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POLYGONS IN MINKOWSKI THREE SPACE AND PARABOLIC

HIGGS BUNDLES OF RANK TWO ON CP1

INDRANIL BISWAS, CARLOS FLORENTINO, LEONOR GODINHO, AND ALESSIA MANDINI

Abstract. Consider the moduli space of parabolic Higgs bundles (E,Φ) of rank two on
CP1 such that the underlying holomorphic vector bundle for the parabolic vector bundle
E is trivial. It is equipped with the natural involution defined by (E,Φ) 7−→ (E,−Φ). We
study the fixed point locus of this involution. In [GM], this moduli space with involution
was identified with the moduli space of hyperpolygons equipped with a certain natural
involution. Here we identify the fixed point locus with the moduli spaces of polygons in
Minkowski 3-space. This identification yields information on the connected components
of the fixed point locus.

1. Introduction

Parabolic vector bundles over a compact Riemann surface Σ with n marked points are

holomorphic vector bundles over Σ with a weighted flag structure over each of the marked
points. They were introduced by Seshadri, [Se], and are of interest for many reasons.

For instance, there is a natural bijective correspondence between the isomorphism classes
of polystable parabolic bundles of parabolic degree zero and the equivalence classes of

unitary representations of the fundamental group of the n-punctured surface.

Parabolic Higgs bundles are pairs of the form (E,Φ), where E is a parabolic vector

bundle on Σ and Φ is a meromorphic End(E)-valued 1-form holomorphic outside the n
marked points such that Φ has at most a simple pole with nilpotent residue (with respect

to the flag) at each of the marked points. There is a natural relationship between the
polystable parabolic Higgs bundles of parabolic degree zero and the representations of the

fundamental group of the n-punctured surface in the general linear groups [Si]. Parabolic
Higgs bundles have been studied in other works such as [BY, Na1, Ko1, GM].

We will be particularly interested in the case of parabolic Higgs bundles of rank two
over a n-pointed Riemann surface of genus zero.

Consider the split real form PGL(2,R) of PGL(2,C) defined by the involution A 7−→
A. It produces the anti-holomorphic involution on the moduli space of representations

corresponding to the holomorphic involution

(1) σ : (E ,Φ) 7−→ (E ,−Φ)
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of the moduli space of parabolic Higgs bundles [Hi1]. Note that σ is the restriction to −1
of the U(1) = S1-action on the moduli space of parabolic Higgs bundles defined by

λ · (E,Φ) = (E, λΦ), λ ∈ S1 .

The isomorphism classes of stable parabolic Higgs bundles fixed by this involution corre-

spond to SU(2) or SL(2,R) representations, the former corresponding to parabolic Higgs
bundles with zero Higgs field; see [Hi1].

We study the fixed points in the special case where the underlying vector bundle is
holomorphically trivial. Let H(β) be the moduli space of parabolic Higgs bundles (E,Φ),

where E is a holomorphically trivial vector bundle over CP1 of rank two with a weighted
complete flag structure over each of the n marked points x1, · · · , xn

Exi,1 ) Exi,2 ) 0 ,

0 ≤ β1(xi) < β2(xi) < 1 .

As shown in [GM], there is an isomorphism between H(β) and the hyperpolygon space
X(α), with αi = β2(xi)− β1(xi), defined as a hyper-Kähler quotient of T ∗C2n by

K :=
(
U(2)×U(1)n

)
/U(1) =

(
SU(2)× U(1)n

)
/(Z/2Z) ,

where Z/2Z acts by multiplication of each factor by −1. (See also Sections 2 and 3 for
details.)

Using this correspondence between the two moduli spaces, we study in Section 4 the
fixed point set of the corresponding involution of X(α) defined by

(2) σ : [p, q] 7−→ [−p, q] ,

with (p, q) ∈ T ∗C2n. We show that this fixed-point set is formed by M(α), the space of

polygons in R3 obtained when p = 0, and several other connected components ZS, where
S runs over all subsets of {1 , · · · , n} with |S| ≥ 2 and

(3)
∑

i∈S
αi <

∑

i∈Sc

αi

(the complement of S is denoted by Sc). These components ZS are all non-compact except

when |S| = n − 1, in which case ZS = CPn−2 and M(α) is empty. Let S ′(α) be the
collection of all subsets of {1 , · · · , n} with |S| ≥ 2 satisfying (3).

We describe these sets ZS and the corresponding components ZS of the fixed point set

of the involution of H(β) defined in (1); the following theorem is proved (see Section 4).

Theorem 1.1. The fixed-point set of the involution in (1) of the space of parabolic Higgs
bundles H(β) is

H(β)Z/2Z = Mβ,2,0 ∪
⋃

S∈S′(α)

ZS ,

with αi = β2(xi) − β1(xi), where Mβ,2,0 is the space of rank two degree zero parabolic
vector bundles over CP1, and where ZS ⊂ H(β) is formed by parabolic Higgs bundles

E = (E,Φ) ∈ H(β) such that
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(i) the parabolic vector bundle E admits a direct sum decomposition E = L0 ⊕ L1,
where L0 and L1 are parabolic line bundles where the parabolic weight of L0 (re-

spectively, L1) at xi ∈ Sc is β2(xi) (respectively, β1(xi)), and the parabolic weight
of L0 (respectively, L1) at xi ∈ S is β1(xi) (respectively, β2(xi));

(ii) the residues of the Higgs field Φ at the parabolic points xi are either upper or lower
triangular with respect to the above decomposition, according to whether i is in S

or in Sc.

Moreover, ZS is a non-compact manifold of dimension 2(n− 3) except when |S| = n− 1,

in which case ZS = MS is compact and diffeomorphic to CPn−3. In all cases, H(β)Z/2Z

has 2(n−1) − (n+ 1) non-compact components and one compact component.

Remark 1.1.

• Since the vector bundle underlying E is holomorphically trivial, it follows that the

holomorphic line bundles underlying L0 and L1 are both holomorphically trivial.
• Statement (i) in Theorem 1.1 means that if

Exi,1 ⊃ Exi,2 ⊃ 0

0 ≤ β1(xi) < β2(xi) < 1

is the parabolic structure, then Exi,2 = Exj ,2 whenever i, j ∈ S or i, j ∈ Sc. Note
that this condition is independent of the choice of the trivialization of E.

