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k-Connectivity in Secure Wireless Sensor Networks
with Physical Link Constraints — The On/Off
Channel Model
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Abstract—Random key predistribution scheme of Eschenauer Eschenauer-Gligor. A network (or graph) is said to be
and Gligor (EG) is a typical solution for ensuring secure conmu-  connected if for each pair of nodes there exist at léasiutu-
nications in a wireless sensor network (WSN). Connectivitpf the ally disjoint paths connecting them. An equivalent defitof

WSNSs under this scheme has received much interest over theska k tivity is that work ik ted if th twork
decade, and most of the existing work is based on the assumgi -connectivity IS that a network is-connected It the networ

of unconstrained sensor-to-sensor communications. In thipaper, femains connected despite the failure of &by 1) nodes([24];
we study the k-connectivity of WSNs under the EG scheme a network is said to be simply connected if itlisconnected.
with physical link constraints; k-connectivity is defined as the k-connectivity — a fundamental property of graphs —
property that the network remains connected despite the fdure is particularly important in secure sensor networks where

of any (k — 1) sensors. We use a simple communication model, .
where unreliable wireless links are modeled as independent nodes operate autonomously and are physically unprotected

on/off channels, and derive zero-one laws for the propertiethat FOr instancek-connectivity provides communication security
i) the WSN is k-connected, andii) each sensor is connected against an adversary that is abledompromiseup to k& — 1
to at least k other sensors. These zero-one laws improve thelinks by launching a sensor capture attdk [6]; i.e., twesees
previous results by Rybarczyk on thek-connectivity under a fully can communicate securely as long as at least one okthe

connected communication model. Moreover, under the on/off disioint path ting th ists of links that are
channel model, we provide a stronger form of the zero-one law ISjoint paths connecting them consists ot inks that are no

for the 1-connectivity as compared to that given by Ygan. We compromised by the adversary. Aldeconnectivity improves
also discuss the applicability of our results in a differennetwork  resiliency against network disconnection due to batteplede

application, namely in a large-scale, distributed publishsubscribe  tion, in both normal mode of operation and under battery-

service for online social networks. depletion attacks [20]/]28]. Furthermore, it enables féxi
Index Terms—Wireless sensor networks, key predistribution, communication-load balancing across multiple paths so tha
random key graphs, k-connectivity, minimum node degree. network energy consumption is distributed without periadjz

any access path [14]. In additioh;connectivity is useful in
terms of achieving consensus despite adversarial nodégin t
network. Specifically, it is known that for a network to aclge
A. Motivation and Background consensus in the presence of adversarial nodes, a necassary

Many designs of secure wireless sensor networks (WSN)fficient condition is that the number of adversary-cdtetb
(e.g., [2], [7], [10]) rely on a basic key predistributiorhemme nodes be less than half of the network connectiwity less
proposed by Eschenauer and Gligorl[13]. That is, for keyiri§an one third of the number of network nodes [9].1[33]. In
a network comprising: sensor nods this scheme uses another words, ifc = 2f+1 wheref is the number of adversary-
offline key poolP containingP, keys, whereP, is a function controlled nodes;-connectivity guarantees that consensus can
of n. Before deployment, each node is independently equippe@ reached in a network with > f nodes.
with K, distinctkeys selected uniformly at random frofyas ~ With this motivation in mind, our goal is to study the
the notation suggesfs,, is also assumed to be a functiorvof k-connectivity of secure WSNs and we will do so by an-
The K,, keys in each node comprise the nodesy ring After  alyzing the inducedandom graphmodels. To begin with,
deployment, two communicating nodes can establiseaure the basic key predistribution scheme is often modeled by
link if they share a key. More specifically, a secure link exis& random key graphG(n, K, P,), also known as aini-
between two nodes only if their key rings have at least one kéyrm random intersection graplwhose properties have been
in common, as message secrecy and authenticity are obtaiéignsively analyzed [3]/[5]/[26]/ [29]/ [32]. Random key
by using efficient symmetric-key encryption modes| [16]][199raphs have also recently been used for various applicgtion
[25]. e.g., cryptanalysis of hash functions [4], trust netwofkg]]

In this paper, we consider the-connectivity of secure recommender systems using collaborative filtering [21H an

WSNs operating under the key predistribution scheme Btodeling “small world” networks[[31]. The zero-one laws
for k-connectivity [27] andl-connectivity [3], [26], [32] of
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direct communication link in between. probability p independentlyf all other edges. The probability
p can also be a function of, in which case we refer to it as, .
Throughout the paper, we refer to the random gréfh, p,,)

) ) o as an Erdds-Rényi (ER) graph following the conventiorhia t
Our main goal is to study thé-connectivity of secure |ierature.

WSNs undeiphysical link constraintsi.e., when the assump-
tion of a fully connected communication model is droppe
To this end, we say that a secure link exists between t

nodes if and only if their key rings have at least one k - (= —o0). In later work [L2], they further explore
in commonand the physical link constraint between the —cgﬁr(:(éctrilvity m]' in G(n,p,) and show that itp, —
is satisfied. Specifically, in this paper, we consider a SEMpPly n+(k—1) In 0 ntan S "

. : . (k=1) G(n,pn) is a.a.sk-connected (resp., not
communication model that consists of independent Chann%'—%onnegted) iflim, ’a" — 4o (resp. lim o T
that are eitheon (with probability p,,) or off (with probability o) noeo T P- MMl yo0 O =
1 —py). Under this on/off channel model, a secure link exists " K . . h |
between two sensors as long as their key rings have at leadt €vious workl[3],[125],[[32] investigates the zero-one law
one key in commorand the channel between themas. We [0 connectivity in random key grapti(n, K, I,), wherel,
denote the graph representing the underlying networ® as a_lndIKnlarekbthe ke)(/j poolk5|ze and thﬁ I:;}y fng S'Zde’ respec-
see Sectiof 1l for precise definitions of the system model. t"’? y. Blac urnan Ggr_ e[3] prove thatif,, > 2 an P =

We derive zero-one laws in the random graph, for k- [n°], where¢ is a positive ConStéhG("’K”’P",zzf a.as.
connectivity and the property that tmeinimum node degree connected (resp., not Sonnected)uﬁ nfy, oo piny > 1
is at leastk; see Theorerfil1. To the best of our knowledggresp. limsup,,_, , . o < 1). Yagan and Makowsk{[32]
these results constitute the first complete analysis ofkthe alemonstrate thatllfic, > 2, P, = Q(n) andllg—g _ Innta,

connectivity of WSNs under physical link constraints an enG(n, Kn, P,) is a.a.s. connected (resp.. not connected)

may provide useful design guidelines in dimensioning the Egal. _ resp. i _ Rvbarczvk
scheme; i.e., in selecting its parameters to ensure theedes| 1mgl;§i)n0;nthe+si:n$e reszIItnr\;thﬁooﬁz requ(i)rci)lgl.g ); Q(ngl
_k-co_nnectivity property. The main_ _res_ult of the paper alsgns 150 establishe5 |27, Remark 1, p. 5] a zero-one law
implies a zero-one law fak-connectivity in random key graph for k-connectivity inG (n, K., P,) by showing the similarity
G(n’K"’P_") (see COI‘OllZ?.I‘)EIZ), an.d the established result EetweenG(n,Kn,Pn) and a random intersection gragdh [5]
shown to_ improve that given previously by Rybarczm[ZG]\,/ia a coupling argument. Specifically, she proves that if
see Sectiofi IV-D for details. Moreover, for theconnectivity P, = ©(nf) for some¢ > 1 and K2 _ Tnnt(k—1)Inlnnta,

of G,,, we provide a stronger form of the zero-one law %?1’;; thenG(n K. Py iz QA Igo;nected (rgsp no%:
compared to that given by Yagah [30]; see Secfion ]V- Zonnected) iﬂimn’ "a _ —;-o.o.(resp i o :"_OO)
Finally, we discuss a possible application of éuconnectivity R iy Y e O" . v "l_“’of " t i
results forG.,,, in a different network domain, namely in large- €cently Yagan([30] gives a zero-one law for connectivity

scale, distributed publish-subscribe service for onlineia (€ 1-connectivity) in graplii(n, Ky, P,) N G(n, py), which
is the intersection of random key gragh(n, K,,, P,) and

B. Contributions

Erd6s and Rényil[11] prove that whep, is 2rton
raphG(n,p,) is asymptotically almost sur@y(a.a.s.) con-
Bcted (resp., not connected)lin, ,~ o, = 400 (resp.,

networks. ) \
random graphZ(n, p,,), and clearly is equivalent to our key
o graph G,,; see Sectiori 1ll. Specifically, he shows that if
C. Organization of the Paper (Prc ) |
) K, >2,P,=Q(n)andp,- |1 — 5= ~ €7 hold, and
We organize the rest of the paper as follows: In Section (i) "

[ we survey the relevant results from the literature, whillimn oo (pn In72) exists, then grapl(n, Ky, Pn) N G (1, pn)
in Section[Tl] we give a detailed description of the systed$ asymptotically almost surely connected (resp., not con-
modelG,,,. The main results of the paper, namely the zero-of€cted) ifc > 1 (resp.,c < 1).
laws for k-connectivity and minimum node degree@,,, are A comparison of our results with the related work is given
presented (see Theoréin 1) in Secfioh IV. The basic ideas tiaSection1V-D.
pave the way in establishing TheorEn 1 are given in SeCflon V.
Sectiong VIl through VI are devoted to establishing theozer 2y say that an event takes plaesymptotically almost surelyf its
law part of Theorenill, whereas the one-law of Thedrém 1 fisbability approaches to 1 as— oo. Also, we use ‘“resp.” as a shorthand
; ; ; it or “respectively”.
eStabllsr}ed. n SheCtIOIEIthzroumm' -ghe appllé:a}tlorfs d SWe use the standard asymptotic notatisn), O(-), ©(-), Q(-), ~. That
our results in other network domains are discussed in Sectig given two positive functiong'(n) and g(n),
[XIV] and the paper is concluded in Sectibn XV by some , F(n)
ks and future research directions. Some of the teghnic =) (") = ¢(9(n) meanslimn oo ;) = 0.
rema_‘r . . . : 2) f(n) = O (g(n)) means that there exist positive constantand N
details are given in Appendicgs[A-C. such thatf(n) < cg(n) for all n > N.
3) f(n) = Q(g(n)) means that there exist positive constantand N
such thatf(n) > cg(n) for all n > N.
[l. RELATED WORK 4) f(n) = © (g(n)) means that there exist positive constantsco and

Early work by Erd6és and Rényi [11] and Gilbeft [15] 5) }V( :;‘j‘;?:;c;fégzséthj;gﬁ < C2g§f?72)fi ?!Iiré Zfl(\;) gt ate
. . . . ! ; n—»00 g(n) 1 1Sy
introduces the random gragh(n, p), which is defined om asymptotically equivalent.

nodes and there exists an edge between any two nodes with



I1l. SYSTEM MODEL B. Useful Notation for Grapliz,,,

A. The ModelG,, For any event4, we let A be the complement afl. Also,
Consider a vertex saf = {vy,vs,...,v,}. For each node for setsS, and S, the relative complement of, in S, is

v; € V, we definesS; as the key ring of node;; i.e., the given bysS, \ S.

set of K,, distinct keys of node; that are selected uniformly In graphG,,, for each node; € V, we defineN; as the

at random from a key podP of P, keys. The random key set of neighbors of node;. For any two distinct nodes,

graph, denoted?(n, K,,, P,,) is defined on the vertex sat anduv,, there are(n —2) nodes other than, andv, in graph

such that there exists an edge between two distinct nodesGon. These(n —2) nodes can be split into the four setg,,

andv;, denotedK;, if their key rings have at least one keyVa3, Nz, and Nz in the following manner. LetV,, be the
in common: i.e., set of nodes that are neighbors of bethandv,; i.e., N, =

N,NN,. Let N, denote the set of nodes 1\ {v,,v,} that
Kij = [5:N 5; # 0]- are neighbors of),,, but are not neighbors of,,. Similarly,
For any two distinct nodes, andwv,, we letS,, denote the N3, is defined as the set of nodesin {v,, v, } that are not
intersection of their key rings, andS,; i.e., S;, = S, NS,. neighbors ofv,, but are neighbors of,. Finally, Nz is the
As mentioned in Section 1B, here we assume a commset of nodes inV \ {v,,v,} that are not connected to either
nication model that consists of independent channels tteat a, or v,. We clearly have
eitheron (with probabilityp,,) or off (with probability 1 —p,,).

For distinct nodesy; and v;, let C;; denote the event that Nay = N (1 Ny,

the communication channel between thenois The events Nog = Nz \ (Ny U{vy}),

{Ci;, 1 <i < j <n} are mutually independent such that Nzy = Ny \ (N U {v.}),
]P[Cij]:pm I1<i<yj<n (1) NEQZV\(NIUNyU{UwaUy})v

This communication model can be modeled by an Erd6s-Rérmyid
graph G(n, p,) on the verticesY such that there exists an
edge between nodes andwv; if the communication channel Nay N Nag OV Nay N Nzg =V \ ({vz, vy}).

between them is on; i.e., if the evefif; takes place. For any three distinct nodes,, v, and v;, recalling that

Finally, the graphGo,(n, Ky, P, p,) is defined on the g . (resp., E,;) is the event that there exists a link between
verticesV such that two distinct nodes; and v; have an podesy, (resp.,v,) andv;, we define

edge in between, denotdd;, if the eventsk;; andC;; take

place at the same time. In other words, we have Erjnyj = Ezj N Ey;j, E.iny; = Exj NEy;,
Eij;=Ki;nCiy, 1<i<j<n 2 By = Eoj N Eyj, and Bz = By N Ey;.
so that In graphG,,,, for any non-negative intege¥, let X, be the

number of nodes having degréglet D, , be the event that
Gon (1, Kn, Py pn) = G(n, K, Pr) NG, pn). (3) node v, has degre¢. V?/e dzfined as the minimum node

Throughout, we simplify the notation by writinG,,,, instead degree of graplt.,,, and define: as the connectivity of graph

of Gon(n, Kpny PryDn)- G,n. Note that the connectivity of a graph is defined as the
Throughout, we lep,(K,, P,) be the probability that the minimum number of nodes whose deletion renders the graph

key rings of two distinct nodes share at least one key adconnected; and thus, a graphkigonnected if and only if

let p. (K, Pn,pn) be the probability that there exists a linkits connectivity is at leask. Finally, a graph is said to be

between two distinct nodes i&,,. For simplicity, we write simply connectedf its connectivity is at least, i.e., if it is

ps(K,, P,) asps and write p.(K,, P,,p,) asp.. Then for 1-connected.

any two distinct nodes; andv;, we have

ps := P[Kj]. (4) IV. THE ZERO-ONE LAW OF K-CONNECTIVITY UNDER AN

. . . . ON/OFF CHANNEL MODEL
It is easy to derivep, in terms of K,, and P,, as shown in

previous work [[8], [26], [[32]. In fact, we have A. The Main Result
(Prciny Recall that we denote b§,,, the random graph induced
ps =P[SiNS; £ 0] = 1= () if P, > 2K, 5y Dy the EG scheme under the on/off channel model. The main
1 it P, < 2K, result of this paper, given below, establishes zero-one faw

k-connectivity and for the property that the minimum node
ENSUreS gegree is no less thainin graphG,,,. Note that throughout
this paperk is a positive integer and does not scale with
pe := P[E;;| = P[Cyj] - P[Kij] = pn - Ps (6) Also, we letN (resp.,Ny) stand for the set of all non-negative
- : . (resp., positive) integers.
from (@) and [(#). Substitutind{5) int@](6), we obtain We refer to any pair of mapping&’ P : No — N as a
scalingas long as it satisfies the natural conditions

