OPTIMAL RELATIONS BETWEEN L^p -NORMS FOR THE HARDY OPERATOR AND ITS DUAL

V.I. KOLYADA

ABSTRACT. We obtain sharp two-sided inequalities between L^p norms $(1 \lt p \lt \infty)$ of functions Hf and H^*f , where H is the Hardy operator, H^* is its dual, and f is a nonnegative measurable function on $(0, \infty)$. In an equivalent form, it gives sharp constants in the two-sided relations between L^p -norms of functions $H\varphi - \varphi$ and φ , where φ is a nonnegative nonincreasing function on $(0, +\infty)$ with $\varphi(+\infty) = 0$. In particular, it provides an alternative proof of a result obtained by N. Kruglyak and E. Setterqvist (2008) for $p = 2k$ ($k \in \mathbb{N}$) and by S. Boza and J. Soria (2011) for all $p \geq 2$, and gives a sharp version of this result for $1 < p < 2$.

1. Introduction and main results

Denote by $\mathcal{M}^+(\mathbb{R}_+)$ the class of all nonnegative measurable functions on $\mathbb{R}_+ \equiv (0, +\infty)$. Let $f \in \mathcal{M}^+(\mathbb{R}_+)$. Set

$$
Hf(x) = \frac{1}{x} \int_0^x f(t) dt
$$

and

$$
H^*f(x) = \int_x^{\infty} \frac{f(t)}{t} dt.
$$

These equalities define the classical Hardy operator H and its dual operator H^* . By Hardy's inequalities [\[5,](#page-7-0) Ch. 9], these operators are bounded in $L^p(\mathbb{R}_+)$ for any $1 < p < \infty$. Furthermore, it is easy to show that for any $f \in \mathcal{M}^+(\mathbb{R}_+)$ and any $1 < p < \infty$ the L^p -norms of Hf and H^*f are equivalent. Indeed, let $f \in \mathcal{M}^+(\mathbb{R}_+)$. By Fubini's theorem,

$$
Hf(x) = \frac{1}{x} \int_0^x dt \int_t^x \frac{f(u)}{u} du \le \frac{1}{x} \int_0^x H^*f(t) dt.
$$

²⁰¹⁰ Mathematics Subject Classification. Primary 26D10, 26D15; Secondary 46E30.

Key words and phrases. Hardy operator; Dual operator; Best constants.

On the other hand, Fubini's theorem gives that

$$
H^*f(x) = \int_x^{\infty} \frac{du}{u^2} \int_x^u f(t) dt \le \int_x^{\infty} \frac{Hf(u)}{u} du.
$$

Using these estimates and applying Hardy's inequalities [\[5,](#page-7-0) p. 240, 244], we obtain that

$$
\frac{1}{p'}||Hf||_p \le ||H^*f||_p \le p||Hf||_p \quad \text{for} \quad 1 < p < \infty \tag{1.1}
$$

(as usual, $p' = p/(p-1)$).

However, the constants in [\(1.1\)](#page-1-0) are not optimal. The objective of this paper is to find optimal constants. Our main result is the following theorem.

Theorem 1.1. Let $f \in \mathcal{M}^+(\mathbb{R}_+)$ and let $1 < p < \infty$. Then

$$
(p-1)||Hf||_p \le ||H^*f||_p \le (p-1)^{1/p}||Hf||_p \tag{1.2}
$$

if $1 < p \leq 2$, and

$$
(p-1)^{1/p}||Hf||_p \le ||H^*f||_p \le (p-1)||Hf||_p \tag{1.3}
$$

if $2 \le p \le \infty$. All constants in [\(1.2\)](#page-1-1) and [\(1.3\)](#page-1-2) are the best possible.

Clearly, the problem on relations between various norms of Hardy operator and its dual is of independent interest (cf. [\[4\]](#page-7-1)). At the same time, this problem has an equivalent formulation in terms of the difference operator $H\varphi - \varphi$.