In Section 6, we show that for any S ∈ S ′(α), the corresponding component of the fixed

point sets of the involution of X(α) (or of H(β)) is diffeomorphic to a moduli space of
polygons in Minkowski 3-space, meaning R3 equipped with the Minkowski inner product

v ◦ w = −x1x2 − y1y2 + t1t2 ,

for v = (x1, y1, t1) and w = (x2, y2, t2). The surface SR in R3 defined by the equation

−x2 − y2 + t2 = R2 (a pseudosphere of radius R) has two connected components: S+
R ,

corresponding to t > 0, which is called a future pseudosphere, and S−
R , corresponding to

t < 0, which is called a past pseudosphere. The group SU(1, 1) acts transitively on S+
R

(respectively, S−
R ) since one can think of R3 as su(1, 1)∗ with S+

R (respectively, S−
R) being

an elliptic coadjoint orbit. Consequently, both S+
R and S−

R have the SU(1, 1)–invariant
Kostant–Kirillov symplectic structure of a coadjoint orbit. Fixing two positive integers

k1, k2 with k1 + k2 = n, we consider closed polygons in Minkowski 3-space with the first
k1 sides lying in future pseudospheres of radii α1, · · · , αk1 and the last k2 sides lying in

past pseudospheres of radii αk1+1, · · · , αn. The space of all such closed polygons can be
identified with the zero level set of the moment map

µ : O1 × · · · × On −→ su(1, 1)∗

for the diagonal SU(1, 1)-action, where the coadjoint SU(1, 1)–orbit Oi
∼= S+

αi
, 1 ≤ i ≤ k1,

is a future pseudosphere of radius αi, and Oi
∼= S−

αi
, k1+1 ≤ i ≤ n, is a past pseudosphere

of radius αi, equipped with its Kostant–Kirillov symplectic structure [Fo]. Then the

corresponding moduli space of polygons is defined as the symplectic quotient

Mk1,k2(α) := µ−1(0)/SU(1, 1) .
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We have the following result.

Theorem 1.2. For any S ∈ S ′(α), the components ZS and ZS, of the fixed-point sets of
the involutions in (1) and (2) respectively, are diffeomorphic to the moduli space

M |S|,|Sc|(α)

of closed polygons in Minkowski 3-space.

This interpretation allows us to see the fixed-point set of the above involutions as

a moduli space of another related problem, thus helping us to understand many of its
geometrical properties as seen in the example of Section 7.

Acknowledgements. We thank O. Garćıa-Prada for suggesting the study of the hyper-
polygon description of the fixed-point set of the natural involution of the moduli space of

parabolic Higgs bundles.

2. Hyperpolygon spaces

Let Q be the star-shaped quiver with vertices parametrized by I ∪{0} = {1 , · · · , n}∪
{0} and the arrows parametrized by I such that, for any i ∈ I, the tail and the head of

the corresponding arrow are i and 0 respectively. Consider all representations of Q with
Vi = C, for i ∈ I, and V0 = C2. They are parametrized by

E(Q, V ) :=
⊕

i∈I
Hom(Vi, V0) = C2n .

Using the actions of U(1) and U(2) on C and C2 respectively, we construct an action of

U(2)×U(1)n on E(Q, V ). This action produces an action of U(2)×U(1)n on the cotangent
bundle T ∗E(Q, V ) = T ∗C2n. One gets a hyper-Kähler quiver variety by performing the

hyper-Kähler reduction on T ∗E(Q, V ) for this action of U(2)×U(1)n. Since the diagonal
circle

{(c · IdC2 , c, · · · , c) | |c| = 1} ⊂ U(2)×U(1)n

acts trivially on T ∗E(Q, V ), the action factors through the quotient group

K :=
(
U(2)×U(1)n

)
/U(1) =

(
SU(2)× U(1)n

)
/(Z/2Z) ,

where Z/2Z acts as multiplication by −1 on each factor. As T ∗C2 = (C2)∗ × C2 can

be identified with the space of quaternions, the cotangent bundle T ∗E(Q, V ) = T ∗C2n

has a natural hyper-Kähler structure (see for example [Ko2, Hi2]). The hyper-Kähler

quotient of T ∗C2n by K can be explicitly described as follows. Let (p, q) be coordinates
on T ∗C2n, where p = (p1, · · · , pn) is the n-tuple of row vectors pi =

(
ai bi

)
∈ (C2)∗

and q = (q1, · · · , qn) is the n-tuple of column vectors qi =
(

ci
di

)
∈ C2. In terms of these

coordinates, the action of K on T ∗C2n is given by

(p, q) · [A; e1, · · · , en] =
(
(e−1

1 p1A, · · · , e−1
n pnA), (A

−1q1e1, · · · , A−1qnen)
)
.

This action is hyper-Hamiltonian with hyper-Kähler moment map

µHK := µR ⊕ µC : T ∗C2n −→
(
su(2)∗ ⊕ (Rn)∗

)
⊕

(
sl(2,C)∗ ⊕ (Cn)∗

)
,
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[Ko2], where the real moment map µR is given by

(4) µR(p, q) =

√
−1

2

n∑

i=1

(qiq
∗
i − p∗i pi)0 ⊕

(1
2
(|q1|2 − |p1|2), · · · ,

1

2
(|qn|2 − |pn|2)

)
,

and the complex moment map µC is given by

(5) µC(p, q) = −
n∑

i=1

(qipi)0 ⊕ (
√
−1p1q1, · · · ,

√
−1pnqn) .

The hyperpolygon space X(α) is then defined to be the hyper-Kähler quotient

(6) X(α) := T ∗C2n////αK :=
(
µ−1
R (0, α) ∩ µ−1

C (0, 0)
)
/K

for α = (α1, · · · , αn) ∈ Rn
+.

An element (p, q) ∈ T ∗C2n is in µ−1
C (0, 0) if and only if

piqi = 0 and

n∑

i=1

(qipi)0 = 0 .

In other words, an element (p, q) of T ∗C2n is in µ−1
C (0, 0) if and only if

(7) aici + bidi = 0

and

(8)
n∑

i=1

aici − bidi = 0,
n∑

i=1

aidi = 0,
n∑

i=1

bici = 0 .

Similarly, (p, q) is in µ−1
R (0, α) if and only if

1

2

(
|qi|2 − |pi|2

)
= αi and

n∑

i=1

(
qiq

∗
i − p∗i pi

)
0
= 0 ,

i.e., if and only if

(9) |ci|2 + |di|2 − |ai|2 − |bi|2 = 2αi

and

(10)

n∑

i=1

|ci|2 − |ai|2 + |bi|2 − |di|2 = 0,

n∑

i=1

aib̄i − c̄idi = 0 .

An element α = (α1, · · · , αn) ∈ Rn
+ is said to be generic if and only if

(11) εS(α) :=
∑

i∈S
αi −

∑

i∈Sc

αi 6= 0

for every subset S ⊂ {1, · · · , n}. For a generic α, the hyperpolygon space X(α) is a

non-empty complex manifold of complex dimension 2(n− 3) (see [Ko2] for details).

