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Abstract

We study certain multiple ergodic averages of an iterated func-
tions system generated by two contractions on the unit interval. By
using the dynamical coding {0, 1}N of the attractor, we compute the
Hausdorff dimension of the set of points with a given frequency of the
pattern 11 in positions k, 2k.

1 Introduction and statement of results

Initiated by the paper of Fan Liao and Ma [FLM], the study of the multiple
ergodic average from a point view of multifractal analysis have attracted
much attention. The major achievements have been made by Fan, Kenyon,
Peres, Schmeling, Seuret, Solomyak, Wu and et al. ([KPS11, FSW11, KPS12,
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PS12a, PS12b, FSW12a, FSW12b, PSSS12]). For a short history, we refer
the readers to the paper of Peres and Solomyak [PS12b].

Considered the symbolic space Σ = {0, 1}N with the metric d(x, y) =
2−min{n: xn 6=yn}. In [FLM], the authors proposed to calculate the Hausdorff
dimension spectrum of level sets of multiple ergodic averages. Among others,
they asked the Hausdorff dimension of

Aα :=
{

(ωk)∞1 ∈ Σ : lim
n→∞

1

n

n
∑

k=1

ωkω2k = α
}

(α ∈ [0, 1]). (1.1)

As a first step to solve the question, they also suggested to study a subset of
A0:

A :=
{

(ωk)∞1 ∈ Σ : ωkω2k = 0 for all k ≥ 1
}

. (1.2)

The Hausdorff dimension of A was later given by Kenyon, Peres and
Solomyak [KPS12].

Theorem 1.1 (Kenyon-Peres-Solomyak). We have

dimH A = − log(1 − p),

where p ∈ [0, 1] is the unique solution of the equation

p2 = (1 − p)3.

Enlightened by the idea of [KPS12], the question about Aα was finally an-
swered by Peres and Solomyak [PS12b], and independently by Fan, Schmeling
and Wu [FSW12a].

Theorem 1.2 (Peres-Solomyak, Fan-Schmeling-Wu). For any α ∈ [0, 1], we
have

dimH Aα = − log(1 − p) −
α

2
log

q(1 − p)

p(1 − q)
,

where (p, q) ∈ [0, 1]2 is the unique solution of the system

{

p2(1 − q) = (1 − p)3,
2pq = α(2 + p− q).

We remark that a more general result on the Hausdorff dimension spec-
trum of level sets of multiple ergodic averages for a function depending only
on one coordinate in Σ has been obtained in [FSW12a].

However, since the Lyapunov exponent is constant for the shift trans-
formation on the symbolic space, what is obtained is in fact the entropy
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spectrum, i.e., the entropy (Bowen’s definition see [Bow73]) of level sets of
the multiple ergodic averages.

Consider a piecewise linear map T on the unit interval with two branches.
Let I0, I1 ⊂ [0, 1] be two closed intervals intersecting at most on one point.
Let us also assume that 0 ∈ I0 and 1 ∈ I1. Suppose that on I0, I1, the map
T is bijective and linear onto [0, 1] with slops e−λ0 = 1/|I0| and e−λ1 = 1/|I1|
(λ0, λ1 > 0) correspondingly. Let

JT := ∩∞
n=1T

−n[0, 1].

Then (JT , T ) becomes a dynamical system. Similarly to [FLM, PS12b,
FSW12a], We would like to study the following sets

L :=
{

x ∈ [0, 1] : 1I1(T
kx)1I1(T

2kx) = 0, for all k
}

,

and

Lα :=

{

x ∈ [0, 1] : lim
n→∞

1

n

n
∑

k=1

1I1(T
kx)1I1(T

2kx) = α

}

(α ∈ [0, 1]).

For convenience, we will study a corresponding iterated function system
and its natural coding. Let {f0, f1} be an iterated function system on [0, 1]
given by

f0(x) = e−λ0x, f1(x) = e−λ1x + 1 − e−λ1 , (λ0, λ1 > 0)

satisfying the open set condition, i.e., e−λ0 + e−λ1 ≤ 1. It has the usual
symbolic description by Σ = {0, 1}N with a natural projection

π(ω) = lim
n→∞

fω1
◦ fω2

◦ . . . ◦ fωn(0).