Let φ be a nonincreasing and nonnegative function on \mathbb{R}_+ such that $\varphi(+\infty) = 0$. The quantity $H\varphi - \varphi$ plays an important role in Analysis (see $[2]$, $[3]$, $[4]$, $[6]$, $[7]$ and references therein). It is well known that the norms $||H\varphi - \varphi||_p$ and $||\varphi||_p$ $(1 < p < \infty)$ are equivalent (see [\[1,](#page-7-5) p. 384]). However, the sharp constant is known only in the following inequality.

Let φ be a nonincreasing and nonnegative function on \mathbb{R}_+ . Then for any $p \geq 2$

$$
||H\varphi - \varphi||_p \le (p-1)^{-1/p} ||\varphi||_p, \tag{1.4}
$$

and the constant is optimal.

This result was obtained in [\[7\]](#page-8-0) for $p = 2k$ ($k \in \mathbb{N}$) and in [\[2\]](#page-7-2) for all $p \geq 2$ (we observe that [\(1.4\)](#page-1-3) is a special case of the inequality proved in [\[2\]](#page-7-2) for weighted L^p -norms).

We shall show that inequality [\(1.4\)](#page-1-3) is equivalent to the first inequality in [\(1.3\)](#page-1-2):

$$
||Hf||_p \le (p-1)^{-1/p} ||H^*f||_p, \quad 2 \le p < \infty.
$$
 (1.5)

Thus, (1.5) can be derived from (1.4) . However, below we give a simple direct proof of [\(1.5\)](#page-1-4). Moreover, Theorem [1.1](#page-1-5) has the following equivalent form.

Theorem 1.2. Let φ be a nonincreasing and nonnegative function on \mathbb{R}_+ such that $\varphi(+\infty) = 0$ and let $1 < p < \infty$. Then

$$
(p-1)||H\varphi - \varphi||_p \le ||\varphi||_p \le (p-1)^{1/p}||H\varphi - \varphi||_p \qquad (1.6)
$$

if $1 < p \leq 2$, and

$$
(p-1)^{1/p}||H\varphi - \varphi||_p \le ||\varphi||_p \le (p-1)||H\varphi - \varphi||_p \qquad (1.7)
$$

if $2 \leq p < \infty$. All constants in [\(1.6\)](#page-2-0) and [\(1.7\)](#page-2-1) are the best possible.

2. Proofs of main results

Proof of Theorem [1.1.](#page-1-5) Taking into account (1.1) , we may assume that Hf and H^*f belong to $L^p(\mathbb{R}_+)$. We may also assume that $f(x) > 0$ for all $x \in \mathbb{R}_+$. Denote

$$
I_p = \int_0^\infty \left(\frac{1}{x} \int_0^x f(t) \, dt\right)^p \, dx.
$$

Since $Hf \in L^p(\mathbb{R}_+),$ we have

$$
Hf(x) = o(x^{-1/p}) \quad \text{as} \quad x \to 0 + \quad \text{or} \quad x \to +\infty.
$$

Thus, integrating by parts, we obtain

$$
I_p = p' \int_0^\infty x^{1-p} f(x) \left(\int_0^x f(t) dt \right)^{p-1} dx.
$$
 (2.1)

Further, set

$$
I_p^* = \int_0^\infty \left(\int_t^\infty \frac{f(x)}{x} dx \right)^p dt.
$$
 (2.2)

First we shall prove that

$$
(p-1)I_p \le I_p^* \quad \text{if} \quad 2 \le p < \infty \tag{2.3}
$$

and

$$
I_p^* \le (p-1)I_p \quad \text{if} \quad 1 < p \le 2. \tag{2.4}
$$

Set

$$
\Phi(t,x) = \int_t^x \frac{f(u)}{u} du, \ 0 < t \le x,
$$

and $G(t, x) = \Phi(t, x)^p$. Since $G(t, t) = 0$, we have

$$
\left(\int_t^\infty \frac{f(x)}{x} dx\right)^p = \int_t^\infty G'_x(t,x) dx = p \int_t^\infty \frac{f(x)}{x} \Phi(t,x)^{p-1} dx.
$$

