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ON THE CLASSIFICATION OF HOMOGENEOUS EINSTEIN METRICS ON

GENERALIZED FLAG MANIFOLDS WITH b2(M) = 1

IOANNIS CHRYSIKOS AND YUSUKE SAKANE

Abstract. Let G be a simple compact connected Lie group. We study homogeneous Einstein metrics for
a class of compact homogeneous spaces, namely generalized flag manifolds G/H with second Betti number
b2(G/H) = 1. There are 33 such manifolds which have some common geometric features; for example they
admit a unique invariant complex structure which gives rise to unique invariant Kähler–Einstein metric. The

most typical examples are the compact isotropy irreducible Hermitian symmetric spaces, for which the Killing
form is the unique homogeneous Einstein metric (which is Kähler). For the remaining 26 cases, the first results
were obtained by I. Ohmura (cf. ([Sak]) and M. Kimura ([Kim]) (these results have been recently verified by a
joint work of first author with S. Anastassiou ([AnC]), where homogeneous Einstein metrics are studied from
the viewpoint of the normalized Ricci flow). Nowadays the classification of homogeneous Einstein metrics
has completed for the 24 spaces by A. Arvanitoyeorgos and first author ([AC2], [AC3]). In this paper we
construct the Einstein equation for the two unexamined spaces (both corresponding to the Lie group E8),
namely the cosets E8 /U(1) × SU(4) × SU(5) and E8 /U(1) × SU(2) × SU(3) × SU(5). We determine Ricci
tensors of E8-invariant metrics explicitly by computing the non-zero structure constants. We use a method
based on comparison of left-invariant metrics of E8 which arise from different reductive decompositions. For
the first space we classify all homogeneous Einstein metrics. For the second one, we see that the Einstein
equation reduces to an algebraic system of five non-linear equations, but we fail to solve the algebraic system
of equations. Since, for the rest members of the examined class, we know that there always exists a finite
number of non-Kähler Einstein metrics, we conjecture that the space E8 /U(1) × SU(2) × SU(3) × SU(5)
admits a finite number of homogeneous non-Kähler Einstein metrics.
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Introduction

Given a Riemannian manifold M , the question whether M carries an Einstein metric, that is a Riemannian
metric g of constant Ricci curvature, is a fundamental one in Riemannian geometry. The Einstein equation
Ricg = λ · g (λ ∈ R) reduces to a system of a non-linear second order PDEs, and a good understanding of its
solutions in the general case seems far from being attained. If M is compact, then Einstein metrics (of volume
1) become in a natural way privileged metrics, since they are characterized variational as the critical points
of the total scalar curvature functional T : M → R, given by T (g) =

∫
M

SgdVg, restricted to the set M1 of
Riemannian metrics of volume 1. However, even in this case general existence results are difficult to obtained.
If we consider a homogeneous G-space M = G/H , then it is natural to work with G-invariant Riemannian
metrics. For such a metric the Einstein equation reduces to an algebraic system which is more manageable,
and in some cases can been solved explicity. Most known examples of Einstein manifolds are homogeneous.

A generalized flag manifold is an adjoint orbit M = Ad(G)w (w ∈ g) of a compact connected semi-simple
Lie group G and can be represented as a compact homogeneous space of the form M = G/H = G/C(S),
where C(S) is the centralizer of a torus S in G (and thus rankG = rankH). Generalized flag manifolds have
been classified in terms of painted Dynkin diagrams and these have Kähler metrics, that is, the homogeneous
manifolds M = G/H can be expressed as GC/U , where GC is the complexification of G and U a parabolic
subgroup of GC. Thus on M we can define a finite number of invariant complex structures, and for any such
structure there is a compatible G-invariant Kähler–Einstein metric. In this paper we investigate invariant
Einstein metrics on generalized flag manifolds M = G/H of a compact connected simple Lie group G with
second Betti number b2(M) = 1. Such a space is determined by painting black in the Dynkin diagram of
G only one simple root. By [BHi] it is known that M = G/H admits a unique invariant complex structure,
and thus a unique Kähler-Einstein metric. Compact isotropy irreducible Hermitian symmetric spaces are the
most typical examples of this category, and these are the only flag manifolds for which the Kähler-Einstein
metric is given by the Killing form. Generalized flag manifolds M = G/H with b2(M) = 1 can be divided
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into following six classes, with respect to the height of the painted black simple root (see §2), or equivalently,
with respect to the decomposition of the associated isotropy representation (see Table 1):

(A) The compact isotropy irreducible Hermitian symmetrics spacesM = G/H , which admit (up to scalling)
a unique invariant Einstein metric. In this case the height of the simple root is equal to 1.

(B) The flag manifolds M = G/H for which the isotropy representation decomposes into two inequivalent
irreducible Ad(H)-submodules, i.e., m = m1 ⊕ m2. These spaces are determined by painting black a simple
root with height 2 and their classification was obtained in [AC1] (see also [Sak]).

(C) Seven flag manifolds M = G/H with m = m1 ⊕ m2 ⊕ m3. These spaces were determined by painting
black a simple root with height 3 [Kim].

(D) Four flag manifolds M = G/H with m = m1⊕m2⊕m3⊕m4. These spaces are determined by a simple
root with height 4 [AC3].

(E) The flag manifold M = G/H = E8 /U(1) × SU(4) × SU(5). It is determined by painting black the
simple root α4 and is such that with m = m1 ⊕ · · · ⊕m5.

(F) The flag manifold M = G/H = E8 /U(1)× SU(2)× SU(3)× SU(5). It is determined by painting black
the simple root α5 and is such that m = m1 ⊕ · · · ⊕m6.

As we mention in Table, homogeneous Einstein metrics of the first four classes (B)-(D) have been completely
classified in [Sak], [Kim], [AC2], and [AC3] (see also the recent work [AnC], where invariant Einstein metrics
were studied under the more general context of Ricci flow). In particular, only the spaces corresponding to
the cases (E) and (F), have not been examined yet. In this article we focus on these two flag manifolds and
we construct the homogeneous Einstein equation. Next we treat the associated algebraic systems with the
goal to prove the existence of positive real solutions and if possible to classify them. For case (E) we obtain
the full classification of homogeneous Einstein metrics.

Theorem A. The generalized flag manifold M = G/H = E8 /U(1)×SU(4)×SU(5) admits (up to a scale)
precisely five non-Kähler E8-invariant Einstein metrics.

Table 1. The number of invariant Einstein metrics on generalized flag manifolds with b2(M) = 1.

M = G/H with b2(M) = 1 E(M) M = G/H with b2(M) = 1 E(M)

(A) Hermitian Symmetric Spaces ([Wo1]) (C) m = m1 ⊕ m2 ⊕m3 ([Kim])

SU(ℓ)/ S(U(p)× U(ℓ− p)) = 1 F4 /U(3) × SU(2) = 3
SO(2ℓ+ 1)/ SO(2)× SO(2ℓ− 1) = 1 E6 /U(2) × SU(3) × SU(3) = 3
Sp(ℓ)/U(ℓ) = 1 E7 /U(3) × SU(5) = 3
SO(2ℓ)/ SO(2) × SO(2ℓ− 2) = 1 E7 /SU(2) × SU(6) × U(1) = 3
SO(2ℓ)/U(ℓ) = 1 E8 /E6 × SU(2) ×U(1) = 3
E6 /U(1) × SO(10) = 1 E8 /U(8) = 3

E7 /U(1) × E6 = 1 G2 /U(2) (U(2) represented by the long root) = 3
(B) m = m1 ⊕ m2 ([DiK], [AC2]) (D) m = m1 ⊕ m2 ⊕ m3 ⊕ m4 ([AC3])

SO(2ℓ+ 1)/U(ℓ−m)× SO(2m + 1) (ℓ−m 6= 1) = 2 F4 /SU(3) × SU(2) × U(1) = 3
Sp(ℓ)/U(ℓ−m) × Sp(m) (m 6= 0) = 2 E7 /SU(4) × SU(3) × SU(2) ×U(1) = 3
SO(2ℓ)/U(ℓ−m) × SO(2m) (ℓ−m 6= 1, m 6= 0) = 2 E8 /SU(7) × SU(2) × U(1) = 3
G2 /U(2) (U(2) represented by the short root) = 2 E8 /SO(10) × SU(3) ×U(1) = 5
F4 /SO(7) × U(1) = 2 (E) m = m1 ⊕m2 ⊕ m3 ⊕ m4 ⊕ m5 (new)