Kn<P, n=12.... 8)

Given [2), the independence of the evefifs and K;;
that

P,—K,
Pe = DPn - [1_w‘| if P, > 2K,. (7)

()



Similarly, any mapping : Ny — (0, 1) defines a scaling. B. Results with an approximation of probability
Theorem 1. Consider a positive integér, and scalings<, P : An analog of Theoreril1 can be given with a simpler form

No — No, p : Ng — (0,1) such thatk,, > 2 for all n of the scaling thar{{9); i.e., with, replaced by the more easily

sufficiently large. We define a sequenceN, — R such that €XPressed quantity’?/ P, and hence wittp, = p, K7/ P,
for any n € Ny, we have In fact, in the case of random key graptin, Kn, Py ) itis a

common practice [3],[126]/[]32] to replagge by , owing

o= Inn+ (k—1)Inlnn+ «a, ©) mostly to the fact thal[32]
n 2 2
Dy ~ L% if Ky _ o(1). (14)

The properties (a) and (b) below hold. P, P,

2
() If 5= = o(1) and eitherthere exist are > 0 such that However, when the random key graphn, K,,, P,) is inter-
Pen > € hoIds for alln sufficiently largeor lim,, oo pen = 0, sected with a random graghi(n, p,,) (as in the case 0B,

then the simplification does not occur naturally (even undet)14)
. i & B 1 B and as seen below, simpler forms of the zero-one laws are
Jim P[Gon is k-connected =0 if lim a, = —oo, obtained at the expense of extra conditions enforced on the

(10) parameterss,, and P,,.

and Corollary 1. Consider a positive integek, and scalings
o K,P : Ny = Ny, p: Ny — (0,1) such thatk,, > 2 for
Minimum node degree | _ 0 if lim a, = —oco. @&ll n sufficiently large. We define a sequence Ny — R

lim P .
n—00 of G, is no less thark n—00 a such that for any» € No, we have
K? Inn+4(k—1)lnlnn+ oy (15)
(b) If P, = Q(n) and £= = o(1), then Pnp, n '

. . o The propertles (a) and (b) below hold.
Jim P [Gon is k-connected =1 if lim an =oo,  (12)  (q) if Ka — 0(;L) andlim, eo(lnn+ (k — 1) Inlnn +
Q) = 00, then

and
Mini de d lim P[G,, is k-connected =0 if lim «, = —oo,
. inimum node degree| . . . B n—00 n—oo
nh—>H;oP of G,y is no less thark | Lo nh—{%o n = 00 (16)
(13) and
. . . . Minimum node degree | = .. . _
Note that if we combine(10) an@{112), we obtain the zeroh_)rr;OIP’ of G,,, is no less thark | — 0 if 7111_?20 ay, = —o0.

one law for k-connectivity inG,,,, whereas combinind (11)
and [I3) leads to the zero-one law for the minimum node
degree. Therefore, Theordmh 1 presents the zero-one laws Qb) If P, = Q(n) and flg_i =0
k-connectivity and the minimum node degree in gradp)),. "

We also see fronf{9) that the critical scaling for both praipsr lim P[Go,, is k-connected =1 if lim a, =oco, (18)
is given byp, = rtli-lInlin The sequencey, : Ny — e R

R defined through[{9) therefore measures by how much tﬁgd

(17)

=), then

probability p. deviates from the critical scaling. lim p| Minimum node degree| - . . a, = .
In case (b) of Theorel 1, the conditiois = Q(n) and n—e | Of Gon is no less thark noo
% = o(1) indicate that the size of the key po#}, should (19)

grow at least linearly with the number of sensor nodes in
the network, and should grow unboundedly with the size of Note that the COI’\dItIOI% 0 IL) enforced in Corollary
each key ring. These conditions are enforced here merely implies both£= = o(1) and 5= = o(1), and thus it is a
technical reasons, but they hold trivially in practical eWess Stronger condition than those enforced in Theorém 1.

sensor network applicatioris [6].[8]. [13]. Again, the ciiwh

K. enforced for the zero-law in Theordrh 1 is not a stringef0of. Considern,, &, and P, as in the statement of Corol-
orie since the, is expected to be several orders of magnitud@ry  such that[(]]S) holds. As explained above, conditions
larger thans,,. Finally, the condition that eithgr.n > ¢ > 0 %= = o(1) and 5= = o(1) both hold. The proof is based
for all n large, orlim, ..o p.n = 0 is made to avoid On Theoren{1L. Namely, we will show that if the sequence
degenerate situations. In fact, in most cases of interéslits o' : No — R is defined such that

thatp.n > € > 0 as otherwise the gragh,,, becomedrivially Inn+ (k—1)Inlnn+ o,

disconnected. To see this, notice that a is an upper-bound Pe = n (20)

on theexp_ectedjegree_of a node angd that thepectechumber for anyn € Ny, then it holds that

of edges in the graph is less tham?; yet, a connected graph

onn nodes must have at least— 1 edges. al = a, +£0(1) (21)




under the enforced assumptions. In viewlpf,, ... (Inn + 0 for all » sufficiently large so thaf& O(221) = o(1). In
(k—1)Inlnn+a,) = oo and [21), we getim,, ... p.n = oo  view of (22) we thus get
from (20). Thus, for anye > 0, we havep.n > e for
all n sufficiently large. Hence, all the conditions enforced ,, _ Inn+(k—1)nlnn + an i0(1)7 n=1,2,...
by Theoren(Il are met, and undér](20) ahd| (21), Corollary n
m follows from Theoremlll sinc@im, o c; = oo if | o p, = 1 for all n. In this case, graplG,, becomes
limy, 0 iy = F00. equivalent toG(n, K, P,) with
We now establisn(21). First, as seen by the analysis given
in Section[V-B below, we can introduce the extra condition Inn+ (k—1)Inlnn + a, + o(1)
o . . L . . pez ) n:1,2,...
a, = o(lnn) in proving part (b) of Corollarf/1; i.e., in proving n
the o2ne law under the conditidim,, , . «,, = co. This yields K (26)
Pnp = 0('22) under [T5). Also, in the casém,, .. a, From [26) and[(Z5), we have.n = ”123_” + o(1) so that
—002 we havea,, < 0 for all n sufficiently large so that i) if there exists ane > 0 such thatnp—" > ¢, then there
Pnpt = O(IM) Now, in order to establisi (1), we observeXxists ane’ > 0 such thatg)en > ¢ for all n sufficiently
from part (a) of LemméiBthat large and i) if lim,, oo np* = 0, thenlim, . pen = 0.
K2 K Thus, all the conditions enforced by part (a) of Theofdm 1
ps=—="4+0 ( 2) (22) are satisfied for the givei,,, P, andp,. Comparing [(26)
Pn P, with @), we getlim,,_, o, + 0o(1) = —cc and the zero law
Then, from [22) and the fact that = p.p,, we get lim,, o P[G(n, K,, P,) is k-connected = 0 follows from
X2 X2 X2 (I0) of Theoreni1L.
Pe=Dp =L tp, =20 (_n> ) (23) We now establish the one-law. Pidk,,, P, such that[(25)
b b b holds with lim,,_,c 0, = +00, P, = Q(n) and K,, > 2
for all n sufficiently large. In view ofIEIZ Lemma 6.1], there
exists K,,, P, such thatk,, > 2 for all n sufficiently large,

Substituting IIIB)pn%fL = O(22) and fg—f =0 () into

(23), we find
Inn+(k—1)Inlnn+a, £0(1 K,<K, and P,=P,, n=12 ..,
Pe = ( ) - () (24)

Comparing the above relation with {20), the desired conaius and
(27) follows. n K? ~Inn+4+(k—1)Inlnn+ a,

P, n
C. A Zero-One Law fok-Connectivity in Random Key GraphsWith
We now provide a useful c_or_olla_lry of Theoréin 1 that gives = O(nn) and lim é, = oc.
a zero-one law fork-connectivity in the random key graph n—oo
G(n, K,, P,). As discussed in Sectién TV}D below, this resul

improves the one giveimplicitly by Rybarczyk [27].

, n=1,2..., (27)

by an easy coupling argument, it is easy to check that

Corollary 2. Consider a positive integek, and scalings P [G(n,f{mﬁn) is k-connectet}
K,P : Ny — Ny such thatK,, > 2 for all n sufficiently -
large. Witha : Ny — R given by < P[G(n, Kn, Pn) is k-connected.

K2 Inn+(k—1)Inlnn+ o, L9 (25) Therefore, the one-law proof will be completed upon showing
Pn n ) 3 ) ) ~ _ -
the following two properties hold. . nh—{gop {G(n’ K, Pn) s k-connectea =L
(a) If either there exists am > 0 such thatnflg—: > e for g hay 72 . ) B
all n sufficiently large, odim,,, o, nﬁi—i =0, then we have Under [21) we hav eP_ o ( ) = o(1) since a, =
" O(Inn). It also follows that f;n = o(1). In view of (22),
ILm P[G(n, K,, P,) is k-connected = 0 if ILm a, = —00. we get
(b) If P, = Q(n), then we have = Inn+ (k—1)Inlnn + &, £ o(1) ne19
s n ) I I

lim P[G(n, K,,P,) is k-connected = 1 if lim o, = cc.
n—oo n—r00

and withp,, = 1 for all n sufficiently large, we obtain

Proof. We first establish the zero-law. Pidk,,, P, such that = Inn+ (k—1)Inlnn + &, £o(1) ne19
(23) holds withlim,,_,., = —oo. It is clear that we have,, < © n ’ Ty

4Except Fact 1 and Lemmas 1-6, the statements of other fadtteammas It iS_ clear thatlim,, dn_ + o(1) = oo. Thus, we get the
are all given in AppendikA. desired one-law by applying (IL2) of Theoré&in 1. [ |



D. Discussion and Comparison with Related Results (by settingk = 1) that, if

As already noted in the literaturé][3]._[11],_[12]._26], Pe = Inn+ a, (30)
[27], [32], Erd6és-Reényi grapl¥(n, p,,) and random key graph ‘ n
G(n, K., P,) have similar k-connectivity properties when then G,,, is a.a.s. connected ifm,, ... o, = oo, and it is
they arematchedthrough their link probabilities; i.e. whena.a.s. not connected Ifm,,_.~ ov, = —oo. This result relies

pn = ps With p, as defined in[{5). In particular, Erdés ancdn the extra condition®, = Q(n) and % = o(1) for the
Renyi [12] showed that ifp, = Rrhi=linlnnton hen .
G(n,pn) is asymptotically almost surelj-connected (resp., | 5 nutshell, ouil-connectivity result forG,,, is somewhat
not k-connected) iflim,, o oy = 400 (resp.limnec @n = more fine-grained than Yagan's [30] since a deviation of
—0o0). Also, Rybarczyk E[ZV] ‘has shown under some extrg ~_ LO(nn) is required to get the zero-one law in the
?r?r?f(lltclglnﬁnlg?ha: O(n%) with & > 1) that if ps = form (23), whereas in our formulatioRi{30), it suffices to dav
m =, then G(n, K, P,) is almost surelyk- a4 unbounded deviation; e.g., evep = +Inln - - Inn wil

connected (resp., nat-connected) iflim, .o an = +00  qo. Put differently, we cover the case of= 1 in @3) (i.e.,

2
one-law and ons= = o(1) for the zero-law.

(resp.,limy o0 0ty = —00). the case whep, ~ 22) and show thaG,,, could be almost
From our system model (viZ](3)), we have that surely connected or not connected, depending on the limit of
ap; in fact, if (29) holds withc > 1, we see from Theorefd 1
Gon = G(n, Kn, Py) N G(n, pn). (28) thatG,,, is not only1-connected but alsb-connected for any
k =1,2,.... However, it is worth noting that the additional

SinceG(n, Ky, P,) andG(n, ps) have similark-connectivity o itions assumed if [B0] aveeakerthan those we enforce
results, it would seem intuitive to replac€(n, K,, P,) in Theoren{1 fork — 1.

with G(n,p;) in the above equatior_(P8). Sine&(n, p;) N

G(n,pn) = G(n, pnps) = G(n, pe), this would automatically V. BASIC IDEAS FORPROVING THEOREM

imply Theoren[lL via the earlier results of Erdés and Rényi ) ] o o

[12]. Note that from Erdés and Renyi's work [12], undefr- The Relationship of-Connectivity and the Minimum Node

@), random graphG(n, p.) is asymptotically almost surely D€gree

k-connected (resp., ndi-connected) iflim,, ,o a,, = 400 For any graphG, if GG is k-connected, then the minimum

(resp., lim,, 00 @y = —oc). In that regard, Theoreril] 1 node degree ofs is no less thark [24]. This can be seen by

confirms the validity of the above intuition. contradiction. Suppose that the graghis k-connected and
We now compare our results with those of RybarcZyK [2#ere exists a node with degreed, < k. Then if we remove

for the k-connectivity of random key grapfi(n, K,,, P,). As  all of the d, neighbors of the node from G, the resulting

already noted, Rybarczyk [27, Remark 1, p. 5] has estalish@aph will be disconnected sineewill be isolated. However,

an analog of Corollarf2, but with conditions mustionger this contradicts thé&-connectivity of the original grapt and

than ours. In particular, she assumed tRat= ©(n¢) with the claim follows. Therefore, we have

¢ > 1. In comparison, Corollari]2 established here enforces ) Minimum node degre

only that P, > €(n), which is clearly a weaker condition (G is k-connected C [ of (@ is no less thark i

than P,, = ©(nf) with £ > 1. Moreover, our conditior?,, > ) .

Q(n) requires (from[(25)) only thafc, = Q(vInn) for the and the inequality

one-law to hold. However, the conditioR, = ©(n®) with

¢ > 1 enforced in[[27] requires the key ring sizes to satisfy

K, = Q(vnt~11nn) with £ — 1 > 0; this is a much stronger

requirement as compared £6,, = Q(v/Inn). This difference

between the conditions oA, is particularly relevant in the

P[G is k-connected < P { Minimum node degreej

of G is no less thark

follows immediately.
It is now clear that[(111) implies (10) and {12) impli€s](13).
Thus, in order to prove Theordm 1, we only need to sHaw (11)

context of W.SNS since the Parameféﬁ co_ntrols the number under the conditions of case (a), ahdl(12) under the comditio
of keys kept in each sensor’s memory. Since sensor nodes0 €ose (b)

expected[113] to have very limited memory (and computafiona

capability), it is desirable to have small key ring sizes. o
Finally, we compare Theoreff 1 with the zero-one law give: €onfiningas,

by Yagan[30] for thel-connectivity ofG,,,. As mentioned in ~ As seen in Sectiofi_VIA, Theorem 1 will follow if we

Section 1] above, he shows that if show [I1) and[{d2) under the appropriate conditions. In this
subsection, we show that the extra condition= o(Inn) can
Do ~ Cln_" _lnn+(c-1)nn (29) be introduced in the proof of (12). Namely, we will show that
" " part (b) of Theorenill under,, = o(Inn)

then G,,, is a.a.s. connected if > 1, and it is a.a.s. not
connected ifc < 1. This was done under the additional
conditions thatP,, = Q(n) (required only for the one-law) We write G,,, as G,,(n, K, P,,p,) and remember that
and thatlim,, . p, Inn exists (required only for the zero-given K,,, P, andp,, one can determine,, from (9) with
law). On the other hand, Theordm 1 given here establishtege help of [T).

