matter what is the relation between the
period and the amplitude of the oscillations. The Neumann or Robin condition on
the oscillating boundary leads to the Robin condition with an additional term in the
coefficient provided the amplitude is not greater the period (in order). If the amplitude
is greater than the period, then the homogenization preserves the Neumann condition
and transforms the Robin condition into the Dirichlet one. The last result is in a good
accordance with the similar case treated in [18]. The difference is that in [18] the strong
resolvent convergence was proven provided the coefficient in the Robin condition is
positive, while we prove the uniform resolvent convergence provided the coefficient is
non-negative and vanishes on the set of zero measure.
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1 The problem and the main results

Let x = (x1, x2) be the Cartesian coordinates in R2, ε be a small positive parameter,
η = η(ε) be an arbitrary non-negative 1-periodic function belonging to C2(R). We
define two domains, cf. fig. 1,

Ω0 := {x : 0 < x2 < d}, Ωε := {x : η(ε)b(x1ε
−1) < x2 < d},

where d > 0 is a constant, and its boundaries are indicated as

Γ := {x : x2 = d}, Γ0 := {x : x2 = 0}, Γε := {x : x2 = η(ε)b(x1ε
−1)}.

By Aij = Aij(x), Aj = Aj(x), A0 = A0(x), i, j = 1, 2, we denote the functions defined
on Ω0 and satisfying the belongings Aij ∈ W 2

∞(Ω0), Aj ∈ W 1
∞(Ω0), A0 ∈ L∞(Ω0).

The functions Aij , Aj are assumed to be complex-valued, while A0 is real-valued. In
addition, the functions Aij satisfy the ellipticity condition

Aij = Aji,

2∑

i,j=1

Aijzizj > c0(|z1|
2 + |z2|

2), x ∈ Ω0, zj ∈ C. (1.1)

By a = a(x) we denote a real function defined on {x : 0 < x2 < δ} for some small fixed
δ, and it is supposed that a ∈ W 1

∞({x : 0 < x2 < d}).
The main object of our study is the operator

−
2∑

i,j=1

∂

∂xj
Aij

∂

∂xi
+

2∑

j=1

Aj
∂

∂xj
−

∂

∂xj
Aj +A0 in L2(Ωε) (1.2)

subject to the Dirichlet condition on Γ. On the other boundary we choose either Dirich-
let condition

u = 0 on Γε, (1.3)

or Robin condition
(

∂

∂νε
+ a

)
u = 0 on Γε,

∂

∂νε
= −

2∑

i,j=1

Aijν
ε
j

∂

∂xi
−

2∑

j=1

Ajν
ε
j , (1.4)

where νε = (νε1 , ν
ε
2) is the outward normal to Γε. In the case of the Dirichlet condition

on Γε we denote this operator as HD
ε,η, while for the Robin condition it is HR

ε,η. The
former includes also the case of the Neumann condition since the function a can be
identically zero.

We introduce HD
ε,η rigorously as the lower-semibounded self-adjoint operator in

L2(Ωε) associated with the closed symmetric lower-semibounded sesquilinear form

hDε,η(u, v) :=
2∑

i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)

L2(Ωε)

+
2∑

j=1

(
Aj

∂u

∂xj
, v

)

L2(Ωε)

+

2∑

j=1

(
u,Aj

∂v

∂xj

)

L2(Ωε)

+ (A0u, v)L2(Ωε)

(1.5)

in L2(Ωε) with the domain D(hDε,η) := W 1
2,0(Ωε, ∂Ωε). Hereinafter D(·) is the domain

of a form or an operator, and W j
2,0(Ω, S) denotes the Sobolev space consisting of the

functions in W j
2 (Ω) with zero trace on a curve S lying in a domain Ω ⊂ R2. The

operator HR
ε,η is introduced in the same way via the sesquilinear form

hRε,η(u, v) :=

2∑

i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)

L2(Ωε)

+

2∑

j=1

(
Aj

∂u

∂xj
, v

)

L2(Ωε)

+

2∑

j=1

(
u,Aj

∂v

∂xj

)

L2(Ωε)

+ (A0u, v)L2(Ωε) + (au, v)L2(Γε)

(1.6)
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Figure 1: Domain with oscillating boundary

with the domain D(hRε,η) := W 1
2,0(Ωε,Γ).

The main aim of the paper is to study the asymptotic behavior of the resolvents
of HD

ε,η and HR
ε,η as ε → +0. To formulate the main results we first introduce some

additional operators.
By HD

0 we denote the operator (1.2) in L2(Ω) subject to the Dirichlet condition. We
introduce it by analogue with HD

ε,η as associated with the form

hD0 (u, v) :=

2∑

i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)

L2(Ω0)

+

2∑

j=1

(
Aj

∂u

∂xj
, v

)

L2(Ω0)

+
2∑

j=1

(
u,Aj

∂v

∂xj

)

L2(Ω0)

+ (A0u, v)L2(Ω0)

(1.7)

in L2(Ω0) with the domain D(hD0 ) := W 1
2,0(Ω0, ∂Ω0). The domain of the operator HD

0

is W 2
2,0(Ω0, ∂Ω0) that can be shown by analogy with [24, Ch. III, Sec. 7,8], [9, Lm. 2.2].

Our first main result describes the uniform resolvent convergence for HD
ε,η.

Theorem 1.1. Let f ∈ L2(Ω0). For sufficiently small ε the estimate

‖(HD
ε,η − i)−1f − (HD

0 − i)−1f‖W 1
2
(Ωε) 6 Cη1/2(ε)‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f .

The next four theorems describe the resolvent convergence of the operator HR
ε,η. We

consider separately two cases,

ε−1η(ε) → α = const > 0, ε → +0, (1.8)

ε−1η(ε) → +∞, ε → +0. (1.9)

The first assumption means that the amplitude of the oscillation of the curve Γε

is of the same order (or smaller) as the period. The other assumption corresponds to
the case when the amplitude is much greater than the period. In what follows the first
case is referred to as the slowly oscillating boundary Γε while the other describes highly
oscillating boundary Γε.

We begin with the slowly oscillating boundary. We denote

a0(x1) := a(x1, 0)

1∫

0

√
1 + α2

(
b′(t)

)2
dt. (1.10)

Let HR,α
0 be the self-adjoint operator in L2(Ω0) associated with the lower-semibounded

sesquilinear symmetric form

h
R,α
0 (u, v) :=

2∑

i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)

L2(Ω0)

+

2∑

j=1

(
Aj

∂u

∂xj
, v

)

L2(Ω0)

+

2∑

j=1

(
u,Aj

∂v

∂xj

)

L2(Ω0)

+ (A0u, v)L2(Ω0) + (a0u, v)L2(Γ0)

(1.11)
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with the domain D(hR,α
0 ) := W 1

2,0(Ω0,Γ). It can be shown by analogy with [24, Ch. III,

Sec. 7,8], [9, Lm. 2.2] that the domain ofHR,α
0 consists of the functions u ∈ W 2

2,0(Ω0,Γ0)
satisfying the Robin condition

(
∂

∂ν0
+ a0

)
u = 0 on Γ0,

∂

∂ν0
:=

2∑

i=1

Ai2
∂

∂xi
+A2. (1.12)

Theorem 1.2. Suppose (1.8) and let f ∈ L2(Ωε). Then for sufficiently small ε the
estimate

‖(HR
ε,η − i)−1f − (HR,α

0 − i)−1f‖W 1
2
(Ωε) 6 C(η1/2(ε)+ |ε−2η2(ε)−α2|+αε1/2)‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f .

