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HELIX SURFACES IN THE BERGER SPHERE

STEFANO MONTALDO AND IRENE I. ONNIS

Abstract. We characterize helix surfaces of the Berger sphere. In particular, we
prove that, locally, a helix surface is invariant by the action of a 1-parameter group
of isometries of the ambient space.

1. Introduction

We consider surfaces in the 3-dimensional Berger sphere whose unit normal vector forms
a constant angle with the Hopf vector field. These surfaces are called helix surfaces or
constant angle surfaces and they have been studied in most of the 3-dimensional ge-
ometries. In [2], Cermelli and Di Scala analyze the case of constant angle surfaces
in R

3 obtaining some remarkable relation with a Hamilton-Jacobi type equation and
showing their application to equilibrium configurations of liquid crystals. Later, sev-
eral authors have studied constant angle surfaces in most of the 3-dimensional homoge-
neous spaces, in particular: Dillen–Fastenakels–Van der Veken–Vrancken in S

2×R ([4]);
Dillen–Munteanu in H

2×R ([3]); Fastenakels–Munteanu–Van Der Veken in the Heisen-
berg group ([7]); López–Munteanu in Sol3 ([8]). Moreover, helix submanifolds have
been studied in higher dimensional euclidean spaces and product spaces in [5, 6, 11].

We shall use the Hopf fibration to describe a model of the Berger sphere. Indeed, let
S
2(1/2) = {(z, t) ∈ C×R : |z|2 + t2 = 1/4} be the usual 2-sphere and let S3 = {(z, w) ∈

C
2 : |z|2+ |w|2 = 1} be the usual 3-sphere. Then the Hopf map ψ : S3 → S

2(1/2), given
by

ψ(z, w) =
1

2
(2zw̄, |z|2 − |w|2) ,

is a Riemannian submersion and the vector fields

X1(z, w) = (iz, iw), X2(z, w) = (−iw̄, iz̄), X3(z, w) = (−w̄, z̄)
parallelize S

3 with X1 vertical and X2, X3 horizontal. The vector X1 is called the Hopf

vector field. The Berger sphere S
3
ε, ε > 0, is the sphere S

3 endowed with the metric

gε(X,Y ) = 〈X,Y 〉+ (ε2 − 1)〈X,X1〉 〈Y,X1〉 ,
where 〈, 〉 represents the canonical metric of S3. Thus a helix surface in S

3
ε is such that

its unit normal N satisfies
|gε(X1, N)| = ε cos θ

for fixed θ ∈ [0, π/2].
From a classical result of Reeb [10], a compact surface in the Berger sphere cannot be
transverse to the Hopf vector field everywhere. This means that the notion of helix
surfaces in S

3
ε, with θ 6= π/2, is meaningful only in the non compact case. For this
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reason our study it will be local and will aim to the following characterization of helix
surfaces which represents the main result of the paper.

Theorem 3.1. Let M2 be a helix surface in the Berger sphere S
3
ε with constant angle

θ 6= π/2. Then, locally, the surface is invariant by the action of a 1-parameter group of

isometries of S3ε. Moreover, there exists local coordinates on M2 such that the position

vector of M2 in R
4 is

F (u, v) = A(v)β(u) ,

where

β(u) = (
√
c1 cos(α1u),

√
c1 sin(α1u),

√
c2 cos(α2u),

√
c2 sin(α2u))

is a geodesic of the torus S
1(
√
c1)× S

1(
√
c2) ⊂ S

3 with

c1,2 =
1

2
∓ ε cos θ

2
√
B

, α1 =
2B

ε
c2 , α2 =

2B

ε
c1 , B = 1 + (ε2 − 1) cos2 θ ,

while A(v) is a 1-parameter family of 4×4 orthogonal matrices such that ĴA(v) = A(v)Ĵ ,

where Ĵ is the canonic complex structure of R4.

2. Helix surfaces

With respect to the orthonormal basis on S
3
ε defined by

(1) E1 = ε−1X1, E2 = X2, E3 = X3,

the Levi-Civita connection ∇ε of (S3ε, gε) is given by:

(2)
∇ε

E1
E1 = 0, ∇ε

E2
E2 = 0, ∇ε

E3
E3 = 0,

∇ε
E1
E2 = ε−1(2− ε2)E3, ∇ε

E1
E3 = −ε−1(2 − ε2)E2,

∇ε
E2
E1 = −εE3, ∇ε

E3
E1 = εE2, ∇ε

E3
E2 = −εE1 = −∇ε

E2
E3.