F4 /Sp(3) ×U(1) = 2 E8 /SU(5) × SU(4) × U(1) = 6
E6 /SU(6) × U(1) = 2 (F) m = m1 ⊕ m2 ⊕ m3 ⊕ m4 ⊕m5 ⊕m6

E6 /SU(2) × SU(5) ×U(1) = 2 E8 /SU(5) × SU(3) × SU(2) ×U(1) ?
E7 /SU(7) × U(1) = 2
E7 /SU(2) × SO(10) × U(1) = 2
E7 /SO(12) × U(1) = 2
E8 /E7 ×U(1) = 2
E8 /SO(14) × U(1) = 2

For the second space the construction of the Einstein equation of an E8-invariant Riemannian metric is more
complicated than case (E), since we find 9 non-zero structure constants with respect to the decomposition
g = e8 = h ⊕ m = h ⊕ m1 ⊕ m2 ⊕ m3 ⊕ m4 ⊕ m5 ⊕ m6, a result that was presented also in [Chr] in terms of
symmetric-t-triples. To obtain the values of non-zero structure constants, we define a fibration of G/H =
E8 /U(1) × SU(2) × SU(3) × SU(5) over the space G/K = E8 / SU(6) × SU(2) × SU(2) with three isotropy
summands. This gives rise to a new decomposition g = e8 = k⊕n = k⊕n1⊕n2⊕n3, such that k = h⊕m6. By
comparing the Ricci components of E8 for the left-invariant metrics arising from these different decompositions,
we obtain certain conditions between the structure constants (the same approach was used also in case (E)).
Next, we use the twistor fibration of G/H over the symmetric space E8 /E7 × SU(2) to obtain some further
relations (the contribution of the twistor fibration in the construction of the homogeneous Einstein equation
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was first time highlighted in [AC2]). In this way we can write down explicitly the Ricci tensor for an E8-
invariant metric on G/H (as well as, the Ricci tensor for E8).

For E8 /U(1) × SU(2) × SU(3) × SU(5), the system of algebraic equations which gives the homogeneous
Einstein equation consists of five non-linear polynomial equations. We have tried to compute a Gröbner basis,
but we fail to obtain it. Since for the spaces arising from cases (B)-(E) we have proved that they always admit
a finite number of (non-Kahler) invariant Einstein metrics (see Table 1, for the number E(M)), we conjecture
the following:

Conjecture B. Let G a compact connected simple Lie group and let M = G/H be a generalized flag
manifold with first Betti number equal to 1, which is not an irreducible Hermitian symmetric space of compact
type. Then M admits a finite number of non-isometric G-invariant Einstein metrics, which are not Kähler.

The paper is organized as follows: In §1 we describe the Ricci tensor on a reductive homogeneous space,
and in §2 we discuss the algebraic setting of flag manifolds. In §3 we treat the space M = G/H = E8 /U(1)×
SU(4) × SU(5), we write down explicitly the homogeneous Einstein equation and we prove Theorem A. The
last section §4 is about the space M = G/H = E8 /U(1)× SU(2)× SU(3)× SU(5).

1. The Ricci tensor of a G-invariant metric

Let G be a compact connected semi-simple Lie group with Lie algebra g, and let H be a closed subgroup
of G with Lie algebra h ⊂ g. We denote by B the negative of the Killing form of g. Then B is an Ad(G)-
invariant inner product on g. Let m be an Ad(H)-invariant orthogonal complement of h with respect to B,
that means g = h ⊕ m and Ad(H)m ⊂ m. As usual we identify m = ToG/H , where o = eH ∈ G/H . Let
now h = h0 ⊕ h1 ⊕ · · · ⊕ hp be a decomposition of h into its ideals, i.e. [h, hi] ⊂ hi, for any i = 0, 1, . . . , p,
where h0 is the center of h and hi (i = 1, · · · , p) are simple ideals of h. We assume that hi (i = 1, · · · , p) are
mutually non-isomorphic and that dim h0 ≤ 1. We also assume that m = ToG/H admits a decomposition
m = m1 ⊕ · · · ⊕mq into q irreducible Ad(H)-modules mj (j = 1, · · · , q), which are mutually non-equivalent.

Let us consider now the following left-invariant Riemannian metric on G:

< , >= u0 ·B|h0
+u1 ·B|h1

+ · · ·+up ·B|hp
+x1 ·B|m1

+ · · ·+xq ·B|mq
, u0, u1, · · · , up, x1, · · · , xq ∈ R+. (1)

This metric is also Ad(H)-invariant. We also consider the G-invariant Riemannian metric on G/H , given by

( , ) = x1 ·B|m1
+ · · ·+ xq · B|mq

, x1, · · · , xq ∈ R+. (2)

Because mi ≇ mj for any i 6= j, any G-invariant metric on G/H is given by (2). For practical reasons,
next we will write the decomposition g = h0 ⊕ h1 ⊕ · · · ⊕ hp ⊕ m1 ⊕ · · · ⊕ mq (resp. m = m1 ⊕ · · · ⊕ mq) as
g = w0 ⊕w1 ⊕ · · · ⊕wp ⊕wp+1 ⊕ · · · ⊕wp+q (resp. m = wp+1 ⊕ · · · ⊕wp+q). Then, the space of left invariant
symmetric covariant 2-tensors on G which are Ad(H)-invariant is given by

{v0 · B|w0
+ v1 · B|w1

+ · · ·+ vp+q · B|wp+q
| v0, v1, · · · , vp+q ∈ R} (3)

and the space of G-invariant symmetric covariant 2-tensors on G/H is given by

{zp+1 · B|wp+1
+ · · ·+ zp+q · B|wp+q

| zp+1, · · · , zp+q ∈ R}. (4)

In particular, the Ricci tensor r of a left invariant Riemannian metric < , > on G is a left invariant symmetric
covariant 2-tensor on G which is Ad(H)-invariant and thus r is of the form (3), and the Ricci tensor r̄ of a
G-invariant Riemannian metric on G/H is a G-invariant symmetric covariant 2-tensor on G/H , and thus r̄ is
of the form (4). Let {eα} be a B-orthonormal basis adapted to the decomposition of g, i.e., eα ∈ wi for some i,
and α < β if i < j (with eα ∈ wi and eβ ∈ wj). We set Aγ

αβ = B([eα, eβ] , eγ) so that [eα, eβ ] =
∑

γ A
γ
αβeγ , and

set ckij =

[
k

ij

]
=

∑
(Aγ

αβ)
2, where the sum is taken over all indices α, β, γ with eα ∈ wi, eβ ∈ wj , eγ ∈ wk.

Then ckij is independent of the B-orthonormal bases chosen for wi,wj ,wk, and symmetric in all three indices,

i.e. ckij = ckji = cjki (see [WZ2]). Now, we write a left-invariant metric on G of the form (1), by

g = y0 ·B|w0
+ y1 ·B|w1

+ · · ·+ yp ·B|wp
+ yp+1 ·B|wp+1

+ · · ·+ yp+q ·B|wp+q
, y0, y1, · · · , yp+q ∈ R+, (5)

and a G-invariant Riemannian metric on G/H of the form (2), by

h = wp+1 · B|wp+1
+ · · ·+ wp+q ·B|wp+q

, wp+1, · · · , wp+q ∈ R+. (6)
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Theorem 1. ([AMS]) Let dk = dimwk. (1) The components r0, r1, · · · , rp+q of the Ricci tensor r of the
metric g of the form (5) on G, are given by

rk =
1

2yk
+

1

4dk

∑

j,i

yk
yjyi

[
k

ji

]
− 1

2dk

∑

j,i

yj
ykyi

[
j

ki

]
(k = 0, 1, · · · , p+ q), (7)

where the sum is taken over all i, j = 0, 1, · · · , p+ q. Moreover, for each k we have
∑

i,j

[
j

ki

]
= dk.

