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Uniruledness of some moduli spaces of stable pointed

curves

L. BENZO

Abstract

We prove uniruledness of some moduli spaces Mg,n of stable curves of genus

g with n marked points using linear systems on nonsingular projective surfaces

containing the general curve of genus g. Precisely we show that Mg,n is uniruled

for g = 12 and n ≤ 5, g = 13 and n ≤ 3, g = 15 and n ≤ 2.

We then prove that the pointed hyperelliptic locus Hg,n is uniruled for g ≥ 2

and n ≤ 4g + 4.

In the last part we show that a nonsingular complete intersection surface does

not carry a linear system containing the general curve of genus g ≥ 16 and if it

carries a linear system containing the general curve of genus 12 ≤ g ≤ 15 then

it is canonical.

1 Introduction and overview of the strategy

Let Mg,n be the (coarse) moduli space of smooth curves of genus g with n marked

points defined over the complex numbers and Mg,n its Deligne-Mumford compacti-

fication.

The birational geometry of the moduli spaces Mg,n has been extensively studied in

the last decade. This has been mainly motivated by the fact that the boundary com-

ponents of Mg are images via natural gluing morphisms of pointed moduli spaces of

lower genus.

The study of the Kodaira dimension of Mg,n for g ≥ 2 began in the early years of

the new millenium, when Logan ([21]) proved the existence of an integer f(g) for all

4 ≤ g ≤ 23 such that Mg,n is of general type for n ≥ f(g). Logan’s results were

improved by Farkas in [15], and by Farkas and Verra in [16].
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On the other hand various results concerning rationality and unirationality in the

range 2 ≤ g ≤ 12 were proved by Bini and Fontanari ([5]), Casnati and Fonta-

nari ([10]) and Ballico, Casnati and Fontanari ([4]). Farkas and Verra ([17]) pushed

forward the limit of negative Kodaira dimension by proving uniruledness for some

Mg,n, 5 ≤ g ≤ 10. Further results in the range 12 ≤ g ≤ 14 were proved in [7] and

[8].

The methods involved in all these works are not homogeneous at all. For example the

arguments used by the cited Italian authors recall sometimes classical constructions

and in any case do not use computation of classes of divisors in Mg,n, which is the

heart of Logan’s method.

The following table sums up the results of the cited works, exhibiting what has been

proved about rationality, unirationality and uniruledness properties for the Mg,n

and about their Kodaira dimension.

In particular in the above contributions it is proved that Mg,n is rational for 0 ≤ n ≤

a(g), unirational for 0 ≤ n ≤ b(g), uniruled for 0 ≤ n ≤ σ(g) and has nonnegative

Kodaira dimension for n ≥ τ(g), where the values of a, b, σ and τ are as in the table.

Note that for g = 4, 5, 6, 7, 11 one has τ(g) = σ(g) + 1.

g 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a(g) 12 14 15 12 8

b(g) 12 14 15 12 15 11 8 9 3 10 1 0 2

σ(g) 12 14 15 14 15 13 12 10 9 10 1 0 2 0 0

τ(g) 16 15 16 14 14 13 11 11 11 11 10 10 9 9 9 7 6 4

With a little abuse of notation we allowed n to be 0 to refer to the moduli space

Mg. In the sequel, when we write Mg,n, we will always suppose n ≥ 1.

Let g ≥ 2 be a fixed integer and suppose that there exists a nonsingular projective

surface carrying a positive-dimensional non-isotrivial linear system containing the

general curve of genus g. The idea which will be developed in the first part of this

work is to use these linear systems to exhibit a rational curve on Mg,n (for some n)

passing through the general point, thus proving the uniruledness of the space.

As the table shows, the problem of stating for which pairs (g, n) Mg,n is uniruled is

almost solved for 4 ≤ g ≤ 11. In this range few moduli spaces are still of unknown

Kodaira dimension, namely M8,13, M9,11, M9,12 and M10,10.

On the other hand for 17 ≤ g ≤ 21 even the Kodaira dimension of Mg is unknown.

We will focus our attention on the remaining values 12 ≤ g ≤ 16. In this range

M12,1, M14,1 and M14,2 were the only moduli spaces of stable pointed curves which

were known to be uniruled (actually unirational).
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Theorem 2.5 assures that if Mg (g ≥ 3) is uniruled then a positive-dimensional linear

system containing the general curve of genus g on a surface which is not irrational

ruled must exists, but does not say anything about how to construct such a linear

system.

Let us consider for example case g = 16. In [14] Chang and Ran showed that the

class of the canonical divisor KM16
is not pseudoeffective, thus proving that M16

has Kodaira dimension −∞. Later it was proved in [6] that a projective variety has

a pseudoeffective canonical bundle if and only if it is not uniruled. As a consequence,

M16 turned out to be uniruled, but the proof, as it is carried out, does not exhibit

any linear system as above.

Similarly, Chang and Ran showed in [13] that M15 has Kodaira dimension −∞ by

exhibiting a nef curve having negative intersection number with the canonical bundle.

This result was then improved in [8] by Bruno and Verra, which showed the rational

connectedness of M15 by explicitly constructing a rational curve passing through two

general points of the space. In their article a positive-dimensional linear system on a

nonsingular canonical surface containing the general curve of genus 15 is constructed.

With a little amount of work, linear systems containing the general curve of genus

12 and 13 can be extracted from [28] and [12] respectively. The key point here is to

show that they can be realized on nonsingular projective surfaces.

Case g = 14 can be handled too using [28], but in this case our method does not

improve the known results.

