V-SEMI-SLANT SUBMERSIONS

KWANG-SOON PARK

Abstract

Let F be a Riemannian submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. We introduce the notion of the v-semi-slant submersion. And then we obtain some properties on it. In particular, we give some examples for it.

1. Introduction

Let F be a C^{∞}-submersion from a semi-Riemannian manifold $\left(M, g_{M}\right)$ onto a semi-Riemannian manifold $\left(N, g_{N}\right)$. Then according to the conditions on the map $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$, we have the following submersions:
semi-Riemannian submersion and Lorentzian submersion [7, Riemannian submersion (8], [14]), slant submersion ([5], [19]), almost Hermitian submersion [21], contact-complex submersion [9], quaternionic submersion [10], almost h-slant submersion and h-slant submersion [15], semi-invariant submersion [20, almost h-semiinvariant submersion and h-semi-invariant submersion [16], semi-slant submersions [18], almost h-semi-slant submersions and h-semi-slant submersions [17], etc. As we know, Riemannian submersions are related with physics and have their applications in the Yang-Mills theory ([3], [22]), Kaluza-Klein theory ([2], [11), Supergravity and superstring theories ([12], [13]), etc.

The paper is organized as follows. In section 2 we remind some notions which is neeed for this paper. In section 3 we give the definition of the v-semi-slant submersion and obtain some interesting properties on it. In section 4 we construct some examples of the v -semi-slant submersion.

2. Preliminaries

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds, where M, N are C^{∞}-manifolds and g_{M}, g_{N} are Riemannian metrics, and $F: M \mapsto N$ a C^{∞}-submersion. The map F is said to be Riemannian submersion if the differential F_{*} preserves the lengths of horizontal vectors [10].

Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold, where J is an almost complex structure. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a slant submersion if the angle $\theta=\theta(X)$ between $J X$ and the space $\operatorname{ker}\left(F_{*}\right)_{p}$ is constant for any nonzero $X \in T_{p} M$ and $p \in M$ [19].

We call θ a slant angle.
A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a semi-invariant submersion if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}, J\left(\mathcal{D}_{2}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

[^0]where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$ [19].
A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a semi-slant submersion if there is a distribution $\mathcal{D}_{1} \subset \operatorname{ker} F_{*}$ such that
$$
\operatorname{ker} F_{*}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1},
$$
and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\operatorname{ker} F_{*}$.

We call the angle θ a semi-slant angle.
Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds and $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ a smooth map. The second fundamental form of F is given by

$$
\left(\nabla F_{*}\right)(X, Y):=\nabla_{X}^{F} F_{*} Y-F_{*}\left(\nabla_{X} Y\right) \quad \text { for } X, Y \in \Gamma(T M)
$$

where ∇^{F} is the pullback connection and we denote conveniently by ∇ the LeviCivita connections of the metrics g_{M} and g_{N} 4]. Recall that F is said to be harmonic if trace $\left(\nabla F_{*}\right)=0$ and F is called a totally geodesic map if $\left(\nabla F_{*}\right)(X, Y)=$ 0 for $X, Y \in \Gamma(T M)$ 4].

3. V-SEMI-SLANT SUBMERSIONS

Definition 3.1. Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold and (N, g_{N}) a Riemannian manifold. A Riemannian submersion $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ is called a v-semi-slant submersion if there is a distribution $\mathcal{D}_{1} \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1},
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

We call the angle θ a v-semi-slant angle.
Remark 3.2. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then there is a distribution $\mathcal{D}_{1} \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, \quad J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

If $\mathcal{D}_{2}=\left(\operatorname{ker} F_{*}\right)^{\perp}$, then we call the map F a v-slant submersion and the angle θ v-slant angle [19]. Otherwise, if $\theta=\frac{\pi}{2}$, then we call the map F a v-semi-invariant submersion [20].

Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then there is a distribution $\mathcal{D}_{1} \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Then for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we have

$$
X=P X+Q X
$$

where $P X \in \Gamma\left(\mathcal{D}_{1}\right)$ and $Q X \in \Gamma\left(\mathcal{D}_{2}\right)$.
For $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we get

$$
J X=\phi X+\omega X
$$

where $\phi X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\omega X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
For $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
J Z=B Z+C Z
$$

where $B Z \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $C Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
For $U \in \Gamma(T M)$, we have

$$
U=\mathcal{V} U+\mathcal{H} U
$$

where $\mathcal{V} U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\mathcal{H} U \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Then

$$
\operatorname{ker} F_{*}=B \mathcal{D}_{2} \oplus \mu,
$$

where μ is the orthogonal complement of $B \mathcal{D}_{2}$ in $\operatorname{ker} F_{*}$ and is invariant under J. Furthermore,

$$
\begin{aligned}
& C \mathcal{D}_{1}=\mathcal{D}_{1}, B \mathcal{D}_{1}=0, C \mathcal{D}_{2} \subset \mathcal{D}_{2}, \omega\left(\operatorname{ker} F_{*}\right)=\mathcal{D}_{2} \\
& \phi^{2}+B \omega=-i d, C^{2}+\omega B=-i d, \omega \phi+C \omega=0, B C+\phi B=0
\end{aligned}
$$

Define the tensors \mathcal{T} and \mathcal{A} by

$$
\begin{aligned}
& \mathcal{A}_{E} F=\mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{H} E} \mathcal{H} F \\
& \mathcal{T}_{E} F=\mathcal{H} \nabla_{\mathcal{V} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{V} E} \mathcal{H} F
\end{aligned}
$$

for vector fields E, F on M, where ∇ is the Levi-Civita connection of g_{M}. Define

$$
\widehat{\nabla}_{X} Y:=\mathcal{V} \nabla_{X} Y \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)
$$

Then we easily have
Lemma 3.3. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then we get

$$
\begin{align*}
& \widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y=\phi \widehat{\nabla}_{X} Y+B \mathcal{T}_{X} Y \tag{1}\\
& \mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y=\omega \widehat{\nabla}_{X} Y+C \mathcal{T}_{X} Y
\end{align*}
$$

$$
\text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)
$$

(2)

$$
\begin{aligned}
& \mathcal{V} \nabla_{Z} B W+\mathcal{A}_{Z} C W=\phi \mathcal{A}_{Z} W+B \mathcal{H} \nabla_{Z} W \\
& \mathcal{A}_{Z} B W+\mathcal{H} \nabla_{Z} C W=\omega \mathcal{A}_{Z} W+C \mathcal{H} \nabla_{Z} W
\end{aligned}
$$

$$
\text { for } Z, W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)
$$

(3)

$$
\begin{aligned}
& \hat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z=\phi \mathcal{T}_{X} Z+B \mathcal{H} \nabla_{X} Z \\
& \mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z=\omega \mathcal{T}_{X} Z+C \mathcal{H} \nabla_{X} Z
\end{aligned}
$$

for $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Theorem 3.4. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the slant distribution \mathcal{D}_{2} is integrable if and only if we obtain

$$
\mathcal{A}_{X} Y=0 \quad \text { and } \quad P C\left(\nabla_{X} Y-\nabla_{Y} X\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$
Proof. For $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$ and $Z \in \Gamma\left(\mathcal{D}_{1}\right)$, assume that $\mathcal{A}_{X} Y=\frac{1}{2} \mathcal{V}[X, Y]=0$, we obtain

$$
\begin{aligned}
g_{M}([X, Y], J Z) & =-g_{M}\left(J\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right) \\
& =-g_{M}\left(B \nabla_{X} Y+C \nabla_{X} Y-B \nabla_{Y} X-C \nabla_{Y} X, Z\right) \\
& =-g_{M}\left(C\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right)
\end{aligned}
$$

Therefore, we have the result.
Similarly, we get
Theorem 3.5. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the complex distribution \mathcal{D}_{1} is integrable if and only if we have

$$
\mathcal{A}_{X} Y=0 \quad \text { and } \quad B\left(\nabla_{X} Y-\nabla_{Y} X\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
Lemma 3.6. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then the complex distribution \mathcal{D}_{1} is integrable if and only if we get

$$
\mathcal{A}_{X} Y=0 \quad \text { for } X, Y \in \Gamma\left(\mathcal{D}_{1}\right)
$$