(2) The components r̄p+1, · · · , r̄p+q of the Ricci tensor r̄ of the metric h given by (6) on G/H, are given by

r̄k =
1

2wk

+
1

4dk

∑

j,i

wk

wjwi

[
k

ji

]
− 1

2dk

∑

j,i

wj

wkwi

[
j

ki

]
(k = p+ 1, · · · , p+ q), (8)

where the sum is taken over all i, j = p+ 1, · · · , p+ q.

2. Decomposition associated to generalized flag manifolds

In this section we review briefly the Lie theoretic description of a flag manifold in terms of painted Dynkin
diagrams, and next we recall some notions from the geometry and the topology of such a space.

Let G be a compact semi-simple Lie group, g the Lie algebra of G and t a maximal abelian subalgebra
of g. We denote by gC and tC the complexification of g and t, respectively. Then tC is a Cartan subalgebra
of gC. We assume that dimC tC = ℓ = rank gC. We identify an element of the root system ∆ of gC relative
to tC with an element of

√
−1t, by the duality defined by the Killing form of gC. Consider the root space

decomposition of gC relative to tC, i.e., gC = tC⊕⊕
α∈∆ gCα. Let Π = {α1, · · · , αℓ} be a fundamental system of

∆ and {Λ1, · · · ,Λℓ} the fundamental weights of gC corresponding to Π, that is 2(Λi, αj)/(αj , αj) = δij , for any

1 ≤ i, j ≤ ℓ. We choose a subset Π0 ⊂ Π and we set ΠM = Π\Π0 = {αi1
, · · · , αir

} (1 ≤ αi1
< · · · < αir

≤ ℓ).

We put [Π0] = ∆∩ spanZ{Π0} and [Π0]
+ = ∆+∩ spanZ{Π0}, where spanZ{Π0} denotes the subspace of

√
−1t

generated by Π0 with integer coefficients, and ∆+ is the set of all positive roots relative to Π. Take a Weyl
basis {Eα ∈ gCα : α ∈ ∆} (see [AC2]), and set Aα = Eα + E−α and Bα =

√
−1(Eα − E−α). Then the Lie

algebra g, is a real form of gC which can be identified with the fixed-point set gτ of the complex conjugation
τ in gC, that means gτ = g = t⊕⊕

α∈∆+{RAα + RBα} (see [Hel]). Now, the subalgebra u ⊂ gC defined by

(9), is a parabolic subalgebra u of gC, since it contains the Borel subalgebra b = tC ⊕⊕
α∈∆+ gCα ⊂ gC:

u = tC ⊕
⊕

α∈[Π
0
]∪∆+

gCα. (9)

Let GC be a simply connected complex semi-simple Lie group whose Lie algebra is gC and U the parabolic
subgroup of GC generated by u. Since U is connected, the complex homogeneous manifold GC/U is simply
connected (and compact). Moreover, G acts transitively on GC/U with isotropy group the connected closed
subgroup H = G ∩ U ⊂ G, thus GC/U = G/H as C∞-manifolds. This identification implies that GC/U
carries a G-invariant Kähler metric. Moreover H = G ∩ U is the centralizer of a torus S ⊂ T in G, where T
is the maximal torus generated from the ad-diagonal subalgebra t. Thus rankG = rankH . The homogeneous
space M = GC/U = G/H is called generalized flag manifold, and any generalized flag manifold is constructed
in this way. Let h be the Lie algebra of H and let hC be its complexification. In view of (9) and due to the
inclusion tC ⊂ hC ⊂ u, we obtain a direct sum decomposition u = hC ⊕ n, such that g ∩ u = h, where the
the nilradical n of u and the subalgebra hC are given by n =

⊕
α∈∆+−[Π

0
]+ gCα and hC = tC ⊕

⊕
α∈[Π

0
] g

C
α,

respectively. The real subalgebra h is given by h = t⊕⊕
α∈[Π0]

+{RAα + RBα}.
Let α̃ =

∑ℓ

k=1 ckαk be the highest (or maximal) root of gC, that is ck ≥ mk for any positive root

α =
∑ℓ

k=1 mkαk ∈ R+. The postive integer ci is called the height of the simple root αi ∈ Π, for any
i = 1, . . . , ℓ. Next we will use the map ht : Π → Z+, αi 7→ ht(αi) := ci.

Proposition 1. ([BuR, Proposition 4.3]) Let z be the center of the nilpotent Lie algebra n. Then we have
ad(hC)(z) ⊂ z and the action of hC on z is irreducible. Moreover, the ad(hC)-module z is generated by the
highest root space gCα̃.

We denote by h0 the center of h, and hC0 its complexification. Since hC is a reductive subalgebra of gC, it
admits the decomposition hC = hC0 ⊕ hCss, where hCss is the semisimple part of hC, given by hCss = [hC, hC] =⊕

α∈Π0
Cα

⊕
α∈[Π0]

gCα. The set [Π0] is the root system of hCss and Π0 is a basis of simple roots for it. For

convenience, we will denote the set [Π0] by ∆H . We set ∆M = ∆\∆H . Roots belong to ∆M are called
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complementary roots and they have a significant role in the geometry of M = G/H . For example, let m be
the orthogonal complement of h in g with respect to B. Then we have g = h⊕m, [ h, m ] ⊂ m, and we identify
m with the tangent space ToG/H in o = eH ∈ G/H . Set ∆+

M = ∆+\∆+
H , where ∆+

H is the system of positive

roots of hC, i.e., ∆+
H = [Π0]

+. Then

m =
⊕

α∈∆+

M

{RAα + RBα}. (10)

The complexified tangent space mC is given by mC =
∑

α∈∆M
gCα, and the set {Eα : α ∈ ∆M} is a basis of mC.

Note that although the set ΠM consists of all these complerentary roots which are simple, is not in general a
basis of ∆M , that is ∆M is not in general a root system.

Generalized flag manifolds M = G/H of a compact connected simple Lie group G are classified by using
the Dynkin diagram of G, as follows: Let Γ = Γ(Π) be the Dynkin diagram corresponding to the base of
simple roots Π of the root system ∆ of gC relative to the Cartan subalgebra tC.

Definition 1. The painted Dynkin diagram of M = G/H is obtained from the Dynkin diagram Γ = Γ(Π) by
painting black the nodes which correspond to the simple roots of ΠM . The subdiagram of white nodes with the
connecting lines between them determines the semisimple part hss of the Lie algebra h of H, and each black
node gives rise to one u(1)-summand (their totality forms the center h0 of h).

Thus, the painted Dynkin diagram determines the isotropy group H and the space M = G/H completely.
It should be noted that the resulting painted Dynkin diagram does not depend on the choise of a maximal
abelian subalgebra t and hence of ∆. On the other hand the necessity of making a choise of a base Π for ∆ (or
equivalently of an ordering ∆+ in ∆) reduces the number of painted Dynkin diagrams. By using certain rules
to determine whether different painted Dynkin diagrams define isomorphic flag manifolds, one can obtain all
flag manifolds G/H of a compact connected simple Lie group G (cf. [AA]).

Remark 1. The (real) dimension of the center h0 of the subalgebra h is equal to the number of black
nodes in the painted Dynkin diagram of M = G/H , or equivalent equal to the number of u(1) summands
in the decomposition of h. By assuming that ΠM = {αi1

, · · · , αir
}, it follows that the fundamental weights

Λi1 , . . . ,Λir form a basis of the dual space h∗0 of h0. Since h∗0
∼= h0, via the Killing form of g, we obtain

dim h0 = r = |ΠM |, where |ΠM | is the cardinality of ΠM (cf. [APe]). From [BHi, p. 507] we have that
H2(M ;R) = H1(H ;R) = h0. Thus, the second Betti number b2(M) of the flag manifold M = G/H is equal to
dim h0, and it is obtained directly from the painted Dynkin diagram. Moreover, any flag manifold M = G/H
of a simple Lie group G with b2(M) = r, is determined by a subset ΠM ⊂ Π with |ΠM | = r and it is
constructed in the above way.