= part (b) of Theorenill (31)



Assume that part (b) of Theoref 1 holds under the exté,,(n, K,, P,,p,) so that, as shown by Rybarczyk [27, pp.
conditiona,, = o(lnn). The desired resulE(B1) will follow if 7], we have

tablish .
We establls P[Gon(n, Ky, Pn,prn) has property?]
Jim P\ G(n, Ko, Po, Pn) 18 k-connecte% =1 (32 < P[Gon(n, Kn, Py, pn) has property?]. (40)

for any K,,, P, andp, such thatfs — o(1), B, = Q(n), and for any monotone increasiigraph property2. It is straight-
P forward to see that the property of beikeconnected and the
B Inn+ (k—1)Inlnn + a, property that the minimum node degree is no less thame
Pe = n (33)  both monotone increasing graph properties.. Therefare), (37

will follow immediately (with K,, = K,, and P, = P,) if

holds with lim,,_,. &, = +o0o. We will prove [32) by a

. . 'QF“) holds.
coupling argument. Namely, we will show that there exi . :
scalingsk,,, P, andp, such that We now give the coupling argument that leads [io]l (40).

As seen from[(B)G,, is the intersection of a random key
K, . graph G(n, K, P,) and an Erd6s-Rényi grapli(n,p,).

= =o(1) and P, =Q(n) (34) Using graph coupling, we use the same random key graph
G(n, K,, P,) to help construct botlt,,, (n, K, P, p,) and

and Gon(n, Ky, P,, ). Then we have

ﬁe - 1nn+ (k_ 1) 1n1nn+an (35) Gon naK’ernaﬁn) = G(naK’n7P’n)ﬁG(naﬁn) (41)

(
n
with (
R o Since p, < p,, we couple G(n,p,) and G(n,p,) Iin
4y =o(lnn) and  lim &, = oo, (36) the following manner. Pick independent Erdés-Renyi bsap
G(n, pn/pn) andG(n, p,) on the same vertex set. It is clear
that the intersectionG(n, p,/pn) N G(n,p,) will still be
p{@on(n,f(mpm@n) is k-connected an Erd6s-Rényi graph (due to independence) with an edge
N probability given byp,, - 22 = p,. In other words, we have
> - . "
2 PlGon(n, K, Fu, pn) i k-connected (37) G(n, pn/pn) N G(n,pn) = G(n,p,). Consequently, under
Notice thatk,,, P, andp, satisfy all the conditions enforcedthis coupling,G(n,p,) is a spanning subgraph @#(n, pn).
by part (b) of Theorenill1 together with the extra conditiohhen from [41) andl{42)(z.,.(n, Kn, Fa, ) iS @ spanning
Gy, = o(Inn). Thus, we get subgraph ofG,,, (1, Ky, P, pn) and [40) follows.

and that we have

nlingoP[G‘m(n’K"’P"’p”) is k-connected = 1 (38) C. The Method of First and Second Moments
by the initial assumption, an@(82) follows immediatelyrfro ~We present the following fact which uses the method of
(37) and [3B). Therefore, given aidy,,, P, andp, as stated evaluating the first and second moments to derive the zero-
above, if we can show the existence Kf,, P, andp, that one laws for the minimum node degree of a graph. We use
satisfy [34)4(3F), then the desired conclusibnl (31) willde. E[-] to denote the expected value of the random variable in
We now establish the existence &f,, £, and p,, that [].

satisfy [39){3V). Let?,, = P, and K, = K, so that[3%) ract 1. For any graphG with n nodes, letY, be the number
is satisfied automatically. Let,, = min {&,,,Inlnn}. Hence, of nodes having degrein G, where? — 0, 1 n—1-and

we haveo?n < an, @" .: o(lnn) and.lil.n"—”o an = 00 SO 16t 5 e the minimum node degree 6f Then the following
that [38) is also satisfied. The remaining paramgtewill be three properties hold for any positive integier

defined through (a) For any non-negative integer if E[X;] = o(1), then

) Tim P[5 =] =0. (43)

(b) If @3) holds for/ =0,1,...,k— 1, then

. [1 (Pnf{j{n)] ~Inn+(k—1)Inlnn+ &,

Pn
(%)

Pn*[(n 1 —
so thatp, = p,- |1 — %] satisfies[(35). Thus, it remains nli)II;OP[d Z k=1
to establish[{37). . ©) IfE [(XE)Q} ~ {E[X,]}* and E[X,] — +oc asn —

Comparing [(3B) with[(33), it follows thap, < p, since . hold for som&’ = 0.1.... k — 1, then
K, = K,, P, = P, and &, < @&,. Consider graphs Y
Gon(ny Ky Pay ), Gon(n, Ky, Py, py) that have the same Jim P[§ > k] = 0.
number of nodesn, the same key ring sizd<,, and the

same key pool sizé’,, but have different channel probabil-A proof of Facfl is given in Appendi BJA.

ities pn, and py,. VV~e Wi” ShOW_ that there _eXiStS a coupling 5A graph property is called monotone increasing if it holdsiemthe
such thatG,,(n, K,, P,,p,) is a spanningsubgraph of addition of edges in a graph.



VI. ESTABLISHING (1) (THE ZERO-LAW FOR THE (a) If there exist ane > 0 such thatp.n > € for all n
MINIMUM NODE DEGREE ING,,,) sufficiently large, then for any non-negative integer canst

Our main goal in this section is to establi§hl(11) under gfhd any two distinct nodes, andv,, we have

following conditions: P[Dy 1 Dyy] ~ ()2 (pen)y o 2pen (54)
- K?
@), K,, > 2 for all n sufficiently large, —" =o(l) (44) (b) For any two distinct nodes, andwv,, we have

lim «, =—oc0 andp.n > ¢ >0 or hm pen = 0. (45) P[Dy 0N Dyol ~ e 2pen, (55)

n—-+o0o

From property (c) of Fadill, we see that the proof will be
completed if we demonstrate the following two results und@&roof. Recall thatFE,, is the event that there exists a link

the conditions[(44) and_(45): between nodes, andv,. Then
lim E[X] = +o0, (46)  P[DeenDyd
and =P[DyeNDysNEy|+PDyNDyeNEyl.  (56)
E [(Xgﬂ N {E[Xg] }2_ 47) Thus, IT(_ammﬂ3 will follow after we prove the following two
propositions.
for some/ =0,1,...,k—1.

Proposition 1. Let p; = o(1), K,, > 2 for all n sufficiently

The first step in establlshln[(|46) and147) is to compute ﬂFErge andp, = With Tim,, 00 0, = —00.

momentsE [X,] andE |(X,)”|. This step is taken in the nextThen, the following two properties hold.

Lemma. Recall that in grap@,,, X, stands for the number (a) If there exist anc > 0 such thatp.n > ¢ for all n

of nodes with degreé for each? = 0,1,.... Also, D, is sufficiently large, then for any non-negative integer canst
the event that node, has degreé for eachz =1,2,....,n. ¢, we have

Inn+(k— 1) Inlnn+tay,

Lemma_l. In G,,, for any non-negative integet and any P[Dye N Dy Nyl ~ ()2 (pen)ze o—2pen (57)
two distinct nodes, andv,, we have
b) We have
E[X,] = nP Dy, @y O
Fnl —2pen
E[(X0)*] = nP(Dai] +n(n — DP[Do\Dys). (49) P[Da0 0 Dy,0 N Egy] ~ €770 (58)
A proof of Lemmal is given in AppendxCIA. Proposition 2. !ﬁtﬁi :1)&(1111)7’145” > 2 for all n sufficiently
In view of (@8), we will obtain [@B) once we show that arg€ andpe = With limp, .00 oy = —0c0.
If there exists ar > 0 such thatp.n > € for all n sufficiently
lim (nP[Dy]) = +oc. (50) large, then for any positive integer constafitwe have

n—-+o0o

under the condition§{24) and{45). Also, fromi(48) aid (49), PlDx.e N Dy,e N Eyy] = 0 (P[Dye N Dy e N Eyyl) . (59)

we get Propositiond 1 an@]2 are established in Secliod VII and

2 Section[VTIl, respectively. Now, we complete the proof of
E|[(X
{( ‘) l - 1 L= 1 P [D””’fﬂDy’;], (51) LemmalB . It is clear that under the conditippn > € > 0,
(E[X/,]}" nP[Ds n {P[D.)} (G4) follows from [5T) and[{39) in view of (36). For the case
: ) ¢ = 0, we obtain [[5b) by usind(38) i (56) and noting that
Thus, Il foll h 0 d " .
us, [47) will follow upon showind(30) an P[D.oND,oNE,,] =0 always holds; it is not possible for
P[D,¢\Dy.e] ~ {]p [D,.] }2 (52) nodesv, andv, to have degree zero and yet to have an edge
in between. [ ]
for some? = 0,1,...,k — 1 under the conditiond_(#4) and
@3).
We establish[{50) and(52) with the help of the following We now complete the proof of (b0) arld {52) under (44) and
Lemmad® andl3. (@39). First, in view of [®) and the conditiohm,, .. o, =

—o0, We obtainp, < mrtollnlnn g6 5y, sufficiently

Lemma 2. If p. = o \/_), then for any non-negative |nteger|arge Thusp, = O(\/_) and we use Lemnid 2 to get
constant/ and any nodey,,,

P [Dye] ~ ()" (pen)” e Pem. (53) P [Dyg) ~n- ()7 (pen)’ e Pen (60)

P : XTI for each? = 0,1,.... The proof will be given in two steps.
A proof of Lemma2 is given in Append B. First, in the case where there existsean 0 such thap.n > ¢
Lemma 3. Let p, = o(1), K,, > 2 for all n sufficiently for all n sufficiently large, we will establisi {50) and {52) for

large, p, = mntlh 1)]“1“"“’” with lim,, ooy, = —o0. ¢ = k—1. Next, for the case whel@n,, . p.n = 0, we will
Then, properties (a) and (b) below hold. show that[(BD) and (52) hold fdr= 0.




Assume now thap.n > ¢ > 0 for all n sufficiently large. It is now a simple matter to check that

Substituting [(®) into[(60) witll = k£ — 1, we get ,
P [Dy 1] 61) DaNDyyNEpy = | (AnNEay). (63)
h=0
~n - [k — 1) -1 . k=1 —Inn—(k—1)Inlnn—a,
n-[ _)1] (pen)™ e for each? = 0,1,.... Using [63) and the fact that the events
=[(k-1)] Ap (h=0,1,...,¢) are mutually exclusive, we obtain
x (Inn+ (k—1)Inlnn + oy, te (k=D nnn—an ¢
Lot P[DuyNDyeNEyy) => P[ANE,,]. (64)
h=0
o (ks o) - We begin computing the right hand side (R.H.S.)[ofl (64) by
= (nn+(k—1)Inlnn+ a,)" e b=Dnlnn—an evaluatingZ,,, i.e., the event that there is no link between

nodesv, andwv,. From our system model (viZ](2)) we have

and observe that we haven + (k — 1) Inlnn + «,, > € for Eyy = Ky, 1 Cyy. Hence

all n sufficiently large sincev.n > €. On that range, fixa,
pick 0 < v < 1 and consider the cases, < —(1 — v)Inn Ery = KuyUCyy = Ky U (Kyy N Cly). (65)

anda,, > —(1 — ) Inn. In the former case, we have .
Note that, by definition, eventé(,, and |S,,| > 1 are

Falky o) > € e-k=Dmnnt(=y)nn equivalent. Also, we always havsé,,| < |S,| = K,. Hence,
whereas in the latter we obtain we get
Ky
. k=1 —(k—1)Inlnn—a, _ k—1_—a,
fn(kian) > (yInn)™ e =y Koy = | (1Sey| = u). (66)
Thus, for alln sufficiently large, we have u=l
For eachu = 1,2,..., K,, we define eveng’, as follows:

Fulk; a) > min {6 . e—(k=1) Inlnn+(1—7) 1nn77k7187an} . s, i o
Xy = (|Suy| = u) N Ty 67

It is now easy to see théim,,_. f,(k;a,) = oo sincel < ) ) ,

v < 1 andlim, s oy, = —o0. Substituting this into[{81), we Applying (66) to [65) and usind (67), we obtain

obtain [B0) with? = k — 1. In addition, from [5B) of Lemma L Ky L
2, and [B%) of Lemma&l3, it is clear thdf {52) follows with E.y=K;yU { U (|Szyl =w)| N Cmy}
¢ =k — 1. As mentioned alreadyl (50) and (52) imply46) u=1

and [4T) in view of Lemmall, and the zero-lawl(11) is now

K'Vl
established for the case whepn > € > 0. Koy U <U Xu) : (68)
We now turn to the case whetén,,_,. p.n = p; = 0. u=1

This time, we let/ = 0 in (&0) and obtain From [68) and the fact that the everf§,,,, X1, Xs, ..., Xk
AP [Dy o] ~ ne=2Pe" ~ are mutually disjoint, we obtain

n

Ky

We clearly have[(50) fof = 0. Also, from [53) of Lemm&R  pig4 A E 1 =P[A NEopl + S P[4y N X 69
with ¢ = 0, and [55) of Lemma&l3, we obtaif {52) fér= 0. [An OV By [An N Eoy] + D PlA L. (69)

Having obtained(30) and (b2) fdr= 0, we get[46) and (47) . .
and the zero-law[(11) is now established by virtue of Bctﬁubstltutmg [(6) intol(B4), we get

(c). | P [Dyy N DyeN Eyyl

u=1

‘ t{ Kn

VIl. A PROOF OFPROPOSITIONT - ZP [A, N KL, + Z Z P[An N X,]. (70)
We start by noting thaD, , N D, , N E,, stands for the h=0 h=0u=1

event that nodes, and v, both havel neighbors but are Proposition[1L will follow once we establish the next two

not neighbors with each other. To compute its probability, wesults.

specify all the possible cardinalities of sets,,, N,z and

Nz, defined in Sectiof 1II-B. In other words, we specify th

number of nodes that are neighbors of bethand v,, the

number of nodes that are neighborswgf but not neighbors

of v,, and the number of nodes that are neighbors obut ¢ B o

not neighbors of,,.. To this end, we define the series of events Z P [An N Kyy] ~ (£1)72 (pen)™ e72Pe". (71)

Ay, in the following manner h=0

Ap = [|Nay| = FJ [INagl = € = ] [|Nzy| = £ — 1] (62)

groposition 1.1. Let ¢ be a non-negative integer constant.
If ps ;\ o(1), pe = ln"Jr(k*lzllnlnnJrO‘" With lim,, oo vy, =
—o0, then

Proposition 1.2. Let ¢/ be a non-negative integer constant.
Considerp, = o(1), K, > 2 for all n sufficiently large and
for eachh = 0,1,...,¢; here,|S| denotes the cardinality of p. = 1“"“’“_1211“1“"*0‘” with lim,,_, o, a, = —o0. Then, the
the discrete sef. following two properties hold.
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(a) If there exists are > 0 such thatp.n > ¢ for all n  order to computé [Ah | sz] We get
sufficiently large, then we have —
Y P [An | Koy

n2ffh

¢ K, 4 -
22 PNl =0 <;;)P [An ﬁm) S DI 2 {P[Eyjry; | Ko}

h=0u=1 _— -,
b) We h X {P[Ex_jmyj | sz]}g h{P[EmjﬂE | Kry]}é b
n order to compute the R.H.S. 0 , we evaluate the
(b) We have In ord he R.H.S. of {77) | h
Ky, following three terms in turn:
PAoNX,] =0 (P[4 NEqy). (73) _ - .
2 PN =o(F [N Kn]) P{Bu oy | Byl PIEL g | oyl and Bl | Tl

or the first termP[E,jny; | Kauyl, We usel,; = K,; N Cyj

In order to see why Propositionl 1 is established .
y P ol ndE,; = K,; N Cy; to obtain

Propositions 1.1 and 1.2, considgt and p. as stated in
Propositior(Jl. Then from Propositions 1.1 and 1[2] (71) and PlE.inyj | Kyl

