Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents

Lingmin Liao *

LAMA UMR 8050, CNRS, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France e-mail: lingmin.liao@u-pec.fr Michał Rams[†]

Institute of Mathematics, Polish Academy of Sciences ul. Śniadeckich 8, 00-956 Warszawa, Poland e-mail: rams@impan.gov.pl

Abstract

We study certain multiple ergodic averages of an iterated functions system generated by two contractions on the unit interval. By using the dynamical coding $\{0,1\}^{\mathbb{N}}$ of the attractor, we compute the Hausdorff dimension of the set of points with a given frequency of the pattern 11 in positions k, 2k.

1 Introduction and statement of results

Initiated by the paper of Fan Liao and Ma [FLM], the study of the multiple ergodic average from a point view of multifractal analysis have attracted much attention. The major achievements have been made by Fan, Kenyon, Peres, Schmeling, Seuret, Solomyak, Wu and et al. ([KPS11, FSW11, KPS12,

^{*}partially supported by 12R03191A - MUTADIS (France).

[†]supported by MNiSW grant N201 607640 (Poland). This paper was written during the visit of M.R. in Université Paris-Est Créteil.

²⁰⁰⁰ Mathematics Subject Classification: Primary 28A80, Secondary 37C45, 28A78

PS12a, PS12b, FSW12a, FSW12b, PSSS12]). For a short history, we refer the readers to the paper of Peres and Solomyak [PS12b].

Considered the symbolic space $\Sigma = \{0,1\}^{\mathbb{N}}$ with the metric $d(x,y) = 2^{-\min\{n: x_n \neq y_n\}}$. In [FLM], the authors proposed to calculate the Hausdorff dimension spectrum of level sets of multiple ergodic averages. Among others, they asked the Hausdorff dimension of

$$A_{\alpha} := \left\{ (\omega_k)_1^{\infty} \in \Sigma : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \omega_k \omega_{2k} = \alpha \right\} \qquad (\alpha \in [0, 1]).$$
(1.1)

As a first step to solve the question, they also suggested to study a subset of A_0 :

$$A := \left\{ (\omega_k)_1^\infty \in \Sigma : \omega_k \omega_{2k} = 0 \quad \text{for all } k \ge 1 \right\}.$$
 (1.2)

The Hausdorff dimension of A was later given by Kenyon, Peres and Solomyak [KPS12].

Theorem 1.1 (Kenyon-Peres-Solomyak). We have

$$\dim_H A = -\log(1-p),$$

where $p \in [0, 1]$ is the unique solution of the equation

$$p^2 = (1-p)^3$$

Enlightened by the idea of [KPS12], the question about A_{α} was finally answered by Peres and Solomyak [PS12b], and independently by Fan, Schmeling and Wu [FSW12a].

Theorem 1.2 (Peres-Solomyak, Fan-Schmeling-Wu). For any $\alpha \in [0, 1]$, we have

$$\dim_H A_{\alpha} = -\log(1-p) - \frac{\alpha}{2}\log\frac{q(1-p)}{p(1-q)}$$

where $(p,q) \in [0,1]^2$ is the unique solution of the system

$$\begin{cases} p^2(1-q) = (1-p)^3, \\ 2pq = \alpha(2+p-q). \end{cases}$$

We remark that a more general result on the Hausdorff dimension spectrum of level sets of multiple ergodic averages for a function depending only on one coordinate in Σ has been obtained in [FSW12a].

However, since the Lyapunov exponent is constant for the shift transformation on the symbolic space, what is obtained is in fact the entropy spectrum, i.e., the entropy (Bowen's definition see [Bow73]) of level sets of the multiple ergodic averages.

Consider a piecewise linear map T on the unit interval with two branches. Let $I_0, I_1 \subset [0, 1]$ be two closed intervals intersecting at most on one point. Let us also assume that $0 \in I_0$ and $1 \in I_1$. Suppose that on I_0, I_1 , the map T is bijective and linear onto [0, 1] with slops $e^{-\lambda_0} = 1/|I_0|$ and $e^{-\lambda_1} = 1/|I_1|$ $(\lambda_0, \lambda_1 > 0)$ correspondingly. Let

$$J_T := \bigcap_{n=1}^{\infty} T^{-n}[0,1].$$

Then (J_T, T) becomes a dynamical system. Similarly to [FLM, PS12b, FSW12a], We would like to study the following sets

$$L := \left\{ x \in [0,1] : \mathbf{1}_{I_1}(T^k x) \mathbf{1}_{I_1}(T^{2k} x) = 0, \text{ for all } k \right\},\$$

and

$$L_{\alpha} := \left\{ x \in [0,1] : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}_{I_1}(T^k x) \mathbb{1}_{I_1}(T^{2k} x) = \alpha \right\} \quad (\alpha \in [0,1]).$$