Let M2 be an oriented helix surface in S
3
ε and let N be a unit normal vector field. Then,

by definition,

|gε(E1, N)| = cos θ

for fixed θ ∈ [0, π/2]. Note that θ 6= 0. In fact, if it were then the vector fields E2 and E3

would be tangent to the surface M2, which is absurd since the horizontal distribution
of the Hopf map is not integrable. If θ = π/2, we have that E1 is always tangent to
M and, therefore, M is a Hopf cylinder. Therefore, from now on we assume that the
constant angle θ 6= π/2, 0.
The Gauss and Weingarten formulas, for all X,Y ∈ C(TM), are

(3)
∇ε

XY = ∇XY + α(X,Y ),

∇ε
XN = −A(X),

where with A we have indicated the shape operator of M in S
3
ε, with ∇ the induced

Levi-Civita connection on M and by α the second fundamental form on M in S
3
ε.

Decomposing E1 into its tangent and normal components we have

E1 = T + cos θ N ,

where T is the tangent component which satisfies gε(T, T ) = sin2 θ.
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For all X ∈ C(TM), we have that

(4)
∇ε

XE1 = ∇ε
XT − cos θ A(X)

= ∇XT + gε(A(X), T )N − cos θ A(X).

On the other hand (we refer to [1]), if X =
∑

XiEi,

(5)
∇ε

XE1 = ε (X3E2 −X2E3)

= ε gε(JX, T )N − ε cos θJX,

where JX denotes the rotation of angle π/2 on TM . Identifying the tangent and normal
components of (4) and (5) respectively, we obtain

(6) ∇XT = cos θ (A(X) − ε JX)

and

(7) gε(A(X) − ε JX, T ) = 0.

Lemma 2.1. Let M2 be an oriented helix surface with constant angle θ in S
3
ε. Then,

we have that:

(i) with respect to the basis {T, JT}, the matrices associated to the shape operator

A takes the following form

A =

(

0 −ε
−ε λ

)

,

for some function λ on M ;

(ii) the Levi-Civita connection ∇ of M is given by

∇TT = −2ε cos θ JT, ∇JTT = λ cos θ JT ,

∇TJT = 2ε cos θ T, ∇JTJT = −λ cos θ T ;

(iii) the Gauss curvature of M is constant and satisfies

K = 4(1− ε2) cos2 θ :

(iv) the function λ satisfies the following equation

(8) Tλ+ λ2 cos θ + 4(ε2 − 1) cos3 θ + 4cos θ = 0 .

Proof. (i) follows directly from (7). From (6) and using

gε(T, T ) = gε(JT, JT ) = sin2 θ, gε(T, JT ) = 0 ,

we obtain (ii). From the Gauss equation of M in S
3
ε (see [1]), and taking into account

(i), we have that the Gauss curvature of M is given by

K = detA+ ε2 + 4(1 − ε2) cos2 θ

= 4(1− ε2) cos2 θ .

Finally, (8) follows from the Codazzi equation (see [1]):

∇XA(Y )−∇YA(X)−A[X,Y ] = 4(1− ε2) cos θ (gε(Y, T )X − gε(X,T )Y ) ,

putting X = T , Y = JT and using (ii).
�
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Remark 2.2. We point out that if a helix surface is minimal then θ = π/2. In fact,
from (i) of Lemma 2.1 λ = 0 and using (8) it follows that cos θ(1 + (ε2 − 1) cos2 θ) = 0,
which implies, since 1 + (ε2 − 1) cos2 θ is differnt from zero for all θ ∈ [0, π/2], that
θ = π/2.

As gε(E1, N) = cos θ, there exists a smooth function ϕ on M so that

N = cos θE1 + sin θ cosϕE2 + sin θ sinϕE3.

Therefore

(9) T = E1 − cos θ N = sin θ [sin θ E1 − cos θ cosϕE2 − cos θ sinϕE3]

and

JT = sin θ (sinϕE2 − cosϕE3) .

Also

(10)
A(T ) = −∇ε

TN = (Tϕ+ ε−1(2− ε2) sin2 θ + ε cos2 θ)JT,

A(JT ) = −∇ε
JTN = (JTϕ)JT − ε T .

Comparing (10) with (i) of Lemma 2.1, it results that

(11)

{

JTϕ = λ ,

Tϕ = −2ε−1B ,

where

(12) B = 1 + (ε2 − 1) cos2 θ .