Our main theorem is the following

Theorem 1.1. The moduli space Mg,n is uniruled for g = 12 and n ≤ 5, g = 13

and n ≤ 3, g = 15 and n ≤ 2.

The argument used for the proof (Theorem 3.2) is in principle generalizable

to check uniruledness for various loci inside Mg,n. As an example we prove the

following statement about pointed hyperelliptic loci Hg,n ⊆ Mg,n i.e. loci of points

[(C, p1, ..., pn)] such that C is hyperelliptic:

Proposition 4.1. The n-pointed hyperelliptic locus Hg,n is uniruled for all g ≥ 2

and n ≤ 4g + 4.

In the particular case g = 2 one has H2,n = M2,n, thus Proposition 4.1 proves

the uniruledness of M2,n for n = 1, ..., 12. Actually M2,n is known to be rational for

n = 1, ..., 12 (see [10]). Moreover recently Casnati has proved the rationality of the

pointed hyperelliptic loci Hg,n for g ≥ 3 and n ≤ 2g + 8 (see [9]).

By reasons which will be outlined in the sequel, the natural question about a possible
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sharpening of these results led us to the study of linear systems containing the gen-

eral curve of genus g on nonsingular complete intersection surfaces. The following

result sums up our conclusions:

Theorem 5.3. Let C be a general curve of genus g ≥ 3 moving in a positive-

dimensional linear system on a nonsingular projective surface S which is a complete

intersection. Then g ≤ 15. Moreover

• if g ≤ 11 then Kod(S) ≤ 0 or S is a canonical surface;

• if 12 ≤ g ≤ 15 then S is a canonical surface.

2 Background material

We work over the field of complex numbers.

Let X be a projective nonsingular surface. Consider a fibration f : X → P
1 whose

general element is a nonsingular connected curve of genus g ≥ 2, and n disjoint

sections σi : P
1 → X i.e. morphisms such that f ◦ σi(y) = y for all y ∈ P

1,

i = 1, ..., n. Let Ei
.
= σi(P

1). Then define the (n+1)-tuple (f,E1, ..., En) as the

fibration in n-pointed curves of genus g whose fibre over y for all y ∈ P
1 is the n-

pointed curve (C, p1, ..., pn), where C = f−1(y) and pi
.
= C ∩ Ei.

Let Ψ(f,E1,...,En) : P
1 → Mg,n be the morphism given (at least on a nonempty open

set) by

y 7→ [(f−1(y), p1, ..., pn)]

where [ ] denotes the isomorphism class of the pointed curve.

Recall that a fibration is called isotrivial if all its nonsingular fibres are mutually

isomorphic or, equivalently, if two general nonsingular fibres of f are mutually isomor-

phic. If f is non-isotrivial then Ψ(f,E1,...,En) defines a rational curve in Mg,n passing

through the points corresponding to (an open set of) the fibres of (f,E1, ..., En).

Let C be a nonsingular projective curve of genus g and let r, d be two non-negative in-

tegers. As standard in Brill-Noether theory, we will denote by W r
d (C) the subvariety

of Picd(C) constructed in [2], having Supp(W r
d (C)) =

{
L ∈ Picd(C)

∣∣h0(L) ≥ r + 1
}
.

We will denote by Wr
g,d the so-called universal Brill-Noether locus i.e. the moduli

space of pairs (C,L) where g(C) = g and L ∈ W r
d (C).

A notion which is fundamental for our purposes is that of curve with general moduli.

Definition 2.1. A connected projective nonsingular curve C of genus g has general

moduli, or is a general curve of genus g, if it is a general fibre in a smooth projec-

tive family C → V of curves of genus g, parametrized by a nonsingular connected

4



algebraic scheme V , and having surjective Kodaira-Spencer map at each closed point

v ∈ V .

In the sequel, when we talk about a general curve, we will always assume it to

be connected and nonsingular.

Consider the Petri map µ0 : H
0(OC(H))⊗H0(OC(KC −H)) → H0(OC(KC)) given

by the cup-product, where H is a hyperplane section. If C has general moduli then

µ0 is injective. As an easy consequence we obtain the following

Proposition 2.2 ([1], Corollary 5.7). Let C be a general curve of genus g ≥ 3. Then

H1(L⊗2) = (0) for any invertible sheaf L on C such that h0(L) ≥ 2.

Coherently with (2.1), we will adopt the following definition:

Definition 2.3. Let S be a projective nonsingular surface, and C ⊂ S a projective

nonsingular connected curve C of genus g ≥ 2. Let r
.
= dim(|C|). We say that

C is a general curve moving in an r-dimensional linear system on S if there is a

pointed connected nonsingular algebraic scheme (V, v) and a commutative diagram

as follows:

C
�

�

//

��

C
�

�

//

��

S

β
��⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

Spec(k)
v

// V

(1)

such that

(i) the left square is a smooth family of deformations of C having surjective Kodaira-

Spencer map at every point;

(ii) β is a smooth family of projective surfaces and the upper right inclusion restricts

over v to the inclusion C ⊂ S;

(iii) dim(|C (w)|) ≥ r on the surface S (w) for all closed points w ∈ V .

Let S be a projective nonsingular surface and let C ⊂ S be a projective nonsin-

gular connected curve of genus g such that dim(|C|) ≥ 1. Consider a linear pencil

Λ contained in |C| whose general member is nonsingular and let ǫ : X → S be the

blow-up at its base points (including the infinitely near ones). We obtain a fibration

f : X → P
1 defined as the composition of ǫ with the rational map S 99K P

1 defined

by Λ. We will call f the fibration defined by the pencil Λ.