(72) hold. Substituting[{71) and {72) intb {70), we detl(57). PO AC N A AR T 78
Also, using [71) with¢ = 0 we getP [Ag N K| ~ e~ 2P, [(Caj 0 Cy) O (Ko O Kys) | Ky (_)
Using this and[{73) in[{70) witld = 0, we obtain [[GB) and SinceC,; N C,; is independent of botli,; N K,; and K,

Propositior_ 1L is then established. m andC,; andC,; are independent, we obtain frol[78) that
P[Exjny; | Koyl = pn’®  PlKoj N Kyj | Kay]  (79)
The rest of this section is devoted to establishing Propogis we recall that[C,;] = P[C,;] = p. from our system

tions 1.1 and 1.2. We will establish Propositldn 2 in the nextodel (viz. [1)). From Lemm&l9 (AppendiX AB), we have
Section[VTI], and this will complete the proof of Lemn& 3P[(K,; N K,;) | Kuy] < p?. Substituting this into[{29) and
and thus the zero-lavi (IL1). using the definitiorp. = p,ps, we get

PEyjnys | Key] < pe*. (80)
A. A Proof of Proposition 1.1

We now evaluate the second tefffi, ;= | K] by first
GivenP[K,,] =1—ps — 1 asn — oo, it is clear that computingP[E,; | K. It is clear thatE,; is independent
, , of K,,. Hence,
S P[ANNKL,] =P Y P Ay | K] P[Eyj | Kuy| = Pe- (81)
h=0 ; h=0 Sincep, = Lot DInlnnten yith fim, ,  a, = —oco, We
~ Z]}D (A | Koy (74) havep. = o (%) From [80), [B1) ang. = o (%) we
h=0 now get

We now present the following Lemnid 4, which evaluates a P[E, = | Kyl = P[Ey; | Kuy| — PlEgjoy; | Kayl

general_i;ation ofP [A}, | Kuy. In addition tp_the proof of = pe — O (pe2) ~ pe. 82)

Proposition 1.1 here, the proofs of Propositions 1.2 and 2.1

also use Lemm@l 4. Proceeding similarly, for the third terfi[E_; . | Ku,], we
have ‘

Lemma 4. Let my,my and ms be non-negative integer

constants. We define evehtas follows. PlEmny; | Koyl ~ Pe. (83)

Now we compute the R.H.S. df {[77). Substitutifhg](82) and
F = [[Nayl = mu] (V[|Nag| = m2] (V[|Nay| = ma]. (75) (B3) into R.H.S. of[(7I7), given constafit we obtain

Then givenu in {0, 1,..., K, } andp, = mntlti=llnlnnta, — plg, | K, 1

n

with lim,, .o o, = —00, We have n2t=h o o B
i -+mams o ¢ AP B [ K} p2.
_ —2pen+Lefntin
PIF | (|Say| =w)] ~ it € i Kn (84)
X {P[Ewjog; | (|Suy| = u)]}™ for eachh =0,1,...,¢. Thus, forh = 0, we have
XAPE, jrgg | ([Sey| = w)]}™ P [Ag | Kuy] ~ (£) 2 (pen)*‘e2Pem. (85)
X AP[Egny; | [Szyl =w)]}™ (76) Forh =1,2,...,¢, we use[(8D) and(84) to get
with j distinct fromz and y. P [Ay | Koy N n="(l!)? (B[Esjrn; lK—]}hp,Qh
o ) P [Ao | K—wu] R[(¢ — R)1]2 zjNyj zy e
A proof of Lemma% is given in Appendix_CiC. : AR
Given the definition of4,, in (62) andK,, < (|S.y| = 0), < [ )" o(1).

we letm; = h,ma = mz = ¢ — h andu = 0 in Lemmal@ in RI[(€ — h)!J?



Thus, we have

P[An | Ky =0(P[Ag | Kuy]), h=1,2,...,0. (86)

Applying (83) and[(8b) to[{44), we obtain the desired conclu- ,

sion [71) (for Propostion 1.1) by virtue of the fact thats
constant. |

B. A Proof of Proposition 1.2

Notice that[(7B) can be obtained from172) by setting 0.
Thus, in the discussion given below, we will establish (%) f
each/ = 0,1, ... under the condition that there exist an- 0
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for all n sufficiently large.
Returning to the evaluation of R.H.S. 6f{87), we applyl (93)
to (87) and obtain

Kn
SN PlANN A
h= Ou 1
14
< Z { |Szy| = U - 2e —2pen+ B2t pen Z (pen)foh }

h=0
(94)

for all n sufficiently large. Given[{34), it is clear thdf (72)

such thatp.n > e for all n sufficiently large, and show thatfollows once we prove

this extra condition is1ot needed if¢ = 0.

We start by finding an upper bound on the left hand side

(L.H.S.) of [72). Given the definition ok, in (€4), we obtain
P[A, N X, <PIAL N (|Sey| = u)].

Then, we have

Ky
ZZ]}D [An N X
=0u= 1K
SZZ [An N ([Szy| = u)]

K

-3{r

[[Say| = ] ZP [An | (|Szy| = )]
h=0

}. (87)

We now compute the R.H.S. df_(87). First, from Lemma 10,

we note that
K,

1 u
Pl == 51 (77)

Next, we computéP [A}, | (|Szy| = u)]. Given the definition
of A;, in (62), we letm; = h andmy = m3 = £ — h in
Lemmal4 and obtain

PAn | (|Szy| = w)] ~

(88)

n2ffh

DI
x {P[E zjNyj | (lswyl = u)]}h
X AP[Egjny; | 1Syl = w)]}"

< APLE g | (1Say| = )]}
(89)

—2pen—+

bPePnu
Kn ¥

We evaluate the following three terms in turn:
P[ijﬁyj | Kwy]vp[E K:Ey] andP[ K:Ey]

zjNyj |
FromE,; = Cp; N K, andEy; = Cy; N Ky, it is clear
that £,; and E,; are both independent @fS,,| = «).Then
using crude bounding arguments, we obtain

m]ﬁyy |

PlEyjoy; | ([Szyl = )] < P[Ey; | (|Say| = u)] =pe (90)
PIE, ;o7 | (1Say] = u)] < P[Eg; | (|Sey| = w)] =pe (91)
PlEGy; | (1Szy] = u)] S P[Ey; | (|Say] = u)] = pe. (92)

Applying (80), [91) and[{92) td (89), we obtain
P[Ap | (|Suy| = w)] < 207" e72Pen TR (p, )20

_ 2672p5n+% ( )Qth (93)

Pen

4
R.H.S. of [9%)= o <ZP [An N Koy (95)

h=0

) |

Using the condition thap.n > ¢ > 0 for all n sufficiently
large, it follows that

‘
> (pen)* " =
h=0

Notice that[(95) follows trivially for¢ = 0 without relying on

the conditionp.n > ¢ > 0. Applying (88) and[(96) to R.H.S.

of (@4), we get

O (pen)*". (96)

R.H.S. of [9%)
K, K2 o u
(97)
From [71) and[{97), we have
R.H.S. of [9%)
14 K K2 u
— T 2 n PnPen
=Y P[A,NEK,,] O )-Z<Pn_Kn e > .
h=0 u=1
(98)
If we show that
2
PnlinKn e Pt = o(1), (99)
then we obtain
K. u K2 Pn.pen
= K72l bPnpPen Pn _T}{n €
> (Pn—Kn et ) < |- K2 _Zmopen = o(1),
u=1 Pn_Kn
(100)

leading to [7R) given[(98) and the fact théatis constant.
Now we prove [(@D). Giverp, = 2rtlb=lntnnton yjh

limy, o0 o, = —00 We havep, < 2 . oo for all sufficiently
largen. Recalling also thaf{,, > 2 we get

Pnpen
e En

< e%pn Inn

(101)

on the same range. From Leminla 8, property (c) (Append|x
[A=B), it holds underp, = o(1) that ps ~ so that s
o(1) and &= = o(1). We now obtain

n n o —

K2 K2
P, - K,

~ o~ s
n
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Then %= < 2p, follows for all n sufficiently large. In for eachh = 0,1,...,¢ — 1. An analog of [[6B) follows

Pn_Kn
view of this inequality and[{101), we find immediately for any positive integet
Krzz Ln.p.n Spnlnn T
PR e T S et (102) DyyN Dy N Ewy = | (BrN Ewy). (108)
h=0
for all n sufficiently large. _ The minus one term orf is due to the fact that: and y
In order to evaluate the R.H.S. ¢f (102), we define are neighbors to each other in eveit,, and thus in event
B  3p.lnn D,,N D, ;N E,, there can be at mogt— 1 nodes that are
F(n) = 2p, - e ‘ (103) neighbors of bothw andy.
With p,ps = p. < - 122 for all n sufficiently large, we note  Given [108) and mutually exclusive events, (h =
that 0,1,...,£—1), we obtain
3lnn -1
c< o2 104
Ps =5, (104) P[Dyt (1 Dyt N Egy) = Y P[By, N Eyy). (109)
Now, fix n large enough such thdf (102) ad {1.04) hold. We h=0

consider the cases, < - andp, > -, separately. In We will establish Propositiof]l2 by obtaining the following

Inn

the former case, we havB(n) < 2p,e3/4 immediately from result which evaluates the R.H.S. 6f (109).
(I03). In the latter case we use the bound [104) to get  proposition 2.1. Let  be a positive integer constant. jf =
o(1), pe = % with lim,,_,~ o, = —oo and there

Inn 3p,Inn (lnn)Q 3/4 - -
F(n) <3——eam " <3 .n existse > 0 such thatp.n > ¢ for all n sufficiently large, then

npn n
£—1 2
upon noting also that,, < 1. Combining the two bounds, we Z]P [ByN Eyy] =0 ZP [Ah n K—w] _ (110)
have that o ‘ o ‘
F(n) < max {2]73@3/4 .30 4(In n)2} (105) In order to see why Propositidn 2 follows from Proposition

2.1, observe that (110) establishies {106) with the help@8).1
for all n sufficiently large. Letting: go to infinity and recalling As noted at the beginning of this section, this establishes
thatp, = o(1) we obtainlim,, ,, F(n) = 0. This establishes Propositior[ 2.
(@9) in view of [102), and[(35) follows froni (98) and _(100)
for constant’. From [3%) and[{35), we finally establish theProof. As given in [68),K,, = " [|Ss,| = u]. Using this
desired conclusiori(72). Note th&i[73) also follows sirtwe tand the fact thatv,, = K., N Cy,, we get

extra conditionp.n > ¢ > 0 is used only once in obtaining K,
(@8) which holds trivially for¢ = 0. The proof of Proposition E,, = (|Suy| = u) () Cuyl.
1.2 is thus completed. [ | Y uL:Jl [ ! m U}
We use), to denote the evenf|S,,| = u) N Cy,, Where
VIIl. A PROOF OFPROPOSITIONZ u=1,2,...,K,. Thus, we obtainE,, = Ufgl Y.. Then
Given [70) and Proposition 1.2 (property (a)), it is cleatth ;Z?&dermg the disjointness of the evehisYs, ..., Yk, , we

Propositior 2 will follow once we show that

K, Ky
ByN <U yuﬂ => P[ByNY.].

¢ P[B,NE.)| =P
P[DysNDyyNEyy] =0 <Z P [A, N K, ) (106) (B 1 By et —~
(111)

h=0

foreach/ =1,2.... Given), = [(|Szy| = u) N Cy,], we obtain
In order to establisH(106), we evalu&@gD, (D, ;N E,,]
proceeding similarly as in the proof of Propositibh 1. This P[Br N Vu] <P [B N (|Say] = w)]- (112)
time, we first find an event equivalent 0, , N D, , N E.,, Applying (I12) to [I11), it follows that
namely to the event that nodes andv, both have/ neighbors 1
and are also neighbors with each other. The intuition is also
P[B,NE,
to consider all the possibilities for the number of nodeg tha z} (B o)
are neighbors of both, andv,, the number of nodes that 1K,
are neighbors ot but not neighbors ot,,, and the number - Z P [Bp, N (|Say| = u)]
of nodes that are neighbors of but not neighbors of,.. To ! ‘

this end, we define the series of evelits in the following " -1
manner =3 {P[ISzyl =ul- > P[By | (|Say| = U)]} . (113)
u=1 h=0
By, = (|qu| = h) ﬂ (|Nwﬂ| =l—h— 1)

=

u=1

Note that R.H.S. of[(113) is similar to the R.H.S. bf1(87).
N(Nay| =¢—h—1). (107) Thus, the manners to evaluate them are also similar. We first
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calculateP [By, | (]Szy| = u)]. Given the definition ofB;, in  of the graphG,,,, namely the minimum number nodes whose
(I07), we letm; = h andms = m3 = £ — h — 1 in Lemma deletion makes it disconnected.
[ in order to obtain

b Lemma 5. Let/ be a non-negative constant integerif, > 2
2l—h—

u o] K
PIB Suu| = )] ~ —2pen+ Beknty for any sufficiently large:, P, = ©(n), 7= = o(1), and [120)
[Br | (1Sey| = )] M6 —h—1)1)? - holds with 5y, = o(lnn) and lim,,_, ﬁg n = +00, then
XW[mwﬂﬂ&ﬂ—um:h lim Pk = €] = 0. (122)
—h— n—oo
X {P[Ejny; | (1Szy| = w)]} " .
P(E | (180 = w)]}—1 We now explain why the one-lafi {IL2) follows from Lemma
X AP[E, g5 Yyl — B. Considerp,,, K, and P, such that[(Z18) and (11L9) hold.

(114)
Substituting [(9D),[[91) and (P2) inte (1114), we obtain
PIB ] = < 9o 2penbefuns i 2—h-2 .
(B | ([Say] = w)] < 2¢ (pen) (115) Sincea,, = o(Inn) andlim,,, « a;,, = +00, we have for each
(=0,1,...,k—1that

Comparing[(P) and{120), we get
Bem = (k—1—4¢)Inlnn + ay,. (123)

for all n sufficiently large.

