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Abstract

The difference between the number of lattice points in a disk of
radius

√
t/2π and the area of the disk t/4π is equal to the error in

the Weyl asymptotic estimate for the eigenvalue counting function of
the Laplacian on the standard flat torus. We give a sharp asymptotic
expression for the average value of the difference over the interval
0 ≤ t ≤ R. We obtain similar results for families of ellipses. We
also obtain relations to the eigenvalue counting function for the Klein
bottle and projective plane.

1 The simplest case

Consider the standard flat torus [0, 1] × [0, 1] with boundaries identified.
The eigenfunctions of the Laplacian are e2πin·x for n ∈ Z2 with eigenvalues
(2π)2|n|2, so the eigenvalue counting function is

N(t) = #
{
n ∈ Zd : |n| ≤

√
t/2π

}
, (1.1)

the number of lattice points inside the disk B√t/2π of radius
√
t/2π about the

origin. To first approximation N(t) is the area of the disk t/4π, and this is
exactly the Weyl asymptotic law. The problem of estimating the difference

D(t) = N(t)− t

4π
(1.2)

is notoriously difficult (conjectured to be O(t1/4+ε) for every ε > 0). Here
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Figure 1: D(t)
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Figure 2: t1/4D(t)
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Figure 3: A(t)
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Figure 4: t1/4A(t)

we study the simpler problem of approximating the average value

A(R) =
1

R

∫ R

0

D(t) dt. (1.3)

Note that we are not taking the absolute value of D(t) in the average, so
we may exploit the cancellation from regions where N(t) is greater than and
less than t/4π. We will show that A(R) = O(R−1/4) as R → ∞, and more
precisely

A(R) = g(R−1/2)R−1/4 +O(R−3/4) as R→∞ (1.4)

where g(R) is an explicit uniformly almost periodic function of mean value
zero. Somewhat different but related ideas are given in Bleher [2, 3]. The
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following Lemma is well-known (see [4], p. 74), but we include the proof for
the convenience of the reader.

Lemma 1. We have

A(R) =
∑
n6=0

1

π|n|2J2(|n|
√
R) (1.5)

where n = (n1, n2) is a variable in Z2, and J2 denotes the Bessel function.
The series in (1.5) converges uniformly and absolutely.

Proof. Let χt denote the characteristic function of the ball B√t/2π. It is
well-known that

χ̂t(z) =

{ √
t

2π|z|J1(|z|
√
t) z 6= 0

t
4π

z = 0
(1.6)

Following standard methods (see [7] or [4]) we apply the Poisson summation
formula to

FR,δ =
1

R

∫ R

0

χt ∗ ψδ dt, (1.7)

where ψδ is a smooth approximate identity. The ψδ convolution makes FR,δ
smooth, but eventually we will let δ → 0. Note that

1

R

∫ R

0

N(t) dt = lim
δ→0

∑
n∈Z2

FR,δ(n). (1.8)

The Poisson summation formula gives∑
n∈Z2

FR,δ(n) =
∑
n∈Z2

F̂R,δ(n) (1.9)

=
∑
n∈Z2

1

R

∫ R

0

χ̂t(n)ψ̂(δn) dt

=
1

R

∫ R

0

t

4π
dt+

∑
n6=0

1

R

∫ R

0

√
t

2π|n|J1(|n|
√
t) dt ψ̂(δn)

by (1.6). Combining (1.8) and (1.9) yields

A(R) = lim
δ→0

∑
n 6=0

1

R

∫ R

0

√
t

2π|n|J1(|n|
√
t) dt ψ̂(δn). (1.10)
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Now we use the property of Bessel functions ([6])∫ R

0

sα+1Jα(s) ds = Rα+1Jα+1(R) (1.11)

for α = 1, together with the change of variables s = |n|
√
t, to evaluate the

integral in (1.10)

1

R

∫ R

0

√
t

2π|n|J1(|n|
√
t) dt =

1

R

∫ |n|√R
0

s2

π|n|4J1(s) ds (1.12)

=
1

π|n|2J2(|n|R),

and substitute this into (1.10) to obtain

A(R) = lim
δ→0

∑
n6=0

1

π|n|2J2(|n|
√
R)ψ̂(δn). (1.13)

The estimate J2(|n|
√
R) = O( 1

|n|1/2R1/4 ) shows the convergence of the sum in

(1.13) without the term ψ̂(δn), so we can take the limit in (1.13) and obtain
(1.5).