Proposition 2.4 ([27], Proposition 4.7). Let C be a general curve of genus g ≥ 3

moving in a positive-dimensional linear system on a nonsingular projective surface
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S, and let Λ ⊂ |C| be a linear pencil containing C as a member. Then the following

are equivalent:

(i) Λ defines an isotrivial fibration;

(ii) S is birationally equivalent to C × P
1;

(iii) S is a non-rational birationally ruled surface.

In the sequel we will say that a linear system is isotrivial if a general pencil in it

defines an isotrivial fibration.

As a corollary of Proposition 2.4 we obtain the following well-known explicit condition

for the uniruledness of Mg.

Theorem 2.5 ([27], Theorem 4.9). The following conditions are equivalent for an

integer g ≥ 3:

• Mg is uniruled;

• A general curve C of genus g moves in a positive-dimensional linear system on

some nonsingular projective surface which is not irrational ruled.

Motivated by this theorem, Sernesi ([27]) used deformation theory of fibrations

over P1 to work out conditions on a nonsingular projective surface to carry a positive-

dimensional non-isotrivial linear system containing the general curve of genus g.

The following result shows that general curves on irregular surfaces of positive geo-

metric genus cannot move in a positive-dimensional linear system.

Theorem 2.6 ([27], Theorem 6.5). Let S be a projective nonsingular surface with

pg > 0 and q > 0, and let C ⊂ S be a nonsingular curve of genus g ≥ 3 such that

dim(|C|) ≥ 1. Then C cannot have general moduli.

Moreover the following inequality involving the fundamental invariants of the

surface has to be satisfied:

Theorem 2.7 ([27], Theorem 5.2). Let C be a general curve of genus g ≥ 3 moving

in a positive-dimensional non-isotrivial linear system on a nonsingular projective

surface S. Then

5(g − 1)−
[
11χ(OS)− 2K2

S + 2C2
]
+ h0(OS(C)) ≤ 0. (2)
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In the same work a systematical analysis gives upper bounds for the genus of C

on S according to the Kodaira dimension of S.

It turns out that, up to a technical assumption contained in Theorem 2.9, a general

curve of genus g ≥ 12 cannot move in a positive-dimensional non-isotrivial linear

system on S if the Kodaira dimension of S is ≤ 0.

Indeed if Kod(S) ≥ 0 we have the following theorem:

Theorem 2.8 ([27], Theorem 6.2). Let S be a projective nonsingular surface with

Kodaira dimension ≥ 0, and let C ⊂ S be a general curve of genus g ≥ 2 moving in

a positive-dimensional linear system. Then

g ≤ 5pg(S) + 6 +
1

2
h0(OS(KS − C)).

In particular

g ≤

{
6, pg = 0,

11, pg = 1.

Turning to the case Kod(S) < 0, Proposition 2.4 tells us that S cannot be a non-

rational ruled surface, hence we have only to examine what happens if S is rational.

If we have a family (1) where one fibre of β is a rational surface, then all fibres are

rational, and by suitably blowing-up sections of β (after possibly performing a base

change) we can always replace (1) with a similar family where all fibres of β are

blow-ups of P2. Therefore one can always reduce to the situation where there is a

birational morphism σ : S → P
2.

The following theorem states the bound g ≤ 10 for a general curve moving on such

a surface S, under the assumption that

(∗) |C| is mapped by σ to a regular linear system of plane curves whose singular

points are in general position.

For an extensive discussion of the problems and conjectures related to (∗), whose

first study dates back to Segre ([26]), see [29], Section 2.2.

Theorem 2.9 ([29]). Let C be a general curve of genus g ≥ 2 moving in a positive-

dimensional linear system on a rational surface S such that there is a birational

morphism σ : S → P
2. Suppose that assumption (∗) holds. Then g ≤ 10.

According to the Enriques-Kodaira birational classification of projective nonsin-

gular surfaces, a surface S with Kodaira dimension 0 cannot have pg(S) ≥ 2, hence,

at least under assumption (∗), surfaces containing general curves of genus g ≥ 12
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moving in positive-dimensional non-isotrivial linear systems must have Kodaira di-

mension ≥ 1.

The argument used to prove our main theorem is quite general and can be used

to recover the great part of the known results about uniruledness of the Mg,n. As

an example we will use linear systems of curves on K3 surfaces.

A pair (S,L) where S is a surface and L is an ample line bundle on S will be called

a polarized surface. The polarization is called primitive if L ≁ nL′ for some n > 1

and L′ ∈ Pic(S).

The following proposition is a consequence of the analysis contained in the classical

paper of Saint-Donat [25]:

Proposition 2.10. Let S be a K3 surface such that Pic(S) = Z[L] for a globally

generated line bundle L with L2 > 2. Then |L| is very ample on S, dim(|L|) = g and

there exists a positive integer g ≥ 3 such that L2 = 2g − 2.

In particular, the general element C ∈ |L| is a nonsingular, irreducible curve of

geometric genus g.

We will call g the genus of S.

Let g ≥ 3 be any integer and let Bg be the moduli stack parametrizing pairs (S,L),

where S is a nonsingular K3 surface and L is a primitive polarization of genus g. Bg

is smooth, irreducible and of dimension 19 (see e.g. [3], VIII Theorem 7.3). Moreover

for a general pair (S,L) ∈ Bg one has Pic(S) ∼= Z[L], hence Proposition 2.10 applies

and L is a primitive polarization embedding S in P
g as a smooth, irreducible surface.