Returning to the evaluation of the R.H.S. Bf{1.13), we apply Jim S, =+oo and iy = o(lnn). (124)
(113) to [IIB) and obtain for alt sufficiently large, Given [IZ3), we use Lemni@ 5 and obtain
-1
ZP[BhﬁEmy] nli_}H;OP[RZK]ZO, {=0,1,...,k—1.
h= 0 P For any constant, this implieslim,, . P[x > k] = 1, or
< Z { [1S0y] = u) - 2¢ —2pent52topen Z (pen) 22 } equivalently
h=0 lim PG,y is k-connected = 1.
- (pen)* » R.H.S. of [9%) (116) n—o0
o ~ This completes the proof of the one-lalw{12). [ |
From the fact thap.n > ¢ > 0 for all n sufficiently large, it The remaining part of this section is devoted to the proof
follows that of Lemmalb.
=1 Proof. We present the steps of proving Lemila 5 below. First,
> P[ByNE.]=0(RHS. of[3).  (117) py a crude bounding argument, we get
h=0
Given [@%) and[{T17), we obtaii{1110) and this completes the k=4 < Pllk=6 0 (6>l +PP <4,
proof of Proposition 2. B wheres is the minimum node degree of grafh,,, as defined

Having established Propositionk 1 drd 2, we complete theSectionTII-B. We will prove Lemma&l5 by establishing the
proof of LemmdB, and the zero-lajv{11) follows as explain&@|lowing two results under the enforced assumptions:
in Section V. _
lim P[0 </{ =0 if lim B, = +o0, (125)
n— o0

n—oo

IX. ESTABLISHING (I2) (THE ONE-LAW FOR and

k-CONNECTIVITY IN G,p)
As shown in Sectiofl V3B, we can enforce the extra condition i Plx = ¢ N 6 > (] =0 if lim f, = +oo. (126)

ggn:ec(;i(\l/liin?ng e)s t?'k;::esrr;?o%gj]\ié S/bﬁl.’e;rt]:bl(i);%lilg Lﬁ:der We first establish[(125). First, fromilnlnn = o(lnn),
Y N Zon). ' . = o(lnn) andp, = 2ot it s clear that

the following conditions: ln n

Pe ~ B2 Thenp, = o(f) Thus from LemmaB]1 ard 2,
@), K,, > 2 for all n sufficiently large, P,, = Q(n), (118) we get
% =o(1), lim «a, = +oo anda,, = o(Inn). (119) E[X(| =nP Dy ~n- G (pen)e e P, (127)
n n—oo

In graphG.,,, consider scalingss, P : Ny — No andp : Substitutingp. ~ i and [120) into[(127), we get
Ng — (0,1) as in Theoreni]l. We find it useful to define ®BIx,] ~n( —Inn—tnlnn—Fen _ (o)=L o—Bem
sequencedy , : N x Ny — R through the relation [ ] n( ') (nn) c =) e '
In view of the fact thafim,,—,« 5, = 400, we thus obtain

| {1nl n .
Pe = nnf flnlnn+ G (120) E[X,] = o(1). Then from property (a) of Faéfl 1 (Section
" V-C), we get
for eachn € Ny and eacll € N. (I20) follows by just setting ' lim P[§ = ¢ = 0. (128)
Ben :=npe —Inn —{Inlnn. (121) e

As seen from[(121)3,., is decreasing ir/. Thus, we have
The one-law [(IR) will follow from the next key result.lim, o 8¢+, = +oo for eaché* =0,1,...,¢. It is also im-
Recall that, as defined in Sectibn1ll-B, is the connectivity mediate from[(I21) tha8, ,, = o(lnn) sincef,,, = o(lnn).
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Therefore, using the same arguments that lead ol (128), Weroof of Propositio B is giveAn in Sectigd X below. Note that

obtain lim Py =] =0, =01 ¢ for any o > 0, limyjo A (égm = 0 so that the condition
e S (I32) can always be met by suitably selelf:ting consfant
and [125) follows immediately. 0 small enough. Also, we havBm,, o (%) = 1, whence

As (123) is established, it remains to pro{ie {1126) in order S\ H
to complete the proof of Lemnid 5. The basic idea in esta%l-n“w VH (ﬁ) =0, gnd [13b) can be made to hOId, for any
lishing (I28) is to find a sufficiently tight upper bound orfonstants > 0 by taking p>0 sufficiently small. F|naI_Iy,
the probabilityP [x = ¢ N & > ] and then to show that this W& remark that the conditio#, > on for someo > 0 is
bound tends to zero asgoes to+oc. This approach is similar €auivalent to having?, = Q(n).
to the one used for proving the one-law floiconnectivity in - Proposition 4. Let ¢ be a non-negative constant integer. If
Erd6s-Rényi graphs [12], as well as to the approach used Ry, > 2 and P, > on for somes > 0 for all n sufficiently
Yagan [30] to establish the one-law for connectivity in thgyrge, % = o(1), and [I2D) holds with3,,, = o(Inn) and

graphGon,. lim,, o0 B¢ = 400, then
We start by obtaining the needed upper bound Aletenote
the collection of all non-empty subsets §f;, ..., v,}. We Jim P|(k=£6) N (6>4) N (J)} =0,

defineN, = {T | T € N,|T| > 2} and Ky = U,,erS;. For
the reasons that will later become apparent we find it use
to introduce the everf(J) in the following manner:

wpere J = [J2,Js,..., Ju] is as specified in[(131) with
arbitrary ¢ in (0, 1), constanf. in (0, 1) selected small enough
to ensure[(I35) and constante (0, 1) selected such that it
e =J kel < Jir], (129) satisfies[[134).

Tent A proof of Propositiod 4 is given in SectidnXI below.

whereJ = [Jz, J3,..., J,] is an(n — 1)-dimensional integer  Using Proposition(]3 and Propositidd 4 (with the same

valued array. Let constants, A, w) in [I32), we obtain the desired conclusion
P n (128). The proof of LemmAl5 is now completed. [ |
Ty = min ({K—RJ , {iJ) (130)

X. A PROOF OFPROPOSITIONZ

We defineJ; as follows: We begin by finding an upper bound on the probability

7= {max{t(l +)Knl|, | NKni]} i=2,...,7n, P[E(J)]. To this end, we define
L \_MPnJ t=1r,+1,...,n. L/\anJ i=2.... T
(131) O (4P| i=rp+1,....m. (136)
for some arbitrary constartt < £ < 1 and constants\, px in = andTT36). we qet
(0, 3) that will be specified later; seE {134)-(135) below. (131) and[(I36), we g
By a crude bounding argument we now get 7= {max{[(l +e)K,|,Y:} i=2,...,7p, (137)
Pl(k=1¢) N (6 >0)] Yi i=r,+1,...,n.

<PEMN)]+P |:([<; =0 N @G>0 nEd)|. (132 We also define
_={T|T 2< T <rpl,
Hence, a proof of (126) consists of establishing the foltayvi N {TITeN.2< T <}
two propositions. and

Proposition 3. Let / be a non-negative constant integer. If Ny ={T|TeN,|T|>r,}

(I20) holds with3,, > 0, K,, > 2 and P,, > on for some . _ )
o L Using the definition[(129) and the fact thdt = Y; for i =
o > 0 for all n sufficiently large and= = o(1), then rot L1y 42, 0, we get

lim PE(J)] =0, (133)
( U [kl < J|T|]> U ( U ksl < YT}) :

n—oo
where J = [J2,Js,...,J,] is as specified in[{I31) with €)= Ten Ten
arbitrary € in (0,1), constantX in (0,%) is selected small - ! (138)

enough to ensure
Given J; = max{|(1 +¢)K,,],Y;} for i = 2,3,...,7,, we

2\ To5%
max <2)\U,)\ <6—> ) <1, (134) have
g
and constan in (0, 3) is selected so that Tgf [1Kr| < J|T|]> (139)

mas (2 (v (;))\/ﬁ (£)) <t am (TL/JV kx| < <1+e>Kn1> U (TL/JV [icz| < YT]) -
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From [I38), [13P) and the fact thAf* = N~ UN,, we Given P, > on and % = o(1), there exist a sequenae,
obtain satisfyinglim,,_, , -, w,, = oo such that for alln sufficiently

large, we have
£(J) (140)
P, > max{on, K,w,}.
= ( U (17| < (1 +5)Kn]> U ( U Kl < YITI]> - As noted before, it also holds thktn,, . K, = oo in view
TeN- TeN* of Lemma[T. It is now easy to see that
It is easy to check by direct inspection that

2lnn
2 K 1y 2 K, eFn(=9
nEKn(l-g) n S min {n 1+Kn(1—a) 77,’

U kel < +e)Ka= |J Kl <(1+e)K,] P o wn
TeN_ TEN 2 (141) n_% Inn eﬁ
< max{ —,
where N, o denotes the collection of all subsets of { o Wnp, }

{vi,...,v,} with exactly two elements. WithY =

V), Y- ¥,] and for all n sufficiently large to ensure thdf,, > 4/(1 —¢). The
2, 1L35--514n

last inequality follows by considering the cas&s, > Inn

E(Y) = U [IICTI < ym] (142) and K,, < Inn separately for each on the given range. It
TN~ follows that
it is also easy to see that lim T(e)n®nti—o Kn _ 0,
n—oo n
B and the desired conclusion (145) follows froln_(IL46). Propo-
e(J) = ( U [Kr] < (1+ E)K”]> UEY). sition[3 is now established. [ |
TEN,, 2
upon using[(141) and (1#2) i _(140). Xl. A PROOF OFPROPOSITIONZ]

Using a standard union bound, we now get We start by introducing some notation. For any non-empty

PIE(J)] <P[E(Y)] + Z PKr| < (1+2)Ka]. subset/ of.nodes, i.e.V C {vy,...,v,}, we define the graph
v Gon(U) (with vertex setlU) as the subgraph dt,,, restricted
’ to the nodes irU. If all nodes inU are deleted fronis,,,, the
It was shown in[[3D, Proposition 7.2] that givéh, = Q(n) remaining graph is given b, (U¢) on the verticed/© =
andlim,,,~ K, = oo, we have {v1,...,v,} \ U. Let Ny- denote the collection of all non-
empty subsets ofvy,...,v,} \ U. We say that a subsét
PEY)] = o(1). (143) in Nye is isolated{in Gon(UC)} |\f there are no edges (iG,,)
Noting thatlim,,_,. K,, = oo holds in view of Lemmd]7 between the nodes iff" and the nodes irU¢ \ T'. This is
and P, = Q(n) by assumption, we conclude th&E (143) holdgharacterized by
under the assumptions enforced in Proposifibn 3. = _ _ c
In order to comput&_ ;. - , [[Kr| < (1+¢)K,], we use By, vieT v eUN\T.
exchangeability and the fact’tthﬂ — (g) With K; 2 = With each non-empty subsétC U¢ of nodes, we associate
S1 U S, we find several events of interest: L€y denote the event that the
subgraphG,,(T) is itself connected. The eveft is com-
PET)] <o(1)+ (n>P Ki2 < |(14+)K,]]. (144) bpletely determined by the random variables (S), v; € T'}
2 and{C;;, v;,v; € T}. We also introduce the evel; r to
Then, from [I44), the desired conclusién (1133) (for Propostapture the fact thaf’ is isolated inG,, (U¢), i.e.,

tion [3) will follow if we show that
) DU,T = ﬂ Eij.
n*P K12 < [(1+e)K,]] = o(1). (145) vféz?cT\T

This will also be established by means of the bounds givg‘,ha”y, we letBy, ;- denote the event that each noddirhas
in [29]. To this end, it was shown [29, Proposition 7.4.11, ppyn edge with at least one nodeTn i.e.,
137-139] under the conditiof= = o(1) that

K, K, (1—¢) . .
Pl < l0+on ) < (TR ) U €T

Py We also set

with T'(¢) := (1 + £)eT=. Using this bound, we now obtain Av.r = Bur N CrNDur.

Kn(1—¢) The proof starts with the following observations: In graph
K n . - R .
NP2 < [(1+6)K,]] < (F(g)nﬁ—" ~ Gop, if the connectivity is¢ (i.e., x = ¢) and yet each node
’ Py has degree at leagt+ 1 (i.e., § > /), then there must exist

(146)  subsetd’, T of nodes withU € A, U =¢andT € Nye,
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|T| > 2, such thatG,,(T) is connected whilél" is isolated into (I47) we obtain the key bound
in G,,,(U¢). This ensures that,,, can be disconnected by

deleting an appropriately selectédnodes. Notice that, this P [(“ =0 N (>N (J)}

would not be possible for sefs in Ny with |T| = 1, since Lost ]

the degree of the node i would be at least+ 1 by virtue of < Z (”) (” - 5) P {Az N W} _ (148)
the event > ¢; this would ensure that the single nodeTinis T ! r "

connected to at least one nodelifi \ 7. Moreover, the event The proof of Propositiofil4 will be completed once we show
x = { also enforce&s,,, to remain connected after the deletion P P P

of any/ — 1 nodes. Therefore, if there exists a subSefwith L254] ,

|U| = ¢) such that som&” in Ny is isolated inG,, (U°), lim ) <n> (n_ ) P [Ag,r N m} =0. (149)
then each of thé nodes inU should be connected to at least "> 1= \/ "

one node inl" andto at least one node itV® \ T". This can The means to do so are provided in the next section.
easily be seen by contradiction: Consider subBets A/ with
|U| = ¢, andT € Ny. with |T| > 2, such that there exists
no edge between the nodesThand the nodes if/c \ T.
Suppose there exists a nodein U such that; is connected ~ First, forr =2,3,...,n — ¢ — 1, observe the equivalence

XIl. BOUNDING PROBABILITIES P [Ag,r N 5(])}

to at least one node i1\ T but is not connected to any node n
in 7. Then,G,,, can be disconnected by deleting the nodes in Dy = ﬂ [(uiewsi) ns; = (ZJ} (150)
U\ {v;} since there will be no edge between the node¥'in J=r+041

and the nodes igv; } UU°\ T. But, |U \ {v;}| =¢—1, and
this contradicts the fact that = ¢.
The inclusion Vrji={i=04+1,0+2,... L+7r:Cy} (151)

wherev,. ; is defined via

foreachj =1,2,... . fandj=r+{¢+1,r+(+2,...,n.In
words, v, ; is the set of indices in=¢+1,0+2,... 0+
for which v; is connected to the nodg in the communica-

is now immediate with\,, .. denoting the collection of all tion graphG(n: p,). Thus, the evenf(Uic,, ;S;) N S; = 0]

[(k=10) N (6>1)]C U Avu,r

UGNn,lv TeNye: |T|22

subsets of vy, . . ., v, } with exactlyr elements. It is also easy@nsures that node; is not connected (ir,,,) to any of the
to check that this union need only be taken over all sutiEets"0d€s{ve11, ..., veyr}. Under the enforced assumptions on
of {u; vn} With 2 < |T| < Ln—fJ the rvs Sy, Ss, ..., Sy, we readily obtain the expression

e <|T| < [25%).

We now use a standard union bound argument to obtain

Si, i=04+1,... 0+
Pls=0) n (5>0) n &) P|Dyr | Ciyyi=L+1,... 0+,
- j=Ll+r+1,....n
< Z ]P){-AU,T N 5(])} . (Pn*‘ui€u7‘yjsi|)
UEN, 0, TENye: 2<|TI< [ 254 _ H I;n
[254] J=rl41 (KZ)
- Z Z P [AU-T n (J)} (147) " In a similar manner, we find

r=2 UENn,z,TENUc,T

Si, i=L+1,.... 04T
with Ny, denoting the collection of all subsets & with P B, Cij, i=1,....4¢,
exactlyr elements. j=L0+1,... .0+

For eachr = 1,...,n — ¢ — 1, we simplify the nota- ¢ (Pnf\ui@,‘,jsﬂ)
tion by writing Ar = Afo,,. v} fvesrsovesnds Por = - H 1— flgn
Dyvy,.c.v0} {vesssowesnts B 7= By v} {vesrsves,) @Nd j=1 (%)

Cr = Clvpis,...v04,y- Under the enforced assumptions on the

system model (viz. Sectidill), exchangeability yields It is clear that the distributional properties of the term

|Uicw,.; Si| will play an important role in efficiently bounding
PlAyr] =P[Ar,], U€Nay T€Nge, P[D,,] andP [B,,,|. Note that it is always the case that

Uiew, ; Si| = K1 [lvns] > 0]. 152
and the expression | View,., Sil (| > 0] (152)

Also, on the event(J), we have
P[Avr 0 €]

UeN s TeNve | Uieym Szl > (J|,,T)j| + 1) -1 [|I/T7j| > 1] (153)
n\ /n—/ — foreachj = r+/¢+1,...,n. Finally, we note the crude bound
- () el
r |U7:6V7~,j Szl < |I/T7j|Kn (154)

follows since|N,, ¢| = (7) and |Nye .| = (). Substituting for eachj =1,...,¢.
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Conditioning on the rvsSyyq,...,S,4+¢ and{C;;, i,j = under the condition[{160). Finally, for the last term in the
(+1,...,0+7r} (which determine the evegt.), we conclude R.H.S. of [158), we establish in Lemrhal 12 (Appenldix A-B)

via (I52)-[154) that that if %= = o(1) andp. = o(1), then
P [ALT N W} . (ﬂ;ﬁ(w))
= P [CT N Be, NDer N W} l (%) ]

Prn—Kn vy jl
e T (1- S )«
<E (Pr L) o ) for all n sufficiently large and for each=2,3,...,n.