Theorem 2. Consider the uniformly almost periodic function with mean
value zero

g(x) = −
√

2

π3/2

∑
n6=0

|n|−5/2 cos
(
|n|x− π

4

)
. (1.14)

We have
A(R) = g(R1/2)R−1/4 +O(R−3/4) as R→∞. (1.15)

More generally, there exists a sequence of uniformly almost periodic functions
g1, g2, . . . with g1 = g such that for any n,

A(R) =
n∑
j=1

gj(R
1/2)R

1
4
− j

2 +O(R−
1
4
−n

2 ). (1.16)

Proof. We use the well-known asymptotic expression for Bessel functions

Jα(x) =

√
2

π
x−1/2 cos

(
x− 1

2
απ − π

4

)
+O(x−3/2) as x→∞. (1.17)
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Figure 5: g(
√
t)
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Figure 6: t1/4A(t)− g(
√
t)

When α = 2 this is

J2(x) = −
√

2

π
x−1/2 cos

(
x− π

4

)
+O(x−3/2), (1.18)

and we substitute this into (1.5) with x = |n|
√
R to obtain

A(R) = g(R1/2)R−1/4 +
∑
n6=0

1

|n|2O((n
√
R)−3/2). (1.19)

It is easy to see that the remainder term in (1.19) is O(R−3/4), so (1.19) yields
(1.15). To obtain the more refined asymptotic expression (1.16) we use the
known more refined asymptotic expansion for Bessel functions (see [6]). In
particular we note that it is possible to obtain explicit series expansions of
the functions gj; for example,

g2(x) =
15
√

2

8π3/2

∑
n6=0

|n|−7/2 sin
(
|n|x− π

4

)
. (1.20)

It is also reasonable to consider the function N((2πr)2) that counts the
number of lattice points inside the ballBr of radius r, the differenceD((2πr)2) =
N((2πr)2)− πr2, and the average with respect to the radius variable

Ã(R) =
1

R

∫ R

0

D((2πr)2) dr. (1.21)
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Figure 7:
√
t(t1/4A(t)− g(

√
t))
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Figure 8: Ã(t)
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Figure 10: 1
2
√
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A(2πt2)− Ã(t)

This is a different average, but a change of variable shows that

Ã(R) =
1

2
R

(
1

2πR2

∫ 2πR2

0

D(t)
dt

t1/2

)
. (1.22)

Since most of the contribution to the integral occurs for values of t near
2πR2, we see that Ã(R) has the same asymptotics as 1

2
√

2π
A(2πR2).

In Figure 1 we show the graph of D(t) and in Figure 2 the graph of
t−1/4D(t). This illustrates the rough t1/4 growth rate of D(t). In Figure 3
we show the graph of A(t), and Figure 4 the graph of t1/4A(t). Figure 5
shows the graph of g(

√
t), which is almost identical to Figure 4 for large t.

Figure 6 shows the difference of t1/4A(t) and g(
√
t), and Figure 7 shows this
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difference multiplied by t1/2. Figure 8 shows the graph of Ã(t). Figure 9
shows the graph of 1

2
√

2π
A(2πt2), which agrees with Figure 8 for large t, and

Figure 10 shows the difference. For more data see the website [5].

2 The general case

Consider the general flat 2-dimensional torus, R2/L for some lattice L. The
eigenfunctions of the Laplacian (restriction of the standard R2 Laplacian)
have the form e2πix·ξ for ξ in the dual lattice L′, with eigenvalues (2π)2ξ · ξ.
By diagonalizing the quadratic form ξ · ξ on L′ we can find an orthonormal
basis v1, v2 in R2 and positive constants a1, a2, such that the eigenvalues are

(2π)2

((
n · v1

a1

)2

+

(
n · v2

a2

)2
)

for n ∈ Z2.

Thus the eigenvalue counting function is

N(t) = #

n ∈ Z2 :

((
n · v1

a1

)2

+

(
n · v2

a2

)2
)1/2

≤
√
t/2π

 . (2.1)

In place of disks we consider the family of ellipses

Et =

{
x ∈ R2 : (2π)2

((
x · v1

a1

)2

+

(
x · v2

a2

)2
)
≤ t

}
. (2.2)

Of course N(t) is just the number of lattice points in Et, and the volume of
Et is a1a2t

4π
. Again we write D(t) = N(t)− a1a2t

4π
for the difference and define

the average A(R) by (1.3). The analog of (1.6) is

χ̂Et(z) =

{
a1a2

2π
√

(a1z·v1)2+(a2z·v2)2
J1(
√

(a1z · v1)2 + (a2z · v2)2
√
t) z 6= 0

a1a2t
4π

z = 0

(2.3)

Lemma 3. We have

A(R) =
∑
n6=0

a1a2

π[(a1n · v1)2 + (a2n · v2)2]
J2(
√

(a1n · v1)2 + (a2n · v2)2
√
R),

(2.4)
the series converging uniformly and absolutely.
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Figure 11: g(
√
t), a1 = 2, a2 = 1/2
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Figure 12: t1/4A(t)− g(
√
t)

Proof. The same proof as for Lemma 1, with (2.3) used in place of (1.6).