Hyperpolygon spaces can be described from an algebro-geometric point of view as

geometric invariant theoretic quotients. To elaborate this, we need the stability criterion,
developed by Nakajima [Na2, Na3] for quiver varieties and adapted by Konno [Ko2] to

hyperpolygon spaces. We will recall this below.
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Let α be generic. A subset S ⊂ {1, · · · , n} is called short if

(12) εS(α) < 0

and long otherwise (see (11) for the definition of εS(α)). Given (p, q) ∈ T ∗C2n and a
subset S ⊂ {1, · · · , n}, we say that S is straight at (p, q) if qi is proportional to qj for all

i, j ∈ S.

Theorem 2.1 ([Ko2]). Let α ∈ Rn
+ be generic. A point (p, q) ∈ T ∗C2n is α-stable if and

only if the following two conditions hold:

(i) qi 6= 0 for all i, and

(ii) if S ⊂ {1, · · · , n} is straight at (p, q) and pj = 0 for all j ∈ Sc, then S is short.

Remark 2.1. Note that it is enough to verify (ii) in Theorem 2.1 for all maximal straight

sets, that is, for those that are not contained in any other straight set at (p, q).

Let µ−1
C (0, 0)α-st denote the set of points in µ−1

C (0, 0) that are α-stable, and let

KC := (SL(2,C)× (C∗)n)/(Z/2Z)

be the complexification of K.

Proposition 2.2 ([Ko2]). Let α ∈ Rn
+ be generic. Then

µ−1
HK

(
(0, α), (0, 0)

)
⊂ µ−1

C (0, 0)α-st ,

and there exists a natural bijection

ι : µ−1
HK

(
(0, α), (0, 0)

)
/K −→ µ−1

C (0, 0)α-st/KC.

From Proposition 2.2 and the definition in (6) it follows that

X(α) = µ−1
C (0, 0)α-st/KC .

Following [HP], we denote the elements in µ−1
C (0, 0)α-st/KC by [p, q]α-st, and denote by

[p, q]R the elements in µ−1
HK

(
(0, α), (0, 0)

)
/K, when we need to make an explicit use of one

of the two constructions. In all other cases, we will simply write [p, q] for a hyperpolygon

in X(α).

2.1. A circle action. Consider the S1-action on X(α) defined by

(13) λ · [p, q] = [λ p, q] .

This action is Hamiltonian with respect to symplectic structure on X(α); the associated
moment map φ : X(α) −→ R is given by

(14) φ([p, q]) =
1

2

n∑

i=1

|pi|2 .

This φ is a Morse-Bott function that is proper and bounded from bellow. Following Konno

[Ko2], let us consider S(α), namely the collection of short sets for α, and its subset

S ′(α) :=
{
S ⊂ {1, · · · , n} | S is α-short, |S| ≥ 2

}
.
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For any S ∈ S ′(α), define

XS :=
{
[p, q] ∈ X(α) | S and Sc are straight at (p, q) and pj = 0 ∀ j ∈ Sc

}
.

Then the fixed-point set of the circle action on X(α) is the following.

Theorem 2.3 ([Ko2]). The fixed point set for the S1-action in (13) is

X(α)S
1

= M(α) ∪
⋃

S∈S′(α)

XS .

The fixed-point set component XS is diffeomorphic to CP|S|−2, and it has index 2(n− 1−
|S|).

Let us now determine the isotropy weights of the circle action in (13) at different fixed
points.

For S ∈ S ′(α), let us fix [p′, q′]α-st ∈ XS. We may assume that for each i ∈ S,

q′i =

(
ci
0

)
and p′i =

(
0 bi

)
, for i ∈ S

and for each i ∈ Sc,

q′i =

(
0
di

)
and p′i =

(
0 0

)
, for i ∈ Sc.

Moreover, we can assume that S = {1, · · · , l} and that b1, b2 6= 0. Since ci, di 6= 0 for

all i, there exists a unique element h ∈ KC such that (p′, q′)h = (p0, q0) ∈ µ−1
C (0, 0)α-st,

where for each i ∈ S,

q0i =

(
1
0

)
and p0i =

(
0 b0i

)
,

and for i ∈ Sc,

q0i =

(
0
1

)
and p0i =

(
0 0

)
,

with b01 = 1 and b02 6= 0. There exists an open neighborhood U of (p0, q0) in T ∗C2n

such that for all (p, q) ∈ U ∩ µ−1
C (0, 0), there is a unique element [A; e1, · · · , en] ∈ KC

satisfying the conditions that

A−1qiei =





(
1 0

)t
, if i = 1(

1 r1
)t
, if i = 2(

1 wi

)t
, if i = 3, · · · , l(

wi 1
)t
, if i = l + 1, · · · , n− 1(

0 1
)t
, if i = n

and

e−1
i piA =






(
0 1

)
, if i = 1(

−r1r2 r2
)
, if i = 2(

−ziwi zi
)
, if i = 3, · · · , l(

zi −ziwi

)
, if i = l + 1, · · · , n− 1(

r3 0
)
, if i = n,
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where r1, r2, r3 are uniquely determined by

(15) {zi, wi | i = 3, · · · , n− 1} ;
so the functions in (15) define a local coordinate system in X(α) around [p′, q′]α-st. Indeed,

α-stability is an open condition so that any (p, q) ∈ µ−1
C (0, 0)α-st sufficiently close to (p′, q′)

will be α-stable. Moreover, there exist unique, up to multiplication by ±I,

e1, en ∈ C \ {0} and A ∈ SL(2,C)

such that

A−1q1e1 =

(
1
0

)
, A−1qnen =

(
0
1

)

and

e−1
1 p1A =

(
0 1

)
.

Then one can uniquely determine e2, · · · , en−1 such that

A−1qiei =

(
1
∗

)
, for i = 2, · · · , l, A−1qiei =

(
∗
1

)
, for i = l + 1, · · · , n− 1.

Now it can be easily shown that the S1-action (constructed in (13)) in these local
coordinates is given by

(16) λ · (zi, wi) =





(zi, λwi), if i = 3, · · · , l

(λ2zi, λ
−1wi), if i = l + 1, · · · , n− 1.