We observe that, as

[T, JT ] = cos θ (2ε T − λJT ),

the compatibility condition of system (11):

(∇TJY −∇JTT )ϕ = [T, JT ]ϕ = T (JTϕ)− JT (Tϕ)

is equivalent to (8).
We now choose local coordinates (u, v) on M such that

(13) ∂u = T.

Also, as ∂v is tangent to M , it can be writen in the form ∂v = aT + b JT , for certain
functions a = a(u, v) and b = b(u, v). Since

0 = [∂u, ∂v] = (au + 2εb cos θ)T + (bu − bλ cos θ)JT ,

we obtain

(14)

{

au = −2εb cos θ ,

bu = bλ cos θ .

Moreover, writing (8) as

λu + cos θ λ2 + 4(ε2 − 1) cos3 θ + 4cos θ = 0 ,

after integration, one gets

(15) λ(u, v) = 2
√
B tan(η(v) − 2 cos θ

√
B u) ,
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for some smooth function η depending on v. Replacing (15) in (14) and solving the
system, we obtain

(16)







a(u, v) =
ε√
B

sin(η(v) − 2 cos θ
√
B u),

b(u, v) = cos(η(v) − 2 cos θ
√
B u) .

Therefore (11) becomes

(17)

{

ϕu = −2ε−1B ,

ϕv = 0 ,

of which the general solution is given by

(18) ϕ(u, v) = −2ε−1B u+ c ,

where c is a real constant.
With respect to the local coordinates (u, v) described above we have the following
characterization of the position vector of a helix surface.

Proposition 2.3. Let M2 be a helix surface in S
3
ε with constant angle θ. Then, with

respect to the local coordinates (u, v) on M defined in (13), the position vector F of M2

in R
4 satisfies the equation

(19)
∂4F

∂u4
+ (b̃2 − 2ã)

∂2F

∂u2
+ ã2 F = 0 ,

where

(20) ã = ε−2 sin2 θ B , b̃ = −2ε−1B

and B = 1 + (ε2 − 1) cos2 θ.

Proof. Let M2 be a helix surface and let F be the position vector of M2 in R
4. Then,

with respect to the local coordinates (u, v) on M defined in (13), we can write F (u, v) =
(F1(u, v), . . . , F4(u, v)). By definition, taking into account (9), we have that

∂uF = (∂uF1, ∂uF2, ∂uF3, ∂uF4) = T

= sin θ [sin θ E1|F (u,v) − cos θ cosϕE2|F (u,v) − cos θ sinϕE3|F (u,v)] .

Using the expression of E1, E2 and E3 with respect to the coordinates vector fields of
R
4, the latter implies that

(21)























∂uF1 = sin θ (−ε−1 sin θ F2 + cos θ cosϕF4 + cos θ sinϕF3) ,

∂uF2 = sin θ (ε−1 sin θ F1 + cos θ cosϕF3 − cos θ sinϕF4) ,

∂uF3 = − sin θ (ε−1 sin θ F4 + cos θ cosϕF2 + cos θ sinϕF1) ,

∂uF4 = sin θ (ε−1 sin θ F3 − cos θ cosϕF1 + cos θ sinϕF2) .

Moreover, taking the derivative with respect to u of (21) we find two constants ã and

b̃ such that

(22)



























(F1)uu = ã F1 + b̃ (F2)u ,

(F2)uu = ã F2 − b̃ (F1)u ,

(F3)uu = ã F3 + b̃ (F4)u ,

(F4)uu = ã F4 − b̃ (F3)u ,
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where, using (17),

ã = −ε
−1 sin2 θ

2
ϕu = ε−2 sin2 θB, b̃ = ϕu = −2ε−1B .

Finally, taking twice the derivative of (22) with respect to u and using (21)–(22) in the
derivative we obtain the desired equation (19). �

Integrating (19), we have the following

Corollary 2.4. Let M2 be a helix surface in S
3
ε. Then, with respect to the local coordi-

nates (u, v) on M defined in (13), the position vector F of M2 in R
4 is given by

F (u, v) = cos(α1u) g
1(v) + sin(α1u) g

2(v) + cos(α2u) g
3(v) + sin(α2u) g

4(v),

where

α1,2 =
1

ε
(B ± ε

√
B cos θ)

are real constant, while the gi(v), i ∈ {1, . . . , 4}, are mutually orthogonal vectors fields

in R
4, depending only on v, such that

g11 = 〈g1(v), g1(v)〉 = g22 = 〈g2(v), g2(v)〉 = ε

2B
α2 ,

g33 = 〈g3(v), g3(v)〉 = g44 = 〈g4(v), g4(v)〉 = ε

2B
α1 .