Proof. For $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$ and $Z \in \Gamma\left(\operatorname{ker} F_{*}\right)$, assume that $\mathcal{A}_{X} Y=0$, we have

$$
\begin{aligned}
g_{M}([X, Y], \omega Z) & =g_{M}([X, Y], J Z)=-g_{M}\left(J\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right) \\
& =-g_{M}\left(\mathcal{A}_{X} J Y+\mathcal{H} \nabla_{X} J Y-\mathcal{A}_{Y} J X-\mathcal{H} \nabla_{Y} J X, Z\right) \\
& =-g_{M}\left(\mathcal{A}_{X} J Y-\mathcal{A}_{Y} J X, Z\right)
\end{aligned}
$$

Therefore, the result follows.
In a similar way, we have
Lemma 3.7. Let $\left(M, g_{M}, J\right)$ be a Kähler manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, g_{M}, J\right) \mapsto\left(N, g_{N}\right)$ be a v-semi-slant submersion. Then the slant distribution \mathcal{D}_{2} is integrable if and only if we obtain

$$
\mathcal{A}_{X} Y=0 \quad \text { and } \quad P\left(\left(\mathcal{A}_{X} B Y-\mathcal{A}_{Y} B X\right)+\mathcal{H}\left(\nabla_{X} C Y-\nabla_{Y} C X\right)\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
Proposition 3.8. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we obtain

$$
C^{2} X=-\cos ^{2} \theta X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

where θ denotes the v-semi-slant angle of \mathcal{D}_{2}.

Proof. Since

$$
\cos \theta=\frac{g_{M}(J X, C X)}{|J X| \cdot|C X|}=\frac{-g_{M}\left(X, C^{2} X\right)}{|X| \cdot|C X|}
$$

and $\cos \theta=\frac{|C X|}{|J X|}$, we have

$$
\cos ^{2} \theta=-\frac{g_{M}\left(X, C^{2} X\right)}{|X|^{2}} \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Hence,

$$
C^{2} X=-\cos ^{2} \theta X \quad \text { for } X \in \Gamma\left(\mathcal{D}_{2}\right)
$$

Remark 3.9. It is easy to see that the converse of Proposition 3.8 is also true.
Assume that the v-semi-slant angle θ is not equal to $\frac{\pi}{2}$ and define an endomorphism \widehat{J} of $\left(\operatorname{ker} F_{*}\right)^{\perp}$ by

$$
\widehat{J}:=J P+\frac{1}{\cos \theta} C Q
$$

Then,

$$
\begin{equation*}
\widehat{J}^{2}=-i d \quad \text { on }\left(\operatorname{ker} F_{*}\right)^{\perp} \tag{1}
\end{equation*}
$$

From (1), we have
Theorem 3.10. Let F be a v-semi-slant submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ with the v-semi-slant angle $\theta \in\left[0, \frac{\pi}{2}\right)$. Then N is an even-dimensional manifold.
Proposition 3.11. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution ker F_{*} defines a totally geodesic foliation if and only if

$$
\omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0 \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)
$$

Proof. For $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$,

$$
\begin{aligned}
\nabla_{X} Y= & -J \nabla_{X} J Y=-J\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \phi Y+\mathcal{T}_{X} \omega Y+\mathcal{H} \nabla_{X} \omega Y\right) \\
= & -\left(\phi \widehat{\nabla}_{X} \phi Y+\omega \widehat{\nabla}_{X} \phi Y+B \mathcal{T}_{X} \phi Y+C \mathcal{T}_{X} \phi Y+\phi \mathcal{T}_{X} \omega Y+\omega \mathcal{T}_{X} \omega Y\right. \\
& \left.+B \mathcal{H}_{X} \omega Y+C \mathcal{H} \nabla_{X} \omega Y\right)
\end{aligned}
$$

Thus,

$$
\nabla_{X} Y \in \Gamma\left(\operatorname{ker} F_{*}\right) \Leftrightarrow \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0
$$

Similarly, we have
Proposition 3.12. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation if and only if

$$
\phi\left(\mathcal{V} \nabla_{X} B Y+\mathcal{A}_{X} C Y\right)+B\left(\mathcal{A}_{X} B Y+\mathcal{H} \nabla_{X} C Y\right)=0 \quad \text { for } X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)
$$