Let us define in Σ the subsets A and Aα by (1.1), (1.2). Up to a countable
set, the sets L, Lα can be written as

L = π(A), Lα = π(Aα).

We remark that if λ0 = λ1 = λ, i.e., the Lyapunov exponent is constant,
then

dimH L =
dimH A

λ/ log 2
, dimH Lα =

dimH Aα

λ/ log 2
.

Furthermore, if λ0 = λ1 = log 2, then π(Σ) = [0, 1], and the Hausdorff
dimensions of L, Lα are the same as those of A,Aα. Our goal is to calculate
the Hausdorff dimension of sets L and Lα for λ0 6= λ1.

Our results are as follows:
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Theorem 1.3. We have

dimH L = dimH L0 = −
log(1 − p)

λ0
,

where p ∈ [0, 1] is the unique solution of the equation

p2λ0 = (1 − p)2λ1+λ0 .

For any α ∈ (0, 1], we have

dimH Lα =
α log p(1−q)

(1−p)q
− 2 log(1 − p)

2λ0
,

where (p, q) ∈ [0, 1]2 is the unique solution of the system







α(λ1 − λ0) log
p(1 − q)

(1 − p)q
+ λ0 log

p2(1 − q)

1 − p
− 2λ1 log(1 − p) = 0,

2pq = α(2 + p− q).

The paper is strongly related to [PS12b], we mostly repeat the calcu-
lations there in a more complicated situation. For the lacking details, in
particular for [PS12b, Lemma 2] we refer the reader there. In the following
two sections we calculate the lower bound: in Section 2 we introduce a family
of measures and then we find the measure in this family that is supported
on the set Lα and has maximal Hausdorff dimension, in Section 3 we find a
formula for this dimension. In Section 4 we check that this formula is also
the upper bound for the dimension of Lα.

2 Telescopic product measures

The same measures that were used to calculate the entropy spectrum (see
[PS12b]) will be useful for the Hausdorff spectrum as well.

Let us start from the multiplicative golden shift case. Given p ∈ [0, 1],
let µp be a probability measure on S given by

– if k is odd then ωk = 1 with probability p,

– if k is even and ωk/2 = 0 then ωk = 1 with probability p,

– if k is even and ωk/2 = 1 then ωk = 0.
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Precisely, let (p0, p1) := (1 − p, p) and let

(

p00 p01
p10 p11

)

:=

(

1 − p p
1 0

)

.

Then the measure µp of a cylinder is given by

µp([ω1 · · ·ωn]) =

⌈n/2⌉
∏

k=1

pω2k−1
·

⌊n/2⌋
∏

k=1

pωkω2k
,

where ⌈·⌉, ⌊·⌋ denote the ceiling function and the integer part function cor-
respondingly.

Let νp = π∗µp. The Hausdorff dimension of L will turn out to be the
supremum of Hausdorff dimensions of νp.

Similarly, to deal with the spectrum of the sets Lα we will define a family
of probabilistic measures of two parameters. Given p, q ∈ [0, 1] we define a
measure µp,q on Σ as

– if k is odd then ωk = 1 with probability p,

– if k is even and ωk/2 = 0 then ωk = 1 with probability p,

– if k is even and ωk/2 = 1 then ωk = 1 with probability q.

Similarly, if we let (p0, p1) := (1 − p, p) and let

(

p00 p01
p10 p11

)

:=

(

1 − p p
1 − q q

)

,

then we have

µp,q([ω1 · · ·ωn]) =

⌈n/2⌉
∏

k=1

pω2k−1
·

⌊n/2⌋
∏

k=1

pωkω2k
.

Once again, let νp,q = π∗µp,q. Please note that this notation is a little bit
different from that in [PS12b]. Note also that µp = µp,0.