Let us now consider a fixed point [0, q′]α-st ∈ M(α). Then we may assume that

q′1 =

(
c1
0

)
, with c1 6= 0, q′2 =

(
c2
d2

)
, with c2, d2 6= 0,

q′3 =

(
c3
d3

)
, with d3 6= 0,

q′i =

(
ci
di

)
, with ci 6= 0, for i = 4, · · · , n− 1,

q′n =

(
0
dn

)
, with dn 6= 0,

since [0, q′]α-st is not in any of the sets XS. As ci 6= 0 for all i 6= 3, n, and d3 6= 0 6= dn,

there exists a unique element h ∈ KC such that (0, q′)h = (0, q0) ∈ µ−1
C (0, 0)α-st, where

q01 =

(
1
0

)
, q02 =

(
1
1

)
, q03 =

(
w3

1

)
,

q0i =

(
1
wi

)
, for i = 4, · · · , n− 1,

q0n =

(
0
1

)
.
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Then there exists an open neighborhood U of (0, q0) in T ∗C2n such that for all (p, q) ∈
U ∩ µ−1

C (0, 0), there is a unique element [A; e1, · · · , en] ∈ KC such that

A−1qiei =





(
1 0

)t
, if i = 1(

1 1
)t
, if i = 2(

w3 1
)t
, if i = 3(

1 wi

)t
, if i = 4, · · · , n− 1(

0 1
)t
, if i = n

and

e−1
i piA =





(
0 r1

)
, if i = 1(

−r2 r2
)
, if i = 2(

z3 −z3w3

)
, if i = 3, · · · , l(

−ziwi zi
)
, if i = 4, · · · , n− 1(

r3 0
)
, if i = n,

where r1, r2, r3 are uniquely determined by

(17) {zi, wi | i = 3, · · · , n− 1} ;
so (17) is a local coordinate system around [0, q′]α-st in X(α). Indeed, α-stability is an

open condition and, moreover, there exist unique, up to multiplication by ±I,

A ∈ SL(2,C) and e1, e2, en ∈ C \ {0}
such that

A−1q1e1 =

(
1
0

)
, A−1q2e2 =

(
1
1

)
, and A−1qnen =

(
0
1

)
.

Then one can uniquely determine e3, · · · , en−1 such that

A−1q3e3 =

(
∗
1

)
and A−1qiei =

(
1
∗

)
, for i = 4, · · · , n− 1.

It is straight-forward to check that the circle action (see (13)) in these local coordinates

is given by

(18) λ · (zi, wi) = (λzi, wi) for i = 3, · · · , n− 1 .

Using (16) and (18) we obtain the following result.

Theorem 2.4. Let [p, q]α-st be a point in XS. Then the non-zero isotropy weights of the

S1-representation on T[p,q]α-st
X(α) are

• +1 with multiplicity |S| − 2;

• −1 with multiplicity (n− 1)− |S|;
• +2 with multiplicity (n− 1)− |S|.

Let [0, q]α-st be a point of the space M(α). Then the non-zero isotropy weights of the

S1–representation on T[0,q]α-st
X(α) are

• +1 with multiplicity (n− 1)− |S|.
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3. Spaces of Parabolic Higgs bundles

Let Σ be CP1 with n ordered marked points D = {x1, · · · , xn} and let E be a parabolic

vector bundle of rank two over Σ with parabolic structure

Ex := Ex,1 ⊃ Ex,2 ⊃ 0 ,

0 ≤β1(x) < β2(x) < 1

over each point of D. Its parabolic degree is then

par-deg(E) := degree(E) +
∑

x∈D
(β1(x) + β2(x)) .

We recall that E is said to be stable if par-µ(E) > par-µ(L) for every line subbundle L of

E equipped with the induced parabolic structure, where, for any parabolic vector bundle
F , the slope par-µ(F ) is defined as par-deg(F )/rank(F ).

Now if L is a parabolic line subbundle of E, its induced parabolic structure is given by
the trivial flag over each point x of D,

Lx ⊃ 0,

with weights

βL(x) =





β1(x), if Lx ∩ Ex,2 = {0},

β2(x), if Lx ∩ Ex,2 = C,

and so it has parabolic degree

par-deg(L) = degree(L) +
∑

i∈SL

β2(xi) +
∑

i∈Sc
L

β1(xi),

where

(19) SL := {i ∈ {1, · · · , n} | βL(xi) = β2(xi)}.
Hence, E is stable if and only if every parabolic line subbundle L satisfies the inequality

(20) degree(E)− 2 · degree(L) >
∑

i∈SL

(
β2(xi)− β1(xi)

)
−

∑

i∈Sc
L

(
β2(xi)− β1(xi)

)
.

The holomorphic cotangent bundle of the Riemann surface Σ will be denoted by KΣ.

The line bundle on Σ defined by the divisor D will be denoted by OΣ(D). A parabolic
Higgs bundle of rank two is a pair E := (E,Φ), where E is a parabolic vector bundle

over Σ of rank two, and

Φ ∈ H0(Σ, SParEnd(E)⊗KΣ(D))

is a Higgs field on E. Here SParEnd(E) denotes the subsheaf of End(E) formed by

strongly parabolic endomorphisms ϕ : E −→ E, which, in this situation, simply means
that

ϕ(Ex,1) ⊂ Ex,2 and ϕ(Ex,2) = 0, for all x ∈ D.
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Note that Φ is then a meromorphic endomorphism-valued one-form with simple poles
along D whose residue at each x ∈ D is nilpotent with respect to the flag, i.e.,

(ResxΦ)(Ex,i) ⊂ Ex,i+1

for all i = 1, 2 and x ∈ D, with Ex,3 = 0. The definition of stability extends to Higgs
bundles: a parabolic Higgs bundle E = (E,Φ) is stable if par-µ(E) > par-µ(L) for all

parabolic line subbundles L ⊂ E which are preserved by Φ.

Let H(β) be the moduli space of parabolic Higgs bundles of rank two such that the

underlying holomorphic vector bundle is holomorphically trivial. In [GM] it is shown that
H(β) is diffeomorphic to the space of hyperpolygons X(α) with αi = β2(xi)−β1(xi). The

correspondence between these two spaces is given by the map

(21)
I : X(α) −→ H(β)

[p, q]α-st 7−→ (E(p,q) ,Φ(p,q)) =: E(p,q)

where E(p,q) is the trivial vector bundle CP1 × C2 −→ CP1 with the parabolic structure
consisting of weighted flags

C2 ⊃ 〈qi〉 ⊃ 0

0 ≤ β1(xi) < β2(xi) < 1

over the n marked points {x1, · · · , xn} = D ⊂ CP1 with βi(xj) satisfying

(22) β2(xi)− β1(xi) = αi ,

and Φ[p,q] ∈ H0
(
SParEnd(E(p,q))⊗KCP1(D)

)
is the Higgs field uniquely determined by

the following condition on the residue:

(23) Resxi
Φ := (qipi)0

at each xi ∈ D. In particular, the polygon space M(α) (obtained when p = 0) is mapped
to the moduli space Mβ,2,0 of parabolic vector bundles of rank two over Σ such that the

underlying holomorphic vector bundle is trivial (this map is obtained by setting Φ = 0).