Proposition 3.13. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution \mathcal{D}_{1} defines a totally geodesic foliation if and only if

$$
\phi \mathcal{A}_{X} J Y+B \mathcal{H} \nabla_{X} J Y=0 \text { and } Q\left(\omega \mathcal{A}_{X} J Y+C \mathcal{H} \nabla_{X} J Y\right)=0
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$.
Proof. For $X, Y \in \Gamma\left(\mathcal{D}_{1}\right)$, we get

$$
\begin{aligned}
\nabla_{X} Y & =-J \nabla_{X} J Y=-J\left(\mathcal{A}_{X} J Y+\mathcal{H} \nabla_{X} J Y\right) \\
& =-\left(\phi \mathcal{A}_{X} J Y+\omega \mathcal{A}_{X} J Y+B \mathcal{H} \nabla_{X} J Y+C \mathcal{H} \nabla_{X} J Y\right)
\end{aligned}
$$

Hence,

$$
\nabla_{X} Y \in \Gamma\left(\mathcal{D}_{1}\right) \Leftrightarrow \phi \mathcal{A}_{X} J Y+B \mathcal{H} \nabla_{X} J Y=0 \text { and } Q\left(\omega \mathcal{A}_{X} J Y+C \mathcal{H} \nabla_{X} J Y\right)=0
$$

In a similar way, we obtain
Proposition 3.14. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the distribution \mathcal{D}_{2} defines a totally geodesic foliation if and only if

$$
\begin{aligned}
& \phi\left(\mathcal{V} \nabla_{X} B Y+\mathcal{A}_{X} C Y\right)+B\left(\mathcal{A}_{X} B Y+\mathcal{H} \nabla_{X} C Y\right)=0 \\
& P\left(\omega\left(\mathcal{V} \nabla_{X} B Y+\mathcal{A}_{X} C Y\right)+C\left(\mathcal{A}_{X} B Y+\mathcal{H} \nabla_{X} C Y\right)\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\mathcal{D}_{2}\right)$.
Theorem 3.15. Let F be a v-semi-slant submersion from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then F is a totally geodesic map if and only if

$$
\begin{aligned}
& \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0 \\
& \omega\left(\widehat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z\right)+C\left(\mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z\right)=0
\end{aligned}
$$

for $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Since F is a Riemannian submersion, we obtain

$$
\left(\nabla F_{*}\right)\left(Z_{1}, Z_{2}\right)=0 \quad \text { for } Z_{1}, Z_{2} \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)
$$

For $X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we have

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, Y)= & -F_{*}\left(\nabla_{X} Y\right)=F_{*}\left(J \nabla_{X}(\phi Y+\omega Y)\right) \\
= & F_{*}\left(\phi \widehat{\nabla}_{X} \phi Y+\omega \widehat{\nabla}_{X} \phi Y+B \mathcal{T}_{X} \phi Y+C \mathcal{T}_{X} \phi Y+\phi \mathcal{T}_{X} \omega Y+\omega \mathcal{T}_{X} \omega Y\right. \\
& \left.+B \mathcal{H} \nabla_{X} \omega Y+C \mathcal{H} \nabla_{X} \omega Y\right)
\end{aligned}
$$

Thus,

$$
\left(\nabla F_{*}\right)(X, Y)=0 \Leftrightarrow \omega\left(\widehat{\nabla}_{X} \phi Y+\mathcal{T}_{X} \omega Y\right)+C\left(\mathcal{T}_{X} \phi Y+\mathcal{H} \nabla_{X} \omega Y\right)=0
$$

For $X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $Z \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we get

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, Z)= & -F_{*}\left(\nabla_{X} Z\right)=F_{*}\left(J \nabla_{X}(B Z+C Z)\right) \\
= & F_{*}\left(\phi \widehat{\nabla}_{X} B Z+\omega \widehat{\nabla}_{X} B Z+B \mathcal{T}_{X} B Z+C \mathcal{T}_{X} B Z+\phi \mathcal{T}_{X} C Z+\omega \mathcal{T}_{X} C Z\right. \\
& \left.+B \mathcal{H} \nabla_{X} C Z+C \mathcal{H} \nabla_{X} C Z\right)
\end{aligned}
$$