From now on we assume that G is simple. Moreover, we choose a subset Π0 ⊂ Π such that ΠM =
Π − Π0 = {αi}, for some fixed i with 1 ≤ i ≤ ℓ. Then the corresponding flag manifold M = G/H is
such that dim h0 = 1 and b2(M) = 1. We also assume that ht(αi) = N ∈ Z+. To an integer k with

1 ≤ k ≤ N we associate the set ∆+(αi, k) =

{
α ∈ ∆+

∣∣∣∣ α =
∑ℓ

j=1 mjαj , mi = k

}
. Then it is obvious that

∆+
M = ∆+\∆+

H =
⋃

1≤k≤N ∆+(αi, k). We define a subspace nk of the nilradical n by nk =
⊕

α∈∆+(αi,k)
CEα.

Then nk (k = 1, · · · , N) are ad(hC)-invariant subspaces, and n =
⊕N

j=1 nj is an irreducible decomposition of

n (see [Wo2]). In view of Proposition 1 we have that z = nN . We also define subspaces mk of m, given by

mk =
⊕

α∈∆+(αi,k)

{R(Eα + E−α) + R
√
−1(Eα − E−α)}. (11)

Note that mk are Ad(H)-invariant submodules of m which are matually inequivalent each other, for any
k = 1, · · · , N ([Kim]). We also recall the following useful inclusions (see for example [AC2]):

[h,mi] ⊂ mi, [mi,mi] ⊂ h+m2i, [mi,mj] ⊂ mi+j +m|i−j| (i 6= j). (12)

By using (10), we get a characterization of m in terms of the submodules mk:

Lemma 1. Let M = GC/U = C/H be a flag manifold of a compact connected simple Lie group G, defined

by a subset ΠM = {αi : ht(αi) = N} ⊂ Π. Then, m = ToM admits a decomposition m =
⊕N

k=1 mk into N
irreducible, inequivalent Ad(H)-submodules mk defined by (11). Moreover, it is dk = dimR mk = 2·|∆+(αi, k)|,
for any 1 ≤ k ≤ N .

Note that according to the notation of §1, for the space M = GC/U = G/H in Lemma 1, it is N = q.
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Remark 2. It is well known (cf. [Tak], [APe], [AC3]) that for a flag manifold G/H , there is a 1-1 corre-
spondence between G-invariant complex structures J and compatible G-invariant Kähler-Einstein metrics hJ ,
given by J ↔ hJ = {hα = (δm, α) : α ∈ ∆+

M}, where hα = hJ(Eα, E−α) are the components of the metric hJ

with respect to the base {Eα : α ∈ ∆M} of mC. The weight δm = (1/2)
∑

β∈∆+

M
β ∈

√
−1t is called Koszul

form. If we assume that M is defined by a subset ΠM = {αi1 , . . . , αir}, then the following relation holds:
2δm = ui1 · Λα

i1
+ · · ·+ uir · Λα

ir
. The positive integers ui1 > 0, . . . , uir > 0 are called Koszul numbers.

Proposition 2. ([BHi], [Tak]) Let M = GC/U = G/H be a flag manifold defined as in Lemma 1. Then M
admits a unique G-invariant Kähler-Einstein metric given by

hJ = B|m1
+ 2 · B|m2

+ · · ·+N · B|mN
. (13)

Proof. We give a short proof here since one is difficult to find it in the literature. By [BHi, Proposition
13.8], we know that M admits a unique G-invariant complex structure J , induced by the invariant ordering
∆+

M = ∆+/∆+
H (we identify J with its conjugate J̄ which is induced by the invariant ordering ∆−

M = −∆+
M ).

The complex structure J is described by an ad(hC)-invariant endomorphism Jo on mC with J2
o = − IdmC ,

explicitly determined by the formulae JoE±α = ±
√
−1E±α, for any α ∈ ∆+

M . In view of Remark 2, M admits
a unique G-inavriant Kähler-Einstein metric hJ compatible with J . Because ΠM = {αi : ht(αi) = N}, (where
i is fixed, 1 ≤ i ≤ ℓ), we have δm = ui/2 · Λi, where ui > 0. From Lemma 1 it is m =

⊕N

k=1 mk, thus the

G-invariant metric hJ on M has the form (2), that is hJ =
∑N

k=1 hk ·B|mk
, with (h1, . . . , hN) ∈ RN

+ . Here we
denote by hk the components of the metric hJ on mk, that means hk = hJ(Eα, E−α) where α ∈ ∆+(αi, k), for
any 1 ≤ k ≤ N , By applying Remark 2, we get hk = hJ (Eα, E−α) = (δm, α), where α ∈ ∆+(αi, k). Because
(Λi, αi) = (αi, αi)/2, it is

hk = (δm, α) = (
ui

2
· Λi,m1α1 + · · ·+ kαi + · · ·+mℓαℓ) = (

ui

2
· Λi, kαi) = k · ui · (αi, αi).

Since the simple root αi is fixed, the number ui · (αi, αi) is constant and indepedent of the integer k, for any
1 ≤ k ≤ N . By normalizing the metric the proof is complete. �

3. Homogeneous Einstein metrics on E8/U(1)× SU(4)× SU(5)

3.1. The flag manifold E8 /U(1)× SU(4)× SU(5). Let G = E8. A basis of simple roots for the root system
of E8 is given by Π = {α1 = e1 − e2, . . . , α7 = e7 − e8, α8 = e6 + e7 + e8}, and α̃ = 2α1 + 3α2 + 4α3 + 5α4 +
6α5 + 4α6 + 2α7 + 3α8 (cf. [AA], [AC3]). We set ΠM = {α4}, thus Π0 = {α1, α2, α3, α5, α6, α7, α8}. So we
obtain the (extended) painted Dynkin diagram (the douple circle denotes the negative of α̃)

❡❜ ❝
α1

❝
α2

❝
α3

s
α4

❝α8

❝
α5

❝
α6

❝
α7

It defines the flag manifoldM = G/H = E8 /U(1)×SU(4)×SU(5). Let g = h⊕m be a reductive decomposition
of g with respect to B. Because ht(α4) = 5, from Lemma 1 it follows that N = 5 = q, that is m =
m1⊕m2⊕m3⊕m4⊕m5. In this way we find a pair (Π,Π0) for g = e8, which has an irreducible decomposition

g = h0 ⊕ h1 ⊕ h2 ⊕m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5 (14)

as Ad(H)-modules, where h0 is the center of h and h1 = su(4), h2 = su(5). Note that d0 = dim h0 = 1,
d1 = dim h1 = 15 and d2 = dim h2 = 24. Also, by applying the second part of Lemma 1 we obtain that
d3 = dimm1 = 80, d4 = dimm2 = 60, d5 = dimm3 = 40, d6 = dimm4 = 20 and d7 = dimm5 = 8.

Proposition 3. In the decomposition (14) we can take the ideal h2 such that [h2,m5] = {0}.
Proof. We can assume that h2 6= {0}. Note that there is only a simple root αj0 = α8 with (αj0 , α̃) 6= 0
and thus we can take the ideal h2 so that

[
hC2 , Eα̃

]
= {0}. Since n5 = [hC, Eα̃], we have that

[
hC2 , n5

]
=[

hC2 , [h
C, Eα̃]

]
⊂

[[
hC2 , h

C
]
, Eα̃

]
+
[
hC,

[
hC2 , Eα̃

]]
= {0}. By the definition of m5, we get the result. �

3.2. Proof of Theorem 1. Following the notation of §1, we consider left-invariant Riemannian metrics on
the compact Lie group E8, given by

< , >= u0 ·B|h0
+ u1 · B|h1

+ u2 ·B|h2

+ x1 ·B|m1
+ x2 ·B|m2

+ x3 ·B|m3
+ x4 · B|m4

+ x5 · B|m5
,

(15)

for positive real numbers u0, u1, u2, x1, x2, x3, x4, x5. Note that the left-invariant metric (15) is also Ad(H)-
invariant.
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Lemma 2. For a left invariant metric < , > on E8 given by (15), the non-zero structure constants

[
k

ij

]
are

the following (and their symmetries):
[
3

03

]
,

[
4

04

]
,

[
5

05

]
,

[
6

06

]
,

[
7

07

]
,

[
1

11

]
,

[
3

13

]
,

[
4

14

]
,

[
5

15

]
,

[
6

16

]
,

[
7

17

]
,

[
2

22

]
,

[
3

23

]
,

[
4

24

]
,

[
5

25

]
,

[
6

26

]
,

[
4

33

]
,

[
5

34

]
,

[
6

35

]
,

[
7

36

]
,

[
6

44

]
,

[
7

45

]
.