Now we consider the particular case of the Neumann condition on Γε, i.e., a = 0.
The operator HR

ε,η and the associated quadratic form hRε,η are re-denoted in this case by

HN
ε,η and hNε,η. By HN

0 we denote the self-adjoint lower-semibounded operator in L2(Ω0)

associated with the sesquilinear form hN0 which is h
R,α
0 taken for a0 ≡ 0. Its domain

is the set of the functions in W 2
2,0(Ω0,Γ) satisfying the boundary condition (1.12) with

a0 = 0. The resolvent convergence in this case is given in

Theorem 1.3. Let f ∈ L2(Ωε). Suppose (1.8). Then for sufficiently small ε the
estimate

‖(HN
ε,η − i)−1f − (HN

0 − i)−1f‖W 1
2
(Ωε) 6 Cη1/2(ε)‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f .
Suppose (1.9). Then for sufficiently small ε the estimate

‖(HN
ε,η − i)−1f − (HN

0 − i)−1f‖W 1
2
(Ωε) 6 Cη1/4(ε)‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f .

We proceed to the case of the Robin condition on the highly oscillating boundary
Γε. Here the homogenized operator happens to be quite sensitive to the sign of a and
zero level set of this function. In the paper we describe the resolvent convergence as a
is non-negative. We first suppose that a is bounded from below by a positive constant.
Surprisingly, but here the homogenized operator has the Dirichlet condition on Γ0 as in
Theorem 1.1.

Theorem 1.4. Suppose (1.9),

a(x) > c = const > 0, (1.13)

and that the function b is not identically constant. Let f ∈ L2(Ω0). Then for sufficiently
small ε the estimate

‖(HR
ε,η − i)−1f − (HD

0 − i)−1f‖W 1
2
(Ωε) 6 C

(
ε1/4η−1/4(ε) + η1/4(ε)

)
‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f .

In the next theorem we still suppose that a is non-negative but can have zeroes. An
essential assumption that zero level set of a is of zero measure. We let b∗ := max

[0,1]
b.

Theorem 1.5. Suppose (1.9),
a > 0, (1.14)

and that the function b is not identically constant. Assume also that for all sufficiently
small δ the set {x : a(x) 6 δ, 0 < x2 < (b∗ + 1)η} is contained in an at most countable
union of the rectangles {x : |x1−Xn| < µ(δ), 0 < x2 < (b∗+1)η}, where µ(δ) is a some
nonnegative function such that µ(δ) → +0 as δ → +0, and the numbers Xn, n ∈ Z,
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are independent of δ, are taken in the ascending order, and satisfy uniform in n and m
estimate

|Xn −Xm| > c > 0, n 6= m. (1.15)

Let f ∈ L2(Ω0). Then for sufficiently small ε the estimate

‖(HR
ε,η − i)−1f−(HD

0 − i)−1f‖W 1
2
(Ωε)

6 C
(
µ1/2(δ)| lnµ(δ)|1/2 + (ε1/4η−1/4 + η1/4)δ−1/4

)
‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f , and δ = δ(ε) is any function
tending to zero as ε → +0.

Let us discuss the main results. We first observe that under the hypotheses of all
theorems we have the corresponding spectral convergence, namely, the convergence of
the spectrum and the associated spectral projectors – see, for instance, [33, Thms.
VIII.23, VIII.24]. We also stress that in all Theorems 1.1-1.5 the resolvent convergence is
established in the sense of the uniform norm of bounded operator acting from L2(Ω0)
into W 1

2 (Ωε).
In the case of the Dirichlet condition on Γε the homogenized operator has the same

condition on Γ0 no matter how the boundary Γε oscillates, slowly or highly. The esti-
mate for the rate of convergence is also universal being O(η1/2). Once we have Robin
condition on Γε, the situation is completely different. If the boundary oscillates slowly,
the homogenized operator still has Robin condition on Γ0, but the coefficient depends
on the geometry of the original oscillations, cf. (1.10). The estimate for the rate of
the resolvent convergence in this case involves additional term in comparison with the
Dirichlet case, cf. Theorem 1.2.

As the boundary Γε oscillates highly, the resolvent convergence again changes. In
the particular case of Neumann condition on Γε the homogenized operator still has the
Neumann condition on Γε but the estimate for the rate of the resolvent convergence is
of order O(η1/4), cf. Theorem 1.3. We note that this theorem also treat the case of the
slowly oscillating boundary which is better than that in Theorem 1.2.

Once the coefficient a in the Robin condition is non-zero and the boundary oscillates
highly, the situation changes dramatically in comparison to all previous cases. Namely,
provided the function a is non-negative and does not vanishes identically on a set of
non-zero measure, the homogenized operator has the Dirichlet condition on Γ0, i.e., in
the limit the type of the boundary condition changes. We stress that in all previous
cases the type of the boundary condition was preserved under the homogenization. In
the present case the estimate for the rate of the resolvent convergence is sensible to the
presence of zeroes of a. If this function is lower-semibounded by a positive constant,
the estimate for the rate is O(ε1/4η−1/4 + η1/4), cf. Theorem 1.4. Once it has zeroes
and they form a set of zero measure, then it becomes important how fast the function a
vanishes in a vicinity of these zeroes. This is reflected by the function µ(δ) introduced
in Theorem 1.5. As we see, the estimate for the rate of convergence provided by this
theorem is of order O

(
µ1/2| lnµ|1/2+(ε1/4η−1/4+η1/4)δ−1/4

)
, where µ = µ(δ(ε)). Here

one should choose δ so that (ε1/4η−1/4 + η1/4)δ−1/4 → +0, δ → +0 as ε → +0, and it
is always possible. The optimal choice of δ is so that

µ1/2| lnµ|1/2 ∼ (ε1/4η−1/4 + η1/4)δ−1/4,

δ1/2µ| lnµ| ∼ ε1/2η−1/2 + η1/2. (1.16)

As we see, it depends on the structure of the function µ. The most typical case is
µ(δ) ∼ δ1/2, i.e., the function a vanishes by the quadratic law in a vicinity of its zeroes.
In this case the condition (1.16) becomes

δ| ln δ| ∼ ε1/2η−1/2 + η1/2,

which implies
δ ∼ (ε1/2η−1/2 + η1/2)| ln(ε1/2η−1/2 + η1/2)|−1.
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Then the estimate for the resolvent convergence in Theorem 1.5 is of orderO
(
(ε1/8η−1/8+

η1/8)| ln(εη−1 + η)|1/4
)
.