Thus, by Fubini's theorem,

$$
I_p^* = p \int_0^\infty \int_t^\infty \frac{f(x)}{x} \Phi(t, x)^{p-1} dx dt
$$

=
$$
p \int_0^\infty \frac{f(x)}{x} \int_0^x \Phi(t, x)^{p-1} dt dx.
$$
 (2.5)

On the other hand, Fubini's theorem gives that

$$
\int_0^x f(t) dt = \int_0^x \Phi(t, x) dt.
$$

Hence, by (2.1) ,

$$
I_p = p' \int_0^\infty x^{1-p} f(x) \left(\int_0^x \Phi(t, x) dt \right)^{p-1} dx.
$$
 (2.6)

Comparing [\(2.1\)](#page-2-2) with [\(2.2\)](#page-2-3), we see that $I_2 = I_2^*$ i_2^* . In what follows we assume that $p \neq 2$.

Let $p > 2$. Then by Hölder's inequality

$$
\left(\int_0^x \Phi(t, x) dt\right)^{p-1} \le x^{p-2} \int_0^x \Phi(t, x)^{p-1} dt.
$$

Thus, by (2.5) and (2.6) ,

$$
I_p \le p' \int_0^\infty \frac{f(x)}{x} \int_0^x \Phi(t, x)^{p-1} dt dx = \frac{I_p^*}{p-1},
$$

and we obtain [\(2.3\)](#page-2-4).

Let now $1 < p < 2$. Applying Hölder's inequality, we get

$$
\int_0^x \Phi(t,x)^{p-1} dt \le x^{2-p} \left(\int_0^x \Phi(t,x) dt \right)^{p-1}.
$$

Thus, by (2.5) and (2.6) ,

$$
I_p^* \le p \int_0^\infty x^{1-p} f(x) \left(\int_0^x \Phi(t, x) dt \right)^{p-1} dx = (p-1)I_p,
$$

and we obtain (2.4) .

Inequalities (2.3) and (2.4) imply the first inequality in (1.3) and the second inequality in [\(1.2\)](#page-1-1), respectively.

Now we shall show that

$$
I_p^* \le (p-1)^p I_p \quad \text{if} \quad 2 < p < \infty \tag{2.7}
$$

and

$$
(p-1)^p I_p \le I_p^* \quad \text{if} \quad 1 < p < 2. \tag{2.8}
$$

Observe that by our assumption $(f > 0 \text{ and } H^* f \in L^p(\mathbb{R}^*)),$

$$
0 < \int_t^\infty \frac{f(x)}{x} \, dx < \infty \quad \text{for all} \quad t > 0.
$$

Thus, for any $q > 0$ we have

$$
\left(\int_{t}^{\infty} \frac{f(x)}{x} dx\right)^{q} = q \int_{t}^{\infty} \frac{f(x)}{x} \left(\int_{x}^{\infty} \frac{f(u)}{u} du\right)^{q-1} dx.
$$
 (2.9)

Applying this equality with $q = p$ in [\(2.2\)](#page-2-3) and using Fubini's theorem, we obtain

$$
I_p^* = p \int_0^\infty f(x) \left(\int_x^\infty \frac{f(u)}{u} du \right)^{p-1} dx.
$$
 (2.10)

Further, apply [\(2.9\)](#page-4-0) for $q = p-1$ and use again Fubini's theorem. This gives

$$
I_p^* = p(p-1) \int_0^\infty f(x) \int_x^\infty \frac{f(u)}{u} \left(\int_u^\infty \frac{f(v)}{v} dv \right)^{p-2} du dx
$$

= $p(p-1) \int_0^\infty \frac{f(u)}{u} \left(\int_u^\infty \frac{f(v)}{v} dv \right)^{p-2} \int_0^u f(x) dx du.$