Hence,

$$
\left(\nabla F_{*}\right)(X, Z)=0 \Leftrightarrow \omega\left(\widehat{\nabla}_{X} B Z+\mathcal{T}_{X} C Z\right)+C\left(\mathcal{T}_{X} B Z+\mathcal{H} \nabla_{X} C Z\right)=0 .
$$

Since $\left(\nabla F_{*}\right)(X, Z)=\left(\nabla F_{*}\right)(Z, X)$, the result follows.
Let $F:\left(M, g_{M}\right) \mapsto\left(N, g_{N}\right)$ be a Riemannian submersion. The map F is called a Riemannian submersion with totally umbilical fibers if

$$
\begin{equation*}
\mathcal{T}_{X} Y=g_{M}(X, Y) H \quad \text { for } X, Y \in \Gamma\left(\operatorname{ker} F_{*}\right), \tag{2}
\end{equation*}
$$

where H is the mean curvature vector field of the fiber.
Then we obtain
Lemma 3.16. Let F be a v-semi-slant submersion with totally umbilical fibers from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we have

$$
H \in \Gamma\left(\mathcal{D}_{2}\right) .
$$

Proof. For $X, Y \in \Gamma(\mu)$ and $W \in \Gamma\left(\mathcal{D}_{1}\right)$, we get

$$
\mathcal{T}_{X} J Y+\hat{\nabla}_{X} J Y=\nabla_{X} J Y=J \nabla_{X} Y=B \mathcal{T}_{X} Y+C \mathcal{T}_{X} Y+\phi \hat{\nabla}_{X} Y+\omega \widehat{\nabla}_{X} Y
$$

Using (2), we easily obtain

$$
g_{M}(X, J Y) g_{M}(H, W)=-g_{M}(X, Y) g_{M}(H, J W) .
$$

Interchanging the role of X and Y, we get

$$
g_{M}(Y, J X) g_{M}(H, W)=-g_{M}(Y, X) g_{M}(H, J W)
$$

so that combining the above two equations, we have

$$
g_{M}(X, Y) g_{M}(H, J W)=0,
$$

which means $H \in \Gamma\left(\mathcal{D}_{2}\right)$.
Corollary 3.17. Let F be a v-semi-slant submersion with totally umbilical fibers from a Kähler manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that $\mathcal{D}_{1}=\left(\operatorname{ker} F_{*}\right)^{\perp}$. Then each fiber is minimal.
Remark 3.18. Let F be a v-semi-slant submersion from a Kähler manifold (M, g_{M}, J) onto a Riemannian manifold $\left(N, g_{N}\right)$. Then there is a distribution $\mathcal{D}_{1} \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ such that

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\mathcal{D}_{1} \oplus \mathcal{D}_{2}, J\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1},
$$

and the angle $\theta=\theta(X)$ between $J X$ and the space $\left(\mathcal{D}_{2}\right)_{p}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}\right)_{p}$ and $p \in M$, where \mathcal{D}_{2} is the orthogonal complement of \mathcal{D}_{1} in $\left(\operatorname{ker} F_{*}\right)^{\perp}$. Furthermore,

$$
C \mathcal{D}_{2} \subset \mathcal{D}_{2}, \quad B \mathcal{D}_{2} \subset \operatorname{ker} F_{*}, \quad \operatorname{ker} F_{*}=B \mathcal{D}_{2} \oplus \mu,
$$

where μ is the orthogonal complement of $B \mathcal{D}_{2}$ in ker F_{*} and is invariant under J. For the curvature tensor, it is sufficient to calculate the holomorphic sectional curvatures in a Kähler manifold.