For convenience, we will study a corresponding iterated function system and its natural coding. Let $\{f_0, f_1\}$ be an iterated function system on [0, 1]given by

$$f_0(x) = e^{-\lambda_0}x, \quad f_1(x) = e^{-\lambda_1}x + 1 - e^{-\lambda_1}, \qquad (\lambda_0, \lambda_1 > 0)$$

satisfying the open set condition, i.e., $e^{-\lambda_0} + e^{-\lambda_1} \leq 1$. It has the usual symbolic description by $\Sigma = \{0, 1\}^{\mathbb{N}}$ with a natural projection

$$\pi(\omega) = \lim_{n \to \infty} f_{\omega_1} \circ f_{\omega_2} \circ \ldots \circ f_{\omega_n}(0).$$

Let us define in Σ the subsets A and A_{α} by (1.1), (1.2). Up to a countable set, the sets L, L_{α} can be written as

$$L = \pi(A), \quad L_{\alpha} = \pi(A_{\alpha}).$$

We remark that if $\lambda_0 = \lambda_1 = \lambda$, i.e., the Lyapunov exponent is constant, then

$$\dim_H L = \frac{\dim_H A}{\lambda/\log 2}, \quad \dim_H L_\alpha = \frac{\dim_H A_\alpha}{\lambda/\log 2}.$$

Furthermore, if $\lambda_0 = \lambda_1 = \log 2$, then $\pi(\Sigma) = [0, 1]$, and the Hausdorff dimensions of L, L_{α} are the same as those of A, A_{α} . Our goal is to calculate the Hausdorff dimension of sets L and L_{α} for $\lambda_0 \neq \lambda_1$.

Our results are as follows:

Theorem 1.3. We have

$$\dim_H L = \dim_H L_0 = -\frac{\log(1-p)}{\lambda_0},$$

where $p \in [0, 1]$ is the unique solution of the equation

$$p^{2\lambda_0} = (1-p)^{2\lambda_1 + \lambda_0}$$

For any $\alpha \in (0, 1]$, we have

$$\dim_H L_{\alpha} = \frac{\alpha \log \frac{p(1-q)}{(1-p)q} - 2\log(1-p)}{2\lambda_0},$$

where $(p,q) \in [0,1]^2$ is the unique solution of the system

$$\begin{cases} \alpha(\lambda_1 - \lambda_0) \log \frac{p(1-q)}{(1-p)q} + \lambda_0 \log \frac{p^2(1-q)}{1-p} - 2\lambda_1 \log(1-p) = 0, \\ 2pq = \alpha(2+p-q). \end{cases}$$

The paper is strongly related to [PS12b], we mostly repeat the calculations there in a more complicated situation. For the lacking details, in particular for [PS12b, Lemma 2] we refer the reader there. In the following two sections we calculate the lower bound: in Section 2 we introduce a family of measures and then we find the measure in this family that is supported on the set L_{α} and has maximal Hausdorff dimension, in Section 3 we find a formula for this dimension. In Section 4 we check that this formula is also the upper bound for the dimension of L_{α} .

2 Telescopic product measures

The same measures that were used to calculate the entropy spectrum (see [PS12b]) will be useful for the Hausdorff spectrum as well.

Let us start from the multiplicative golden shift case. Given $p \in [0, 1]$, let μ_p be a probability measure on S given by

- if k is odd then $\omega_k = 1$ with probability p,
- if k is even and $\omega_{k/2} = 0$ then $\omega_k = 1$ with probability p,
- if k is even and $\omega_{k/2} = 1$ then $\omega_k = 0$.

Precisely, let $(p_0, p_1) := (1 - p, p)$ and let

$$\begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} := \begin{pmatrix} 1-p & p \\ 1 & 0 \end{pmatrix}.$$

Then the measure μ_p of a cylinder is given by

$$\mu_p([\omega_1\cdots\omega_n]) = \prod_{k=1}^{\lceil n/2\rceil} p_{\omega_{2k-1}} \cdot \prod_{k=1}^{\lfloor n/2\rfloor} p_{\omega_k\omega_{2k}},$$

where $\lceil \cdot \rceil, \lfloor \cdot \rfloor$ denote the ceiling function and the integer part function correspondingly.