7 Substituting the bound$§ (159). (161) afd (162) iffo [158),
and noting that each of the terms in the RHS [of {158) are
trivially upper bounded byi, we obtain the key bounds on
L(v,;) = max{K, 1[v.,| >0], (155) the probabilitied [Ag,r N m} that are summarized in the

(Jjpp,| +1) - 1 |rry] > 1]}, following Lemma.

It is immediate that the rvs{|v, ;|}7_, ,,, (as well as Lemma 6}-(V\ﬁth J defined in[(131) for some, A and /. in
{|v»,;]}_,) are independent and identically distributed. et (0,3), if * = o(1) andp. = o(1), then the following two
denote a generic random variable identically distributéth w Properties hold.

Vrj, j=1,...,0,r+£+1,...,n. Then, we have (@) For all n sufficiently large and for eachr =

P,—K,
where we use the notatior-,; to indicate distributional P {AM N (J)}
equality. Then, we definé(|v,.|) as follows: - .
<r" 2 (pe)T : (2Tpe)g
L(VT) = maX{Kn 1 [|VT| > O] ; (']|u7\ + 1) -1 [|VT| > 1]} . n—r—~{
(157) X [min {e*pﬁ(lJrs/Q), eTPAT 4 e~ Knrg [r > rn]H .

Observe that the evedt is independent from the set-valued (b) For all n sufficiently large and for each= 2.3, ....n
random variables/, ; for eachj = 1,...,¢ and for each
j=r+{+1,...,n Also, as noted befor¢|v, ;[}7_ .., L
(as well as{|ur_,j|}§:1) are independent and identically dis- P |:Al,r N (J)}
tributed. Using these we obtain . Ly 1

< min {TT (pe) 1}

P |:-/4€,7‘ N 5(J)} % [min {efpc(lJrE/Q)’ e PAT 4 o~ Knpq > Tn]Hn_r_é,

(Pn_Knlurl) ¢
1— L X ]E
XIIl. E STABLISHING (I49)

(<)
Kn
(158) - Givel —
We now proceed as follows: Givef= = o(1) and the
We will give sufficiently tight bounds for each term apefinition of r,, in (I30), we necessarily havén,,_,.c 7, =
pearing in the R.H.S. of(I58). First, note from Lemmd 11 , and for an given integeR > 2, we have
(Appendix[A-B) that

PC,] < 2pi, r=23,...,n. (159)

< min {eiPﬁ(HE/Q), eTPAT 4 o~ Knrg [r > rn]} (162)

X H?:T+l+l Tﬁ”)
n

where for notational convenience we have set

we have

<P[C,]xE

—L(v, n—r—~¢
el

()

r, > R for anyn > n*(R) (163)

o N ,
Next, we give an easy bound on the second term appearindc% some finite integen”(R). We definefy..., as follows.

the R.H.S. of [(158). With n\ [n—{ —
Fotr = ( ) ( )]P’ [Aer NET)]
P, - K, 14 T
r< ——— (160)
2Ky, Then, we have
it follows that [v,| < r < LaZKa. Then we use Faéfl 5 and [n=t)
Fact[2 successwe‘ly‘to obtain L.H.S. of [T49)= Z ot (164)
(Pn_Kn Uy ) r=2
1— B oy (1—p)2l <21 p.. . o o .
(11;") - (1=p,) < 2vrlp For the time being, pick aarbitrarily large integerR > 2 (to

specified in Sectidn XII[4B), and on the range> n*(R)

. L . . b
Taking the expectation in the above relation and noting tha(ta . .
consider the decomposition

E[|v,[] = rpn via (I56), we get

(Pn—Kn|u,\|) K R o 254
E|l- %] < 27’]951911 = 27’Pe (161) Z fn,f,r = Z fn,f,r + Z fn,é,r + Z fn,f,r-
(KZ) r=2 r=2 r=R+1 r=rn,+1
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Let n go to infinity: The desired convergence (149) (foB. Establishing[{166)

Propositior ) will be established if we show Positive scalars\, . are given in the statement of Proposi-
tion[d. Note that? can be taken to be arbitrarily large by viTrtue
D fuer =o(1), (165) of the previous section. Frorfl}) < nf, (") < (—e(”;@)

and property (b) of Lemmid 6, for > n*(R) (with n*(R) as

Z Foir = o(1), (166) specified in[(1613)) and forreaoh: R+1,...,r,, we obtain
o fn,f,r < ng . (e(n - ﬂ)) . 7‘7”72 (pe)r_l eipcr)\(nirib
and r
< né-l—rer (pe)T71 e—per)\(n—r—f)' (171)
Z frer =o0(1). (167) Now, observe that on the range= R+ 1, R+2,..., | %%,
r=rn+1 from r < 2 , we have for alln suff|C|entIy Iarge,n r—~0>
The next subsections are devoted to proving the validity gfn — ) > 3. This yields
(1863), [166) and[(187) by repeated applications of Leriima 6. e PerAn—r—0) < =perAn/3, (172)
Throughout, we also make repeated use of the standard bounds
n enT Substitutingp, = w into (I72), we also get
(,,,) < (7) (168) e—per)\n/?) _ e—r)\(lnn-l—flnlnn-l-,é’g’n)/?)
valid for all r,n = 1,2, ... with r < n. = n M3 (Inn) A/ B AN /3, (173)
Applying (I72), [I7B) andh. < 22" to (I71), we get
A. Establishing[{185) F
n,l,r
Positive scalae in (0,1) is picked arbitrarily as stated in 91 r—1
Propositio 4. Considek,, P, andp, as in the statement of < p/+7¢r . < nn) M3 (In ) M3 B /3
Propositior#. For any arbitrary integ& > 2, it is clear that "
(@69) will follow upon showing < A3 (2eInn)”
_ 1 —-\/3 r
lm foe, =0 if  lim B, =too  (169) 7 (Zen?hm)n (174)
n—oo n—oo

Given2en~*/3Inn = o(1) and [I7#), we obtain
foreachr = 2,3, ..., R. On thatrange, property (a) of Lemma

is valid sincer < |£2—£x | for all n sufficiently large b
. L AL A S
virtue of the fact thatz= = o(1).
. n ’ et - r=R+1 r=R+1
From the easily obtained boun¢§) < n* and (") < n", . (2en=3np)RH1
we now get =nftl.
1 —2en=*3Inn

Fotr ~ pfHImAMED /3 (90 1 ) BT (175)

23

(2en=*?1Inn)"

L P 2 7‘ 1 —pe(1+e/2)(n—r—2)
<n -n" (2rpe)t - e7? We pick R > 3 so that? + 1 - A(R+1)/3< —2. As a
= (27‘)571 2 -né'”pﬁ” L. gmpen(i4e/2) | ope(4e/2(r40)  ragult, we Obtaln

(170)

Inn+¢Inlnn+pB; ., N

R.H.S. of [I7b)= o(1)

for eachr = 2,3,..., R. Givenp, =

and thus
nn — o(1) (sinceBe,n = o(lnn)), we find )
R. H. S. of [I7D) S fair = o(1)
(2T) 2 r=R+1
= pttrplir—l. gmpen(i4e/2) | ppe(14e/2)(r+0) (I68) is now established. -

r Inn et —(Inn nlnn o
~ bt <_> L (mmttininnd e )(14e/2) o) o Establishing[187)

n
e _ _ 1+e/2 Positive scalars\, z are given in the statement of Propo—
=n-(Inn)"" [n H(Inn)~e m’n] sition[4. We need consider only the case where< | “3*
=n~/2 (Inn)" /27t e Ben(ite/2) for infinitely manyn, as otherwise[{167) would hold tr|V|aIIy
= o(1) From (%) < nf, (") < (") and property (b) of Lemm&l 6,
we get forr:rn—l—l,..., |21,

by virtue of the facts that is bounded andim,,_, 8¢, =

+oo. We get [[I6P) and the desired resulf_(1165) is now Foor <t <”> (efpem+efKnu)"T4
established. [ | T
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We will establish [(16]7) in two steps. First set Fromr <7, —-1< k—;’;e, it follows thatp.rA < 3 and
o = [/\26—‘ : eTPeTA > 73, (179)
Obviously, the range = r,, +1,..., | 23] is intersecting the Gjyen [178) and[{179), we obtain for all > n*(n),
ranger = #n,..., [25£]. We first consider the latter range
below. Forr = 7,, ..., L"T_ZJ, it follows thatePe™* < 73, e HEn < gmPerA (gmPerA _ 1) = omPerA(l=n) _ o=perA
From Lemmal (Appendik AB)K, = (\/E) holds.
Thene K = o(1) < & — e~3. Therefore, and thus
o nt e P | o hEn < omperA(1=n) (180)
e < (1) e
Recalling [I2D) and the fact that we have- ¢ —r > n/3,

Then we now get
L7z

[254)
—perA(1=mn)(n—r—£)
Z <é—nézn. e PerA (181)
fn,[,r >~ 3 n (7’)

< p AT/ (1 ) TrAMA=M /B mrABen (1= /3

r=rpn r=rpn

Using the binomial formula
nee Putting [I8D) and(I81) intd (Ir7), and noting that< 2127,
2

SRR

=7 r=0 r—1
T="n 2lnn
. . o < btr r [ 227
this yields fror <ne < " )
= ~ ~ n*w\(l*n)/a@(ln n)*Mf(lfn)/SefMﬁe,n(1*77)/3
Z frpr <30 <§) =o(1). (176) <t/ (96 Inp)”
T=Tn _ {41 2 —)\(l—n)/Sl T 182
If 7, <r,+ 1 for all n sufficiently large, then the desired " (2en nn) (182)
condition [I67) is automatically satisfied via (176). On theiven lim,, e = oo, then for any arbitrarily large

other hand, ifr,, +1 < #,, we should still consider the rangeintegerR, we haver, > 72 for all n sufficiently large. From

r =7, +1,...,7 — 1. On that range, we use arguments . =X(1-n/3 1., — o(1) and .
similar to those leading td_(11) and obtain en nn = o(1) [182),

o r— —per —K, n—r—=~¢ Prn—1 o)
foor < e (pe) 1 (e perA 4 oK N) (177) Z Forn < Z Rt (287{,\(177;)/3 Inn)"
upon using also property (b) of Lemrhh 6. rdl Rl
On the range: = r,, ;1, ey T — 1, we haveP Y (28714(177;)/3 lnn)RH
r > 71, +1=min ({—nJ ) {2J> +1> Inin{—n7 ﬁ} 5 1= QeAn_Ml_n)Blan
Kn 2 Kn 2 ~ nz+17>\(1777)(R+1)/3(28 hln)RJrl. (183)
and thus
e~ HEn _ e~ HKn Since R was arbitrary, we pick? > i’gff}f) Then
DA T Pk min{%, 5 .
Ko tEn  9e-nKn (1 =M1 =n)(R+1)/3 < =A(1—1n)/3.
< max{ \ , h\ } .
7 As a result, we have
as we note thaf’, > on andp.n > 1 for all n sufficiently
large. R.H.S. of [I8B)= o(1)
Given K,, = Q (\/ln n) it follows that
and thus
lim Kpe "% =0 and lim e #£» =0,
n—o00 n—o00 Tp—1
whence we get Z frer = 0(1).
efl"Kn Tn+1
lim = 0.
o PerA . o The desired conclusiof (167) is now established. [ |
Then for any giver0 < n < 1, there exists a finite integer Hayving established (I65)[ (166) and (1L67), we now get
n*(n) such that for alln > n*(n), we have (TZ9) and this completes the proof of Proposi{ion 4. m

e < eT3ppard <e 3. (e"p”)‘ —1). (178)
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XIV. A PPLICATIONS OFOUR RESULTS INOTHER words, any two users in the network are friends with each
NETWORK DOMAINS other with probabilityp,, independently from all other users.
As a result, the grapti. becomes the intersection of an Erdés-
In this section we use properties of random key graplpgenyi graphG(n, p,) and a random key grap(n, K., P, );
with physical link constraints to explork-connectivity in a i.e., G, is exactly the graplG,, which we have defined in
different network application, namely, in distributed fish-  gectiorT1].
subscribe services for online social networks. Clearly, our zero-one law oh-connectivity inG,, allows
Online social networks interconnect users by symmetrig to answer the two key questions for the design of a
friend relations and allow them to defingrcles of friends large-scale, reliable publish-subscribe service: (1) tvzd-
(ViZ., GOOgl e+). We view a user’s circle of friends as th%es should the parametefgn, P,, and n take in order to
group of friends who share @ommon interestA basic achieve connectivity between publisher and subscribeesiod
common interest between two friends can be representedihthe common-interest grapfi.; and (2) how can reliable
their selection of a number of common ObjeCtS from a Iargﬁessage dissemination be achieved when some nodes may
pool of available objects. For example, two friends may pigigj| to forward messages. This could happen as a result of
the same set of books to read from Amazon's pool, or thfscretionary user action (e.g., a node may decide not to
same movies to watch from Netflix’s pOOl, or the same hObblﬁ;rward a particu|ar message, or all messages, of a paﬂcu]
or prOfeSSional activities from a vast set of pOSS|b|I|.t|éH pub”sher); or V0|untary account deletion (e_&acebook
course, a user can belong to multiple circles of friends eefingccount deletions are not uncommon events); or involuntary
around the same pool of common-interest objects. Identifyi 3ccount deletion caused by adversary attacks (e.g., Afjarwa

friends with common interests in a social network enables t{if] shows that clickjacking vulnerability found in Linkedli
implementation of large-scale, distributed publish-suib® (esults in involuntary account deletion).

services which support dissemination of special-inteness-
sages among the users. Such services allow publisher nodes
to post interest-specific news, recommendations, warnings

or announcements to subscriber nodes in a wide variety ofin this paper, we study the-connectivity of secure wireless
applications ranging from on-line behavioral advertis{ed., sensor networks (WSNs) under an on/off channel model. In
the message may contain an advertisement targeted t¢agticular, we derive zero-one laws for the properties that
common-interest group) to social science (e.g., the mess@gwSN is securelyk-connected and ii) each sensor node
may contain a survey request or result directed to a specigl-securely connected to at least— 1 other sensors. The
interest group). established zero-one laws are shown to improve the existing

Assume there are users. The common-interest relation irresults on the:-connectivity of random key graphs as well as
the social network induces a gragh., where each of the  on thel-connectivity of the random key graphs when they are
users represents a nodeGh and two nodes are connected byntersected with Erdés-Rényi graphs.
an edge if and only if the users they represent are commonA possible extension of our work would be to consider a
interest friends. The relevance of the connectivity pripsiof more realistic communication model than the on/off channel
G, in the context of large-scale, distributed publish-sulbecr model. One possible candidate is the so-callisét mode[23],
services can be seen as follows. Each publisher and e#Zlf] where nodes are distributed over a bounded region of a
subscriber represents a nodedf. When publishew, posts euclidian plane, and two nodes have a communication link in
an interest-specific messageg, each nodey, in v,'s circle between if they are within a certain distance (usually refér
of common-interest friends receivesg and postsrsg to its  to as the transmission range) of each other; when nodes are
own circle of common-interest friends, unlessg has already distributed independently and uniformly over this regitre
been posted there recently. This process continues itelati induced random graph is usually referred to as ridedom
Obviously, the global dissemination of messagey can be geometric graph[23], [24]. However, as discussed ih [30],
achieved if and only if there exists a path betwegrand each the connectivity analysis of such a model (i.e., one obthine
subscriber among the othgr—1) nodes ofG.., which happens by intersecting a random key graph with a random geometric
if G is connected. Furthermore, even if at m@st- 1) users graph) is likely to be challenging and only partial resulés/é
leave the networki-connectivity ofG.. assures the availability peen established so far.
of message-dissemination paths between any two remaining
nodes.