In conclusion we discuss the case of Robin condition on highly oscillating Γε when
the coefficient a does not satisfy the hypotheses of Theorems 1.4, 1.5. If it is still non-
negative but vanishes on a set of non-zero measure, then we conjecture that the homog-
enized involves mixed Dirichlet and Neumann condition on Γ0. Namely, if a(x1, 0) ≡ 0
on GN

0 and a(x1, 0) > 0 on GD
0 , Γ0 = ΓN

0 ∪ ΓD
0 , then it is natural to expect that the

homogenized operator has Neumann condition on ΓN
0 and the Dirichlet one on ΓD

0 . This
conjecture can be regarded as the mixture of the statements of Theorems 1.3 and 1.5.
The main difficulty of proving this conjecture is that the domain of such homogenized
operator is no longer a subset of W 2

2 (Ω0) because of the mixed boundary conditions. At
the same time, this fact was essentially used in all our proofs. Even a more complicated
situation occurs once a is negative or sign-indefinite. If a is negative at a set of non-zero
measure, it can be shown that the bottom of the spectrum of the perturbed operator
goes to −∞ as ε → +0. In such case one should study the resolvent convergence near
this bottom, i.e., for the spectral parameter which goes to −∞. This makes the issue
quite troublesome. We stress that under the hypotheses of all Theorems 1.1-1.5 the
bottom of the spectrum was lower-semibounded uniformly in ε.

2 Dirichlet condition

In this section we study the resolvent convergence of the operator HD
ε,η and prove The-

orem 1.1.
By χ0 = χ0(t) we denote an infinitely differentiable non-negative cut-off function

with the values in [0, 1] vanishing as t > 1 and being one as t < 0. We also assume that
the values of χ0 are in [0, 1]. We choose the function K as

K(x2, η) := χ0

(
x2 − b∗η

η

)
. (2.1)

We observe that the function (1 −K) vanishes for 0 < x2 < b∗η and is independent of
x1.

Given a function f ∈ L2(Ω0), we denote uε := (HD
ε,η − i)−1f , u0 := (HD

0 − i)−1f ,
vε := uε − (1 − K)u0. In accordance with the definition of uε and u0 these functions
satisfy the integral identities

hDε,η(uε, φ) + i(uε, φ)L2(Ωε) = (f, φ)L2(Ωε) (2.2)

for each φ ∈ W 1
2,0(Ωε, ∂Ωε), and

hD0 (u0, φ) + i(u0, φ)L2(Ω0) = (f, φ)L2(Ω0) (2.3)

for each φ ∈ W 1
2,0(Ω0, ∂Ω0). It is clear that (1 −K)vε ∈ W 1

2,0(Ωε, ∂Ωε), (1 − K)u0 ∈
W 1

2,0(Ωε, ∂Ωε), and the extension of vε by zero in Ω0 \ Ωε belongs to W 1
2,0(Ω0, ∂Ω0).

Bearing these facts in mind, as the test function in (2.2) we choose φ = vε, and in (2.3)
we let φ = (1 −K)vε assuming that vε is extended by zero in Ω0 \ Ωε. It yields

hDε,η(uε, vε) + i(uε, vε) = (f, vε)L2(Ωε), (2.4)

hD0 (u0, (1−K)vε) + i(u0, (1 −K)vε)L2(Ωε) = (f, (1−K)vε)L2(Ωε). (2.5)

7



Employing (1.7), we rewrite the term hD0 (u0, (1−K)vε),

hD0 (u0,(1 −K)vε) =

2∑

i,j=1

(
(1−K)Aij

∂u0

∂xj
,
∂vε
∂xi

)

L2(Ωε)

+

2∑

j=1

(
Aj(1−K)

∂u0

∂xj
, vε

)

L2(Ωε)

+

2∑

j=1

(
(1−K)u0, Aj

∂vε
∂xj

)

L2(Ωε)

+ (A0(1−K)u0, vε)L2(Ωε)

−
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

=hDε,η((1 −K)u0, vε) +

(
A2u0, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

−

2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

+

2∑

i=1

(
Ai2u0

∂K

∂x2
,
∂vε
∂xi

)

L2(Ωε)

.

(2.6)
It implies

hDε,η(vε, vε) + i‖vε‖
2
L2(Ωε)

= (f,Kvε)L2(Ωε)

+

(
A2u0, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

−
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

+
2∑

i=1

(
Ai2u0

∂K

∂x2
,
∂vε
∂xi

)

L2(Ωε)

.

(2.7)

Our main idea of the proof of Theorem 1.1 is to estimate the right hand side of (2.7)
with the introduced function K and get in this way an estimate for vε. In order to do
it, we need some auxiliary statements.

We first observe obvious inequalities

‖u0‖W 1
2
(Ω0) 6 C‖f‖L2(Ω0), ‖uε‖W 1

2
(Ω0) 6 C‖f‖L2(Ω0). (2.8)

Here and till the end of the section by C we denote inessential constants independent
of ε, x, and f . Proceeding as in [24, Ch. III, Sec. 7,8] (see also [9, Lm. 2.2]), one can
also check that

‖u0‖W 2
2
(Ω0) 6 C‖f‖L2(Ω0). (2.9)

The next required statement is

Lemma 2.1. Suppose u ∈ W 2
2,0(Ω0,Γ0), v ∈ W 1

2,0(Ωε,Γε). Then for almost each
x1 ∈ R, x2 ∈ [0, d] the estimates

|u(x)|2 6 Cx2
2‖u(x1, ·)‖

2
W 2

2
(0,d),

|∇u(x)|2 6 C‖∇u(x1, ·)‖
2
W 1

2
(0,d),

|v(x)|2 6 Cx2‖v(x1, ·)‖
2
W 1

2
(ηb(x1ε−1),d)

hold true, where C are constants independent of x, ε, u, and v.

Proof. Since u ∈ W 2
2 (Ω0), v ∈ W 1

2 (Ωε), for almost all x1 ∈ R we have u(x1, ·) ∈
W 2

2 (0, d), v ∈ W 1
2 (0, d). We represent the function u as

u(x1, x2) =

x2∫

0

∂u

∂x2
(x1, t) dt,

and by Cauchy-Schwarz inequality we obtain

|u(x1, x2)|
2 6 Cx2

x2∫

0

∣∣∣∣
∂u

∂x2
(x1, t)

∣∣∣∣
2

dt. (2.10)
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Let χ1 = χ1(x2) be an infinitely differentiable smooth function vanishing as x2 > 3d/4
and equalling one as x2 < d/2. Then for x2 ∈ [0, d/2] we have

∂u

∂x2
(x1, x2) =

x2∫

d

(
∂

∂x2
χ1

∂u

∂x2

)
(x1, t) dt,

and thus
∣∣∣∣
∂u

∂x2
(x1, x2)

∣∣∣∣
2

6 C

d∫

0

(∣∣∣∣
∂2u

∂x2
2

(x1, t)

∣∣∣∣
2

+

∣∣∣∣
∂u

∂x2
(x1, t)

∣∣∣∣
2
)

dt.

Substituting this inequality into (2.10), we arrive at the first required estimate. To
prove two others one should proceed as above starting with the representation

v(x1, x2) =

x2∫

0

∂v

∂x2
(x1, t) dt,

where v is assumed to be extended by zero outside Ωε, and the representation

∂u

∂xj
(x1, x2) =

x2∫

d

(
∂

∂x2
χ1

∂u

∂xj

)
(x1, t) dt.