Let KCg be the moduli stack parametrizing pairs (S,C), where S is a nonsingular

K3 surface with a primitive polarization L of genus g and C ∈ |L| a nonsingular

irreducible curve of genus g.

We have a surjective morphism of stacks

πg : KCg → Bg

induced by the natural projection.

KCg is smooth of dimension 19 + g and, since the fibres of πg are connected, it is

also irreducible (see e.g. [18], paragraph 3).

Let Mg be the moduli stack of smooth curves of genus g. We have a morphism of

stacks

cg : KCg → Mg

defined as cg((S,C)) = [C]. Since 19 + g ≥ 3g − 3 if and only if g ≤ 11, one could

expect naively cg to be dominant exactly for these values of g. Actually the situation
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is not that simple. A complete picture of the situation was given by Mukai and is

summed up in the following theorem:

Theorem 2.11. With notation as above:

(i) cg is dominant for g ≤ 9 and g = 11 (cf. [22]);

(ii) cg is not dominant for g = 10 (cf. [22]);

(iii) cg is generically finite onto its image for g = 11 and g ≥ 13, but not for g = 12

(cf. [23]).

3 Proof of the main theorem

To prove Theorem 1.1 we state a general result (Theorem 3.2) and then apply it to

linear systems containing the general curve of genus 12, 13 and 15 respectively.

Lemma 3.1 ([19], Lemma 2.7). Let C be a nonsingular projective curve. For all

d ≥ 1, x ∈ C, denote with C(d−1),x ⊂ C(d) the divisor of unordered d-tuples containing

x. C(d−1),x is ample in C(d).

Theorem 3.2. Let C be a general curve of genus g ≥ 2 moving in a non-isotrivial

(r+1)-dimensional linear system (r ≥ 0) on a nonsingular projective regular surface

S, with a deformation (S ,C ) → V of the pair (S,C) given as in Definition 2.3.

Let (C ,OC (C )) → V be the induced family of deformations of the pair (C,OC (C)),

let C2 = d and suppose that the morphism

α : V → Wr
g,d

w 7→ [(C (w),OC (w)(C (w)))]

is dominant.

Then Mg,n is uniruled for n ≤ r+ρ, where ρ = ρ(g, r, d) is the Brill-Noether number.

Proof. If r + ρ = 0 there is nothing to prove, hence suppose that r + ρ ≥ 1.

Let [C] be a general point in Mg and define Cr
(d) to be the counterimage of W r

d (C)

under the Abel map C(d) → Picd(C). We first want to show that there is a d-tuple

in Cr
(d) containing r + ρ general points {q1, ..., qr+ρ}.

Since C(d−1),qi is ample for all i = 1, ..., r+ρ by Lemma 3.1, it intersects every variety

of dimension h in a nonempty variety of dimension ≥ h − 1 by Nakai-Moishezon’s

criterion. Since C has general moduli, Cr
(d) has dimension r+ ρ and C(d−1),q1 ∩Cr

(d)
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has dimension greater or equal than r + ρ − 1. Iterating the above argument (if

r + ρ ≥ 2) one then has that

dim
(
C(d−1),q1 ∩ C(d−1),q2 ∩ · · · ∩C(d−1),qr+ρ

∩ Cr
(d)

)
≥ 0

hence there is a d-tuple in Cr
(d) containing the points {q1, ..., qr+ρ}.

Since by assumption the map α is dominant, there is a positive-dimensional linear

system |C| containing C on a surface S and a divisor in |OC(C)| containing points

r1, ..., rn, n ≤ r + ρ, such that (C, q1, ..., qn) ∼= (C, r1, ..., rn) as pointed curves.

Being h1(OS) = 0, the linear system |C| cuts out on C the complete linear series.

This means that there exists a non-isotrivial linear pencil P ⊂ |C| whose curves cut

on C a divisor of degree d containing the points r1, ..., rn. Now blow up the base

points of P and define Ei as the exceptional divisor over ri for i = 1, ..., n. This

gives a non-isotrivial fibration (f,E1, ..., En) over P
1 in n-pointed curves of genus g,

having a curve isomorphic to (C, q1, ..., qn) among its fibres. Hence there is a rational

curve in Mg,n passing through the general point [(C, q1, ..., qn)] of Mg,n.

Remark 3.3. If one does not assume the map α to be dominant, Theorem 3.2 stands

true for n ≤ r. The proof is immediate because, being dim(|C|) = r + 1, there is

always a linear pencil of curves in |C| passing through r points of C.

Remark 3.4. The fact that there is a d-tuple of points in Cr
(d) containing the points

{q1, ..., qr+ρ} is immediate to see if d = r + ρ, since C(d) is irreducible and Cr
(d) and

C(d) have the same dimension.

Remark 3.5. If g ≥ 7, the assumption that the surface S is regular is redundant

and can consequently be dropped. Let indeed q = q(S) > 0. If pg > 0 too, then C

cannot have general moduli by Theorem 2.6. If pg = 0 there are two possibilities.

If Kod(S) < 0, then S is a non-rational ruled surface, thus the linear system |C| is

isotrivial by Proposition 2.4. If Kod(S) ≥ 0, then g ≤ 6 by Theorem 2.8, contradic-

tion.

Proposition 3.6. M12,n is uniruled for n = 1, ..., 5.