Set

$$
\varphi(u) = \frac{f(u)^{1/(p-1)}}{u} \int_0^u f(x) dx
$$

and

$$
\psi(u) = f(u)^{(p-2)/(p-1)} \left(\int_u^\infty \frac{f(x)}{x} dx \right)^{p-2}
$$

(recall that $f > 0$). Then we have

$$
I_p^* = p(p-1) \int_0^\infty \varphi(u)\psi(u) du.
$$
 (2.11)

Furthermore, by [\(2.1\)](#page-2-2),

$$
\int_0^\infty \varphi(u)^{p-1} du = \int_0^\infty \frac{f(u)}{u^{p-1}} \left(\int_0^u f(x) dx \right)^{p-1} du = \frac{I_p}{p'}, \qquad (2.12)
$$

and by [\(2.10\)](#page-4-1),

$$
\int_0^\infty \psi(u)^{(p-1)/(p-2)} du = \int_0^\infty f(u) \left(\int_u^\infty \frac{f(x)}{x} dx \right)^{p-1} du = \frac{I_p^*}{p} (2.13)
$$

for any $p > 1$, $p \neq 2$.

6 V.I. KOLYADA

Let $p > 2$. Applying in [\(2.11\)](#page-4-2) Hölder's inequality with the exponent $p-1$ and taking into account equalities [\(2.12\)](#page-4-3) and [\(2.13\)](#page-4-4), we obtain

$$
I_p^* \le p(p-1) \left(\frac{I_p}{p'}\right)^{1/(p-1)} \left(\frac{I_p^*}{p}\right)^{(p-2)/(p-1)}
$$

.

.

This implies [\(2.7\)](#page-3-2), which is the second inequality in [\(1.3\)](#page-1-2).

Let now $1 < p < 2$. Applying in [\(2.11\)](#page-4-2) Hölder's inequality with the exponent $p-1 \in (0,1)$ (see [\[5,](#page-7-0) p. 140]), and using equalities [\(2.12\)](#page-4-3) and [\(2.13\)](#page-4-4), we get

$$
I_p^* \ge p(p-1) \left(\frac{I_p}{p'}\right)^{1/(p-1)} \left(\frac{I_p^*}{p}\right)^{(p-2)/(p-1)}
$$

Thus,

$$
(I_p^*)^{1/(p-1)} \ge (p-1)^{p/(p-1)} I_p^{1/(p-1)}.
$$

This implies [\(2.8\)](#page-3-3), which is the first inequality in [\(1.2\)](#page-1-1).

It remains to show that the constants in [\(1.2\)](#page-1-1) and [\(1.3\)](#page-1-2) are optimal. First, set $f_{\varepsilon}(x) = \chi_{[1,1+\varepsilon]}(x)$ $(\varepsilon > 0)$. Then

$$
||Hf_{\varepsilon}||_{p}^{p} = \int_{1}^{1+\varepsilon} x^{-p} (x-1)^{p} dx + \varepsilon^{p} \int_{1+\varepsilon}^{\infty} x^{-p} dx.
$$

Thus,

$$
\frac{\varepsilon^p (1+\varepsilon)^{1-p}}{p-1} \le ||Hf_\varepsilon||_p^p \le \frac{\varepsilon^p (1+\varepsilon)^{1-p}}{p-1} + \varepsilon^{p+1}.
$$

Further,

$$
||H^* f_{\varepsilon}||_p^p = \int_0^1 \left(\int_1^{1+\varepsilon} \frac{dt}{t}\right)^p dx + \int_1^{1+\varepsilon} \left(\int_x^{1+\varepsilon} \frac{dt}{t}\right)^p dx
$$

= $(\ln(1+\varepsilon))^p + \int_1^{1+\varepsilon} \left(\ln\frac{1+\varepsilon}{x}\right)^p dx.$

Thus,

$$
(\ln(1+\varepsilon))^p \le ||H^* f_\varepsilon||_p^p \le (\ln(1+\varepsilon))^p (1+\varepsilon).
$$

Using these estimates, we obtain that

$$
\lim_{\varepsilon \to 0+} \frac{||Hf_{\varepsilon}||_p}{||H^*f_{\varepsilon}||_p} = (p-1)^{-1/p}.
$$

It follows that the constants in the right-hand side of [\(1.2\)](#page-1-1) and the left-hand side of [\(1.3\)](#page-1-2) cannot be improved.