A possible way to construct the gragh. on n users is as
follows. Suppose that there exists alpject poolP consisting  This research was supported in part by CyLab at Carnegie
of P, objects and that each user picks exadily, distinct Mellon under grant DAAD19-02-1-0389 from the US Army
objects uniformly and independently from the object pooResearch Office and by the MURI grant W 911 NF 0710287
i.e., each user has avbject ring consisting of K,, objects. also from the US Army Research Office. The views and
Two friends are said to have a common-interest relation fonclusions contained in this document are those of the
they have at least one common object in their object ringsuthors and should not be interpreted as representing the
In order to model the friendship network, we use an Erdbsfficial policies, either expressed or implied, of any spmirg
Rényi graph following the prior works [18][22]. In otherinstitution, the U.S. government or any other entity.
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Onk-connectivity for a geometric random graph.

(a)
e~ HTY < (1 _ )Y < ey, (184)
(b) If 22y = o(1) further holds, then
(1—2)¥ ~e ™. (185)

Fact[3 is used in the proofs of Lemmh 2 and Lentda 4.

Fact 4. Let integersr and y be both positive functions of,

wherey > 2x. For z = 0,1, ..., x, we have
) 2
z ) > 1 , 186
GRS wee
and
(yfz) Tz <x4)
ro=1-—=+0(—=]. 187
(%) y y? aen

Fact[4 is used in the proof of Lemrh& 8.

Fact 5. Let ¢, and y be positive integers satisfying >
(2a+ 1)z. Then

() [
ARG

(188)

Fact[® is used in the proof of the one-ldwl(12) of Theofém 1.

Random key graphs — can they be
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B. Lemmas APPENDIXB

We introduce additional lemmas below. The proofs of all PROOFS OFFACTS
the following lemmas are deferred to Appenfik C. A. Proof of Fac{lL (Sectiof’ViC)
Q(n) and [I20) holds with3,,, > 0, thenK,, = Q \/hm). event[X, > 1]. Then
LemmalT is used in the proof of the one-ldw](12) of Theorem P[§ =0 <P[X, > 1]. (194)
. - -
Lemma 8. In G,,, given P, > 2K,, then the following Since X, is a non-negative integer, then
properties hozld. } 400 400
(@) po = 52 £ 0 (5#)- E(X] =) (i -PX,=i)) >3 P[X, =i =P[X,>1].
(b) (29, Lemma 7.4.3, pp. 118}, < P:f%(n. =0 =l (195)

s = o(1) if and only if £a = o(1). -
(€) ps = o(1) if and only if 7 = o(1) From [194) and[{135), it follows that[§ = ¢] < E[X,]. Then

Ky Ky o : ”
(d) If ps = o(1) or 3= =o(1), then = =p. £ O (p).  for ¢ = 0,1,...,k — 1, given conditionE[X,] = o(1), we
Lemma® is used in the proof of the zero-ldwl(11) of TheorefbtainP[s = ] = o(1).

[, as well as in the proofs of Lemrid 7 and Lenima 9. 2) Proof of property (b):For constank, givenP[§ = ¢] =
. o(1) for ¢ =0,1,...,k — 1, we obtain
Lemma 9. Consider K,, and P,, such thatk, < P,. The
following two properties hold for any three distinct nodes k-1
Uy, v, andv;. P0>kl =1-Y P[d=1—1, asn — +oc.
(a) We have £=0
P [(ij NKy;) | m < pg, (189) 3) Proof of property (c):Fix £ = 0,1,...,k — 1 and let

Var[X,| be the variance of random variahl. First, it holds
(b) If ps = o(1), then for anyu = 0, 1,2, ..., K,,, we have tha£ 1] [0}

u

. . — _ 2
PnU 2
PlE.iuyi | (|Szy| = =2p. — — - pe £ O(p.”). (191

[Bajoyg | (1S2y| = w)] = 2p K, P (pe™). (192) Given [196) and conditioR {(XE)Q} ~ {E[Xg]}Z, we obtain
Lemma® is used in the proof of the zero-ldwl(11) of Theorem
[ as well as in the proof of Lemnia 4. Var[X/] ]E[(XL,)Z] . W (197)

= —1=o0(1).
Lemma 10. If P, > 2K,,, then we have {E[X/] }2 {E[X/] }2
P[|Say| = u] < %(P KﬁK )u Then from Chebyshev’s inequality,
) u: n - n

Lemmd 10 is used in the proof of the zero-lawl(11) of Theorem ]p“Xe _ E[XEH > ]E[Xz]] < 4Var[Xz]2 —o(1).
. 2 {E[X(]}

Lemma 11 ([30, Lemma 10.2] via the argument of [29,Therefore, we get

Lemma 7.4.5, pp. 124])For eachr = 2,...,n, we have E[X/
PlC] <2 (pe) " (192) P[Xe < Té} =o(1). (198)

Clearly, the even{d > /] implies [ X, = 0]. Then
Lemmaé 11 is used in the proof of the one-lawl(12) of Theorem

O P[5 > £] < P[X, = 0]

Lemma 12. With J defined in[[I311) for some A and x in = P[[Xé =0[n {XL’ z = [;Q]H

(0,3), if Ilg_: =o(1) andp, = o(1), then we have EX
+IP’[[X@ =0]N (Xg < [2 f])}

Sl[E[Xg]ZO]+P[Xg< %} (199)

(")
- l ()

< min {e‘pe(1+€/2), e PAT e Kniq [p > rn]} (193)

Given condition lim,,_, | E[Xz] = 400, we have

1[E[X,] = 0] = 0 for all n sufficiently large. Using this and
LemmdI2 is used in the proof of the one-1awl(12) of Theore@98) in [199), we gelim,, ... P[§ > ¢] = 0. The desired

. resultlim,, ., P[§ > k] = 0 also follows since/ < k—1. &

for all n sufficiently large and for each= 2.3, ..., n.
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D. Proof of Fact#

1) Proof of property (a):From the Taylor series expansion From (y;Z) = % and( ) = z!é;’l’x)!, we get
with Lagrange remainder, there exisk 6; < 1 such that
DL — 12 (y;Z):(y—Z)!_ Hy—:z:—t
(1—I)y=1—wy+y(y_ JA = 0iz)" 7 o (200) “) y! (y—z—:v

2
Using0 <z <1 and0 <y < 1 in (200),

(I1—z) <1-—uy.

2) Proof of property (b):Note that both inequalities follow

trivially for y = 0,1. Fory > 2, we use[(200) to obtain

(I-2)¥ >1—wy (201)

as we also note thad < = < 1. From the Taylor series

expansion with Lagrange remainder, there eRist 6, < 1
such that

(1—a)! =1—ay+ y(y; D 2
yly —1)(y — 2)(1 —020)"7 5 (202
Using0 < z < 1 andy > 2 in (202),
1—z)¥<1—ay+ @ﬁ <1l—ay+ I2y2. (203)
Combining [2011) and(203), the result follows. [ |

C. Proof of Fac{B

1) Proof of property (a): Taking the natural logarithm of

(1 —z)¥ and using the Taylor series expansion, we have

In(l —2)Y =yln(l —2) = —yZ—.

Defining ¥ as 3" 2, we obtain
2
X
_ Yy — _ _
In(1 — z) y( z- \I!), (204)
and
+oo i 2
=Yt <2 / stdt = —2 (205)
P 7 —3lnz

Given z = o(1), then for any given constant > 0, there
exists N € N such that for anyn > N, we havex < e 3e.
Applying z < e~ 3= to (208), we obtain

x2 x?

U =— = ez,

3lnx — _3111@7&

Using 0 < ¥ < ez? in (204),

e~ (T < (] _ ) < o3y, (206)

2) Proof of property (b):Usingz?y = o(1) in (208), clearly
(1 —x)¥ ~ e~ ¥ follows. |

o x—t
We deflneg()_yy—_l——

; wheret =0,1,2,..

. , .

Clearly, ¢g(t) decreases asincreases for =0,1,2,...,z, SO
g(z) < g(t) < g(0). As a result, we have
z y—z z
(1— v ) g(gj)g(l—f) . (207)
y—z () y

Given the above expressions, we use [Eact 2 and obtain
zr

T z
y—=z Yy—=z
z\* zx 1 [(zx)?
Yy y  2\vy

From [20T) and[{208), we gdi (1186).
Using 0 < z < z in the R.H.S. of[(209), we also have

(208)

(209)

z 4
(1—f> gl—ﬁ+o($—2). (210)
Y Y Y
To evaluate R.H.S. of (208), we have
2
R.H.S. of [208)- (1 - ﬁ) -2 (1)
y y(y—=z)
Giveny > 2z and0 < z < z, it follows thatz < ¥ and thus
y — z > y/2. Note thatx > 1. Then, we have
22z 23 2zt (964)
< ~Z.Z-0(%). (212)
yly—=2) ~ y?/2 =z y? y?
Applying (211) and[(212) intd (208), we get
2 4
(1— z ) zl—ﬁ—o(%). (213)
Yy—z Y Y

Using [210) and[(213) il (207), we obtaln_(187). [ |

E. Proof of Fac{®

The proof is similar to that of Lemma 5.1 in Yagdn [30].
First, given positive integet, it holds that

x—1

(v _ 1= (y—az —0) _ L 214
) o —10) }_T( y—€>' .
Letting a = 1 in (Z134), we obtain
() (- ®
© EO (1 y— 5) ' (215)

From property (b) of Fadf]2, it follows that
2ax

2a 2
— <1- 41 <1-
y—4 - 2\y—4¢) —

where, in the last step we used the fact that “-* since
y > (2a + 1)x by assumption.

From [21%), [21b) and (216), we g€ (188). [ |

2ax

y—1

ax

y—10
(216)




APPENDIXC
PROOFS OFLEMMAS

A. Proof of Lemmall (SectignlVI)

1) Proof of [4B): We define J, as the indicator function SPIit into the four setsV..,,

of the event that node; has degreé, wherei =1,2,...,n;
i.e., we have

o= "
il — 07

Clearly,E[l; (] = P[D, ] andX, = 3.7, 1, ,. Also note that
the values ofP [D; (] are the same for all. Then

if node v; has degreé,
otherwise.

E[X] =Y Ellif=
=1 i
2) Proof of [49): FromX, = >"" L, => 1, (li.0), we
get
(Xe)? = (Z Ii,é)
1

- zn: i) +2 >

Liyeliy e
i= i=1 1<ii<iz<n
=X,+2 Z |i1,Z|i2,E-
1<i1<ia<n
Therefore,
E [(Xl)ﬂ —EX]+2 Y Ellyli
1<iy<ip<n
=E[X/]+2 >  P[Di\Di . (218)

1<i;<ia<n

Note that the value oP [D;, ¢(\D;,.| is the same forl <
i1 < i3 < n. Using this fact and{217) ii(21L8), we obtain

E[(X0)*| = nP [Dad] + n(n — 1)P [Dae Dy ]
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C. Proof of Lemm&l4 (Sectién VII-A)

In graphG,,,, besidesv,, andv,, there are(n — 2) nodes,
denoted byv;, ,vj,,...,v;, , below. The(n — 2) nodes are
Nug, Nz, and Nz. According to
the definition of event in (75), 7 means thatV,, consists
of m; nodes, each of which is a neighbor of bathandw,;
N,y consists ofm, nodes, each of which is a neighboraf,
but is not a neighbor of,; Nz, consists ofms nodes, each
of which is not a neighbor of,, but is a neighbor ob,; and
Nz consists of the remainin@: —m; —ms —ms —2) nodes,
each of which is neither a neighboref nor a neighbor ot,,.
Therefore, given non-negative constant integers m- and
mg, the constraint®) < |Nyy|, |Nugl, [Nzyl, | Nzl < n —2
are satisfied. In each instance of evéntthe nodes in sets
Ngy, Naog, Nz, and Nzy are all determined. Then it is clear
that the number of instances for eveftis

(n—2> . <n—m1—2) ' (n—ml—mg—Z)' (221)
my ma ms
The event7 defined below is an instance &.
J = (Nmy = {vjlvvjza---vvjml})
m (Nmﬂ = {Ujm1+1 ? Ujm1+2’ e 7Ujm1+7n2 } )

m (NEU = {Ujml +mo+17 Ujml +mo+27 """ 7Ujm1 +mo+mg } )
m (Nfg = {v.j7n1+m2+m3+1 ? Ujml +mo+mg+27 " ”anf2} :
(222)

It is clear that all instances ofF happen with the same
probability. Let nodev; be any given node other than and
vy In graphG,,. Then
Erjnyj < (Vj € Nay); Ejmg7 < (0 € Nag)s (223)
E?jﬂyj <~ (Uj € NEU), and EEQE ~ (Uj S Ngg) . (224)

for any two distinct nodes,, andv,. | ) )
Applying the above equivalenceg (223) arid (224) to the
. definition of 7 in (222), we obtain
B. Proof of Lemmal2 (SectignlVI) J )
m mi+ma
Note that in G the events \ p
ons = Eviri E . —

Evi,Eai,...,Ei_14,Fis14..., B, are mutually independentj (Q me'“) N (i_gﬂ ”*”y-“>

for any particular nodey;. Also, the probability that there

exists a link between two distinct nodespis Thus, for each
i = 1,2,...,n, the degree of node; follows a Binomial
distribution Binn — 1, p.). As a result, we have

n—1 net—
)peg(l _pe) ¢ 1-

P[D; ] = ( ) (219)

Givenp, = o (\/la) and constant, it follows that p,
o(1) and p.2(n — £ — 1) o(1). Then from property (b)
of Fact[3, (1 — p.)" ¢! ~ e P<(»=f=1) holds. Then given

pe = o(1) and constant, we further get
(1—pe)* Tt ~ePem, (220)
Using [220) and™, ') ~ (¢))~'n’ in (Z19), we obtain
P[Dig] ~ ()" (pen)’ e Pem.

n—2

mi+ma+ms
Nl M B N N
i=m1+ma+mz+1

i=m1+ma+1

Eﬁﬂﬁ) :

(225)

Given
E.;j =Cyy N Ky andEy; = Cy; N Ky;, (226)

we have
Egjny; = (Caj N Cyj) N (Ko N Ky;). (227)

For any nodey; distinct fromwv, andv,, we have the fol-
lowing observations: (a) events,;, Cy;, Cy; NCyj, Kzj, Kyj
and thusE,;, E,; given by [226) do not depend on any
nodes other tham,, v, andv;; (b) given (|S;,| = u), event
K,;NK,; does not depend on any nodes other than,, and
vj; (c) from (227), and observations (a) and (b) above, event
E.iny; does not depend on any nodes other tharw, and
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v; given that(|S,,| = w); (d) since the relative complementGiven [234) and[(235), we use property (b) of FAtt 3 to

of event £ ;n,; with respect to event,; is eventE .~

given observations (a) and (c) above, evént .- and then
do not depend on any

similarly, eventst-

,; and B
nodes other than,, v, anduv;.

zjNyj

evaluate R.H.S. of (232) (i.e[ {231)). We get
@31)~ e~ (236)
Substituting [23B8) and[(284) intd_(236), given constants

(n—mi1—ma—ms—2)P[Esjuy;|(|Szy|=u)]

From observations (c) and (d) above, we conclude that 4, m, andms, we find

EIjlﬁyjlv R EIjml NYJmy >

Ezjm1+1 NYJmy+12 """ Ezjm1+m2 NYJmq+ms’

Thmy+mo+1NYJmy+mo+1’ """ 7 T EImy4mot+mz YImy+motmg’

1].7711+7n2+7n3+1ﬂyjm1+m2+m3+17 e 2NYjn—2

are mutually independent given th@b,,| = u).
Then from [2211) and(225), we finally get

PLF [ 1Sey| = 4]
— mo —2)

00

X {P[Ezjny; | (|Sﬂcu| = u)]}™
X AP[Ezjng; | (|Sey| = w)]}™
XAP[EZny; | ([Seyl = u)]}™
X P[Ergs | (1Sey| = w)]}~mmmamme=2, 0 (228)

upon using exchangeability.
Now, observe that for any constant integersand co, we

have
n—cr\ (n—c)! ne2
cs Ccl(n—c —c)! col’

Consequently, for constants,, mo andms, we get

n—2\/n—mi—2\/n—m;—ms —2
my ma ms3

(229)

nM pm2 pms pMmitmatms
~ ) P — 230
ml! ’ITLQ! m3! m1!m2!m3! ( )
Now, we evaluate the probability
{PlE5rg5 | (1Say] = w)}rmmmmemma=2, (231)

It is clear that

@3L) = (1 — P[Eajuy; | (|Sey| = w)])" ™ 7m27ma"2,
(232)

From LemmdD and the fact that < w for all
n sufficiently large, we find

Patt
P[Egjuy; | (1Seyl = u)] = 2pe — 2= - pe £ O(pe?)