Lemma 2.1. We have

µp,q(Sα) = 1

for

α =
2pq

2 + p− q
.
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Proof. This lemma is proven in [PS12b, Lemma 3]. However, we will need
this proof as a starting point for the proof of Lemma 2.2.

Denote

xn(ω) =
2

n

n
∑

k=n/2+1

ωk.

For a µp,q-typical ω the Law of Large Numbers implies

x2n(ω) =
1

2
p +

xn(ω)

2
q +

1 − xn(ω)

2
p + o(1).

Hence, as k → ∞,

x2kn(ω) →
2p

2 + p− q
.

By [PS12b, Lemma 5], it implies that µp,q-almost surely

lim
n→∞

xn(ω) =
2p

2 + p− q
. (2.1)

Then, for µp,q-a.e. ω,

2

n

n
∑

k=n/2+1

ωkω2k = xn(ω)(q + o(1)) →
2pq

2 + p− q
.

Thus the assertion follows.

Let us denote

H(p) = −p log p− (1 − p) log(1 − p)

with convention H(0) = H(1) = 0.

Lemma 2.2. We have

dimH νp =
2H(p)

2pλ1 + (2 − p)λ0

,

and

dimH νp,q =
(2 − q)H(p) + pH(q)

2pλ1 + (2 − p− q)λ0

.

Proof. As νp = νp,0, it is enough to prove the second part of the assertion.
For ω ∈ Σ denote

Cn(ω) = {τ ∈ Σ; τk = ωk ∀k ≤ n}.

6



Let

hn(ω) := log µp,q(C2n(ω)) − logµp,q(Cn(ω))

and
λn(ω) := log diam π(C2n(ω)) − log diam π(Cn(ω)).

By the Law of Large Numbers, for µp,q-typical ω and for big enough n we
have

2

n
hn(ω) = (2−xn(ω))(p log p+(1−p) log p)+xn(ω)(q log q+(1−q) log(1−q))+o(1)

and

2

n
λn(ω) = (2 − xn(ω))(−pλ1 − (1 − p)λ0) + xn(ω)(−qλ1 − (1 − q)λ0) + o(1).

Thus, by (2.1)

hn(ω)

λn(ω)
→

(2 − q)H(p) + pH(q)

2pλ1 + (2 − p− q)λ0
µp,q − a.e.

Hence, for µp,q-a.e. ω we have

lim
n→∞

log νp,q(π(Cn(ω)))

log diam π(Cn(ω))
=

(2 − q)H(p) + pH(q)

2pλ1 + (2 − p− q)λ0
.

We will denote

γα =

{

(p, q) ∈ [0, 1]2 : α =
2pq

2 + p− q

}

.

Lemma 2.3. The maximal Hausdorff dimension among measures νp is achieved
for p satisfying

p2λ0 = (1 − p)2λ1+λ0 . (2.2)

For α ∈ (0, 1), the maximal Hausdorff dimension among measures {νp,q :
(p, q) ∈ γα} is achieved for (p, q) satisfying

α(λ1 − λ0) log
p(1 − q)

(1 − p)q
+ λ0 log

p2(1 − q)

1 − p
− 2λ1 log(1 − p) = 0. (2.3)

Such (p, q) is unique in γα and is always in (0, 1)2.
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Proof. Let us start from the second part of assertion. We need to find the
maximum of the function

D(p, q) =
(2 − q)H(p) + pH(q)

2pλ1 + (2 − p− q)λ0

over the curve γα. For α > 0 this curve’s endpoints are (1, 3α/(2 + α)) and
(α/(2 + α), 1). Moreover, we have

dα =
2

(2 + p− q)2
(q(2 − q)dp + p(2 + p)dq).

Hence, we need to solve the equation

p(2 + p)
∂D

∂p
− q(2 − q)

∂D

∂q
= 0.