Let $1 < p < 2$. Set $f_{\varepsilon}(x) = x^{\varepsilon - 1/p} \chi_{[0,1]}(x)$ $(0 < \varepsilon < 1/p)$. Then

$$
||Hf_{\varepsilon}||_{p}^{p} \geq \int_{0}^{1} \left(\frac{1}{x} \int_{0}^{x} t^{\varepsilon - 1/p} dt\right)^{p} dx = \frac{p^{p}}{\varepsilon p(p - 1 + \varepsilon p)^{p}}.
$$

On the other hand,

$$
||H^*f_{\varepsilon}||_p^p \le \left(\frac{1}{p} - \varepsilon\right)^{-p} \int_0^1 x^{(\varepsilon - 1/p)p} dx = \frac{p^p}{\varepsilon p(1 - \varepsilon p)^p}.
$$

Hence,

$$
\lim_{\varepsilon \to 0+} \frac{||Hf_{\varepsilon}||_p}{||H^*f_{\varepsilon}||_p} \ge \frac{1}{p-1}.
$$

This implies that the constant in the left-hand side of [\(1.2\)](#page-1-1) is optimal. Let now $p > 2$. Set $f_{\varepsilon}(x) = x^{-\varepsilon - 1/p} \chi_{[1, +\infty)}(x)$ $(0 < \varepsilon < 1/p')$. Then

$$
||H^*f_{\varepsilon}||_p^p \ge \int_1^{\infty} \left(\int_x^{\infty} \frac{dt}{t^{1+1/p+\varepsilon}}\right)^p dx = \frac{p^p}{\varepsilon p(1+\varepsilon p)^p}
$$

and

$$
||Hf_{\varepsilon}||_{p}^{p} \leq \int_{1}^{\infty} \left(\frac{1}{x} \int_{0}^{x} \frac{dt}{t^{1/p+\varepsilon}}\right)^{p} dx = \frac{p^{p}}{\varepsilon p(p-1-\varepsilon p)^{p}}.
$$

Thus,

$$
\underline{\lim_{\varepsilon \to 0+}} \frac{||H^* f_{\varepsilon}||_p}{||H f_{\varepsilon}||_p} \ge p - 1.
$$

This shows that the constant in the right-hand side of [\(1.3\)](#page-1-2) is the best possible. The proof is completed.

Remark 2.1. We emphasize that in Theorem [1.1](#page-1-5) we do not assume that f belongs to $L^p(\mathbb{R}_+)$. It is clear that the condition $Hf \in L^p(\mathbb{R}_+)$ does not imply that $f \in L^p(\mathbb{R}_+)$. For example, let $f(x) = |x-1|^{-1/p} \chi_{[1,2]}(x)$, $p > 1$. Then

$$
Hf(x) = 0 \quad \text{for} \quad x \in [0, 1] \quad \text{and} \quad Hf(x) \le \frac{p'}{x} \quad \text{for} \quad x \ge 1.
$$

Thus, $Hf \in L^p(\mathbb{R}_+),$ but $f \notin L^p(\mathbb{R}_+).$

Now we shall show that Theorems [1.1](#page-1-5) and [1.2](#page-2-6) are equivalent. First we observe that without loss of generality we may assume that a function φ in Theorem [1.2](#page-2-6) is locally absolutely continuous on \mathbb{R}_+ . Indeed, let φ be a nonincreasing and nonnegative function on \mathbb{R}_+ such that $\varphi(+\infty) = 0.$ Set