Proof. In [28] the author constructs a reducible nodal curve D1 ∪D2 of arithmetic

genus 12 and degree 17, which is contained in the complete intersection D1∪D2 ∪D

of 5 quadrics in P
6, which is still a reducible nodal curve, and shows that D1 ∪D2
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can be deformed to a general curve C of genus 12. Our first purpose is to show that

C is contained in a nonsingular surface which is the complete intersection of four

quadrics in P
6.

By Lemma 7.6 of [28] one has h1(ID1∪D2
(2)) = 0, hence h1(IC(2)) = 0 by the upper

semicontinuity of the cohomology.

Since h0(OP6(2)) = 28 and h0(OC(2)) = 23, the cohomology sequence associated to

the exact sequence

0 → IC(2) → OP6(2) → OC(2) → 0

gives h0(IC(2)) = 5, hence C is contained in the complete intersection C ∪C ′ of five

quadrics Q1, Q2, ..., Q5, which we assume to be general quadrics containing C.

Since D1 ∪D2 ∪D is nodal, C ∪ C ′ is nodal too.

Note that the base locus of |IC(2)| is C ∪ C ′. Qi is smooth outside of C ∪ C ′ by

Bertini’s theorem. On the other hand, since for all p ∈ C ∪ C ′ the tangent space

TC∪C′,p =
⋂5

i=1 TQi,p has dimension 1 or 2, each Qi is smooth at p, hence the general

quadric containing C is nonsingular. For the same reason at least four quadrics

among the Qi have to intersect transversally at p. Fix a point p and consider four

among the Qi intersecting transversally at p, say Q1, ..., Q4. Then Q1, ..., Q4 intersect

transversally on a nonempty open set of C∪C ′, say (C∪C ′)r{p1, ..., pk}. Take now

k 4-tuples of general quadrics containing C, say (Qj
1, ..., Q

j
4), j = 1, ..., k, intersecting

transversally respectively at pj.

Denote by + the sum operation in the vector space H0(IC(2)) and with Q̃i the

quadric defined by a section si+ s1i + ...+ ski such that (si)0 = Qi and (sji )0 = Q
j
i for

all i = 1, ..., 4, j = 1, ..., k. Then the Q̃i are four general quadrics containing C and

intersecting transversally at every point of C ∪C ′, and S
.
=

⋂4
i=1 Q̃i is a nonsingular

surface containing C.

A scheme V parametrizing a deformation (C ,S ) as in Theorem 3.2 can be easily

constructed as follows. Consider the Hilbert scheme of curves of arithmetic genus 12

and degree 17 in P
6 and let H be the open set of smooth curves in the irreducible

component containing the general curve. Let W → H be the P× P× P× P-bundle

whose fibre over the point [C] is P
(
H0(IC(2))

)
× ...×P

(
H0(IC(2))

)
. We can take V

to be the open set of W such that the points of the fibres of the restricted projection

V → H correspond to nonsingular surfaces.

Being S canonical, the adjunction formula gives

OC(1) ∼= ωC(−C) (3)

hence Riemann-Roch theorem on OC(1) and Serre duality give h0(OC(C)) = 1,

which equals dim(|C|). The linear pencil |C| is non-isotrivial by Proposition 2.4.
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Let h be the g617 embedding the curve C in P
6. Since, for small deformations of

the pair (C, h) in the Hilbert scheme, the linear series h remains very ample and

the Petri map remains injective, it follows that h = |OC(1)| is a general g617 i.e. a

general point in W 6
17(C). Since a complete linear series and its residual have the

same Brill-Noether number, relation (3) implies that the linear series |OC(C)| is a

general g05 and so the map

α : V → W0
12,5

is dominant.

The Brill-Noether number of |OC(C)| is ρ = ρ(12, 0, 5) = 5. By Theorem 3.2 the

statement follows.

Proposition 3.7. M13,n is uniruled for n = 1, 2, 3.

Proof. In [12] the authors show that the general curve C of genus 13 can be embedded

as a non-degenerate curve of degree 13 in P
3.

From the cohomology sequence associated to the exact sequence

0 → IC(5) → OP3(5) → OC(5) → 0

one gets h0(IC(5)) = 3 since C is of maximal rank by [12], Theorem 1. One first has

to prove that the generic quintic containing C is nonsingular.

Let D be a nonsingular rational curve of degree 8 and let F4 be a nonsingular quartic

containing it. The general element of the linear system |5H − D| is a nonsingular

irreducible curve C ′ of genus 10 and degree 12 and is cut on F4 by a nonsingular

irreducible quintic F5. On F5, the curve C ′ belongs to the linear system |4H −D|.

Take a general element C ′′ ∈ |5H − C ′| = |H + D| on F5. One has pa(C
′′) = 13

and deg(C ′′) = 13. Since the linear subsystem |H| +D consists of reducible curves

with singular points which are not fixed, if the curve C ′′ is irreducible then it will be

also nonsingular by Bertini’s theorem. Since h0(IC′(5)) ≥ 5 one has dim |H +D| >

dim |H|+D and C ′′ is irreducible.

By [20], Theorem 3.1, the Hilbert scheme H parametrizing smooth irreducible curves

of genus 13 and degree 13 in P
3 is irreducible, hence C ′′ must be a specialization of C.

By construction and [24] one has h1(IC′′(6− i)) = h1(IC′(i)) = h1(ID(5− i)) for all

i ∈ Z. Being h1(ID) = 0, C ′′ is linearly normal, hence h0(IC′′(5)) = h0(IC(5)) = 3.

Consider the linear system |ID(5)|. One has of course Bs|ID(5)| = E ⊂ F4 where E

is a 1-dimensional scheme. By Bertini’s theorem the general quintic containing D is

smooth out of E. Consider the family of reducible quintics F4∪A where A is a plane.