Given a plane P being invariant by J in $T_{p} M, p \in M$, there is an orthonormal basis $\{X, J X\}$ of P. Denote by $K(P), K_{*}(P)$, and $\widehat{K}(P)$ the sectional curvatures of the plane P in M, N, and the fiber $F^{-1}(F(p))$, respectively, where $K_{*}(P)$ denotes the sectional curvature of the plane $P_{*}=<F_{*} X, F_{*} J X>$ in N. Let $K(X \wedge Y)$ be the sectional curvature of the plane spanned by the tangent vectors $X, Y \in T_{p} M$, $p \in M$. Using both Corollary 1 of [14, p.465] and (1.28) of [7, p.13], we obtain the following :
(1) If $P \subset(\mu)_{p}$, then with some computations we have

$$
K(P)=\widehat{K}(P)+\left|\mathcal{T}_{X} X\right|^{2}-\left|\mathcal{T}_{X} J X\right|^{2}-g_{M}\left(\mathcal{T}_{X} X, J[J X, X]\right)
$$

(2) If $P \subset\left(\mathcal{D}_{2} \oplus B \mathcal{D}_{2}\right)_{p}$ with $X \in\left(\mathcal{D}_{2}\right)_{p}$, then we get

$$
\begin{aligned}
K(P)= & \sin ^{2} \theta \cdot K(X \wedge B X)+2\left(g_{M}\left(\left(\nabla_{X} \mathcal{A}\right)(X, C X), B X\right)+g_{M}\left(\mathcal{A}_{X} C X, \mathcal{T}_{B X} X\right)\right. \\
& \left.-g_{M}\left(\mathcal{A}_{C X} X, \mathcal{T}_{B X} X\right)-g_{M}\left(\mathcal{A}_{X} X, \mathcal{T}_{B X} C X\right)\right)+\cos ^{2} \theta \cdot K(X \wedge C X)
\end{aligned}
$$

(3) If $P \subset\left(\mathcal{D}_{1}\right)_{p}$, then we obtain

$$
K(P)=K_{*}(P)-3\left|\mathcal{V} J \nabla_{X} X\right|^{2}
$$

4. Examples

Example 4.1. Let $\left(M, g_{M}, J\right)$ be an almost Hermitian manifold. Let $\pi: T M \mapsto M$ be the natural projection. Then the map π is a v-semi-slant submersion such that $\mathcal{D}_{1}=\left(\operatorname{ker} \pi_{*}\right)^{\perp}$ 7].
Example 4.2. Let $\left(M, g_{M}, J\right)$ be a $2 m$-dimensional almost Hermitian manifold and $\left(N, g_{N}\right)$ a $(2 m-1)$-dimensional Riemannian manifold. Let F be a Riemannian submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=\left(\left(\operatorname{ker} F_{*}\right) \oplus J\left(\operatorname{ker} F_{*}\right)\right)^{\perp} \quad \text { and } \quad \mathcal{D}_{2}=J\left(\operatorname{ker} F_{*}\right)
$$

with the v-semi-slant angle $\theta=\frac{\pi}{2}$.
Example 4.3. Define a map $F: \mathbb{R}^{6} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \cdots, x_{6}\right)=\left(x_{1}, x_{3} \sin \alpha-x_{5} \cos \alpha, x_{6}, x_{2}\right)
$$

where $\alpha \in\left(0, \frac{\pi}{2}\right)$. Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}>\text { and } \mathcal{D}_{2}=<\frac{\partial}{\partial x_{6}}, \sin \alpha \frac{\partial}{\partial x_{3}}-\cos \alpha \frac{\partial}{\partial x_{5}}>
$$

with the v-semi-slant angle $\theta=\alpha$.
Example 4.4. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \cdots, x_{8}\right)=\left(x_{4}, x_{3}, \frac{x_{5}-x_{8}}{\sqrt{2}}, x_{6}\right)
$$

Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=<\frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}>\text { and } \mathcal{D}_{2}=<\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{5}}-\frac{\partial}{\partial x_{8}}>
$$

with the v -semi-slant angle $\theta=\frac{\pi}{4}$.
Example 4.5. Define a map $F: \mathbb{R}^{12} \mapsto \mathbb{R}^{5}$ by

$$
F\left(x_{1}, x_{2}, \cdots, x_{12}\right)=\left(x_{2}, \frac{x_{5}+x_{6}}{\sqrt{2}}, \frac{x_{7}+x_{9}}{\sqrt{2}}, \frac{x_{8}+x_{10}}{\sqrt{2}}, x_{1}\right) .
$$

Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{7}}+\frac{\partial}{\partial x_{9}}, \frac{\partial}{\partial x_{8}}+\frac{\partial}{\partial x_{10}}>\text { and } \mathcal{D}_{2}=<\frac{\partial}{\partial x_{5}}+\frac{\partial}{\partial x_{6}}>
$$

with the v -semi-slant angle $\theta=\frac{\pi}{2}$.