Let $\nu_p = \pi_* \mu_p$. The Hausdorff dimension of *L* will turn out to be the supremum of Hausdorff dimensions of ν_p .

Similarly, to deal with the spectrum of the sets L_{α} we will define a family of probabilistic measures of two parameters. Given $p, q \in [0, 1]$ we define a measure $\mu_{p,q}$ on Σ as

- if k is odd then $\omega_k = 1$ with probability p,

- if k is even and $\omega_{k/2} = 0$ then $\omega_k = 1$ with probability p,
- if k is even and $\omega_{k/2} = 1$ then $\omega_k = 1$ with probability q.

Similarly, if we let $(p_0, p_1) := (1 - p, p)$ and let

$$\begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} := \begin{pmatrix} 1-p & p \\ 1-q & q \end{pmatrix},$$

then we have

$$\mu_{p,q}([\omega_1\cdots\omega_n]) = \prod_{k=1}^{\lceil n/2\rceil} p_{\omega_{2k-1}} \cdot \prod_{k=1}^{\lfloor n/2\rfloor} p_{\omega_k\omega_{2k}}.$$

Once again, let $\nu_{p,q} = \pi_* \mu_{p,q}$. Please note that this notation is a little bit different from that in [PS12b]. Note also that $\mu_p = \mu_{p,0}$.

Lemma 2.1. We have

$$\mu_{p,q}(S_\alpha) = 1$$

for

$$\alpha = \frac{2pq}{2+p-q}.$$

Proof. This lemma is proven in [PS12b, Lemma 3]. However, we will need this proof as a starting point for the proof of Lemma 2.2.

Denote

$$x_n(\omega) = \frac{2}{n} \sum_{k=n/2+1}^n \omega_k.$$

For a $\mu_{p,q}$ -typical ω the Law of Large Numbers implies

$$x_{2n}(\omega) = \frac{1}{2}p + \frac{x_n(\omega)}{2}q + \frac{1 - x_n(\omega)}{2}p + o(1).$$

Hence, as $k \to \infty$,

$$x_{2^k n}(\omega) \to \frac{2p}{2+p-q}.$$

By [PS12b, Lemma 5], it implies that $\mu_{p,q}$ -almost surely

$$\lim_{n \to \infty} x_n(\omega) = \frac{2p}{2+p-q}.$$
(2.1)

Then, for $\mu_{p,q}$ -a.e. ω ,

$$\frac{2}{n}\sum_{k=n/2+1}^{n}\omega_k\omega_{2k} = x_n(\omega)(q+o(1)) \to \frac{2pq}{2+p-q}$$

Thus the assertion follows.

Let us denote

$$H(p) = -p \log p - (1-p) \log(1-p)$$

with convention H(0) = H(1) = 0.

Lemma 2.2. We have

$$\dim_H \nu_p = \frac{2H(p)}{2p\lambda_1 + (2-p)\lambda_0},$$

and

$$\dim_{H} \nu_{p,q} = \frac{(2-q)H(p) + pH(q)}{2p\lambda_{1} + (2-p-q)\lambda_{0}}.$$

Proof. As $\nu_p = \nu_{p,0}$, it is enough to prove the second part of the assertion. For $\omega \in \Sigma$ denote

$$C_n(\omega) = \{ \tau \in \Sigma; \tau_k = \omega_k \ \forall k \le n \}.$$

Let

$$h_n(\omega) := \log \mu_{p,q}(C_{2n}(\omega)) - \log \mu_{p,q}(C_n(\omega))$$

and

$$\lambda_n(\omega) := \log \operatorname{diam} \pi(C_{2n}(\omega)) - \log \operatorname{diam} \pi(C_n(\omega)).$$

By the Law of Large Numbers, for $\mu_{p,q}$ -typical ω and for big enough n we have

$$\frac{2}{n}h_n(\omega) = (2-x_n(\omega))(p\log p + (1-p)\log p) + x_n(\omega)(q\log q + (1-q)\log(1-q)) + o(1)$$

and

$$\frac{2}{n}\lambda_n(\omega) = (2 - x_n(\omega))(-p\lambda_1 - (1 - p)\lambda_0) + x_n(\omega)(-q\lambda_1 - (1 - q)\lambda_0) + o(1).$$

Thus, by (2.1)

$$\frac{h_n(\omega)}{\lambda_n(\omega)} \to \frac{(2-q)H(p) + pH(q)}{2p\lambda_1 + (2-p-q)\lambda_0} \qquad \mu_{p,q} - a.e.$$