Since for each p ∈ E the plane A can be always assumed not to contain p, there exists

a quintic containing D which is smooth at p, hence the same is true for the general
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quintic containing D. Now fix p and take such a quintic, say G. Being G smooth

in p, it will be smooth along a nonempty open set of E, say E r {p1, ..., pk}. Take

k general quintics G1, ..., Gk containing D such that Gi is smooth at pi. Let + be

the sum operation in the vector space H0(ID(5)). The quintic defined by a section

s+ s1 + ...+ sk such that (s)0 = G and (si)0 = Gi is a general quintic containing D

which is smooth along E.

We can then conclude that D lies on a nonsingular quintic surface, thus by definition

the same is true for C ′, C ′′ and, since h0(IC′′(5)) = h0(IC(5)), also for C.

The construction of a scheme V parametrizing a deformation (C ,S ) as in Theorem

3.2 is analogous to the one done in Proposition 3.6.

Let S be a nonsingular quintic surface containing C. Being S canonical, using (3),

Riemann-Roch on OC(1) and Serre duality one obtains that |C| is a linear system

of dimension 3 on S, which is non-isotrivial by Proposition 2.4.

Arguing as in the previous proposition one has that the linear series |OC(1)| is a

general g313, |OC(C)| is a general g211 and the map

α : V → W2
13,11

is dominant.

The Brill-Noether number of |OC(C)| is ρ = ρ(13, 2, 11) = 1. By Theorem 3.2 the

statement follows.

Proposition 3.8. M15,n is uniruled for n = 1, 2.

Proof. In [8] the authors show that the general curve C of genus 15 can be embedded

as a curve of degree 19 in a nonsingular projective regular surface S which is the

complete intersection of four quadrics in P
6. C defines on S a non-isotrivial linear

system of dimension h0(OC(C)) = 2, in particular the linear series |OC(C)| is a g19 .

In the article a family of curves D whose general element has the above property is

considered and it is shown that the morphism

u : D → W1
15,9

C 7→ [(C,ωC(−1))]

is dominant (cf. [8], (2.9) p. 5).

The construction of a scheme V parametrizing a deformation (C ,S ) as in Theorem

3.2 is analogous to the one done in Proposition 3.6.

Since S is a canonical surface, for a general C ∈ D one has ωC(−1) ∼= OC(C) by

adjunction, hence the morphism defined in Theorem 3.2

α : V → W1
15,9
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is dominant.

The Brill-Noether number of the linear series |OC(C)| is ρ = ρ(15, 1, 9) = 1.

By Theorem 3.2 the statement follows.

Using Theorem 3.2 one is able to recover the great part of the known results

concerning the uniruledness of moduli spaces Mg,n using suitable linear systems of

curves. Adam Logan has listed a few in the end of his paper [21]. Just to give an

example one can consider linear systems on K3 surfaces.

Proposition 3.9. Mg,n is uniruled for 3 ≤ g ≤ 9 or g = 11 and n = 1, ..., g − 1.

Proof. Proposition 2.11 tells that the hyperplane linear system |H| of a general

primi-tively polarized K3 surface (S,H) of genus g ≥ 3 contains the general curve

of genus g for g ≤ 9 or g = 11. One has h0(OC(C)) = g, thus Remark 3.3 gives the

statement.

In particular one obtains that M11,n is uniruled for all n ≤ 10, a result which is

sharp (cf. the table).

By Proposition 2.11 the hyperplane linear system |H| of a general primitively polari-

zed K3 surface (S,H) of genus 10 does not contain the general curve of genus 10,

thus Theorem 3.2 cannot be applied to |H|.

Nevertheless one can use a result contained in [18] to work out a linear system on

which Theorem 3.2 can be applied. One has the following

Proposition 3.10. M10,n is uniruled for n = 1, ..., 7.

Proof. Consider a general primitively polarized K3 surface of genus 11 (S,H). By

[18], section 5, the normalization of the general nodal curve in |H| (having arithmetic

genus pa(H) = 11) is a general curve of genus 10.

Consider the linear subsystem of curves of |H| having an ordinary node at a general

point p of S. Blowing up the surface S at p one obtains a linear system |C| whose

general element is a general curve of genus 10, having dimension dim |H| − 3 = 8.

Remark 3.3 gives the statement.

4 Uniruledness of some pointed hyperelliptic loci Hg,n

The proof of Theorem 3.2 can in principle be adapted to study the uniruledness of

various loci in Mg,n. The starting point will be to exhibit a positive-dimensional

non-isotrivial linear system containing a curve corresponding to the general point of

the image of the locus under the morphism to Mg forgetting the marked points.
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As an example of application of this principle, in the sequel we prove the uniruledness

of the pointed hyperelliptic loci Hg,n for all g ≥ 2 and n ≤ 4g + 4.

For each integer g ≥ 2 consider the linear system |O(g+1, 2)| ⊂ P
1×P

1. The general

element of this system is a general hyperelliptic curve C of genus g, whose g12 is given

by the projection onto the first factor. Note that, since there is not a nonsingular

rational curve E such that E ·C = 1, the dimension of |C| is the maximal dimension

permitted by [11], Theorem 1.1. This is consistent with the fact that linear systems

of maximal dimension with respect to a fixed g must be systems of hyperelliptic

curves and dominate the hyperelliptic locus (see [11], Proposition 2.3).

Proposition 4.1. The n-pointed hyperelliptic locus Hg,n is uniruled for all g ≥ 2

and n ≤ 4g + 4.