This isomorphism is equivariant with respect to the circle action on X(α) (see (13))

and the circle action on H(β) defined by

(24) λ · (E,Φ) = (E, λΦ), for λ ∈ S1.

Each connected component XS of the fixed point set of the circle action on X(α) is

mapped to a manifold MS formed by the trivial holomorphic bundle E over Σ equipped
with weighted flag structures

C2 ⊃ Exi,2 ⊃ 0

0 ≤ β1(xi) < β2(xi) < 1

such that Exi,2 = Exj ,2 whenever i, j ∈ S or i, j ∈ Sc, and an Higgs field with zero residue
at all points xi with i ∈ Sc. Note that this description of the critical sets agrees with the

one given by Simpson in [Si]. Indeed, the bundles in MS have a direct sum decomposition
E = L0 ⊕ L1 as parabolic bundles, where the parabolic weight of L0 (respectively, L1)

at xi ∈ Sc is β2(xi) (respectively, β1(xi)), and the parabolic weight of L0 (respectively,
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L1) at xi ∈ S is β1(xi) (respectively, β2(xi)). (Note that the holomorphic line bundles
underlying L0 and L1 are trivial.) Moreover, Φ, being lower triangular with respect to

this decomposition, preserves L1 and induces a nonzero strongly parabolic homomorphism
Φ|L0

: L0 −→ L1⊗KΣ(D); that this strongly parabolic homomorphism is nonzero follows

from the fact that XS ∩M(α) = ∅.

4. An involution

As before, let H(β) be the moduli space of β-stable parabolic Higgs bundles of rank

two such that the underlying holomorphic vector bundle is trivial. In this section we will
restrict ourselves to the action of Z/2Z ⊂ S1 on H(β) giving the involution

(25) (E,Φ) 7−→ (E,−Φ) ,

and we will study the fixed-point set of this involution.

The parabolic Higgs bundles with zero Higgs field are clearly fixed by the involution in
(25), and so the moduli spaceMβ,2,0 of β-stable rank two holomorphically trivial parabolic

vector bundles over CP1 is contained in the fixed point set of the involution.

For the remaining fixed points, we will use the isomorphism in (21) and study the

fixed point set of the corresponding involution on the hyperpolygon space X(α) with
α = (α1, · · · , αn) satisfying (22). The fixed-point set of the involution

(26) (p, q) 7−→ (−p, q) ,

on the hyperpolygon space X(α) is the set of points X(α)Z/2Z that are fixed by the action
of Z/2Z ⊂ S1 in (13).

As before, M(α) denotes the moduli space of polygons in R3. Theorem 4.1 describes
the fixed-point set of the Z/2Z-action in (26).

For each element S of S ′(α),

ZS :=
{
[p, q] ∈ X(α) | S and Sc are straight at (p, q)

}
.

Theorem 4.1. The fixed-point set of the involution in (26) is

X(α)Z/2Z = M(α) ∪
⋃

S∈S′(α)

ZS ,

where ZS is defined above.

Moreover, ZS is a non-compact manifold of dimension 2(n−3) except when |S| = n−1,

in which case ZS = XS is compact and diffeomorphic to CPn−3. In all cases, X(α)Z/2Z

has 2n−1 − (n+ 1) non-compact components and one compact component.

Proof. From the isotropy weights of the S1–action given in Theorem 2.4 it follows imme-

diately that, if M(α) is nonempty, then it is a connected component of the fixed point

set of the Z2/2Z–action. Furthermore, the connected components of the complement
X(α)Z/2Z \M(α) are parametrized by the elements S of S ′(α) and have dimension

dimZS = 2((n− 1)− |S|) + dimXS = 2(n− 3) .
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Therefore, it remains to show that each connected component ZS of X(α)Z/2Z \M(α) can
be described as

ZS =
{
[p, q] ∈ X(α) | S and Sc are straight at (p, q)

}
.

Suppose that [p, q] ∈ X(α)Z/2Z \M(α). Then there exists an element

[A; e1, · · · , en] ∈ K \ {I}
such that

e−1
i piA = −pi and A−1qiei = qi, for i = 1, · · · , n ,

and so

Ap∗i = −eip
∗
i and Aqi = eiqi for i = 1, · · · , n .

Since |qi|2 − |pi|2 = 2αi, we have qi 6= 0 for all i = 1, · · · , n and so qi is an eigenvector

of A with eigenvalue ei. Moreover, since [p, q] ∈ X(α)Z/2Z \M(α), there exists an integer
i0 ∈ {1, · · · , n} such that pi0 6= 0, and so p∗i0 is an eigenvector of A with eigenvalue −ei0 .

Hence, assuming that A is diagonal, we have

A =

(
ei0 0
0 −ei0

)

with ei0 = ±
√
−1. We conclude that there exists an index set S ⊂ {1, · · · , n} with i0 ∈ S

such that

pi =
(
0 bi

)
, qi =

(
ci
0

)
, ∀i ∈ S(27)

pi =
(
ai 0

)
, qi =

(
0
di

)
, ∀i ∈ Sc.

Since |qi|2 − |pi|2 = 2αi, we conclude that

(28) |ci|2 − |bi|2 = 2αi for all i ∈ S and |di|2 − |ai|2 = 2αi for all i ∈ Sc.

Moreover, since
∑n

i=1(qiq
∗
i − p∗i pi)0 = 0, we obtain that

(29)
∑

i∈S

(
|ci|2 + |bi|2

)
−

∑

i∈Sc

(
|di|2 + |ai|2

)
= 0

and so, using (28), we get that

(30)
∑

i∈S
αi −

∑

i∈Sc

αi =
∑

i∈Sc

|ai|2 −
∑

i∈S
|bi|2 .

On the other hand, since
∑n

i=1(qipi)0 = 0, we have that

(31)
∑

i∈S
bici =

∑

i∈Sc

aidi = 0 .

If S is short, then we work with S and, in particular, since ci 6= 0 and there exists an
i0 ∈ S such that bi0 6= 0, from (31) it follows that there exists another i1 ∈ S such that

bi1 6= 0 and we obtain that S has cardinality at least two. If, on the other hand, S is
long, we consider Sc instead (which is now short). Since S is long, from (30) it follows

that there is at least one i1 ∈ Sc such that pi1 6= 0 and then, since di1 6= 0, from (31) it
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follows that there is another element i2 in Sc with pi2 6= 0, implying that the short set Sc

has cardinality at least two.

Finally, since for every subset S ⊂ {1, · · · , n}, we have that either S or Sc is short, the
number of short sets for α is

1

2

n−1∑

k=1

(
n
k

)
= 2(n−1) − 1.