After expanding the left hand side and collecting the terms, it turns out that
it is divisible by p(2 − q). We get

(2pqλ1 + (4 + 2p− 2q − 2pq)λ0) · log p

+((−4 − 2p + 2q − 2pq)λ1 + (−2 − p + q + 2pq)λ0) · log(1 − p)

+(−2pqλ1 + 2pqλ0) · log q

+(2pqλ1 + (2 + p− q − 2pq)λ0) · log(1 − q) = 0.

(2.4)

It will be convenient to use β = 2/α. As (p, q) ∈ γα, we have

2 + p− q = βpq.

Substituting this into (2.4), we get

(2λ1 + (2β − 2)λ0) log p + ((−2β − 2)λ1 + (−β + 2)λ0) log(1 − p)

+(−2λ1 + 2λ0) log q + (2λ1 + (β − 2)λ0) log(1 − q) = 0
(2.5)

and (2.3) follows.
To get the first part of assertion it is enough to remove all terms with q

and substitute α = 0 into (2.3).
What remains is the third part of the assertion. Denoting by F (p, q) the

left hand side of (2.5), we have

F (1, 3α/(2 + α)) = ∞

and
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F (α/(2 + α), 1) = −∞.

We will check that F restricted to γα is strictly monotone. We have

p(p + 2)
∂F

∂p
− q(2 − q)

∂F

∂q
= λ0((2β − 2)(p + 2) − 2(2 − q)) + spt,

where spt stands for some positive terms (in particular, all the terms with
λ1 are positive). However, as

(2β − 2)(p + 2) − 2(2 − q) = 2p + 2q + 2(β − 2)(p + 2) > 0,

the coefficient for λ0 is also positive. Hence, F restricted to γα indeed has
no extrema, so it must have only one zero.

Remark. When α = 0, the curve γ0 degenerates into two segments : p = 0 and
q = 0. On the first segment, the dimension of dimH ν0,q is zero. On the second
segment, we have the assertion on νp,0 = νp in Lemma 2.3. When α = 1, the
curve γ1 degenerates into one point (1, 1), and we have dimH ν1,1 = 0.

Remark. The curves γα cover whole (0, 1)2. However, not all pairs (p, q) ∈
(0, 1)2 are solutions of (2.5) for any λ1, λ0. Indeed, we can write (2.5) in the
form

λ1

λ0
a1 + a2 = 0

with
a1 = α log p + (−2 − α) log(1 − p) − α log q + α log(1 − q)

and

a2 = (2 − α) log p + (α− 1) log(1 − p) + α log q + (1 − α) log(1 − q).

Both a1 and a2 converge to ∞ as p → 1 and to −∞ as q → 1. They are also
both strictly monotone on γα, which can be checked like in the third part of
the proof of Lemma 2.3 (using (2 − α)(p + 2) > α(2 − q) in case of a2), so
they both have unique zeros. As the equation

ra1 + a2 = 0

can have positive solution only if a1 and a2 have different signs, only those
(p, q) ∈ γα between zeros of a1 and a2, or equivalently satisfying

α log
p(1 − q)

(1 − p)q
> max

(

2 log(1 − p), log
p2(1 − q)

1 − p

)

,

are solutions of (2.5) for some choice of λ1, λ0.
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Remark. The measures µp,q for p = q are Bernoulli. Each γα intersects
the diagonal {p = q} in exactly one point (α1/2, α1/2) and at this point
a1 > 0, a2 < 0. So, (2.5) has a Bernoulli measure as a solution for each
α ∈ (0, 1). It happens when

λ0 log p = λ1 log(1 − p),

that is, when να1/2,α1/2 is the Hausdorff measure (in dimension dimH π(Σ))
on π(Σ).

3 Exact formulas

To be able to provide the upper bounds in the following section, we need
to substitute the results of Lemma 2.3 to Lemma 2.2 and obtain simpler
formulas for our lower bound. We start with the golden shift case. Given
λ1, λ0 let p be given by (2.2).

Lemma 3.1. We have

dimH νp = −
log(1 − p)

λ0
.

Proof. By Lemma 2.2,

dimH νp =
2H(p)

2pλ1 + (2 − p)λ0

.