Hence, for $\mu_{p,q}$ -a.e. ω we have

$$\lim_{n \to \infty} \frac{\log \nu_{p,q}(\pi(C_n(\omega)))}{\log \operatorname{diam} \pi(C_n(\omega))} = \frac{(2-q)H(p) + pH(q)}{2p\lambda_1 + (2-p-q)\lambda_0}.$$

We will denote

$$\gamma_{\alpha} = \left\{ (p,q) \in [0,1]^2 : \alpha = \frac{2pq}{2+p-q} \right\}.$$

Lemma 2.3. The maximal Hausdorff dimension among measures ν_p is achieved for p satisfying

$$p^{2\lambda_0} = (1-p)^{2\lambda_1 + \lambda_0}.$$
(2.2)

For $\alpha \in (0, 1)$, the maximal Hausdorff dimension among measures $\{\nu_{p,q} : (p,q) \in \gamma_{\alpha}\}$ is achieved for (p,q) satisfying

$$\alpha(\lambda_1 - \lambda_0) \log \frac{p(1-q)}{(1-p)q} + \lambda_0 \log \frac{p^2(1-q)}{1-p} - 2\lambda_1 \log(1-p) = 0.$$
 (2.3)

Such (p,q) is unique in γ_{α} and is always in $(0,1)^2$.

Proof. Let us start from the second part of assertion. We need to find the maximum of the function

$$D(p,q) = \frac{(2-q)H(p) + pH(q)}{2p\lambda_1 + (2-p-q)\lambda_0}$$

over the curve γ_{α} . For $\alpha > 0$ this curve's endpoints are $(1, 3\alpha/(2 + \alpha))$ and $(\alpha/(2 + \alpha), 1)$. Moreover, we have

$$d\alpha = \frac{2}{(2+p-q)^2}(q(2-q)dp + p(2+p)dq).$$

Hence, we need to solve the equation

$$p(2+p)\frac{\partial D}{\partial p} - q(2-q)\frac{\partial D}{\partial q} = 0.$$

After expanding the left hand side and collecting the terms, it turns out that it is divisible by p(2-q). We get

$$(2pq\lambda_{1} + (4 + 2p - 2q - 2pq)\lambda_{0}) \cdot \log p$$

+((-4 - 2p + 2q - 2pq)\lambda_{1} + (-2 - p + q + 2pq)\lambda_{0}) \cdot \log(1 - p)
+(-2pq\lambda_{1} + 2pq\lambda_{0}) \cdot \log q
+(2pq\lambda_{1} + (2 + p - q - 2pq)\lambda_{0}) \cdot \log(1 - q) = 0. (2.4)

It will be convenient to use $\beta = 2/\alpha$. As $(p,q) \in \gamma_{\alpha}$, we have

$$2 + p - q = \beta pq.$$

Substituting this into (2.4), we get

$$(2\lambda_1 + (2\beta - 2)\lambda_0)\log p + ((-2\beta - 2)\lambda_1 + (-\beta + 2)\lambda_0)\log(1 - p) + (-2\lambda_1 + 2\lambda_0)\log q + (2\lambda_1 + (\beta - 2)\lambda_0)\log(1 - q) = 0$$
(2.5)

and (2.3) follows.

To get the first part of assertion it is enough to remove all terms with q and substitute $\alpha = 0$ into (2.3).

What remains is the third part of the assertion. Denoting by F(p,q) the left hand side of (2.5), we have

$$F(1, 3\alpha/(2+\alpha)) = \infty$$

and

$$F(\alpha/(2+\alpha), 1) = -\infty.$$

We will check that F restricted to γ_{α} is strictly monotone. We have

$$p(p+2)\frac{\partial F}{\partial p} - q(2-q)\frac{\partial F}{\partial q} = \lambda_0((2\beta - 2)(p+2) - 2(2-q)) + \text{spt}$$

where spt stands for some positive terms (in particular, all the terms with λ_1 are positive). However, as

$$(2\beta - 2)(p + 2) - 2(2 - q) = 2p + 2q + 2(\beta - 2)(p + 2) > 0,$$

the coefficient for λ_0 is also positive. Hence, F restricted to γ_{α} indeed has no extrema, so it must have only one zero.

Remark. When $\alpha = 0$, the curve γ_0 degenerates into two segments : p = 0 and q = 0. On the first segment, the dimension of $\dim_H \nu_{0,q}$ is zero. On the second segment, we have the assertion on $\nu_{p,0} = \nu_p$ in Lemma 2.3. When $\alpha = 1$, the curve γ_1 degenerates into one point (1, 1), and we have $\dim_H \nu_{1,1} = 0$.