If there is no short set of cardinality n−1, then there are exactly n short sets of cardinality

1 and so

|S ′(α)| = 2(n−1) − (n+ 1).

Moreover, in this case, all the components ZS are non-compact. If, on the other hand,

there is a short set S̃ of cardinality n−1, then there are only n−1 short sets of cardinality
1 and then the number of elements in S ′(α) is

|S ′(α)| = 2(n−1) − n.

However, in this case, M(α) is empty and ZS̃ is compact. We conclude that, in both cases,

the number of non-compact components of X(α)S
1

is 2(n−1) − (n + 1) and that there is
exactly one compact component (which is either M(α) or ZS̃). �

Each manifold ZS, being a component ofX(α)Z/2Z, is symplectic and invariant under the

circle action in (13). Hence, whenever |S| 6= n−1, we obtain an effective Hamiltonian circle
action on ZS (the action factors through the quotient of S1 by Z/2Z). The corresponding

moment map then coincides with the restriction of 1
2
φ to ZS. The only critical submanifold

of this map is XS where it attains its minimum value. Consequently, we have the following

results.

Theorem 4.2. Each manifold XS
∼= CP|S|−2 is a deformation retraction of ZS. In

particular, ZS is simply connected.

Theorem 4.3. Let Pt(M) be the Poincaré polynomial of M . Then

Pt(ZS) = Pt(XS) = Pt(CP
|S|−2) = 1 + t+ · · ·+ t2(|S|−2) .

Going back to the space of parabolic Higgs bundles H(β) and using the isomorphism
in (21), we obtain from (23) and (27) that the fixed-point set H(β)Z/2Z of the involution

in (25) is described as in Theorem 1.1.

5. Polygons in Minkowski 3-space

Let us consider the Minkowski inner product on R3

v ◦ w = −v1w1 − v2w2 + v3w3 ,

for v = (v1, v2, v3) and w = (w1, w2, w3). The inner product space consisting of R3

together with this signature (−,−,+)-inner product will be denoted by R2,1; it is called

the Minkowski 3-space. The Minkowski norm of a vector v ∈ R2,1 is then defined to be

||v||2,1 =
√
|v ◦ v| .
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All elements v of R2,1 are classified according to the sign of v◦v. The set of all v such that
v ◦ v = 0 is called the light cone of R3; any vector v with v ◦ v = 0 is said to be light-like.

If v ◦ v > 0, then v is called time-like, and if v ◦ v < 0, then it is called space-like. A
time-like vector is said to be lying in future (respectively, past) if v3 > 0 (respectively,

v3 < 0). Note that the exterior of the light cone consists of all space-like vectors, while
its interior consists of all time-like vectors. From now on we will write any v ∈ R2,1 as

v = (x, y, t).

Moduli spaces of polygons in R2,1 were described by Foth, [Fo], as follows. Consider

the surface SR in R3 defined by the equation −x2 − y2 + t2 = R2, which is called a
pseudosphere. The Minkowski metric on R2,1 restricts to a constant curvature Riemannian

metric on SR. It is an hyperboloid of two sheets. The connected component S+
R ⊂ SR,

corresponding to t > 0, is called a future pseudosphere, and the connected component

S−
R ⊂ SR, corresponding to t < 0, is called a past pseudosphere. The group SU(1, 1)

acts transitively on each connected component since one can think of R2,1 ∼= R3 as

su(1, 1)∗ with S+
R and S−

R being elliptic coadjoint orbits. Consequently, both S+
R and S−

R

have a natural invariant symplectic structure (the Kostant–Kirillov form on a coadjoint
orbit). The Minkowski metric is also invariant (since SU(1, 1) acts by isometries) and

both connected components are Kähler manifolds; they are in fact isomorphic to the
hyperbolic plane SU(1, 1)/U(1). We will study the geometry of the symplectic quotients

of the products of several future and past pseudospheres with respect to the diagonal
SU(1, 1)–action.

Let α = (α1, · · · , αn) be an n-tuple of positive real numbers. Let us fix two positive
integers k1, k2 with k1 + k2 = n. We will consider polygons in Minkowski 3-space that

have the first k1 edges in the future time-like cone and the last k2 edges in the past time-
like cone, such that the Minkowski length of the i-th edge is αi. A closed polygon will

then be one whose sum of the first k1 sides in the future time-like cone coincides with the
negative of the sum of the last k2 sides in the past time-like cone. The space of all such

closed polygons can be identified with the zero level set of the moment map

(32)
µ : O1 × · · · × On −→ su(1, 1)∗

(u1, · · · , un) 7−→ u1 + · · ·+ un

for the diagonal SU(1, 1)–action, where Oi
∼= S+

αi
is a future pseudosphere of radius αi if

1 ≤ i ≤ k1, and Oi
∼= S−

αi
is a past pseudosphere if k1 + 1 ≤ i ≤ n, equipped with the

Kostant-Kirillov symplectic form on coadjoint orbits. Hence,

Mk1,k2(α) := µ−1(0)/SU(1, 1) ,

which is a quotient of a non-compact space by a non-compact Lie group. For a generic
choice of α, meaning Mk1,k2(α) is non-empty with

∑k1
i=1 αi 6= ∑n

i=k1+1 αi, every point

in Mk1,k2(α) represents a polygon with a trivial stabilizer. In that situation, the group
SU(1, 1) acts freely and properly on µ−1(0). Moreover, 0 is a regular value of the moment

map µ and so the quotient space Mk1,k2(α) is, for a generic α, a smooth symplectic

manifold of dimension 2(n− 3). Note that the spaces

Mk1,k2(α1, · · · , αk1, αk1+1, · · · , αn) and Mk2,k1(αk1+1, · · · , αn, α1, · · · , αk1)
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are symplectomorphic by the isomorphism given by the involution of R2,1 defined by
(x, y, t) 7−→ (−x,−y,−t).

Theorem 5.1 ([Fo]). The space Mk1,k2(α) is non-compact, unless k1 = 1 or k2 = 1 in

which case it is compact.

We give a brief outline of an argument for Theorem 5.1.

Let us first assume that k2 = 1. The last side of the polygon can be represented (after

being acted on by an element of SU(1, 1)) by a vector in R2,1 with coordinates (0, 0,−αn).
Hence, the sum of the first n−1 future time-like sides of the polygon is (0, 0, αn). The only

symmetry left is the circle rotation around the t-axis. Therefore, this space of polygons

is clearly bounded and closed and therefore compact.