Proof. This fact follows from relations [hi, hi] ⊂ hi, [hi, h0] = {0} and the inclusions given by (12). We also

mention that an important consequence of Proposition 3 is the following one:

[
7

27

]
=

[
7

72

]
=

[
2

77

]
= 0. �

Proposition 4. The components of the Ricci tensor r for a left-invariant Riemannian metric < , > on E8

defined by (15), are given as follows:





r0 =
u0

4 x1
2

[
0

33

]
+

u0

4 x2
2

[
0

44

]
+

u0

4 x3
2

[
0

55

]
+

u0

4 x4
2

[
0

66

]
+

u0

4 x5
2

[
0

77

]

r1 =
1

4 d1 u1

[
1

11

]
+

u1

4 d1 x1
2

[
1

33

]
+

u1

4 d1 x2
2

[
1

44

]
+

u1

4 d1 x3
2

[
1

55

]

+
u1

4 d1 x4
2

[
1

66

]
+

u1

4 d1 x5
2

[
1

77

]

r2 =
1

4 d2 u2

[
2

22

]
+

u2

4 d2 x1
2

[
2

33

]
+

u2

4 d1 x2
2

[
2

44

]
+

u2

4 d1 x3
2

[
2

55

]
+

u2

4 d1 x4
2

[
2

66

]

r3 =
1

2x1
− 1

2 d3

[
4

33

]
x2

x1
2
+

1

2 d3

[
3

45

](
x1

x2x3
− x2

x1x3
− x3

x1x2

)

+
1

2 d3

[
3

56

](
x1

x3x4
− x3

x1x4
− x4

x1x3

)
+

1

2 d3

[
3

67

](
x1

x4x5
− x4

x1x5
− x5

x1x4

)

− 1

2 d3 x1
2

(
u0

[
0

33

]
+ u1

[
1

33

]
+ u2

[
2

33

] )

r4 =
1

2x2
+

1

4 d4

[
4

33

](
x2

x1
2
− 2

x2

)
− 1

2 d4

[
6

44

]
x4

x2
2

+
1

2 d4

[
4

35

](
x2

x1x3
− x1

x2x3
− x3

x2x1

)
+

1

2 d4

[
4

57

](
x2

x3x5
− x3

x2x5
− x5

x2x3

)

− 1

2 d4 x2
2

(
u0

[
0

44

]
+ u1

[
1

44

]
+ u2

[
2

44

] )

r5 =
1

2x3
+

1

2 d5

[
5

34

](
x3

x1x2
− x2

x3x1
− x1

x3x2

)
+

1

2 d5

[
5

36

](
x3

x1x4
− x1

x3x4
− x4

x1x3

)

+
1

2 d5

[
5

47

](
x3

x2x5
− x2

x3x5
− x5

x3x2

)
− 1

2 d5 x3
2

(
u0

[
0

55

]
+ u1

[
1

55

]
+ u2

[
2

55

] )

r6 =
1

2x4
+

1

4 d6

[
6

44

](
x4

x2
2
− 2

x4

)
+

1

2 d6

[
6

35

](
x4

x1x3
− x1

x3x4
− x3

x4x1

)

+
1

2 d6

[
6

37

](
x4

x1x5
− x1

x4x5
− x5

x1x4

)
− 1

2 d6 x4
2

(
u0

[
0

66

]
+ u1

[
1

66

]
+ u2

[
2

66

] )

r7 =
1

2x5
+

1

2 d7

[
7

45

](
x5

x2x3
− x2

x3x5
− x3

x2x5

)

+
1

2 d7

[
7

36

](
x5

x1x4
− x1

x4x5
− x4

x1x5

)
− 1

2 d7 x5
2

(
u0

[
0

77

]
+ u1

[
1

77

] )
.

(16)

Proof. This is an immediate application of Theorem 1, (1). Ofcourse we use the results of Lemma 2 and the

relation
∑

i,j

[
j

ki

]
= dk. �
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Now, an E8-invariant Riemannian metric on G/H = E8 /U(1)×SU(4)×SU(5) is determined completely by
an Ad(H)-invariant inner product on the tangent space m = ToG/H , which we will denote by ( , ). Because of
the decomposition m = m1⊕m2⊕m3⊕m4⊕m5, it depends on five real positive parameters. In particular, and
since the irrducible submodules mi are pairwise inequivalent for any i = 1, . . . , 5, any G-invariant Riemannian
metric on G/H will be expressed from relation (6), that means

( , ) = x1 ·B|m1
+ x2 · B|m2

+ x3 · B|m3
+ x4 · B|m4

+ x5 ·B|m5
, (x1, x2, x3, x4, x5) ∈ R5

+. (17)

By applying a similar procedure like as Proposition 4 and by using Lemma 2, we also obtain that:

Proposition 5. The components r̄i of the Ricci tensor r̄ for the G-invariant metric ( , ) on G/H defined by
(17), are given as follows





r̄1 =
1

2x1
− 1

2 d3

[
4

33

]
x2

x1
2
+

1

2 d3

[
3

45

](
x1

x2x3
− x2

x1x3
− x3

x1x2

)

+
1

2 d3

[
3

56

](
x1

x3x4
− x3

x1x4
− x4

x1x3

)
+

1

2 d3

[
3

67

](
x1

x4x5
− x4

x1x5
− x5

x1x4

)

r̄2 =
1

2x2
+

1

4 d4

[
4

33

](
x2

x1
2
− 2

x2

)
− 1

2 d4

[
6

44

]
x4

x2
2

+
1

2 d4

[
4

35

](
x2

x1x3
− x1

x2x3
− x3

x2x1

)
+

1

2 d4

[
4

57

](
x2

x3x5
− x3

x2x5
− x5

x2x3

)

r̄3 =
1

2x3
+

1

2 d5

[
5

34

](
x3

x1x2
− x2

x3x1
− x1

x3x2

)
+

1

2 d5

[
5

36

](
x3

x1x4
− x1

x3x4
− x4

x1x3

)

+
1

2 d5

[
5

47

](
x3

x2x5
− x2

x3x5
− x5

x3x2

)

r̄4 =
1

2x4
+

1

4 d6

[
6

44

](
x4

x2
2
− 2

x4

)
+

1

2 d6

[
6

35

](
x4

x1x3
− x1

x3x4
− x3

x4x1

)

+
1

2 d6

[
6

37

](
x4

x1x5
− x1

x4x5
− x5

x1x4

)

r̄5 =
1

2x5
+

1

2 d7

[
7

45

](
x5

x2x3
− x2

x3x5
− x3

x2x5

)

+
1

2 d7

[
7

36

](
x5

x1x4
− x1

x4x5
− x4

x1x5

)
.

(18)

From Proposition 2, we known that the metric B|m1
+2 ·B|m2

+3 ·B|m3
+4 ·B|m4

+5 ·B|m5
is the unique

Kähler-Einstein on G/H . By substituting these values in the system {r̄1 = r̄2 = r̄3 = r̄4 = r̄5}, we obtain

1

2
−

1

d3

([
4

33

]
+

[
5

34

]
+

[
6

35

]
+

[
7

36

])
=

1

4
+

1

d4

(
1

4

[
4

33

]
−

1

2

[
5

34

]
−

1

2

[
6

44

]
−

1

2

[
7

45

])
= (19)

1

6
+

1

d5

(
1

3

[
5

34

]
−

1

3

[
6

35

]
−

1

3

[
7

45

])
=

1

8
+

1

d6

(
1

4

[
6

35

]
−

1

4

[
7

36

]
+

1

8

[
6

44

])
=

1

10
+

1

d7

(
1

5

[
7

36

]
+

1

5

[
7

45

])
.