Proof. Let C be a general curve in |O(g + 1, 2)|. Since P
1 × P

1 is regular, it is suf-

ficient to show that there exists a divisor in |OC(C)| containing n general points,

n ≤ 4g + 4. Being the linear system non-isotrivial, the statement follows from a

straightforward adaptation of the proof of Theorem 3.2.

Consider the linear series |OC(1)|, which is a g3g+3. The cohomology sequence asso-

ciated to the exact sequence

0 → TP1×P1(−C) → TP1×P1 → TP1×P1 |C → 0

gives h0(TP1×P1 |C) = 6 + g.

Since h0(TP1×P1) = 6 and dimW 3
g+3(C) = g, hyperplanes cut on C a general linear

series g3g+3. Since |OC(1)| = g12 + g1g+1 is the sum of the two linear series defined on

C respectively by the two projections of P1 × P
1, we have that the g1g+1 is general

too (the g12 is unique).

Being |OC(C)| = (g + 1)g12 + 2g1g+1, one has that |OC(C)| is a general g3g+4
4g+4 , whose

Brill-Noether number is ρ = ρ(g, 3g+4, 4g+4) = g. By Remark 3.4 there is a divisor

in |OC(C)| containing n general points, n ≤ 4g + 4.

5 Linear systems containing the general curve of genus

g on complete intersection surfaces

A natural question arising at this point is the following. Theorem 3.2 is quite general

and can in principle be applied to a wide range of linear systems, while we used it

only on a few. Are there linear systems which can be used for an improvement of

Theorem 1.1? If yes, which are the surfaces carrying them?

The results contained in Section 2 tell that, up to a technical assumption, a general
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curve of genus g ≥ 12 cannot move in a positive-dimensional non-isotrivial linear

system on a nonsingular projective surface S if Kod(S) ≤ 0.

Hence such a linear system can be realized only on a surface of Kodaira dimension

1 or on a surface of general type.

Now, it is a fact that positive-dimensional linear systems containing the general curve

of genus g for 12 ≤ g ≤ 15 have been discovered on complete intersection surfaces.

In [12] this is obvious since the curves are embedded in P
3. In [28] and [8] it does

not come as a surprise once one looks at the proofs: typically a reducible curve, say

D1∪D2, is constructed on a reducible complete intersection surface Y in P
r and it is

then proved that h1(TPr |D1∪D2
) = 0 i.e. that it can be smoothed to a general curve

of genus g.

The whole construction is much less handleable if Y is not a complete intersection.

In this section an extensive discussion on linear systems on complete intersection

surfaces is carried out, giving a partial answer to the questions above. It turns out

that, if S is a nonsingular complete intersection surface, it is not possible to have

a general curve of genus g ≥ 16 moving on it, while if 12 ≤ g ≤ 15 the surface S

must be a canonical one. There are only five families of canonical complete inter-

section surfaces. Two of these, namely the quintic surfaces in P
3 and the complete

intersections of four quadrics in P
6, were exactly those used in Section 3 to prove

our uniruledness results.

It is a classical well-known fact that a general curve of genus g ≥ 12 cannot be

embedded in P
2. The other families of complete intersection surfaces of negative

Kodaira dimension are the quadric and the cubic surfaces in P
3 and the complete

intersections of two quadrics in P
4 (all these are rational surfaces). The following

proposition takes care of these cases:

Proposition 5.1. Let C be a general curve of genus g ≥ 2 moving in a positive-

dimensional linear system on a nonsingular quadric or cubic surface in P
3, or on

a nonsingular complete intersection of two quadrics in P
4. Then g ≤ α, where

α = 4, 9, 8 respectively.

Proof. Let S = P
1×P

1. S is rigid since h1(TS) = 0, hence it is sufficient to show that

h1(TS |C) 6= 0 for g ≥ 5. The cohomology sequence associated to the exact sequence

0 → TS(−C) → TS → TS |C → 0 gives h1(TS |C) = h2(TS(−C)).

Let C ∈ |O(a, b)|. Using Serre duality one shows that h2(TS(−C)) = h0(O(a−4, b−

2)⊕O(a− 2, b− 4)), which equals 0 if and only if (a ≤ 3 ∨ b ≤ 1) ∧ (a ≤ 1 ∨ b ≤ 3).

This condition is never satisfied if a, b are such that (a − 1)(b − 1) = g for g ≥ 5

(while it is satisfied if a = b = 3 i.e. for curves of genus 4).
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Let S be a nonsingular cubic surface in P
3 and let d = degC. Riemann-Roch formula

gives d ≤ g+3. Since KS = OS(−1), the genus formula gives 2g− 1 ≤ C2 ≤ 3g +1.

In particular OC(C) is nonspecial and Riemann-Roch gives h0(OC(C)) = C2+1−g.

Being S regular one has h0(OS(C)) = C2 +2− g. Substituting in inequality (2) one

obtains

5(g − 1)− 11χ(OS) + 2K2
S − C2 + 2− g = 4g − 8− C2 ≤ 0.

Being C2 ≤ 3g + 1, one has 4g − 8− C2 ≥ g − 9, hence g ≤ 9 must hold.

Let S be a nonsingular complete intersection of two quadrics in P
4. This time

Riemann-Roch formula gives d ≤ g + 4 and the genus formula gives 2g − 1 ≤ C2 ≤

3g + 2. Arguing as in the previous case one obtains

5(g − 1)− 11χ(OS) + 2K2
S − C2 + 2− g = 4g − 6− C2 ≤ 0.