The space Mk1,k2(α) is non-compact if k2 > 1. For example, let us consider the simple
case where k1 = k2 = 2 and α1 = α2 = α4 = 1. Again we can assume that the last side is

(0, 0,−1) and the only symmetry left is the circle rotation around the t-axis. Let xn be

the closed polygon with sides

u1 = (−1, 0,
√
2), u2 = (1− P (n), Q(n), n−

√
2),

u3 = (P (n),−Q(n), 1− n) and u4 = (0, 0,−1),

where

P (n) =
1

2
(3 + 2(

√
2− 1)n) and Q(n) =

√
8(
√
2− 1)n2 − 4(3

√
2− 1)n− 9 .

The sequence {xn} has no limit point in M2,2(1, 1, 2, 1) and so this space is not compact.

Let us now describe the symplectic structure on Mk1,k2(α). For that, define the
Minkowski cross product ×̇ as

v×̇w := det




−e1 −e2 e3
v1 v2 v3
w1 w2 w3



 ,

where v = (v1, v2, v3) and w = (w1, w2, w3) with e1, e2, e3 being the standard unit vectors
in R3. This cross product satisfies the usual properties:

v×̇w = −w×̇v

(u×̇v)×̇w + (v×̇w)×̇u+ (w×̇u)×̇v = 0

and so (R3, ×̇) is a Lie algebra. Moreover, it is isomorphic to su(1, 1) via the map



x
y
t


 7−→ 1

2

(
−
√
−1t x+

√
−1y

x−
√
−1y

√
−1t

)
.

Under this identification, the Minkowski inner product ◦ corresponds to (A,B) 7−→ −2 ·
trace(AB).

The symplectic form on the pseudosphere SR is then given by

ωu(v, w) =
1

R2
u ◦ (v×̇w) ,
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where u ∈ SR and v, w ∈ TuSR (we think of TuSR as the linear subspace of R2,1 or-
thogonal to u with respect to the Minkowski inner product), and the map in (32) is the

moment map for the diagonal SU(1, 1)-action and the product symplectic structure.

6. Back to the involution

Let us go back to Section 4 and consider a point [p, q] in some ZS. Let ui ∈ R3 be the
vector

ui :=

√
−1

2
(p∗i pi − qiq

∗
i )0 +

1

2
(p∗i q

∗
i + qipi)0 ,

where we use the identifications, su(2)∗ ∼= (R3)∗ ∼= su(1, 1). If i ∈ S then pi =
(
0 bi

)

and qi =

(
ci
0

)
, implying that

(33) ui =

(
Re (bici) , Im (bici) ,

|bi|2 + |ci|2
2

)

with

ui ◦ ui = (|ci|2 − |bi|2)2/4 = α2
i

(ui has Minkowski norm αi). Similarly, if i ∈ Sc, we have pi =
(
ai 0

)
and qi =

(
0
di

)
,

yielding

(34) ui =

(
Re (aidi),− Im (aidi),−

|ai|2 + |di|2
2

)

and

ui ◦ ui = (|ai|2 − |di|2)2/4 = α2
i .

Moreover, by (29) and (31) we have that

n∑

i=1

ui = 0 .

So the vectors ui form a closed polygon in Minkowski 3-space with the first |S| sides in
the positive time-like cone and the last n− |S| sides in the past, with the i-th side being

of Minkowski length αi.

Theorem 6.1. For any S ∈ S ′(α), the components ZS and ZS, of the fixed-point sets of
the involutions in (25) and (26) respectively, are diffeomorphic to the moduli space

M |S|,|Sc|(α)

of closed polygons in Minkowski 3-space.

Proof. Let S be a short set of cardinality at least two. Consider the map ϕ : ZS −→
M |S|,|Sc|(α) defined above, that is, ϕ([p, q]R) is the element of M |S|,|Sc|(α) represented by
the polygon whose sides are the vectors ui given by (33) and (34) for i in S and Sc

respectively.
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Note that the pseudo-unitary group SU(1, 1) is generated by the following orientation
preserving isometries of the pseudosphere: Aθ and Tφ, where

Aθ =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 ,

is an Euclidean rotation by an angle θ in the (x, y)-plane, and

Tφ =




1 0 0
0 cosh φ sinhφ
0 sinhφ cosh φ




is a boost of rapidity φ along the y-direction1 (cf. [BV] for the details).

Let us first see that ϕ is well defined. For that, consider two representatives (p, q) and

(p′, q′) of the same element [p, q]R in ZS. Then there exists [A; e1, · · · , en] ∈ K such that

e−1
i piA = p′i and A−1qiei = q′i, i = 1, · · · , n.

Since pi =
(
ai bi

)
, p′i =

(
a′i b′i

)
with ai = a′i = 0 for i ∈ S and bi = b′i = 0 for i ∈ Sc,

while qi =
(
ci di

)t
, q′i =

(
c′i d′i

)t
with di = d′i = 0 for i ∈ S and ci = c′i = 0 for

i ∈ Sc, we conclude that

A =

(
α 0
0 α

)

with α = e
√
−1 θ0 ∈ S1. Then we have



Re (b′ic
′
i)

Im (b′ic
′
i)

|b′i|2+|c′i|2
2




= A−2θ0




Re (bici)

Im (bici)

|bi|2+|ci|2
2




for i ∈ S,

and 


Re (a′id
′
i)

− Im (a′id
′
i)

− |a′i|2+|d′i|2
2




= A−2θo




Re (aidi)

− Im (aidi)

− |ai|2+|di|2
2




for i ∈ Sc,

where A−2θ0 is a rotation in SU(1, 1). Therefore, it follows that ϕ is well-defined.

To show that ϕ is injective, let us consider two points [p, q]R, [p
′, q′]R ∈ ZS with

ϕ([p, q]R) = ϕ([p′, q′]R). Then, writing

pi =
(
0 bi

)
, p′i =

(
0 b′i

)
and qi =

(
ci
0

)
, q′i =

(
c′i
0

)
, for i ∈ S

with
∑

i∈S bici =
∑

i∈S b
′
ic

′
i = 0 (cf. (31)), and

pi =
(
ai 0

)
, p′i =

(
a′i 0

)
and qi =

(
0
di

)
, q′i =

(
0
d′i

)
, for i ∈ Sc,

1In special relativity, the rapidity parameter φ is defined by tanhφ = v/c, where v is the velocity.
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with
∑

i∈Sc aidi =
∑

i∈Sc a′id
′
i = 0, there exists an Euclidean rotation Aθ0 by an angle θ0

on the (x, y)-plane such that

(35)




Re (b′ic
′
i)

Im (b′ic
′
i)

|b′i|2+|c′i|2
2




= Aθ0




Re (bici)

Im (bici)

|bi|2+|ci|2
2




for i ∈ S,

and

(36)




Re (a′id
′
i)

− Im (a′id
′
i)

− |a′i|2+|d′i|2
2




= Aθ0




Re (aidi)

− Im (aidi)

− |ai|2+|di|2
2




for i ∈ Sc.