Now we proceed to the estimating the right hand side of (2.7). Denote Ωη := Ωε∩{x :
0 < x2 < (b∗ + 1)η}. Since the function K vanishes outside Ωη and |∇K| 6 Cη−1,
0 6 K 6 1, it is easy to see that

∣∣∣∣∣(f,Kvε)L2(Ωε) +

(
A2u0, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

−

2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

+

2∑

i=1

(
Ai2u0

∂K

∂x2
,
∂vε
∂xi

)

L2(Ωε)

∣∣∣∣∣

6 C
(
‖f‖L2(Ωε)‖vε‖L2(Ωη) + η−1‖u0‖W 1

2
(Ωη)‖vε‖L2(Ωη)

+ η−1‖u0‖L2(Ωη)‖∇vε‖L2(Ωε)

)
.

(2.11)

We estimate the terms in the right hand side by applying Lemma 2.1,

‖vε‖
2
L2(Ωη) 6

∫

R

‖vε(x1, ·)‖
2
L2(ηb(xε−1),(b∗+1)η) dx1

6 C‖vε‖
2
W 1

2
(Ωε)

(b∗+1)η∫

0

x2 dx2 6 Cη2‖vε‖
2
W 1

2
(Ωε)

,

‖u0‖
2
L2(Ωη) 6 C‖u0‖

2
W 2

2
(Ωε)

(b∗+1)η∫

0

x2
2 dx2 6 Cη3‖u0‖

2
W 2

2
(Ωε)

,

‖∇u0‖
2
L2(Ωη) 6 C‖u0‖

2
W 2

2
(Ωε)

(b∗+1)η∫

0

dx2 6 Cη‖u0‖
2
W 2

2
(Ωε)

.

(2.12)
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We substitute the obtained estimates and (2.9) into (2.11),
∣∣∣∣∣(f,Kvε)L2(Ωε) +

(
A2u0, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

−

2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

+

2∑

i=1

(
Ai2u0

∂K

∂x2
,
∂vε
∂xi

)

L2(Ωε)

∣∣∣∣∣

6 Cη1/2(ε)‖f‖L2(Ωε)‖vε‖W 1
2
(Ωε).

We substitute the last obtained estimate and (2.9) into the right hand side of (2.7) and
arrive at the final estimate for vε,

‖vε‖W 1
2
(Ωε) 6 Cη1/2(ε)‖f‖L2(Ωε).

Using (2.9), by analogy with (2.12) one can check easily that

‖Ku0‖W 1
2
(Ω0) 6 Cη1/2‖u0‖W 2

2
(Ω0) 6 Cη1/2‖f‖L2(Ω0). (2.13)

The statement of Theorem 1.1 follows from two last estimates and the definition of vε.

3 Robin condition and slowly oscillating boundary

and Neumann condition

In this section we study the resolvent convergence for the operator HR
ε,η and prove

Theorems 1.2, 1.3. Throughout the proofs by C we indicate various inessential constants
independent of ε, x, and f .

Proof of Theorem 1.2. Denote uε := (HR
ε,η − i)−1f , u0 := (HR,α

0 − i)−1f . First we write
the integral identities for the functions uε and u0,

hRε,η(uε, φ)− i(uε, φ)L2(Ωε) = (f, φ)L2(Ωε) for all φ ∈ W 1
2,0(Ωε,Γ), (3.1)

h
R,α
0 (u0, φ)− i(u0, φ)L2(Ω0) = (f, φ)L2(Ω0) for all φ ∈ W 1

2,0(Ω0,Γ). (3.2)

We extend the function uε in Ω0 \ Ωε by the rule

uε(x) = uε

(
x1, 2η(ε)b(x1ε

−1)− x2

)
, x2 < η(ε)b(x1ε

−1). (3.3)

Bearing in mind (1.8), it is easy to show that after this extension the function uε belongs
to W 1

2 (Ω0) and the estimates

‖∇uε‖L2(Ω0\Ωε) 6 C‖∇uε‖L2(Ωε). (3.4)

The next lemma is an analogue of Lemma 2.1 and is proven in the similar way.

Lemma 3.1. Let u ∈ W 2
2 (Ωε), v ∈ W 1

2 (Ωε). Then for almost all x1 ∈ R, x2 ∈ [0, d/2]
the estimates

|u(x)|+ |∇u(x)| 6 C‖u(x1, ·)‖W 2
2
(ηb(x1ε−1),d),

|v(x)| 6 C‖u(x1, ·)‖W 1
2
(ηb(x1ε−1),d)

hold true, where the constant C are independent of x, ε, u, and v.

The next lemma gives an apriori estimate for the form hRε,η.

Lemma 3.2. For any u ∈ W 1
2,0(Ωε,Γ) the estimate

‖u‖2W 1
2
(Ωε)

6
∣∣hRε,η(u, u)− i‖u‖2L2(Ωε)

∣∣

hold true, where the constant C is independent of ε and u.
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Proof. For x ∈ Γε we have

|u(x)|2 6

d∫

ηb(x1ε−1)

∂|u|2

∂x2
(x1, t) dt 6 δ‖∇u‖2L2(Ωε)

+ C(δ)‖u‖2L2(Ωε)
, (3.5)

where the constant δ can be chosen arbitrarily small. Hence, due to (1.8), for an
appropriate choice of δ

|(au, u)L2(Γε)| =
∣∣∣
∫

Γε

a(x)|u(x)|2
√
1 + ε−2η2

(
b′(x1ε−1)

)2
dx1

∣∣∣

6
c0
4
‖∇u‖2L2(Ωε)

+ C‖u‖2L2(Ωε)
.

(3.6)

It is also clear that
∣∣∣∣∣∣

2∑

j=1

(
Aj

∂u

∂xj
, u

)

L2(Ωε)

+

2∑

j=1

(
u,Aj

∂u

∂xj

)

L2(Ωε)

∣∣∣∣∣∣
6

c0
4
‖∇u‖2L2(Ωε)

+C‖u‖2L2(Ωε)
. (3.7)

Last two estimates and the definition (1.6) of hRε,η imply the desired estimate.

Applying Lemma 3.1 with v = uε, we get

‖uε‖L2(Ω0\Ωε) 6 Cη1/2
∥∥∥∥
∂uε

∂x2

∥∥∥∥
L2(Ωε)

. (3.8)

We let φ = vε := uε − u0 in (3.1), (3.2) and take the difference of these identities

hRε,η(vε, vε)− i‖vε‖
2
L2(Ωε)

= (f, vε)L2(Ωε) +

2∑

i,j=1

(
Aij

∂u0

∂xj
,
∂vε
∂xi

)

L2(Ω0\Ωε)

+

2∑

j=1

(
Aj

∂uε

∂xj
, vε

)

L2(Ω0\Ωε)

+

2∑

j=1

(
uε, Aj

∂vε
∂xj

)

L2(Ω0\Ωε)

+ (A0u0, vε)L2(Ω0\Ωε) − i(u0, vε)L2(Ω0\Ωε)

− (au0, vε)L2(Γε) + (a0u0, vε)L2(Γ0).