Theorem 4. The asymptotic expansions (1.15) and (1.16) hold, where now

g(x) = −
√

2

π3/2
a1a2

∑
n6=0

(
(a1n · v1)2 + (a2n · v2)2

)−5/4

· cos
((

(a1n · v1)2 + (a2n · v2)2
)1/2

x− π

4

)
. (2.5)

Proof. Same as for Theorem 2, using Lemma 3 in place of Lemma 1.

See Figure 11 for g(
√
t) with a1 = 2 and a2 = 1/2 and Figure 12 for the

difference t1/4A(t)− g(
√
t) for the same family of ellipses. Plots for different

families of ellipses are available on the website [5].

3 The Klein bottle and projective plane

If we identify the vertical boundaries of the square directly, and the horizontal
boundaries with reflection, we obtain the standard flat Klein bottle KB. In
terms of functions defined on the square, we are imposing the boundary
conditions u(0, y) = u(1, y) and u(x, 0) = u(1 − x, 1) in order to have a
function on KB. We may cover KB by the rectangular torus [0, 1] × [0, 2]
with the identities {

u(x+ 1, y) = u(x, y)

u(1− x, y + 1) = u(x, y)
(3.1)
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describing the lifts of functions on KB to R2. The eigenfunctions of the
Laplacian on KB lift to eigenfunctions on the rectangular torus, and so

are linear combinations of functions of the form e2πi(jx+ k
2
y) with eigenvalue

(2π)2(j2 + (k
2
)2). Now we observe that e2πi(j(1−x)+ k

2
(y+1)) = (−1)ke2πi(−jk+ k

2
y).

Thus there are two families of eigenfunctions

e2πi k
2
y for k even (corresponding to j = 0), and (3.2)

e2πi(jx+ k
2
y) + (−1)ke2πi(−jx+ k

2
y) for j > 0. (3.3)

We can therefore see that the eigenvalue function NKB is close to one half
the counting function NT1,2 for the [0, 1]× [0, 2] torus.

Theorem 5. NKB(t) = 1
2
NT1,2(t)± 1

2
.

Proof. NT1,2(t) counts all integers j, k such that j2 + (k
2
)2 ≤ t

(2π)2
. When

j 6= 0 the pair ±j contributes just a single eigenvalue to NKB(t). When

j = 0 we count all k such that |k| ≤
√
t
π

in NT1,2(t), but just the even values

of k in NKB(t), and #{k even : |k| ≤
√
t
π
} = 1

2
{k : |k| ≤

√
t
π
} ± 1

2
.

It is interesting to compare the Klein bottle with the projective plane
(PP) obtained from [0, 1]× [0, 1] by identifying both sets of boundary edges
with reflections. Functions on PP lift to R2 with the identities{

u(1− x, y + 1) = u(x, y)

u(x+ 1, 1− y) = u(x, y)
(3.4)

and the torus [0, 2]× [0, 2] is a four-fold covering of PP. However, while it is
possible to pull back the standard Laplacian to PP, the pairs {(0, 0), (1, 1)}
and {(0, 1), (1, 0)} of identified points on PP are singularities (cone points
with total angle π) with respect to the otherwise flat metric.

Reasoning as in the KB example, we know that eigenfunctions of the
Laplacian on PP must be linear combinations of the functions e2πi( j

2
x+ k

2
y)

with eigenvalue (2π)2(( j
2
)2 + (k

2
)2). Imposing the conditions (3.4) leads to
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four families of eigenfunctions:

constants (corresponding to j = 0 and k = 0) (3.5)

e2ıi k
2
y + e−2πi k

2
y for k > 0 even (corresponding to j = 0 but k 6= 0) (3.6)

e2πi j
2
x + e−2πi j

2
x for j > 0 even (corresponding to k = 0 but j 6= 0) (3.7)

e2πi( j
2
x+ k

2
y) + e2πi(− j

2
x− k

2
y) + (−1)j+k

(
e2πi(− j

2
x+ k

2
y) + e2πi( j

2
x− k

2
y)
)

for j > 0 and k > 0. (3.8)

This leads to the identity

NPP(t) =
1

4
NT2,2(t) +

1

4
± 1

2
=

1

4
NT1,1(4t) +

1

4
± 1

2
. (3.9)

Similar results hold for KB and PP constructed from the tori considered
in section 2. Related questions in the context of fractal Laplacians with the
Sierpinski carpet replacing the square are discussed in [1].
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