Example 4.6. Define a map $F: \mathbb{R}^{10} \mapsto \mathbb{R}^{6}$ by

$$
F\left(x_{1}, x_{2}, \cdots, x_{10}\right)=\left(\frac{x_{3}-x_{5}}{\sqrt{2}}, x_{6}, \frac{x_{7}+x_{9}}{\sqrt{2}}, x_{8}, x_{1}, x_{2}\right)
$$

Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}>\text { and } \mathcal{D}_{2}=<\frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{8}}, \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{7}}+\frac{\partial}{\partial x_{9}}>
$$

with the v-semi-slant angle $\theta=\frac{\pi}{4}$.
Example 4.7. Define a map $F: \mathbb{R}^{8} \mapsto \mathbb{R}^{4}$ by

$$
F\left(x_{1}, x_{2}, \cdots, x_{8}\right)=\left(x_{1}, x_{3} \cos \alpha-x_{5} \sin \alpha, x_{2}, x_{4} \sin \beta+x_{6} \cos \beta\right)
$$

where α and β are constant. Then the map F is a v-semi-slant submersion such that

$$
\mathcal{D}_{1}=<\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}>\text { and } \mathcal{D}_{2}=<\cos \alpha \frac{\partial}{\partial x_{3}}-\sin \alpha \frac{\partial}{\partial x_{5}}, \sin \beta \frac{\partial}{\partial x_{4}}+\cos \beta \frac{\partial}{\partial x_{6}}>
$$

with the v-semi-slant angle θ with $\cos \theta=|\sin (\alpha-\beta)|$.

References

[1] A. Bejancu, Geometry of CR-submaniflods, Kluwer Academic, 1986.
[2] J. P. Bourguignon, H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Semin. Mat. Torino Fasc. Spec. (1989), 143-163.
[3] J. P. Bourguignon, H. B. Lawson, Stability and isolation phenomena for Yang-mills fields, Commum. Math. Phys. (1981), 79, 189-230.
[4] P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, Oxford science publications, 2003.
[5] B. Y. Chen, Geometry of slant submaniflods, Katholieke Universiteit Leuven, Leuven, 1990.
[6] V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry 1. Vector multiplets, J. High Energy Phys. (2004), 03, 028.
[7] M. Falcitelli, S. Ianus, and A. M. Pastore, Riemannian submersions and related topics, World Scientific Publishing Co., 2004.
[8] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech, (1967), 16, 715-737.
[9] S. Ianus, A. M. Ionescu, R. Mazzocco, G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, arXiv: 1102.1570v1 [math. DG].
[10] S. Ianus, R. Mazzocco, G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta. Appl. Math.(2008) 104, 83-89.
[11] S. Ianus, M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf manifolds, Class. Quantum Gravity (1987), 4, 1317-1325.
[12] S. Ianus, M. Visinescu, Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, (1991), 358-371, World Scientific, River Edge.
[13] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. (2000), 41(10), 6918-6929.
[14] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J., (1966), 13, 458-469.
[15] K. S. Park, H-slant submersions, Bull. Korean Math. Soc. (2012), 49 No. 2, 329-338.
[16] K. S. Park, H-semi-invariant submersions, Taiwan. J. Math., Accepted.
[17] K. S. Park, H-semi-slant submersions, Preprint (2011).
[18] K. S. Park, R. Prasad Semi-slant submersions, Preprint (2011).
[19] B. Sahin, slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome (2011), 54(102) No. 1, 93-105.
[20] B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. (2011), 54, No. 3.
[21] B. Watson, Almost Hermitian submersions, J. Differential Geom.(1976), 11(1), 147-165.
[22] B. Watson, G, G^{\prime}-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Rassias, T. (ed.) Global Analysis - Analysis on manifolds, dedicated M. Morse. Teubner-Texte Math., (1983), 57, 324-349, Teubner, Leipzig.

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic of Korea

E-mail address: parkksn@gmail.com

[^0]: 2000 Mathematics Subject Classification. 53C15; 53C43.
 Key words and phrases. Riemannian submersion and slant angle and totally geodesic.