(3.9)

Proceeding as [24, Ch. III, Sec. 7,8], [9, Lm. 2.2], one can estimate u0,

‖u0‖W 2
2
(Ω0) 6 C‖f‖L2(Ω0). (3.10)

Employing this identity and Lemma 3.1 with u = u0, we obtain

‖u0‖W 1
2
(Ω0\Ωε) 6 Cη1/2‖f‖L2(Ω0). (3.11)

The inequalities (3.8), (3.10), (3.11), and Lemma 3.2 with u = uε allow us to estimate
the most part of the terms in the right hand side in (3.9),

∣∣∣∣(f, vε)L2(Ωε) +
2∑

i,j=1

(
Aij

∂u0

∂xj
,
∂vε
∂xi

)

L2(Ω0\Ωε)

+
2∑

j=1

(
Aj

∂uε

∂xj
, vε

)

L2(Ω0\Ωε)

+

2∑

j=1

(
uε, Aj

∂vε
∂xj

)

L2(Ω0\Ωε)

+ (A0u0, vε)L2(Ω0\Ωε) − i(u0, vε)L2(Ω0\Ωε)

∣∣∣∣

6 Cη1/2(ε)‖f‖L2(Ω0)‖vε‖W 1
2
(Ωε).

(3.12)

It remains to estimate last two terms in the right hand side of (3.9). We denote

ã(x1, ε) := a
(
x1, η(ε)b(x1ε

−1)
)√

1 + ε−2η2(ε)
(
b′(x1ε−1)

)2
,

â(x1, ε) := a(x1, 0)

√
1 + α2

(
b′(x1ε−1)

)2
,
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and have

(a0u0, vε)L2(Γ0) − (au0, vε)L2(Γε) =

∫

R

dx1

(
a0(x1)u0(x1, 0)vε(x1, 0)

− ã(x1, ε)u0(x1, ηb(x1ε
−1))vε(x1, ηb(x1ε−1))

)

=

∫

R

ã(x1, ε)
(
u0(x1, 0)vε(x1, 0)− u0(x1, ηb(x1ε

−1))vε(x1, ηb(x1ε−1))
)
dx1

+

∫

R

(
â(x1, ε)− ã(x1, ε)

)
u0(x1, 0)vε(x1, 0) dx1

+

∫

R

(
a0(x1)− â(x1, ε)

)
u0(x1, 0)vε(x1, 0)dx1.

(3.13)
We estimate the first term by (3.8), (3.10), (3.11), and Lemma 3.2 with u = uε

∣∣∣∣
∫

R

ã(x1, ε)
(
u0(x1, 0)vε(x1, 0)− u0(x1, ηb(x1ε

−1))vε(x1, ηb(x1ε−1))
)
dx1

∣∣∣∣

6 C

∫

R

dx1

ηb(x1ε
−1)∫

0

∣∣∣∣
∂

∂x2
u0vε

∣∣∣∣ dx2 6 C‖u0‖W 1
2
(Ω0\Ωε)‖vε‖W 1

2
(Ω0\Ωε)

6 Cη1/2‖f‖L2(Ω0)‖vε‖W 1
2
(Ωε).

(3.14)

Employing (3.4), Lemma 3.1, and an obvious inequality

sup
x1∈R

∣∣∣ã1(x1, ε)−a(x1, 0)

√
1 + ε−2η2(ε)

(
b′(x1ε−1)

)2∣∣∣

6 sup
x1∈R

ηb(x1ε
−1)∫

0

∣∣∣∣
∂a

∂x2
(x1, t)

∣∣∣∣ dt 6 Cη(ε),

we obtain
∣∣∣∣
∫

R

(
â(x1, ε)− ã(x1, ε)

)
u0(x1, 0)vε(x1, 0)

∣∣∣∣ dx1

6 C
(
|ε−2η2 − α2|+ sup

x1∈R
|ã1(x1, ε)− â(x1, ε)|

)
‖f‖L2(Ω0)‖vε‖W 1

2
(Ωε)

6 C
(
|ε−2η2 − α2|+ η

)
‖f‖L2(Ω0)‖vε‖W 1

2
(Ωε).

(3.15)

Denote

q0(z) :=

√
1 + α2

(
b′(z)

)2
−

1∫

0

√
1 + α2

(
b′(t)

)2
dt.

We observe that

1∫

0

q0(z) dz = 0, â(x1, ε)− a0(x1) = a(x1, 0)q0(x1ε
−1).

Employing this fact, the inequalities (3.4), (3.10), (3.5), and proceeding completely in
the same way as in the proof of Lemma 2.9 in [30, Ch. II, Sec. 2.3], we show that

∣∣∣∣
∫

R

(
a0(x1)− â(x1, ε)

)
u0(x1, 0)vε(x1, 0) dx1

∣∣∣∣ 6 CBε1/2‖f‖L2(Ω0)‖vε‖W 1
2
(Ωε).
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Due to the obtained inequality and (3.12), (3.13), (3.14), (3.15) we can estimate the
right hand side of (3.9) by the quantity

C(η1/2(ε) + |ε−2η2(ε)− α2|+ αε1/2)‖f‖L2(Ω0)‖vε‖W 1
2
(Ωε).

Then we employ (1.1) and Lemma 3.2 with u = uε it completes the proof.

Proof of Theorem 1.3. The statement of the theorem in the case of slowly oscillating
boundary follows directly from (3.9) with a = a0 = 0, (3.12), and Lemma 3.2. The rest
of the proof is devoted to the case of highly oscillating boundary.

Denote uε := (HN
ε,η − i)−1f , u0 := (HN

0 − i)−1f , vε := uε − u0. It follows from the
integral identities for uε and u0 that

hNε,η(uε, vε)− i(uε, vε)L2(Ωε) = (f, vε)L2(Ωε),

hN0 (u0, u0)− i‖u0‖
2
L2(Ω0)

= (f, u0)L2(Ω0).
(3.16)

Since D(HN
0 ) ⊂ W 2

2 (Ω0), the function u0 solves the boundary value problem

−
2∑

i,j=1

∂u0

∂xj
Aij

∂

∂xi
+

2∑

j=1

(
Aj

∂u0

∂xj
−

∂

∂xj
Aju0

)
+A0u0 − iu0 = f in Ω0,

∂u0

∂ν0
= 0 on Ω0.

(3.17)

We multiply the equation by uε and integrate by parts once over Ωε,

hNε,η(u0, uε)− i(u0, uε)L2(Ωε) +

(
∂u0

∂νε
, uε

)

L2(Γε)

= (f, uε)L2(Ωε),

where, we remind, the derivative ∂
∂νε was defined in (1.4). We deduct the last identity

from the sum of the identities (3.16),

hNε,η(vε,vε)− i‖vε‖
2
L2(Ωε)

= (f, u0)L2(Ω0\Ωε) +

(
∂u0

∂νε
, uε

)

L2(Γε)

−
2∑

i,j=1

(
Aij

∂u0

∂xj
,
∂u0

∂xi

)

L2(Ω0\Ωε)

−
2∑

j=1

(
Aj

∂u0

∂xj
, u0

)

L2(Ω0\Ωε)

−

2∑

j=1

(
u0, Aj

∂u0

∂xj

)

L2(Ω0\Ωε)

− (A0u0, u0)L2(Ω0\Ωε) + i‖u0‖
2
L2(Ω0\Ωε)

.