Remark. The curves γ_{α} cover whole $(0,1)^2$. However, not all pairs $(p,q) \in (0,1)^2$ are solutions of (2.5) for any λ_1, λ_0 . Indeed, we can write (2.5) in the form

$$\frac{\lambda_1}{\lambda_0}a_1 + a_2 = 0$$

with

$$a_1 = \alpha \log p + (-2 - \alpha) \log(1 - p) - \alpha \log q + \alpha \log(1 - q)$$

and

$$a_2 = (2 - \alpha) \log p + (\alpha - 1) \log(1 - p) + \alpha \log q + (1 - \alpha) \log(1 - q).$$

Both a_1 and a_2 converge to ∞ as $p \to 1$ and to $-\infty$ as $q \to 1$. They are also both strictly monotone on γ_{α} , which can be checked like in the third part of the proof of Lemma 2.3 (using $(2 - \alpha)(p + 2) > \alpha(2 - q)$ in case of a_2), so they both have unique zeros. As the equation

$$ra_1 + a_2 = 0$$

can have positive solution only if a_1 and a_2 have different signs, only those $(p,q) \in \gamma_{\alpha}$ between zeros of a_1 and a_2 , or equivalently satisfying

$$\alpha \log \frac{p(1-q)}{(1-p)q} > \max\left(2\log(1-p), \log \frac{p^2(1-q)}{1-p}\right),\,$$

are solutions of (2.5) for some choice of λ_1, λ_0 .

Remark. The measures $\mu_{p,q}$ for p = q are Bernoulli. Each γ_{α} intersects the diagonal $\{p = q\}$ in exactly one point $(\alpha^{1/2}, \alpha^{1/2})$ and at this point $a_1 > 0, a_2 < 0$. So, (2.5) has a Bernoulli measure as a solution for each $\alpha \in (0, 1)$. It happens when

$$\lambda_0 \log p = \lambda_1 \log(1-p),$$

that is, when $\nu_{\alpha^{1/2},\alpha^{1/2}}$ is the Hausdorff measure (in dimension $\dim_H \pi(\Sigma)$) on $\pi(\Sigma)$.

3 Exact formulas

To be able to provide the upper bounds in the following section, we need to substitute the results of Lemma 2.3 to Lemma 2.2 and obtain simpler formulas for our lower bound. We start with the golden shift case. Given λ_1, λ_0 let p be given by (2.2).

Lemma 3.1. We have

$$\dim_H \nu_p = -\frac{\log(1-p)}{\lambda_0}.$$

Proof. By Lemma 2.2,

$$\dim_H \nu_p = \frac{2H(p)}{2p\lambda_1 + (2-p)\lambda_0}.$$

Applying (2.2) it is easy to check that

$$(2p\lambda_1 + (2-p)\lambda_0)\log(1-p) = -2H(p)\lambda_0$$

and the assertion follows.

The calculations for the multifractal case are a little bit more complicated. Given λ_1, λ_0 , and α , let p, q be given by (2.3).

Lemma 3.2. We have

$$\dim_H \nu_{p,q} = \frac{\alpha \log \frac{p(1-q)}{(1-p)q} - 2\log(1-p)}{2\lambda_0}.$$
 (3.1)

If $\lambda_1 \neq \lambda_0$ then we have another formula:

$$\dim_H \nu_{p,q} = \frac{\log \frac{p^2(1-q)}{(1-p)^3}}{2(\lambda_0 - \lambda_1)}.$$
(3.2)

Proof. By Lemma 2.2,

$$\dim_H \nu_{p,q} = \frac{(2-q)H(p) + pH(q)}{2p\lambda_1 + (2-p-q)\lambda_0}.$$

Using (2.3) one can check that

$$(2p\lambda_1 + (2-p-q)\lambda_0) \left(\alpha \log \frac{p(1-q)}{(1-p)q} - 2\log(1-p)\right) = 2\lambda_0((2-q)H(p) + pH(q))$$

This gives (3.1). Applying (2.3) once again we get

$$\dim_{H} \nu_{p,q} = \frac{\alpha \log \frac{p(1-q)}{(1-p)q} + \log \frac{1-p}{p^{2}(1-q)}}{2\lambda_{1}}.$$
(3.3)

Together with (3.1) this gives (3.2).

4 Upper bounds

The last part of the proof is the upper bound.