Indeed, if the two vectors on the left-hand side of (35) and (36) were not obtained from
the corresponding vectors on the right-hand side by an Euclidean rotation, but by an

element of SU(1, 1) involving a boost, they would fail to satisfy the condition
∑

i∈S
b′ic

′
i =

∑

i∈Sc

a′id
′
i = 0 .

We conclude that

b′ic
′
i = e

√
−1 θ0bici, and |b′i|2 + |c′i|2 = |bi|2 + |ci|2, for i ∈ S,

while

a′id
′
i = e−

√
−1 θ0aidi, and |a′i|2 + |d′i|2 = |ai|2 + |di|2, for i ∈ Sc,

and so

p′i = piA and q′i = A−1qi, i = 1, · · · , n

with A =

(
e−

√
−1 θ0/2 0

0 e
√
−1 θ0/2

)
, implying that [p, q]R = [p′, q′]R.

Let us now see that ϕ is surjective. For that, take any element [v] ∈ M |S|,|Sc|(α). Using

the SU(1, 1)–action, the (k1 + 1)-th vertex can be placed on the t-axis (so that
∑k1

i=1 vi is

a vector along the t-axis). Therefore, we may assume that [v] is represented by a polygon
with the first |S| sides being (xi, yi, ti) with ti > 0, on the positive time-like cone and

the last n− |S| sides being (xi, yi,−ti) with ti > 0, in the past, satisfying the additional
conditions

k1∑

i=1

xi =

k1∑

i=1

yi =

n∑

i=k1+1

xi =

n∑

i=k1+1

yi = 0.

Then [v] is the image of the hyperpolygon [p, q]R, where

pi =
(
0 1

li
(xi +

√
−1 yi)

)
, qi =

(
li
0

)
for i ∈ S,

and

pi =
(

1
li
(xi −

√
−1yi) 0

)
, qi =

(
0
li

)
for i ∈ Sc,
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with

li =

√
αi +

√
α2 + |xi +

√
−1 yi|2 =

√
αi + t, i = 1, · · · , n .

Here [p, q]R ∈ ZS since

∑

i∈S
bici =

k1∑

i=1

(xi +
√
−1 yi) = 0,

∑

i∈Sc

aidi =

n∑

i=k1+1

(xi −
√
−1 yi) ,

and

|ci|2 − |bi|2 = 2αi for all i ∈ S while |di|2 − |ai|2 = 2αi for all i ∈ Sc,

where as usual we write pi =
(
ai bi

)
and qi =

(
ci di

)t
, for i = 1, · · · , n.

Note that clearly ϕ and its inverse are differentiable and the theorem follows. �

Remark 6.1. Note that when |S| = n− 1 we obtain that the space Mn−1,1(α), which we
already knew is compact, is, in fact, diffeomorphic to CPn−3.

Theorem 6.1 allows us draw several conclusions on the polygon spaces in Minkowski

3-space which are immediate consequences of Theorem 4.2 and Theorem 4.3.

Theorem 6.2. Let Mk1,k2(α) be the moduli space of closed polygons in Minkowski 3-space
that have the first k1 sides in the future time-like cone and the last k2 in the past, such

that the Minkowski length of the i-th side is αi. Assume without loss of generality that∑k1
i=1 αi <

∑n
i=k1+1 αi. Then,

(i) Mk1,k2(α) admits a deformation retraction to CPk1−2, and
(ii) the Poincaré polynomial of Mk1,k2(α) is

Pt(M
k1,k2(α)) = Pt(CP

k1−2) = 1 + t+ · · ·+ t2(|S|−2) .

7. An Example

As an example, we consider the case where n = 4. Let H(β) be the moduli space of
parabolic Higgs bundles (E,Φ) of rank two over CP1 with four parabolic points, where

the underlying holomorphic vector bundle is trivial and β is generic. Let

αi := β2(xi)− β1(xi), i = 1, · · · , 4 .
Since a subset of {1, 2, 3, 4} is either short or long, we know that there are exactly three
short sets of cardinality two for any value of α = (α1, · · · , α4). Let us denote these sets by

S1, S2 and S3. Then the fixed point set of the involution in (25) has exactly 4 connected

components

Mβ,2,0,ZS1
,ZS2

,ZS3
or ZS1

,ZS2
,ZS3

,ZS̃,

according to whether Mβ,2,0 is empty or nonempty, where S̃ is a short set of cardinality

3 which we know exists exactly when Mβ,2,0 = ∅ [GM, BY].

If Mβ,2,0 6= ∅, then this space Mβ,2,0 is a compact toric manifold of dimension two,

therefore diffeomorphic to CP1. Indeed, let us assume without loss of generality that
α1 6= α2 (note that α is generic) and consider the diagonal d2 := u1 + u2 connecting

the origin to the third vertex of the polygon. For each intermediate value of the length
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of d2, we have a circle of possible classes of polygons obtained by rotating the first two
sides of the polygon around the diagonal, while fixing the other two. The minimum and

maximum values of this length are

max {|α1 − α2| , |α3 − α4|} and min {α1 + α2 , α3 + α4}

respectively, in which cases we only have one possible polygon. Note that this length
is the moment map for the bending flow obtained by rotating the first two sides of the

polygon around the diagonal.

If Mβ,2,0 = ∅ then, since |S̃| = 3, we have that ZS̃ = MS̃ is a connected component

of H(β)Z/2Z diffeomorphic to CP1.

Let us now consider ZSi
. By Theorem 6.1 we know that this space is diffeomorphic to

M2,2(α) formed by classes of closed polygons in Minkowski 3-space with the first two sides

u1, u2 in the future time-like cone and the last two, namely u3 and u4, in the past, where
each side ui has Minkowski length αi. Let us again consider the diagonal d2 = u1 + u2

connecting the origin to the third vertex of the polygon. This vector is also a future
time-like vector and we can consider its Minkowski length ℓ. Note that if we place the

first vertex at the origin and use the SU(1, 1)–action to place the third vertex on the
t-axis, then the bending flow can be described as a rotation of the vectors u1, u2 around

the t-axis with a constant angular speed while fixing the other two vectors. Hence, ZSi

is a non-compact toric manifold with moment map ℓ. By the reversed triangle inequality

we have that ℓ has the minimum value

max {α1 + α2 , α3 + α4}

which is attained at just one point (the polygon with two sides aligned along the t-axis)
and has no other critical value. We conclude that ZSi

is diffeomorphic to C.

In all cases we conclude that H(β)Z/2Z has one compact connected component diffeo-
morphic to CP1 and three non-compact components diffeomorphic to C.
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