(3.18)

Since the operator HN
0 is a particular case of HR,α

0 , the estimates (3.10) and Lemma 3.2
hold true. Applying them, we obtain

∣∣∣∣(f, u0)L2(Ω0\Ωε) −
2∑

i,j=1

(
Aij

∂u0

∂xj
,
∂u0

∂xi

)

L2(Ω0\Ωε)

−
2∑

j=1

(
Aj

∂u0

∂xj
, u0

)

L2(Ω0\Ωε)

−

2∑

j=1

(
u0, Aj

∂u0

∂xj

)

L2(Ω0\Ωε)

− (A0u0, u0)L2(Ω0\Ωε) + i‖u0‖
2
L2(Ω0\Ωε)

∣∣∣∣ 6 Cη1/2‖f‖2L2(Ω0)
.

(3.19)
It remains to estimate the boundary term over Γε in the right hand side of (3.18).

Since

νε =
1√

1 + ε−2η2(ε)
(
b′
(
x1

ε

))2
(
−ε−1η(ε)b′

(x1

ε

)
, 1
)
,

then
(
∂u0

∂νε
, uε

)

L2(Γε)

=

∫

R

(
ε−1η(ε)b′

(x1

ε

)
wε

1(x)− wε
2(x)

)
uε(x)

∣∣∣
x2=ηb(x1

ε )
dx1, (3.20)
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where

wε
j :=

2∑

i=1

Aij
∂u0

∂xi
+Aju0.

Denote

wε
3(x) :=

x2∫

b∗η

wε
1(x1, t)uε(x1, t) dt,

where, we remind, b∗ := max
[0,1]

b. The identity

ε−1ηwε
1

(
x1, ηb

(x1

ε

))
b′
(x1

ε

)
=

d

dx1
wε

3

(
x1, ηb

(x1

ε

))
−

∂wε
3

∂x1

(
x1, ηb

(x1

ε

))
,

implies

∣∣∣∣ε
−1η

∫

R

b′
(x1

ε

)
wε

1uε

∣∣∣
x2=ηb(x1

ε )
dx1

∣∣∣∣ =
∣∣∣∣
∫

R

∂wε
3

∂x1

∣∣∣
x2=ηb( x1

ε )
dx1

∣∣∣∣ =
∣∣∣∣
∫

R

dx1

ηb( x1
ε )∫

ηb∗

∂wε
1

∂x1
(x) dx2

∣∣∣∣

6 C
(
‖u0‖W 2

2
(Ωε)‖uε‖L2(Ωε∩{x:x2<ηb∗}) + ‖u0‖W 1

2
(Ωε)∩{x:x2<ηb∗}‖uε‖W 1

2
(Ωε)

)
.

In the same way how (3.11) was proven we show that

‖uε‖L2(Ωε∩{x:x2<ηb∗}) + ‖u0‖W 1
2
(Ωε)∩{x:x2<ηb∗} 6 Cη1/2(ε)‖f‖2L2(Ωε)

.

Thus, ∣∣∣∣ε
−1η

∫

R

wε
1uε

∣∣∣
x2=ηb(x1

ε )
dx1

∣∣∣∣ 6 Cη1/2(ε)‖f‖2L2(Ωε)
. (3.21)

We estimate the second part of the right hand side of (3.20) as follows,

∣∣∣∣
∫

R

wε
2(x)uε(x)

∣∣∣
x2=ηb( x1

ε )
dx1

∣∣∣∣ 6
∥∥wε

2

∣∣
x2=ηb(x1

ε )

∥∥
L2(R)

∥∥uε

∣∣
x2=ηb(x1

ε )

∥∥
L2(R)

.

In view of the boundary condition for u0 in (3.17), the function wε
2 vanishes at x2 = 0.

Since it also belongs to W 1
2 (Ω0), by analogy with Lemma 2.1 one can prove easily that

∣∣∣wε
2

∣∣
x2=ηb( x1

ε )

∣∣∣
2

6 Cη‖u0(x1, ·)‖
2
L2(0,d)

for almost all x1 ∈ R,
∥∥∥wε

2

∣∣
x2=ηb(x1

ε )

∥∥∥
L2(R)

6 Cη1/2‖u0‖W 2
2
(Ω0).

The last estimate, (3.10), (3.20), (3.21), and Lemma 3.2 with u = uε yield

∣∣∣∣
(
∂u0

∂νε
, uε

)

L2(Γε)

∣∣∣∣ 6 Cη1/2‖f‖2L2(Ωε)
.

Together with (3.18), (3.19) it implies

∣∣∣hNε,η[vε]− i‖vε‖
2
L2(Ωε)

∣∣∣ 6 Cη1/2‖f‖2L2(Ωε)
,

and therefore
‖vε‖W 1

2
(Ωε) 6 Cη1/4(ε)‖f‖L2(Ωε).

The proof is complete.
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4 Robin condition for fast oscillating boundary

In this section we prove Theorems 1.4, 1.5. Throughout the proofs we indicate by C
various inessential constants independent of ε, x, and f . Given a function f ∈ L2(Ω0),
we let

uε := (HD
ε,η − i)−1f, u0 := (HD

0 − i)−1f, vε := uε − (1−K)u0, (4.1)

where the function K is introduced by (2.1). We remind that the function 1−K vanishes
for x2 < b∗η.

Proof of Theorem 1.4. In the proof we employ some ideas used in the proof of Theo-
rem 1.1. The first of them is the analogue of the identity (2.7).

We write the integral identity for uε choosing vε as the test function,

hRε,η(uε, vε)− i(uε, vε)L2(Ωε) = (f, vε)L2(Ωε), (4.2)

and that for u0 with the test function (1−K)vε extended by zero in Ω0 \ Ωε,

hD0
(
u0, (1−K)vε

)
− i(u0, (1−K)vε)L2(Ωε) = (f, (1 −K)vε)L2(Ωε). (4.3)

We observe that
(au, (1−K)v)L2(Γε) = 0

for all u, v ∈ W 1
2 (Ωε). Bearing this fact in mind, we reproduce the arguments used in

obtaining (2.6) and check easily that

hD0
(
u0, (1−K)vε

)
=hRε,η

(
(1 −K)u0, vε

)
+

(
A2u0, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

−
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

+
2∑

i=1

(
Ai2u0

∂K

∂x2
,
∂vε
∂xi

)

L2(Ωε)

.

We substitute this identity into (4.3) and deduct the result from (4.2),

hRε,η(vε, vε)−i‖vε‖
2
L2(Ωε)

= (f,Kvε)L2(Ωε) +

(
A2u0, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

−
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

+

2∑

i=1

(
Ai2u0

∂K

∂x2
,
∂vε
∂xi

)

L2(Ωε)

.