3.2.1. Comparison of left-invariant metrics. From (19) we obtain a system with four equations and six

unknowns, namely the triples

[
4

33

]
,

[
5

34

]
,

[
6

35

]
,

[
7

36

]
,

[
6

44

]
, and

[
7

45

]
(the fact that G/H has six non-zero

structures constants with respect to the decomposition (14), has been recently proved by the first author
in terms of symmetric t-triples, see [Chr] but be aware of a different enumeration). In order to compute
them explicitly, we need two more equations. In this direction, we will construct a new left-invariant metric
<< , >> on G = E8, corresponding to a different decomposition of our Lie algebra g = e8. By comparing
this metric with the previous one < , >, one can obtain crucial relations between the non-zero structure
constants.

We put k = h⊕m5, k1 = h0 ⊕ h1 ⊕m5, n1 = m1 ⊕m4 and n2 = m2 ⊕m3 . Then k is a subalgebra of g, and
from Propositon 3, we see that k1 is also a subalgebra of g. In particular it is k = k1 ⊕ h2, where h2 = su(5),
and for dimensional reasons we also obtain that k1 = su(5). By using (12) we get that

[n1, n1] ⊂ n2 ⊕ k, [n1, n2] ⊂ n1 ⊕ n2, [n2, n2] ⊂ n1 ⊕ k. (20)
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Thus, we obtain an irreducible decomposition g = k1 ⊕ h2 ⊕ n1 ⊕ n2 as Ad(K)-modules, which are mutually
non-equivalent (cf. [WZ1, p. 575]). Since h ⊂ k we determine a fibration G/H → G/K, given by E8 /U(1)×
SU(4)×SU(5) → E8 / SU(5)×SU(5). The base space G/K = E8 / SU(5)×SU(5) has two isotropy summands,
namely n1 and n2. We consider the following left-invariant metrics on G = E8 which are also Ad(K)-invariant:

<< , >>= y1 · B|k1 + y2 · B|h2
+ y3 · B|n1

+ y4 · B|n2
, (y1, y2, y3, y4) ∈ R4

+. (21)

Next, we will use the notation f1 = dim k1 = 24, f2 = dim h2 = 24, f3 = dim n1 = 100 and f4 = dim n2 = 100.

Lemma 3. For a left-invariant metric << , >> on E8 given by (21), the non-zero structure constants are

the following (and their symmetries):

[[
1

11

]]
,

[[
3

13

]]
,

[[
4

14

]]
,

[[
2

22

]]
,

[[
3

23

]]
,

[[
4

24

]]
,

[[
4

33

]]
,

[[
4

34

]]
.

Proof. This result follows from the decomposition k = k1 ⊕ h2 and the relations given in (20). Note that since

[h2, n1] ⊂ n1, and h2 ⊥ k1, it is

[[
1

23

]]
=

[[
2

13

]]
=

[[
3

12

]]
= 0. �

Proposition 6. The components r̃i of the Ricci tensor r̃ of the left-invariant metric << , >> on E8 defined
by (21), are given as follows:





r̃1 =
1

4 f1 y1

[[
1

11

]]
+

y1
4 f1 y32

[[
1

33

]]
+

y1
4 f1 y42

[[
1

44

]]

r̃2 =
1

4 f2 y2

[[
2

22

]]
+

y2
4 f2 y32

[[
2

33

]]
+

y2
4 f2 y42

[[
2

44

]]

r̃3 =
1

2y3
+

y3
4 f3 y42

[[
3

44

]]
− 1

2 f3

(
y1
y32

[[
1

33

]]
+

y2
y32

[[
2

33

]]
+

y4
y32

[[
4

33

]]
+

1

y3

[[
4

34

]])

r̃4 =
1

2y4
+

y4
4 f4 y32

[[
4

33

]]
− 1

2 f4

(
y1
y42

[[
1

44

]]
+

y2
y42

[[
2

44

]]
+

y3
y42

[[
3

44

]]
+

1

y4

[[
3

34

]])
.

(22)

Proof. We use the relations

[[
1

11

]]
+

[[
3

13

]]
+

[[
4

14

]]
= f1,

[[
2

22

]]
+

[[
3

23

]]
+

[[
4

24

]]
= f2 and Lemma 3. Then,

the result is a straightforward application of Theorem 1, (1). �

Observe that equations (22) are obtained from equations (16) by setting y1 = u0 = u1 = x5, y2 = u2,
y3 = x1 = x4 and y4 = x2 = x3. In fact, for these values the metrics < , > and << , >> on E8 coincide,
so the components of the corresponding Ricci tensors must be equal. Thus, from relation y3 = x1 = x4 it
follows that r̃3 = r3 = r6, and relation y4 = x2 = x3 implies that r̃4 = r4 = r5. By using the first relation, we
obtain the following equations:

{
1

2 f3

[[
4

34

]]
=

1

d3

[
5

34

]
=

1

2d6

[
6

44

]
,

1

2 f3

[[
4

33

]]
=

1

2d3

[
4

33

]
+

1

2d3

[
6

35

]
=

1

2d6

[
6

35

]}
. (23)

So, from equations (19) and (23), we get a system of equations:

60− 4

[
4

33

]
−
[
5

34

]
− 3

[
6

35

]
− 3

[
7

36

]
+ 2

[
6

44

]
+

[
7

45

]
= 0 4 + 2

[
6

35

]
− 6

[
7

36

]
+

[
6

44

]
− 4

[
7

45

]
= 0

20 +

[
4

33

]
− 4

[
5

34

]
+ 2

[
6

35

]
− 2

[
6

44

]
= 0

[
4

33

]
− 3

[
6

35

]
= 0

20 + 4

[
4

33

]
− 10

[
6

35

]
+ 6

[
7

36

]
− 3

[
6

44

]
− 4

[
7

45

]
= 0

[
5

34

]
− 2

[
6

44

]
= 0.






(24)

By solving system (24), we can obtain the explicit values of all non-zero triples.

Proposition 7. For the G-invariant metric ( , ) on M = G/H = E8 /U(1) × SU(4) × SU(5), the non-zero

structure constants

[
k

ij

]
are given by

[
4

33

]
= 12,

[
5

34

]
= 8,

[
6

35

]
= 4,

[
7

36

]
= 4/3,

[
6

44

]
= 4, and

[
7

45

]
= 2.
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3.2.2. Solutions of the homogeneous Einstein equation. It is obvious that due to Proposition 7, the
components r̄i (1 ≤ i ≤ 5) of the Ricci tensor are completely determined by equation (18). Thus, a G-invariant
metric on G/H given by (17), is an Einstein metric, if and only if it is a positive real solution of the system

equations
{
r̄1 − r̄2 = 0, r̄2 − r̄3 = 0, r̄3 − r̄4 = 0, r̄4 − r̄5 = 0

}
. We normalize our equations by setting

x1 = 1. Then, we obtain the following system of polynomial equations:




f1 = −15x2
3x3x4x5 − 14x2

3x4x5 − 2x2
3x4 − 3x2

2x3
2x5 − x2

2x3x4
2 + 60x2

2x3x4x5

+x2
2x3 − 3x2

2x4
2x5 + 3x2

2x5 + 2x2x3
2x4x5 + 2x2x3

2x4 − x2x5
2(x2x3 − 2x4)

−48x2x3x4x5 + 14x2x4x5 + 4x3x4
2x5 = 0,

f2 = 6x2
3x3x4x5 + 20x2

3x4x5 + 5x2
3x4 − 6x2

2x3
2x5 + 6x2

2x4
2x5 − 60x2

2x4x5 + 6x2
2x5

−20x2x3
2x4x5 − 5x2x3

2x4 + 48x2x3x4x5 + x2x4x5
2 + 4x2x4x5 − 4x3x4

2x5 = 0,
f3 = −12x2

3x4x5 − 3x2
3x4 + 18x2

2x3
2x5 − 4x2

2x3x4
2 − 48x2

2x3x5 + 4x2
2x3

−18x2
2x4

2x5 + 60x2
2x4x5 + 6x2

2x5 + 12x2x3
2x4x5 + 3x2x3

2x4 + x2x5
2(4x2x3 − 3x4)