K,
- Prl 1
—2pe—K—n-peio(E) (233)
—0 (12”) (234)
=o(1).

Then using the above relation, given constamts m- and
ms, we obtain

m3 — 2){P[Ezjuy; | (|Sxyl = u)]}?
=(n—m1—mz—mg—2)- [O <1n7n)] =

(n—mi —mg —

o(1). (235)

p"u Pe :I:o(%)] . e(m1+m2+m3+2)-0(1)

@31) ~ e 2pe—

_2Pen+Tn'Pen

~ €

(237)

Applying (230) and[(237) intd (228), we obtain {76) and this
establishes Lemnid 4.

D. Proof of Lemma&l7

The proof is similar to Lemma 5.3 of Yagah |30]. Given
non-negative/, 3¢, > 0 and [120), we obtaip. = pps >
“‘T". Then from the fact thap, < 1, we getps, > ‘“—"

Then usingpS < given in property (b) of Lemma

P’Vl
B, P — > ln hoIds Usmg this and>, = Q (n), we get
K2
2 _
lnn

Q(Inn) —

(238)

K,1
2—-(Pn—Kn): =0
n n

Given K, > 1, then£=nn 2 Applying this into [238),
we find

2 K,lnn
K, > \/Kn_i—% = \/Q(lnn):Q( lnn).

E. Proof of Lemm&l8

1) Proof of property (a):Recall from [b) that givenP,, >
2K,,, we have

(")

()

We use Fadil4 (in particuldr (187)) to evaluate R.H.S[of {239

and obtain
K2 K2
= — 4+ .

2) Proof of property (b): Property (b) is proved in[]29,
Lemma 7.4.3, pp. 118].

3) Proof of property (c):From [240) p, = o(1) if and only
if % o(1); namely, property (b) holds.

4) Proof of property (d): From property (c), g|verpS =
o(1) or 2= = o(1), we use property (b) and ha\fg— =
o(1). From [240) andp—: = o(1), it follows thatpy ~ 1;_5
Therefore,

pe=1-P[S;iNS; =0]=1- (239)

(240)

Then, we get%’? =ps£0 ((ps)z)- u



F. Proof of Lemm&l9

26

2) Proof of property (b): We first establish[(ﬂO). Given

1) Proof of property (a): We start by computing the Ps = ©(1), from property (c) of Lemml8K— = o(1) follows.

probability P [(K,; N Ky;) | (|Szy| =w)] for each v =
0,1,2,..., K,. First, note that
P(Kyj 0 Kyj) | (|Szyl = u)]

=1-P[(Kej UKy;) | (|Seyl =w)].  (241)

From the inclusion-exclusion principle, this yields

P[(Kaj N Kys) | (190y| = )]
=1 =P [Koj | (18ey] = )] =P [Ky; | (18ay] = w)]
+ P [(Kej N Ky) | (1Sa] = w)] (242)
Note that for eachu = 0,1,2,..., K,, eventsK,; and K,;

are both independent d¢fS,,| = u) however,K,; N K,; is
not independent of|S,,| = u). Thus, we get

P [K;EJ | Kach =P [KI]J =1 — Ps
P [Kyj | Kﬂch =P [KUJJ =1-ps

(243)
(244)

Substituting [(24B) and_(2%#4) int6_(242), it follows that

P{(Kuj 0 Kyj) | (|Szyl = u)]
=2ps = 1+ P [(Kuj N Kyj) | (1Say] = u)] .

(245)

Given that the eventd(,, and (]S,,| =0) are equivalent,
letting v = 0 in (248), we obtain

P [(KIJ n Kyj) | Kry =2p,—1+P [(KZJ n Kyj) | I((ZzyJG)
4

Since eventsy,; and K,; are equivalent td(S, N S;) = 0]
and[(S, NS;) = 0], respectively, we have

{8i cPa\ (5.0}

(Kzj N Kyj) & (247)

Therefore, from [(247)(K.; N K,;) equals the event that

the K, keys formings; are all from[P,, \ (S, U S,)]. From
|Pn| = P, |S:| = K,, and|S,| = K,,, we get

[Pr\ (Sz USy)| =P, — 2K, + |Szy)- (248)
Under K,, we have |S,,] = 0 so that

[Pn\ (SzUSy)| = P, — 2K,. Clearly, if P, < 3K,,

then P [(K.; N Ky;) | Koy = 0 < (1 — ps)?. Below we
consider the case af, > 3K,,. We have
(Pn72Kn)
P[(Kej NEy) | Koy = % (249)
Kn

Then P, > 3K, holds for alln sufﬁmently large. We first
computeP[(K,; N Ky;) | (|Sey| = u)] to derive P[(K,; N
Ky;) | (|Szy| = u)] from (248). As presented il (2K47), event
(Kz; NK,;) is equivalent to even{Sj C [Pn\ (SzU Sy)]}.
Given|S,,| = v and [248), it follows thafP,, \ (S, U Sy)| =
P, — 2K, + u. Also, for0 < u < K, it holds thatP, —
2K, +u > K, sinceP, > 3K,. Then for alln sufficiently
large, we have

B (g
Pl(Kzj N Kyj) | [Szyl = u] = P:
(x")
K,—1
- 2K, —u
t=0

Now, it is a simple matter to check that

— 26K, —u\ "
Pl(Kaj N Kyy) | [Say| = u] < (1 - —5— (252)
and
2K, —u Kn
P{(Kuj N Kyj) | [Sayl = u] > (1 - m) . (253)

We first evaluate R.H.S. of{252). It is clear tilat 252 <
1 for all sufficiently large sinceP, > 3K,, andu < K We
utilize Factl2 to get

R.H.S. of [25D)
Ko (2K, —u) 1 [K, (2K, —u)]?
<1- - :
<1 2 +3 [ 2 (254)
Applying (252) to [25R), we obtain
P[(Kaj N Kyj) | |Sayl = u]
2K2  uK K
<1-=" - A
B +0<P3) (255)

Then we evaluate R.H.S. of (253). With < v < K,

and P, > 3K,, it follows that0 < 2E=22 < 1 for all n

. . g K v
sufficiently large. We utilize Fagil 2 an"E]j53) to get

Applying Lemma 5.1 in Yagan [30] to R.H.S. df{249), weso that

get

P [(Key NKy;) | Kay] < (1

Using [250) in [246), we obtain
P [(Kaj N Kyj) | Kay] <1-2(1—p)+(1-ps)* =pl.

- ps)2 . (250)

T K, (2K, —u)
Pl(Key NV Eys) | [Say| =) 2 1 = =5 (256)
We now write
K, 2K, — K, 2K, — K?(2K,, —
(Ko —u) _ Kn (2K )  KECKy ) oo
P, - K, P, P, (P, — K,,)
K, (2K, —u) K, (2K, —u) K?
P K, 2 + 0 P_g . (258)

Applying (258) to [256) and usindg (2b5) it follows that

2K2  uK, K
— +
P, P, © <P2>

P(Kzj N EKyj) | |Sayl =u] =1 +
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Givenp;s = o(1), from property (d) of Lemmgl8, we have that.emmal[1? is an extension of a similar result established in

%3 =ps 0 (pz) ~ ps. Given0 < u < K, this yields [30, Lemma 10.1, pp. 11]. There, it was shown that for
T L,2,..., 1%,
P((Re; N F5) | [Sy] = u] (et
=1-2[p. £ 0 ()] + - [ £ 0 (1) £ 0 (41) E {;7)] e PN gL e >y (266)
" K
u n
=1 _2pS+K_n ps £ 0(ps?). (259) Recalling the definition ofL(v,) in (@54) and using the

definitions of M (v,.) and Q(v,.) in (264) and[(265), we have

Applying (259) to [245), we obtain the following cases.

P[(Kaj NV EKy;) | (1S2y| = u)] = KL -ps £ 0(ps*) (260) (&) If [, =0, thenL(vy) = M(v;) = Q(vy) =0.
n (b) If || =1, thenL(v,) = M (v,) = Q(vr) = K.
and this establisheg (1190). (c) If Jvr| > 2, then
We now turn to the proof of (191). First, note that Lvy) = max { Ky, J +1) (267)
r) = X nsy JIn, v,
=P[Egj | (|Say| = u)] + P[Ey; | (|Say| = u)] Qvy) = [(14+¢)Ky,] + 1. (269)

= PlErjays | (19ey| = w)] (261) Then for case (c), we further have the following two subcases
GivenE,; = K,;NC,; andE,; = K,;NC,;, itis clearthat  (c1) If [v.| = 2,3,...,r,, given [267),[(268) and/|,, | =
E,; and E,; are both independent ¢fS,,| = u). Thus max{(1+¢)K,,Y},, } from (I37), it follows that

PlEyj | (|1Szyl = u)] = P[Ey; | (|Sey| = u)] =pe. (262) L(vy) = maX{L(l +e)Kn| + LYo+ 1} (270)

Note that E,jn,; = (K.;NCyj) N (Ky; NCy;) and that resulting in L(v,) = max{M(v,),Q(v,)} from (268) and
Cy; N Cy; is independent of|S,,| = u). Then from [26D) (269).
andP[C,;] = P|Cy;] = pn, it follows that €2) If |vp| =rp + 1,7 +2,...,n, given [267),[(268) and
Jy, =Y, from (I37), it follows that
PlEzjny; | (1Sey| = u)] ol ]

= P[Cuj] - PICy5] - P[(Kaj N Ky5) | (1Say] = w)] Llvr) = M(vy) = max{Kn, [nPn] + 1} (271)

= pn? - | ——ps £ O (p,2 Given %= = o(1), then [uP,] > [(1 + ¢)K,]| for all
P K—nps (ps*) n sufficiently large. Consequently, frorh (269) add (271), it
_ Pnu pe £ O(p2). (263) follows that L(v,.) = max {M (v,.), Q(v,)}.

K, Summarizing cases (a), (b), and (c1)-(c2) above, given

Substituting [Z6B) and262) intG(261), we obtdi (191 W ||, we haveL(y,) = max {M(v), Q(v,)} for all n
sufficiently large. This yields

G. Proof of Lemm&a_10 (Pn—L(Vr)) . (Pn—M(w)) (Pn—Q(w))
It is not difficult to see that &) o ) ()
K, K, K,
P[|Say| = u] and
Kn Pn_Kn n— Vp
s S A 2
(i) (i)
! 2 — ! — ! Py —M(vr) Pr—Q(vr)
_ 1 K,! (P KR)! (P - Ky)! S ( s ) . ( 2 ) 272)
ul | (K, —u)! (P, — 2K, + u)! P! = (Pn) ’ (Pn) :
1 K, K,
< ul K3t (Py = Kp) 7 (Py — Ky) R We will show the following result: for alk sufficiently large
1 K2 u and for anyr = 2,3,...,n,
= (7_" > Pu=Q(w)
u! Pn Kn E l( I;n ) < efpﬁ(lJrs/Q). (273)
u (%)
Clearly, if (Z73) holds, we can substitufe (266) and {278 in
H. Proof of Lemmd4 ]2 (272) and obtain[{193), which establishes Lenimh 12.

Recall J; defined in [(231). Here we still usg; defined in For any givenn and any giverr, from (265), we get
(I38) forj > 2. Then [13¥) follows. We defin@/(|v,.|) and (Pr=Q)
Q(|vr]) as follows: E (Ilg) ]
K.

M(vy) = 1] > 0] - max{ £y, Yo o, + 1} (264) (Po=TEn (U= 1+ (41 > 1)

Q(vy) = Knl[jve| = 1]+ ([ + &) K] + D1 (|| > 1] <El Kn ] (274)
(265) (x7)
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From Lemma 5.1 in Yagan [30], it follows that we have

RH.S. of (27U E [(1 _ py) izt > 1) R.H.S. of [274)
a (275) < f(2,pn,Dps)
= (1= pn)? +200(1 — pu)(1 — ps) + P2 (1 — py)'**
Then from [I56), we obtain (280)

S (1 - pn)2 + 2pn(1 _pn)(l - ps) +p31(1 _ps)(l - Eps)

R.H.S. of [27b) (281)

=Pllvy| = 0] + (1 — ps)P[|vy| = 1] =1—pe[2—epe — (1 —€)py] (282)

+ (1= pa) TPlw| > 2] < exp{—pe[2 —epe — (1 — €)pnl} (283)
=1 —pn) +rpa(l—pn) ' (1—ps) where in [Z8D) we usé < p, < 1,0 < £ < 1 and FacfP to

+ 1= (1 =pn)" —rpn(l —pn)" (1 —ps)' ™. (276) obtain (1 —ps)° < 1 —epy; and in [281) we us@. = p,ps;
and in [282) we use the simple inequality tHat x < e~ *

We introduce a continuous variable and define holds for anyz > 0.

J(v,pn,ps) as follows, wherey > 1. Givenp, = o(1), thenp, < 3 for all n sufficiently large.
Using this and) < p,, < 1, we obtain
Fnp) = (=2 40 =2 (0 ) 2 ep—(1-pa22- S (L) =1+
F[1= (1 =pa)" = pa(l = pa) (1 =) " . .
(277) for all n sufficiently large. Applying the above result fo (283),
we obtain
From [276) and[{217), we obtain R.H.S. of ZTH)< ¢—7-(1+2/2). (284)
R.H.S. of Z7b)= f(r, pn,ps)- (278) Applying (282) to [Z7#), we gef(273) and Lemind 12 is now
established. [ ]

Note that sincer is an integer, we cannot take the partial
derivative off (r, p,, ps) with respect to. We have introduced
continuous variable and hence can take the partial derivative
of f(v,pn,ps) With respect toy. We get

f (7, Pn,ps)
oy
= (1—pu)" 1 = (1= ps) ™ In(1 — py)
+pn(1=pn) M1 = ps — (1= po) "L+ vIn(1 — py))]
< (1 - pn)'y[l —Ps — (1 - pS)lJrE] hl(l - pn)
+pn(1 _pn)771[1 —Ps — (1 - p5)1+8”1 + ”yln(l - pn)]a

where, in the last step, we used the fact that — p,,) < 0.
Therefore, it's clear that

1 f (7, n,ps)
L —pu)7= 11— ps — (1 —ps)tte] oy
< (1 =pn) In(1 = pp) +pa[l +vIn(1 = p,)]
(1 =pn +puy) In(l = pn) + py

—~

with (1 —p,)Y 1 —ps — (1 — ps)T¢] > 0. Using In(1 —
pn) < —pn <0 andy > 1, we get

1 f (7, Pn,ps)
(1 =pp)" 1 = ps — (1 — ps)t+e] oy
< =pn(1 = pn +pnY) +Pn
=pa(1—7) <0. (279)

Given p,, and p,, then f(v,p.,ps) IS decreasing with
respect toy for v > 1. Then givenr > 2, (273) and [(278),
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