(4.4)

In view of the assumption (1.13) the boundary term in the definition of the form
hRε,η can be estimated as

(au, u)L2(Γε) > c0‖u‖
2
L2(Γε)

= c1

∫

R

∣∣∣u
(
x1, ηb(x1ε

−1)
)∣∣∣

2
√
1 + ε−2η2

(
b′(x1ε−1)

)2
dx1

>
c1η

ε

∫

R

∣∣∣u
(
x1, ηb(x1ε

−1)
)∣∣∣

2∣∣b′(x1ε
−1)
∣∣ dx1

(4.5)

for any u ∈ W 1
2 (Ωε). Together with (1.1), (3.7) it implies

hRε,η(u, u) >C1‖∇u‖2L2(Ωε)
+ C2‖u‖

2
L2(Ωε)

+
c1η

ε

∫

R

∣∣∣u
(
x1, ηb(x1ε

−1)
)∣∣∣

2∣∣b′(x1ε
−1)
∣∣ dx1,

(4.6)
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where the constants C1, C2 are independent of ε and u, and C1 > 0. The last inequality
with u = uε and the definition of K yield the apriori estimate for vε and uε,

‖uε‖W 1
2
(Ωε) 6 C‖f‖L2(Ωε), (4.7)

∫

R

∣∣∣vε
(
x1, ηb(x1ε

−1)
)∣∣∣

2∣∣b′(x1ε
−1)
∣∣ dx1 =

∫

R

∣∣∣uε

(
x1, ηb(x1ε

−1)
)∣∣∣

2∣∣b′(x1ε
−1)
∣∣ dx1

6Cεη−1(ε)‖f‖2L2(Ωε)
.

(4.8)

The next lemma is one of the main ingredients in the proof.

Lemma 4.1. The estimate

‖vε‖L2(Ω̃η) 6 C
(
ε1/2‖f‖L2(Ωε) + (ε+ η)‖∇vε‖L2(Ωε)

)
,

holds true, where Ω̃η := Ω ∩ {x : b∗η < x2 < (b∗ + 1)η}.

Proof. For almost all x1 ∈ R and x2 ∈ (b∗η, (b∗ + 1)η) the function vε satisfies the
representation

vε(x) = vε
(
x1, ηb(x1ε

−1)
)
+

x2∫

ηb(x1ε−1)

∂vε
∂x2

(x1, t) dt,

which implies

|vε(x)|
2 6 2|vε

(
x1, ηb(x1ε

−1)
)
|2 + 2

(
x2 − ηb(x1ε

−1)
)

(b∗+1)η∫

ηb(x1ε−1)

∣∣∣∣
∂vε
∂x2

(x1, t)

∣∣∣∣
2

dt.

We multiply this inequality by |b′(x1ε
−1)| and integrate it over Ω̃η,

∫

Ω̃η

|vε(x)|
2|b′(x1ε

−1)| dx 6 Cη

∫

R

|vε
(
x1, ηb(x1ε

−1)
)
|2|b′(x1ε

−1)| dx1 + Cη2‖∇vε‖
2
L2(Ωε)

.

By (4.8) it yields
∫

Ω̃η

|vε(x)|
2|b′(x1ε

−1)| dx 6 C
(
ε‖f‖2L2(Ωε)

+ η2‖∇vε‖
2
L2(Ωε)

)
. (4.9)

Denote

b̃(t) :=

t∫

0

|b′(z)| dz − t

1∫

0

|b′(z)| dz.

This function is obviously continuous and 1-periodic. It also satisfies the identity

b̃′(t) := |b′(t)| −

1∫

0

|b′(z)| dz.

Hence,

∫

Ω̃η

|vε(x)|
2|b′(x1ε

−1)| dx =

1∫

0

|b′(t)| dt

∫

Ω̃η

|vε(x)|
2 dx+ ε

∫

Ω̃η

|vε(x)|
2 ∂

∂x1
b̃(x1ε

−1) dx

=

1∫

0

|b′(t)| dt

∫

Ω̃η

|vε(x)|
2 dx− ε

∫

Ω̃η

b̃(x1ε
−1)

∂

∂x1
|vε(x)|

2 dx.

(4.10)
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The function b̃ is bounded and thus

‖vε‖
2
L2(Ω̃η)

1∫

0

|b′(t)| dt 6

∫

Ω̃η

|vε(x)|
2|b′(x1ε

−1)| dx+ Cε‖vε‖L2(Ω̃η)

∥∥∥∥
∂vε
∂x1

∥∥∥∥
L2(Ω̃η)

.

Since the function b′ is not identically zero, the last inequality implies

‖vε‖
2
L2(Ω̃η)

6 C

∫

Ω̃η

|vε(x)|
2|b′(x1ε

−1)| dx+ Cε2
∥∥∥∥
∂vε
∂x1

∥∥∥∥
L2(Ωε)

.

Together with (4.9) it leads us to the desired estimate for ‖vε‖L2(Ω̃η).

Let us estimate the right hand side of (4.4). By the definition of K, (2.9), and
Lemma 2.1 we have

∣∣∣∣(f,Kvε)L2(Ωε) +

(
A2u0, vε

∂K

∂x2

)

L2(Ωε)

−

(
u0, A2

∂K

∂x2
vε

)

L2(Ωε)

+

2∑

i=1

(
Ai2u0

∂K

∂x2
,
∂vε
∂xi

)

L2(Ωε)

∣∣∣∣

6 C

(
‖f‖L2(Ωη)‖vε‖L2(Ωη) + η−1‖u0‖L2(Ω̃η)‖vε‖W 1

2
(Ω̃η)

)

6 Cη1/2‖f‖2L2(Ω0)
,

(4.11)

where, we remind, Ωη = Ωε ∩{x : 0 < x2 < (b∗ +1)η}. Lemma 4.1 implies the estimate
for the remaining term in the right hand side of (4.4),

∣∣∣∣
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

∣∣∣∣ 6 Cε1/2η−1/2(ε)‖f‖2L2(Ω0)
. (4.12)

We substitute the obtained estimates into (4.4) and get
∣∣∣hRε,η(vε, vε)− i‖vε‖

2
L2(Ωε)

∣∣∣ 6 C
(
ε1/2η−1/2 + η1/2

)
‖f‖2L2(Ω0)

.

This estimate and (4.5), (4.6) with u = vε imply

‖vε‖W 1
2
(Ωε) 6 C

(
ε1/4η−1/4 + η1/4

)
‖f‖L2(Ω0).

It remains to employ the definition of vε and (2.13) complete the proof.

Proof of Theorem 1.5. The proof of this theorem follows the same lines as that of the
previous theorem with one substantial modification due to the replacement of the as-
sumption (1.13) by (1.14). As in the previous proof, we define the function u0, uε, vε
by (4.1) and obtain the identity (4.4) for vε. The estimate (4.11) is still valid since
it is independent on the assumptions for a, while (4.12) is no longer valid. And the
aforementioned modification in the proof is exactly a new estimate substituting (4.12).
Let us obtain it.