$$
\varphi_n(x) = n \int_x^{x+1/n} \varphi(t) dt \quad (n \in \mathbb{N}).
$$

Then functions φ_n are nonincreasing, nonnegative, and locally absolutely continuous on \mathbb{R}_+ . Besides, the sequence $\{\varphi_n(x)\}\$ increases for any $x \in \mathbb{R}_+$ and converges to $\varphi(x)$ at every point of continuity of φ . By the monotone convergence theorem, $H\varphi_n(x) \to H\varphi(x)$ as $n \to \infty$ for any $x \in \mathbb{R}_+$, and $||\varphi_n||_p \to ||\varphi||_p$. Furthermore, in Theorem [1.2](#page-2-6) we

8 V.I. KOLYADA

may assume that $\varphi \in L^p(\mathbb{R}_+)$ (in conditions of this theorem the norms $||H\varphi - \varphi||_p$ and $||\varphi||_p$ are equivalent [\[1,](#page-7-5) p. 384]). Using this assumption, Hardy's inequality, and the dominated convergence theorem, we obtain that $||H\varphi_n - \varphi_n||_p \to ||H\varphi - \varphi||_p$.

Let φ be a nonincreasing, nonnegative, and locally absolutely continuous function on \mathbb{R}_+ such that $\varphi(+\infty) = 0$. Then

$$
H\varphi(x) - \varphi(x) = \frac{1}{x} \int_0^x [\varphi(t) - \varphi(x)] dt
$$

= $\frac{1}{x} \int_0^x \int_t^x |\varphi'(u)| du dt = \frac{1}{x} \int_0^x u |\varphi'(u)| du$.

Set $u|\varphi'(u)| = f(u)$. Since $\varphi(+\infty) = 0$, we have

$$
\varphi(x) = \int_x^{\infty} |\varphi'(u)| du = \int_x^{\infty} \frac{f(u)}{u} du.
$$

Thus,

$$
H\varphi(x) - \varphi(x) = \frac{1}{x} \int_0^x f(u) \, du = Hf(x) \tag{2.14}
$$

and

$$
\varphi(x) = \int_{x}^{\infty} \frac{f(u)}{u} du = H^* f(x).
$$
 (2.15)

Conversely, if $f \in \mathcal{M}^+(\mathbb{R}_+)$ and

$$
\int_0^x f(u) du < \infty \quad \text{for any} \quad x > 0,
$$

we define φ by [\(2.15\)](#page-7-6) and then we have equality [\(2.14\)](#page-7-7). These arguments show the equivalence of Theorems [1.1](#page-1-5) and [1.2.](#page-2-6)

REFERENCES

- [1] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, Boston 1988.
- [2] S. Boza and J. Soria, Solution to a conjecture on the norm of the Hardy operator minus the identity, J. Funct. Anal. **260** (2011), $1020 - 1028$.
- [3] M. Carro, A. Gogatishvili, J. Martín and L. Pick, *Functional properties on* rearrangement invariant spaces defined in terms of oscillations, J. Funct. Anal. **229** (2005), $375 - 404$.
- [4] M. Carro, A. Gogatishvili, J. Martín and L. Pick, Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces, J. Operator Theory 59 (2008), 309 – 332.
- [5] G.H. Hardy, J.E. Littlewood, and G. Pólya, *Inequalities*, 2nd ed., Cambridge University Press, Cambridge, 1967.
- [6] V.I. Kolyada, On embedding theorems, in: Nonlinear Analysis, Function Spaces and Applications, vol. 8 (Proceedings of the Spring School held in Prague, 2006), Prague, 2007, 35 - 94.

[7] N. Kruglyak and E. Setterqvist, Sharp estimates for the identity minus Hardy operator on the cone of decreasing functions, Proc. Amer. Math. Soc. 136 $(2008), 2005 - 2013.$

Department of Mathematics, Karlstad University, Universitetsgatan 1, 651 88 Karlstad, SWEDEN

 $\it E\mbox{-}mail\;address\mbox{:}\vspace{-}$ viktor.kolyada@kau.se