Proof. First, a direct integration of (19), gives the solution

F (u, v) = cos(α1u) g
1(v) + sin(α1u) g

2(v) + cos(α2u) g
3(v) + sin(α2u) g

4(v) ,

where

α1,2 =

√

b̃2 − 2ã±
√

b̃4 − 4ãb̃2

2

are two constants, while the gi(v), i ∈ {1, . . . , 4}, are vector fields in R
4 which depend

only on v. Now, taking into account the values of ã and b̃ given in (20), ones obtains

α1,2 =
1

ε
(B ± ε

√
B cos θ) .

Next, since |F |2 = 1 and using (19), (21) and (22) we find that the position vector
F (u, v) and its derivatives must satisfy the relations:

(23)

〈F,F 〉 = 1 , 〈Fu, Fu〉 = ε−2B sin2 θ , 〈F,Fu〉 = 0 ,
〈Fu, Fuu〉 = 0 , 〈Fuu, Fuu〉 = D , 〈F,Fuu〉 = −ε−2B sin2 θ,
〈Fu, Fuuu〉 = −D , 〈Fuu, Fuuu〉 = 0 , 〈F,Fuuu〉 = 0 ,
〈Fuuu, Fuuu〉 = E,

where

D = ε−2B b̃2 sin2 θ − 3ã2 , E = (b̃2 − 2ã)D − ε−2B ã2 sin2 θ .

Putting gij(v) = 〈gi(v), gj(v)〉, and evaluating the relations (23) in (0, v), we obtain:

(24) g11 + g33 + 2g13 = 1 ,

(25) α2
1 g22 + α2

2 g44 + 2α1α2 g24 = ε−2B sin2 θ ,

(26) α1 g12 + α2 g14 + α1 g23 + α2 g34 = 0 ,
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(27) α3
1 g12 + α1α

2
2 g23 + α2

1α2 g14 + α3
2g34 = 0 ,

(28) α4
1 g11 + α4

2 g33 + 2α2
1α

2
2 g13 = D ,

(29) α2
1 g11 + α2

2 g33 + (α2
1 + α2

2) g13 = ε−2B sin2 θ ,

(30) α4
1 g22 + α3

1α2 g24 + α1α
3
2 g24 + α4

2 g44 = D ,

(31) α5
1 g12 + α3

1α
2
2 g23 + α2

1α
3
2 g14 + α5

2 g34 = 0 ,

(32) α3
1 g12 + α3

1 g23 + α3
2 g14 + α3

2 g34 = 0 ,

(33) α6
1 g22 + α6

2 g44 + 2α3
1α

3
2 g24 = E .

From (26), (27), (31), (32), it follows that

g12 = g14 = g23 = g34 = 0 .

Also, from (24), (28) and (29), we obtain

g11 =
ε2 (D + α4

2)− 2B sin2 θ α2
2

ε2(α2
1 − α2

2)
2

, g13 = 0 , g33 =
ε2 (D + α4

1)− 2B sin2 θ α2
1

ε2(α2
1 − α2

2)
2

.

Moreover, using (25), (30) and (33), we get

g22 =
ε2 (E − 2Dα2

2) +B sin2 θ α4
2

ε2α2
1 (α

2
1 − α2

2)
2

, g24 = 0 , g44 =
ε2 (E − 2Dα2

1) +B sin2 θ α4
1

ε2α2
2 (α

2
1 − α2

2)
2

.

Finally, a long but straightforward computation gives

g11 = g22 =
ε

2B
α2 , g33 = g44 =

ε

2B
α1 .

�

3. The main result

We are now in the right position to state the main result of the paper. Before doing
this we recall that, looking at (S3ε, gε) in R

4, its isometry group can be identified with:

{A ∈ O(4): AĴ = ±ĴA} ,
where Ĵ is the canonical complex structure of R4 defined by

Ĵ =

(

J1 0
0 J1

)

, J1 =

(

0 −1
1 0

)

,

while O(4) is the orthogonal group (see, for example, [12]).