−12x2x4x5 − 6x3x4
2x5 = 0,

f4 = 15x2
3x4 − 12x2

2x3
2x5 + 14x2

2x3x4
2 − 60x2

2x3x4 + 48x2
2x3x5 + 6x2

2x3 + 12x2
2x4

2x5

−12x2
2x5 + 15x2x3

2x4 − x2x5
2(14x2x3 + 15x4) + 6x3x4

2x5 = 0

(25)

To find non zero solutions of equations (25), we consider a polynomial ring R = Q[y, x2, x3, x4, x5] and an ideal
I generated by {f1, f2, f3, f4, y x2x3x4x5 − 1}. We take a lexicographic order > with y > x2 > x3 > x4 > x5

for a monomial ordering on R. Then a Gröbner basis for the ideal I contains the following polynomials:

(x5 − 5)h1(x5),

where

h1(x5) = 47250369629121459608121860582842245939840000000000000000000000000000x5
80

−44502721326236707595001752466849417654096390912000000000000000000000000x5
79

−127927899803066910819626144206249935264735100081391520000000000000000000000x5
78

+30984441136208124756805023456236711943789624683679786321327360000000000000000x5
77

−9407667092801307914764294340926341066256873453579530900114710210544000000000000x5
76

+653826144084182079268079901461204888968952996494327125389790471739985280000000000x5
75

−19744990371262665867009607094265070906432324111523139945567539780094928062000000000x5
74

+295417906609256853557581641966418991279896160343355981972950640656746680368036000000x5
73

−1762285330776022609203013683069523025306377877928698318524115380685643197446890600000x5
72

−10462361854671701998104544580847760954375968996606627791364385787664851645845885320000x5
71

+273127964290226652149141156670977938236643366070118489705861324916144055316096761573400x5
70

−2111960629350008712997729037300817756734290413479373882702240599399189871243689591006175x5
69

+5667556243748995459386240850806848873153508627491406324575978221778369034430564358535255x5
68

+36916796012190985839995767068943016022768655189007921073718631164568984823180629655165774x5
67

−480043427227103386168410236919150532667731905301793775626334375100142985164103040894427418x5
66

+2669466865570709757591203227861969288208818388453387598875870945678316865833055777331067837x5
65

−9139370219515428062586925971255785108269027010839943296284679421606792256118374978308738385x5
64

+18376803759786690759067819429109389235442878023601624262304528005033176015099771716603198053x5
63

−4434598744236049037326921750693065341554718105773585135509719297194724179269332415901304115x5
62

−122942453999875131691082705626502798782543273422369717227890460735397667123586813903863256137x5
61

+557044613769919358881831475859775849297414765785797612342131072020815759345208096609159899463x5
60

−1582112308015166781511553070705918330645094458016283031865801964437503183281716531594941551364x5
59

+3464472736630040525970824569521542435258348760527397542887503754098829755831264744030764156992x5
58

−6250670258507879661868513807468438130915325390449197827806590463302339618860631493983543773283x5
57

+9542957661402379626885603875284853319774561607639500042502602854726252954033026034457322809151x5
56

−12380004909823904423519609523695561586238828918412816342069646226607551412829930248134407593884x5
55

+13401022174357608899328446324406553934967394448014966777357903865145845942704370104643931272926x5
54

−11454859162723032436843724003110729247358415062963195333319557829373765359975793006825571080941x5
53

+6531554221183964466274641612049918323583578210445014400910307963829849825375162410585489570621x5
52

−316641445331615758323480731628114380497461319156157336426089032777486858211662553902979518394x5
51

−4511360223947943168675539743775435114362206151804575935356550045100863502548716820333134752694x5
50

+6087115688329570072338435120373811716545236042878599228744017704504089369083719362619968183555x5
49

−4675893250266918680202453179124610578591031860399899777892566560016181423243816648324498543187x5
48

+2143429445341031786389265549434391422206727383049594032893271647372308986514792937870444815571x5
47

−231253045030947791112644037512828421572241934695401544926933559695048747164457004283398204533x5
46

−532301826949158300720392632394449627646398404633944476773039073687691695675258965276247513891x5
45

+552082494158004900410345657361746872504024473342372488971954687256794916952302602242597318937x5
44

−354858300315575176636116114017710529039156621887743050435366604218207408293000093929813990748x5
43
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+184978497482048010509514837592280895844664820736890146696513358161840762772499978643051227900x5
42

−75408592149589732327656857700438745819167648130143265960403239642317262274005336224124185641x5
41

+10531002385007869761389438060270926428468620545143636302432569599048769385446663398985254001x5
40

+18187017225550037690927397428615858931020886094928386776380715717452961856063861286331543150x5
39

−20664417470033189737084665846337427764952080173198112700088930064694365617183532786275142768x5
38

+11916055970808854922899644307331777253552386986156100562012851192379938688239690108923060887x5
37

−3708555321205331348429426536731098923454218574519094259406355018012529108583799905692626175x5
36

−96480805739056976294601239992813599254269508846338418923366185888654809823550296258388334x5
35

+779521396809818762783053712322840780796118975861466278102820782746103634907574259253279890x5
34

−442928305317101231218698431501006044423392364446878989062913546917526691594291366407500029x5
33

+132177537460041732222335574951671464735043143702524016111303113595306993873098919838904985x5
32

−16114147577200460384199635367557801247444138648980795121632729968807399395280217014095645x5
31

−3849526879948689872130955352696922796224331598779451913869496380116402423654355482141685x5
30

+2351610564836500911267495436251301001461704562036547343481902434468701494636028630801825x5
29

−712516460616616751913578501294263306534891480500617074968174235211114694431876638085575x5
28

+282452075662793320138187529511595841424627288321648629298768091107556621045836294535500x5
27

−138374750045771562844828515941070490939815457547440766945879714422270211889392119468000x5
26

+50124765380811508159567577887326533840520730559017278454760109996379339300985947734875x5
25

−10762356490866992628456505828708095865331486302712083316693729128231697768588472709375x5
24

+770995102742362625030991844772593954271351734760437853063704471596407378827318100000x5
23

+238672534050707994950682405938563685589475241026765736303369800772306441196663718750x5
22

−77015369860349488230676579817358388095252750079341229113657799438981492710341796875x5
21

+16203407364044735966231105435072556199261185091779727549069469576750633917154296875x5
20

−7776172850621403205385230811141442027882804598089143631163075780822473346652343750x5
19

+3517442589328862894719995442588428798753284776977135499703475875542210752011718750x5
18

−931918476193213037106761643540495870645939634042925070304993345925047085888671875x5
17

+130192292265798214494340656423328372967173237511484789254427003490699178466796875x5
16

−4556905640331850011402935119725159001214289709469798473424494855591307373046875x5
15

−950040703640292668289873499763694206425102930665876043451475229307684326171875x5
14

−34715301470425559583263350284090472471453462650373441885291099465118408203125x5
13

+34377820359803276597707941399767708854437189185308316691176341939544677734375x5
12

+2940913624210333433665440099413579270033669238437253653867249441528320312500x5
11

−2363102107715118264887281080330080805393498571519911950217269393920898437500x5
10

+228541677483124504267111166163309115456541043470680897587459812164306640625x5
9

+68985356139194695682604008171120520620913442786896894882409572601318359375x5
8

−21969901363014354399798457903330176488165228491480734636769294738769531250x5
7

+2145911716144516228364784597830820394965441727377596086263656616210937500x5
6

−13587162056256141107952149957212688457343044462700080871582031250000000x5
5

−11357933855421166005034906491477307847294859559528827667236328125000000x5
4

+738099393282019949609085221262070463439963283538818359375000000000000x5
3

−15288611574181493618019459769273701199533462524414062500000000000000x5
2

−5964411276773937085334137581840682983398437500000000000000000000x5

+2196564210665606805546184930686950683593750000000000000000000000,

and polynomials of the form

b2x2 + v2(x5), b3x3 + v3(x5), b4x4 + v4(x5) (26)

where b2, b3, b4 are integers and v2(x5), v3(x5), v4(x5) are polynomials of x5 with degree 80 of integer coeffi-
cients.