Lemma 4.1. We have

$$\dim_H L \le \sup_p \dim_H \nu_p,$$

and for all $\alpha \in [0, 1]$,

$$\dim_H L_{\alpha} \leq \sup_{(p,q)\in\gamma_{\alpha}} \dim_H \nu_{p,q}.$$

Proof. As $L \subset L_0$, it is enough to prove the second part of the assertion. Fix α and let $\omega \in S_{\alpha}$. Let p, q be as in (2.3). We denote for all $n \in \mathbb{N}$

$$X_1^n = \#\{k \in [1, n] : \omega_k = 1\}$$

and for all even $n \in \mathbb{N}$

$$X_{11}^n = \#\{k \in [1, n/2] : \omega_k = \omega_{2k} = 1\}.$$

We also denote

$$\tilde{h}_n = -\log \mu_{p,q}(C_n(\omega))$$

and

$$\tilde{l}_n = -\log \operatorname{diam} \pi(C_n(\omega)).$$

For any even n we have (see [PS12b, Section 4])

$$-\tilde{h}_n = n\log(1-p) + X_1^{n/2}\log\frac{1-q}{1-p} + X_1^n\log\frac{p}{1-p} - X_{11}^n\log\frac{p(1-q)}{(1-p)q}.$$

We also have

$$\tilde{l}_n = (\lambda_1 - \lambda_0) X_1^n + n\lambda_0.$$

Substituting (3.1) and (3.2) we get

$$\tilde{l}_n \dim_H \nu_{p,q} = -\frac{1}{2} X_1^n \log \frac{p^2 (1-q)}{(1-p)^3} + \frac{n}{2} \left(\alpha \log \frac{p(1-q)}{(1-p)q} - 2\log(1-p) \right).$$

Hence,

$$\frac{1}{n}(\tilde{l}_n \dim_H \nu_{p,q} - \tilde{h}_n) = \left(\frac{\alpha}{2} - \frac{X_{11}^n}{n}\right) \log \frac{p(1-q)}{(1-p)q} + \frac{1}{2} \left(\frac{X_1^{n/2}}{n/2} - \frac{X_1^n}{n}\right) \log \frac{1-q}{1-p}$$

As the first summand converges to 0 and the second telescopes,

$$\liminf_{n \to \infty} \frac{1}{n} (\tilde{l}_n \dim_H \nu_{p,q} - \tilde{h}_n) \le 0$$

and we are done.

References

- [Bow73] Rufus Bowen. Topological entropy for noncompact sets. Trans. Amer. Math. Soc., 184:125–136, 1973.
- [FLM] Ai-hua Fan, Lingmin Liao, and Ji-hua Ma. Level sets of multiple ergodic averages., (5 november 2011, pp. 1-10, doi:10.1007/s00605-011-0358-5). Monatshe. Math., 148, 2011 online.
- [FSW11] Aihua Fan, Jörg Schmeling, and Meng Wu. Multifractal analysis of multiple ergodic averages. C. R. Math. Acad. Sci. Paris, 349(17-18):961–964, 2011.
- [FSW12a] Aihua Fan, Jörg Schmeling, and Meng Wu. Multifractal analysis of multiple ergodic averages. *preprint*, 2012.

- [FSW12b] Aihua Fan, Jörg Schmeling, and Meng Wu. The multifractal spectra of V-statistics. In New developments in Fractals and related Fields. Birkhäuser, Boston, 2012, to appear.
- [KPS11] Richard Kenyon, Yuval Peres, and Boris Solomyak. Hausdorff dimension of the multiplicative golden mean shift. C. R. Math. Acad. Sci. Paris, 349(11-12):625–628, 2011.
- [KPS12] Richard Kenyon, Yuval Peres, and Boris Solomyak. Hausdorff dimension for fractals invariant under the multiplicative integers. *Ergodic Theory Dynamical Systems*, arXiv:1102.5136, 2012.
- [PS12b] Yuval Peres and Boris Solomyak. Dimension spectrum for a nonconventional ergodic average. *Real Anal. Ex.*, arXiv:1107.1749, 2012.
- [PS12a] Yuval Peres and Boris Solomyak. The multiplicative golden mean shift has infinite Hausdorff measure. In New developments in Fractals and related Fields. Birkhäuser, Boston, 2012 to appear, arXiv:1201.5842.
- [PSSS12] Yuval Peres, Jörg Schmeling, Stéphane Seuret, and Boris Solomyak. Dimensions of some fractals defined via the semi-group generated by 2 and 3. *preprint*, 2012.