Applying (2.2) it is easy to check that

(2pλ1 + (2 − p)λ0) log(1 − p) = −2H(p)λ0

and the assertion follows.

The calculations for the multifractal case are a little bit more complicated.
Given λ1, λ0, and α, let p, q be given by (2.3).

Lemma 3.2. We have

dimH νp,q =
α log p(1−q)

(1−p)q
− 2 log(1 − p)

2λ0
. (3.1)

If λ1 6= λ0 then we have another formula:

dimH νp,q =
log p2(1−q)

(1−p)3

2(λ0 − λ1)
. (3.2)
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Proof. By Lemma 2.2,

dimH νp,q =
(2 − q)H(p) + pH(q)

2pλ1 + (2 − p− q)λ0
.

Using (2.3) one can check that

(2pλ1+(2−p−q)λ0)

(

α log
p(1 − q)

(1 − p)q
− 2 log(1 − p)

)

= 2λ0((2−q)H(p)+pH(q)).

This gives (3.1). Applying (2.3) once again we get

dimH νp,q =
α log p(1−q)

(1−p)q
+ log 1−p

p2(1−q)

2λ1
. (3.3)

Together with (3.1) this gives (3.2).

4 Upper bounds

The last part of the proof is the upper bound.

Lemma 4.1. We have

dimH L ≤ sup
p

dimH νp,

and for all α ∈ [0, 1],

dimH Lα ≤ sup
(p,q)∈γα

dimH νp,q.

Proof. As L ⊂ L0, it is enough to prove the second part of the assertion. Fix
α and let ω ∈ Sα. Let p, q be as in (2.3). We denote for all n ∈ N

Xn
1 = ♯{k ∈ [1, n] : ωk = 1}

and for all even n ∈ N

Xn
11 = ♯{k ∈ [1, n/2] : ωk = ω2k = 1}.

We also denote

h̃n = − logµp,q(Cn(ω))

and
l̃n = − log diam π(Cn(ω)).
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For any even n we have (see [PS12b, Section 4])

−h̃n = n log(1 − p) + X
n/2
1 log

1 − q

1 − p
+ Xn

1 log
p

1 − p
−Xn

11 log
p(1 − q)

(1 − p)q
.

We also have

l̃n = (λ1 − λ0)X
n
1 + nλ0.

Substituting (3.1) and (3.2) we get

l̃n dimH νp,q = −
1

2
Xn

1 log
p2(1 − q)

(1 − p)3
+

n

2

(

α log
p(1 − q)

(1 − p)q
− 2 log(1 − p)

)

.

Hence,

1

n
(l̃n dimH νp,q−h̃n) =

(

α

2
−

Xn
11

n

)

log
p(1 − q)

(1 − p)q
+

1

2

(

X
n/2
1

n/2
−

Xn
1

n

)

log
1 − q

1 − p
.

As the first summand converges to 0 and the second telescopes,

lim inf
n→∞

1

n
(l̃n dimH νp,q − h̃n) ≤ 0

and we are done.
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Fields. Birkhäuser, Boston, 2012, to appear.

[KPS11] Richard Kenyon, Yuval Peres, and Boris Solomyak. Hausdorff di-
mension of the multiplicative golden mean shift. C. R. Math. Acad.

Sci. Paris, 349(11-12):625–628, 2011.

[KPS12] Richard Kenyon, Yuval Peres, and Boris Solomyak. Hausdorff di-
mension for fractals invariant under the multiplicative integers.
Ergodic Theory Dynamical Systems, arXiv:1102.5136, 2012.

[PS12b] Yuval Peres and Boris Solomyak. Dimension spectrum for a non-
conventional ergodic average. Real Anal. Ex., arXiv:1107.1749,
2012.

[PS12a] Yuval Peres and Boris Solomyak. The multiplicative golden mean
shift has infinite Hausdorff measure. In New developments in

Fractals and related Fields. Birkhäuser, Boston, 2012 to appear,
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