Proceeding as in (4.9), (4.10), we obtain

1∫

0

|b′(t)| dt
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

=
2∑

j=1

(
A2j

∂u0

∂xj
, |b′|

∂K

∂x2
vε

)

L2(Ω̃η)

− ε

2∑

j=1

∫

Ωε

|̃b|
∂K

∂x2

∂

∂x1
A2j

∂u0

∂xj
vε dx = −

2∑

j=1

(
A2j

∂u0

∂xj
, |b′|vε

)

L2(Γη)

−

2∑

j=1

∫

Ω̃η

K|b′|
∂

∂x2
A2j

∂u0

∂xj
vε dx− ε

2∑

j=1

∫

Ωε

|̃b|
∂K

∂x2

∂

∂x1
A2j

∂u0

∂xj
vε dx,

17



where b′ = b′(x1ε
−1), b̃ = b̃(x1ε

−1), Γη := {x : x2 = b∗η}. In view of Lemma 2.1 and
the definition of K it yields

∣∣∣∣
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

∣∣∣∣ 6C‖f‖L2(Ω0)‖|b
′|1/2vε‖L2(Γη)

+ C(εη−1/2 + η1/2)‖f‖2L2(Ω0)
.

(4.13)

It remains to estimate ‖|b′|1/2vε‖L2(Γη).
Proceeding as in (4.5), (4.8), and in the proof of Lemma 4.1, one can show easily

that ∫

Γη

a|b′||vε|
2 dx1 6 C(εη−1 + η)‖f‖2L2(Ωε)

. (4.14)

Given any δ > 0, we split the set Γη into two parts, Γη = Γη
δ ∪ Γη,δ,

Γη
δ := {x : a(x1, b∗η) > δ, x2 = b∗η}, Γη,δ := {x : a(x1, b∗η) 6 δ, x2 = b∗η}.

In view of (4.14) it is clear that

‖|b′|1/2vε‖L2(Γη) 6 ‖|b′|1/2vε‖L2(Γη,δ) + δ−1/2‖a1/2|b′|1/2vε‖L2(Γ
η
δ
)

6 C‖vε‖L2(Γη,δ) + C(ε1/2η−1/2 + η1/2)δ−1/2‖f‖L2(Ω0).
(4.15)

The next auxiliary lemma will allow us to estimate ‖vε‖L2(Γη,δ).

Lemma 4.2. Let v ∈ W 1
2 (�), where � := {x : d− < x1 < d+, 0 < x2 < d}, d+ > d−,

d± are some constants. Denote Ξµ := {x : |x1−d0| < µ, x2 = 0} and suppose that there
exists a positive constant c independent of µ such that d0 − d− > c, d+ − d0 > c. Then
for sufficiently small µ there exists a positive constant C independent of µ and v but
dependent on c such that the inequality

‖v‖L2(Ξµ) 6 Cµ| lnµ|‖v‖W 1
2
(�)

holds true.

Proof. We expand v in a Fourier series

v(x) =

∞∑

m,n=0

cmn cos
πn

d+ − d−
(x1 − d−) cos

πm

d
x2 (4.16)

converging in W 1
2 (�). In view of the Parseval identity one has

∞∑

m,n=0

|cmn|
2(m2 + n2) 6 C‖v‖2W 1

2
(�). (4.17)

Due to the embedding ofW 1
2 (�) into L2(ξµ) we can employ (4.16) to calculate ‖v‖L2(Ξµ),

‖v‖2L2(Ξµ)
=

∞∑

m,n,p,q=0

cmncpq

d0+µ∫

d0−µ

cos
πn

d+ − d−
(x1 − d−) cos

πp

d+ − d−
(x1 − d−) dx1

=
d+ − d−

π

∞∑

m,n,p,q=0

cmncpq

(
sin

π(n+ p)µ

d+ − d−

cosπ(n+ p)

n+ p

− sin
π(n− p)µ

d+ − d−

cosπ(n− p)

n− p

)
,
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where sin π(n−p)µ
d+−d−

/(n− p) is to be replaced by πµ/d as n = p. We employ the estimate

sin2 t 6
t2

1 + t2
, t > 0,

and by (4.17) we obtain

‖v‖2L2(Ξµ)
6 Cµ2

∞∑

m,n,p,q=0

1

(m2 + n2)(p2 + q2)

(
1

1 + µ2(n+ p)2
+

1

1 + µ2(n− p)2

)

6 Cµ2
∞∑

n,p=0

(
1

1 + µ2(n+ p)2
+

1

1 + µ2(n− p)2

) +∞∫

1

dz

z2 + n2

+∞∫

1

dz

z2 + p2

6 Cµ2
∞∑

n,p=0

1

1 + nq

(
1

1 + µ2(n+ p)2
+

1

1 + µ2(n− p)2

)
.

In the last sum we extract the terms for (n, p) = (0, 0), (n, p) = (0, 1), and (n, p) = (1, 0).
Then we replace the remaining summation by the integration and estimate in this way
the sum by a two-dimensional integral,

‖v‖2L2(Ξµ)
6 3µ2 + Cµ2

∫

z2
1
+z2

2
>3

z1,z2>0

(
1

1 + µ2(z1 + z2)2
+

1

1 + µ2(z1 − z2)2

)
dz1 dz2
1 + z1z2

.

Passing to the polar coordinates (r, θ) associated with (z1, z2), we get
∫

z2
1
+z2

2
>3

z1,z2>0

(
1

1 + µ2(z1 + z2)2
+

1

1 + µ2(z1 − z2)2

)
dz1 dz2
1 + z1z2

6 2

+∞∫

√
3

π/2∫

0

(
1

1 + µ2r2(1 + sin 2θ)
+

1

1 + µ2r2(1− sin 2θ)

)
r dr dθ

1 + r2 sin 2θ

6 C

+∞∫

3

(
ln τ

τ(1 + µ2τ)
+

µ2

(1 + µ2τ)3/2

)
dτ

= C

+∞∫

3µ2

(
ln τ − 2 lnµ

τ(1 + τ)
+

1

(1 + τ)3/2

)
dτ 6 C ln2 µ.

Two last formulas proves the desired estimate for ‖v‖L2(Ξµ).

We apply the proven lemma with v = vε, d− = Xn − c/2, d+ = Xn + c/2, d0 = Xn

and sum the obtained inequalities over n ∈ Z. It gives the estimate for ‖vε‖L2(Γη,δ),

‖vε‖L2(Γη,δ) 6 Cµ| lnµ|‖f‖L2(Ωε).

This estimate and (4.13), (4.15) yield

∣∣∣∣
2∑

j=1

(
A2j

∂u0

∂xj
, vε

∂K

∂x2

)

L2(Ωε)

∣∣∣∣ 6 C
(
µ(δ)| lnµ(δ)|+ (ε1/2η−1/2 + η1/2)δ−1/2

)
‖f‖2L2(Ω0)

,

(4.18)
where δ is assumed to tends to zero as ε → +0. Together with (4.11), (4.4), (1.14), and
the definition (1.6) of hRε,η it implies the final estimate for vε,

‖vε‖W 1
2
(Ωε) 6 C

(
µ1/2(δ)| lnµ(δ)|1/2 + (ε1/4η−1/4 + η1/4)δ−1/4

)
‖f‖L2(Ω0).

Together with (2.13) it completes the proof.
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