Theorem 3.1. Let M2 be a helix surface in the Berger sphere S
3
ε with constant angle

θ 6= π/2. Then, locally, the surface is invariant by the action of a 1-parameter group of

isometries of S3ε. Moreover, the position vector of M2 in R
4, with respect to the local

coordinates (u, v) on M defined in (13), is

F (u, v) = A(v)β(u) ,

where

β(u) = (
√
g11 cos(α1u),

√
g11 sin(α1u),

√
g33 cos(α2u),

√
g33 sin(α2u))
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is a geodesic in the torus S
1(
√
g11)× S

1(
√
g33) ⊂ S

3, where g11, g33, α1, α2 are the four

constants given in Corollary 2.4, and A(v) is a 1-parameter family of 4× 4 orthogonal

matrices such that ĴA(v) = A(v)Ĵ .

Proof. With respect to the local coordinates (u, v) on M defined in (13), Corollary 2.4
implies that the position vector of the helix surface in R

4 is given by

F (u, v) = cos(α1u) g
1(v) + sin(α1u) g

2(v) + cos(α2u) g
3(v) + sin(α2u) g

4(v) ,

where the vector fields {gi(v)} are mutually orthogonal and

||g1(v)|| = ||g2(v)|| = √
g11 = constant ,

||g3(v)|| = ||g4(v)|| = √
g33 = constant .

Thus, if we put ei(v) = gi(v)/||gi(v)||, i ∈ {1, . . . , 4}, we can write:

F (u, v) =
√
g11 (cos(α1 u) e1(v) + sin(α1 u) e2(v))

+
√
g33 (cos(α2 u) e3(v) + sin(α2 u) e4(v)) .(34)

Denote by J̄ the 4 × 4 matrices with entries J̄i,j = 〈Ĵei, ej〉, i, j = 1, . . . , 4. We shall

prove that J̄ = (Ĵ)T . For this, since

ĴF (u, v) = X1|F (u,v) = εE1|F (u,v) = ε (Fu + cos θ N),

and using (19)–(23), we obtain the following identities

(35)

〈ĴF, Fu〉 = ε−1 sin2 θ,

〈ĴF, Fuu〉 = 0 ,

〈Fu, ĴFuu〉 = ε−3B sin2 θ (sin2 θ − 2B) := I ,

〈ĴFu, Fuuu〉 = 0 ,

〈ĴFu, Fuu〉+ 〈ĴF, Fuuu〉 = 0 ,

〈ĴFuu, Fuuu〉+ 〈ĴFu, Fuuuu〉 = 0 .

Evaluating (35) in (0, v), they become respectively:

(36) α1g11〈Ĵe1, e2〉+α2 g33〈Ĵe3, e4〉+
√
g11g33 (α1〈Ĵe3, e2〉+α2〈Ĵe1, e4〉) = ε−1 sin2 θ,

(37) 〈Ĵe1, e3〉 = 0 ,

(38) α3
1 g11〈Ĵe1, e2〉+ α3

2 g33〈Ĵe3, e4〉+
√
g11g33 (α1α

2
2〈Ĵe3, e2〉+ α2

1α2〈Ĵe1, e4〉) = −I,

(39) 〈Ĵe2, e4〉 = 0 ,

(40) α1〈Ĵe2, e3〉+ α2〈Ĵe1, e4〉 = 0 ,

(41) α2〈Ĵe2, e3〉+ α1〈Ĵe1, e4〉 = 0 .

We point out that to obtain the previous identities we have divided by α2
1 − α2

2 =

4ε−1
√
B3 cos2 θ which is, by the assumption on θ, always different from zero. From (40)

and (41), taking into account the α2
1 − α2

2 6= 0, it results that

(42) 〈Ĵe3, e2〉 = 0 , 〈Ĵe1, e4〉 = 0 .
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Therefore

|〈Ĵe1, e2〉| = 1 = |〈Ĵe3, e4〉|.
Substituting (42) in (36) and (38), we obtain the system

(43)

{

α1g11〈Ĵe1, e2〉+ α2 g33〈Ĵe3, e4〉 = ε−1 sin2 θ

α3
1g11〈Ĵe1, e2〉+ α3

2 g33〈Ĵe3, e4〉 = −I ,
a solution of which is

〈Ĵe1, e2〉 =
εI + α2

2 sin
2 θ

εg11 α1(α2
2 − α2

1)
, 〈Ĵe3, e4〉 = − εI + α2

1 sin
2 θ

εg33 α2(α2
2 − α2

1)
.

Now, as

g11 g33 =
sin2 θ

4B
, α1 α2 =

B

ε2
sin2 θ , (α2

1 − α2
2)

2 =
16B3

ε2
cos2 θ ,

it results that

〈Ĵe1, e2〉〈Ĵe3, e4〉 = 1 .