Being C2 ≤ 3g + 2, one has 4g − 6− C2 ≥ g − 8, hence g ≤ 8 must hold.

There are only three families of complete intersection surfaces having Kodaira

dimension 0, namely quartics in P
3, complete intersections of type (2, 3) in P

4 and of

type (2, 2, 2) in P
5 (all these are K3 surfaces). These cases are covered by Theorem

2.8, which gives the bound g ≤ 11.

All remaining complete intersection surfaces are of general type, having very ample

canonical bundle.

Proposition 5.2. Let C be a general curve of genus g ≥ 3 moving in a positive-

dimensional linear system on a nonsingular projective surface S of general type which

is a complete intersection of r−2 hypersurfaces in P
r. Then S is a canonical surface,

that is S must be one of the following types:

• S = (5);

• S = (2, 4);

• S = (3, 3);

• S = (2, 2, 3);

• S = (2, 2, 2, 2).

Moreover g ≤ 15 and if g ≥ 12 then C is non-degenerate in P
r.
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Proof. By assumption S = (k1, k2, ..., kr−2) is the nonsingular complete intersection

of r − 2 projective hypersurfaces of respective degree k1, ..., kr−2 in P
r.

Let KS = OS(h) and suppose by contradiction that h ≥ 2. By adjunction one

has OC(KC) ∼= OC(h) ⊗ OC(C). Since C moves in a positive-dimensional linear

system, the normal bundle NC/S
∼= OC(C) has a nonzero section, hence the bundle

OC(h− 2 + C) has a nonzero section too, say s. Consider the exact sequence

0 → OC(2)
⊗s
−−→ OC(KC) → T → 0

where T is the torsion sheaf supported on the zero locus of s. The associated co-

homology sequence gives h1(OC(2)) ≥ h1(OC(KC)), thus OC(2) is special. Being

h0(OC(1)) ≥ 2, Proposition 2.2 gives a contradiction, hence S must be a canonical

surface.

Suppose by contradiction that g(C) ≥ 12 and C is a degenerate curve in P
r. Then C

also lies on a nonsingular complete intersection surface S′ of the kind (k1, ..., kr−3, 1)

in P
r i.e. of the kind (k1, ..., kr−3) in P

r−1. Up to a permutation of the ki, the surface

S′ can then be supposed to be one among (2), (3), (2, 2), (2, 2, 2), which have Kodaira

dimension ≤ 0 (the case S′ = P
2 has already been ruled out).

Let C2
S′ be the self-intersection of C on S′. The genus formula gives C2

S′ ≥ 2g − 2.

Being S′ regular, C moves on it in a positive-dimensional linear system. If S′ is a

(2, 2, 2) the contradiction is given by Theorem 2.8, otherwise it is given by Proposi-

tion 5.1.

By contradiction let g ≥ 16. By Theorem 2.7 inequality

5(g − 1)−
[
11χ(OS)− 2K2

S + 2C2
]
+ h0(OS(C)) ≤ 0 (4)

must be satisfied and h0(OS(C)) ≥ 2. Let C be embedded in S by a grd (by the

previous part C is nondegenerate in P
r). Since C has general moduli, the Brill-

Noether number ρ(g, r, d) = g − (r + 1)(g − d + r) must be nonnegative, thus one

has

d ≥
r

r + 1
g + r (5)

from which

C2 = 2g − 2− C ·KS = 2g − 2− d ≤
r + 2

r + 1
g − r − 2. (6)

Let us examine each possible case.

• Let S be a nonsingular quintic in P
3. One has 5(g−1)−45−2C2+h0(OS(C)) ≥

5
2g − 40 + h0(OS(C)) > 0 if g ≥ 16, where the first term is the left term of (4)
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and the first inequality follows by (6). Thus S cannot carry a general curve of

genus g ≥ 16 moving in a positive-dimensional linear system. The structure of

the argument is the same for all the other cases.

• Let S = (2, 4). One has 5(g − 1) − 50 − 2C2 + h0(OS(C)) ≥ 13
5 g − 43 +

h0(OS(C)) > 0 if g ≥ 16, where the first term is the left term of (4) and the

first inequality follows by (6).

• Let S = (3, 3) in P
4. One has 5(g − 1) − 48 − 2C2 + h0(OS(C)) ≥ 13

5 g − 41 +

h0(OS(C)) > 0 if g ≥ 16, where the first term is the left term of (4) and the

first inequality follows by (6).

• Let S = (2, 2, 3). One has 5(g − 1) − 53 − 2C2 + h0(OS(C)) ≥ 8
3g − 44 +

h0(OS(C)) > 0 if g ≥ 16, where the first term is the left term of (4) and the

first inequality follows by (6).

• Let S = (2, 2, 2, 2). One has 5(g − 1) − 53 − 2C2 + h0(OS(C)) ≥ 19
7 g − 45 +

h0(OS(C)) > 0 if g ≥ 16, where the first term is the left term of (4) and the

first inequality follows by (6).

One can sum up the previous results in the following theorem:

Theorem 5.3. Let C be a general curve of genus g ≥ 3 moving in a positive-

dimensional linear system on a nonsingular projective surface S which is a complete

intersection. Then g ≤ 15. Moreover

• if g ≤ 11 then Kod(S) ≤ 0 or S is a canonical surface;

• if 12 ≤ g ≤ 15 then S is a canonical surface.

This in particular implies that if one wants to use Theorem 2.5 to show uniru-
ledness for some Mg, g ≥ 16, the surface cannot be a complete intersection.
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