Moreover, a direct check shows that 〈Ĵe1, e2〉 > 0. Consequently, 〈Ĵe1, e2〉 = 〈Ĵe3, e4〉 =
1. We have thus proved that J̄ = (Ĵ)T .
Then, if we fix the canonical orthonormal basis of R4 given by

E1 = (1, 0, 0, 0)) , E2 = (0, 1, 0, 0) , E3 = (0, 0, 1, 0) , E4 = (0, 0, 0, 1) ,

there must exists a 1-parameter family of 4× 4 orthogonal matrices A(v) ∈ O(4), with

ĴA(v) = A(v)Ĵ , such that ei(v) = A(v)Ei. Thus A(v) is a 1-parameter group of
isometries. Replacing ei(v) = A(v)Ei in (34) we obtain

F (u, v) = A(v)β(u) ,

where the curve

β(u) = (
√
g11 cos(α1u),

√
g11 sin(α1u),

√
g33 cos(α2u),

√
g33 sin(α2u)) ,

is a geodesic of the torus S
1(
√
g11)× S

1(
√
g33) ⊂ S

3.
In conclusion, the surface M is locally invariant by the action of the 1-parameter group
of isometries of S3ε given by {A(v)}v . �

Remark 3.2. The geodesic β of the torus S
1(
√
g11) × S

1(
√
g33) ⊂ S

3 in Theorem 3.1
has slope

m =
α2

α1
=

√
B − ε cos θ√
B − ε cos θ

that, for fixed ε > 0, varying θ ∈ (0, π/2) assumes all possible values in (0, 1).

Example 3.3. We shall now find an explicit expression of the 1-parameter family A(v)

in Theorem 3.1. Since A(v) is an orthogonal matrices that commutes with Ĵ , from
standard arguments (see, for example, [9, Lemma 2.19]), we can write A(v) as

A1(v) =

(

X Y
−Y X

)

, or A2(v) =

(

X Y
−Y T XT

)

where X and Y are 2× 2 matrices satisfying

(44) XTY = Y TX , XTX + Y TY = Id .
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Next, since ĴA(v)E1 = A(v)E2 and ĴA(v)E3 = A(v)E4, we deduce that the matrices
X and Y can be written as

X =

(

a −b
b a

)

, Y =

(

c −d
d c

)

,

where a, b, c, d are functions on v. Let assume that the matrices X and Y are not zero
for any value of v where A(v) is defined. Now, taking into account (44) we see that the
functions a, b, c, d satisfy the system

{

a2 + b2 + c2 + d2 = 1

ad− bc = 0 .

From the second equation there must exists a never zero function λ(v) such that (a, b) =
λ(c, d). Using the first equation we conclude that a2 + b2 = 1/(λ2 + 1). Finally,

taking λ = 1 there must exist a function ξ(v) such that a(v) = (cos ξ(v))/
√
2 and

b(v) = (sin ξ(v))/
√
2. The matrices A(v) becomes one of the following two types:

A1(v) =
1√
2









cos ξ(v) − sin ξ(v) cos ξ(v) − sin ξ(v)
sin ξ(v) cos ξ(v) sin ξ(v) cos ξ(v))

− cos ξ(v) sin ξ(v) cos ξ(v) − sin ξ(v)
− sin ξ(v) − cos ξ(v) sin ξ(v) cos ξ(v)









,

A2(v) =
1√
2









cos ξ(v) − sin ξ(v) cos ξ(v) − sin ξ(v)
sin ξ(v) cos ξ(v) sin ξ(v) cos ξ(v))

− cos ξ(v) − sin ξ(v) cos ξ(v) sin ξ(v)
sin ξ(v) − cos ξ(v) − sin ξ(v) cos ξ(v)









.

Using the notation of Theorem 3.1 the map

Fi(u, v) = Ai(v)β(u) , i = 1, 2 ,

gives an explicit immersion of a surface into the Berger sphere. A tedious but standard
calculation shows that F2 defines a helix surface of constant angle θ 6= π/2 for any
function ξ. By way of contrast, F1 defines a surface which is tangent everywhere to the
Hopf vector field. In fact, the Hopf vector field X1 results tangent to the orbits of the
action of the 1-parameter group A1(v) on S

3.

Remark 3.4. The immersion F1(u, v) = A1(v)β(u) in Example 3.3 shows that a vicev-
ersa of Theorem 3.1 does not hold. In fact, A1(v) is a 1-parameter family of 4 orthogonal

matrices that commute with Ĵ but the surface described by F1(u, v) is not a helix sur-
faces with constant angle θ 6= π/2.
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