For the case when x5−5 = 0, we consider ideals I1 of the polynomial ring R = Q[y, x2, x3, x4, x5] generated
by

{f1, f2, f3, f4, y, x2x3x4x5 − 1, x5 − 5}.
Then, by taking a lexicographic order > with y > x2 > x3 > x4 > x5 for a monomial ordering on R, we

obtain a Gröbner basis for the ideals I1 that contains polynomials

{x2 − 2, x3 − 3, x4 − 4, x5 − 5}.
This solution corresponds to the Kähler Einstein metric.

For the case h1(x5) = 0, we see that there are 18 positive solutions for x5. After substituting these values
in the equations b2x2 + v2(x5) = 0, b3x3 + v3(x5) = 0,b4x4 + v4(x5) = 0, we see that there are 5 cases that all
values for x2, x3 and x4 are positive.
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Thus we get :
Theorem A. The generalized flag manifold M = G/H = E8 /U(1) × SU(4) × SU(5) admits (up to a
scale) precisely five non-Kähler E8-invariant Einstein metrics. These E8-invariant Einstein metrics g =
(x1, x2, x3, x4, x5) are given approximately by

(1) x1 = 1, x2 ≈ 1.0213742, x3 ≈ 0.54600746, x4 ≈ 1.0535169, x5 ≈ 1.1087938,
(2) x1 = 1, x2 ≈ 1.0373227, x3 ≈ 1.0471761, x4 ≈ 1.0308150, x5 ≈ 0.29861996,
(3) x1 = 1, x2 ≈ 0.59978523, x3 ≈ 1.0837088, x4 ≈ 0.90182312, x5 ≈ 1.2229122,
(4) x1 = 1, x2 ≈ 0.72071315, x3 ≈ 1.0254588, x4 ≈ 0.47523403, x5 ≈ 1.0709463,
(5) x1 = 1, x2 ≈ 1.0829413, x3 ≈ 1.0408835, x4 ≈ 0.53261506, x5 ≈ 1.1035115.

4. Homogeneous Einstein metrics on E8 /U(1)× SU(2)× SU(3)× SU(5)

4.1. The flag manifold E8 /U(1)× SU(2)× SU(3)× SU(5). We will exam now the case (F). We consider
again the Lie group G = E8 and we set ΠM = {α5}, thus Π0 = {α1, α2, α3, α4, α6, α7, α8}. This choice gives
rise to the following (extended) painted Dynkin diagram

❡❜ ❝
α1

❝
α2

❝
α3

❝
α4

❝α8

s
α5

❝
α6

❝
α7

It defines the flag manifold M = G/H = E8 /U(1) × SU(2) × SU(3) × SU(5). From Lemma 1 and since we
have ht(α5) = 6, it follows that N = 6 = q, that is m = m1 ⊕ m2 ⊕ m3 ⊕ m4 ⊕ m5 ⊕ m6. Thus we can find a
pair (Π,Π0) for g = e8, which has an irreducible decomposition

g = h0 ⊕ h1 ⊕ h2 ⊕ h3 ⊕m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5 ⊕m6 (27)

as Ad(H)-modules, where h0 is the center of h and h1 = su(2), h2 = su(3), h3 = su(5). Note that d0 =
dim h0 = 1, d1 = dim h1 = 3, d2 = dim h2 = 8 and d3 = dim h3 = 24. Also from Lemma 1, we obtain
thet d4 = dimm1 = 60, d5 = dimm2 = 60, d6 = dimm3 = 40, d7 = dimm4 = 30, d8 = dimm5 = 12 and
d9 = dimm6 = 10.

Proposition 8. In the decomposition (2) we can take the ideals h1, and h2, such that [h1,m6] = [h2,m6] = {0}.

Proof. Since h1 = su(2), and h2 = su(3), we can assume that h1 6= {0} and h2 6= {0}. Note that there
is only a simple root αj0 = α8 with (αj0 , α̃) 6= 0 and thus we can take the ideals h1 and h2 such that[
hC1 , Eα̃

]
=

[
hC2 , Eα̃

]
= {0}. Since n6 = [hC, Eα̃], we have that

[
hC1 , n6

]
=

[
hC1 , [h

C, Eα̃]
]
⊂

[[
hC1 , h

C
]
, Eα̃

]
+[

hC,
[
hC1 , Eα̃

]]
= {0}. By the definition of m6, we get the result. Similar for h2. �

4.2. The construction of the homogeneous Einstein equation. Following the notation of §1, next we
consider left-invariant Riemannian metrics on the compact Lie group E8, given by

< , >= u0 ·B|h0
+ u1 · B|h1

+ u2 ·B|h2
+ u3 ·B|h3

+ x1 · B|m1
+ x2 ·B|m2

+ x3 ·B|m3
+ x4 · B|m4

+ x5 · B|m5
+ x6 · B|m6

,
(28)

for some positive real numbers u0, u1, . . . , u3, x1, x2, . . . , x6. Note that a metric (28) is also Ad(H)-invariant.

Lemma 4. For a left invariant metric < , > on E8 given by (28), the non-zero structure constants

[
k

ij

]
are

the following (and their symmetries):
[
4

04

]
,

[
5

05

]
,

[
6

06

]
,

[
7

07

]
,

[
8

08

]
,

[
9

09

]
,

[
1

11

]
,

[
4

14

]
,

[
5

15

]
,

[
6

16

]
,

[
7

17

]
,

[
8

18

]
,

[
2

22

]
,

[
4

24

]
,

[
5

25

]
,

[
6

26

]
,

[
7

27

]
,

[
8

28

]
,

[
3

33

]
,

[
4

34

]
,

[
5

35

]
,

[
6

36

]
,

[
7

37

]
,

[
8

38

]
,

[
9

39

]
,

[
5

44

]
,

[
6

45

]
,

[
7

46

]
,

[
8

47

]
,

[
9

48

]
,

[
7

55

]
,

[
8

56

]
,

[
9

57

]
,

[
9

66

]
.

Proof. We use the relations [hi, hi] ⊂ hi, [hi, h0] = {0} and the inclusions arising by applying (12). From

Proposition 8 we also obtain that

[
9

19

]
=

[
9

91

]
=

[
1

99

]
= 0 and

[
9

29

]
=

[
9

92

]
=

[
2

99

]
= 0. �
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Proposition 9. The components of the Ricci tensor r for the left-invariant Riemannian metric < , > on E8

defined by (28), are given as follows:






r0 =
u0

4x1
2

[
0

44

]
+

u0

4x2
2

[
0

55

]
+

u0

4x3
2

[
0

66

]
+

u0

4x4
2

[
0

77

]
+

u0

4x5
2

[
0

88

]
+

u0

4 x6
2

[
0

99

]

r1 =
1

4 d1 u1

[
1

11

]
+

u1

4 d1 x1
2

[
1

44

]
+

u1

4 d1 x2
2

[
1

55

]
+

u1

4 d1 x3
2

[
1

66

]
+

u1

4 d1 x4
2

[
1

77

]
+

u1

4 d1 x5
2

[
1

88

]

r2 =
1

4 d2 u2

[
2

22

]
+

u2

4 d2 x1
2

[
2

44

]
+

u2

4 d2 x2
2

[
2

55

]
+

u2

4 d2 x3
2

[
2

66

]
+

u2

4 d2 x4
2

[
2

77

]
+

u2

4 d2 x5
2

[
2

88

]

r3 =
1

4 d3 u3

[
3

33

]
+

u3

4 d3 x1
2

[
3

44

]
+

u3

4 d3 x2
2

[
3

55

]
+

u3

4 d3 x3
2

[
3

66

]
+

u3

4 d3 x4
2

[
3

77

]
+

u3

4 d3 x5
2

[
3

88

]

+
u3

4 d3 x6
2

[
3

99

]

r4 =
1

2x1

−
1

2 d4

[
5

44

]
x2

x1
2
+

1

2 d4

[
4

56

](
x1

x2x3

−
x2

x1x3

−
x3

x1x2

)
+

1

2 d4

[
4

67

](
x1

x3x4

−
x3

x1x4

−
x4

x1x3

)

+
1

2 d4

[
4

78

](
x1

x4x5

−
x4

x1x5

−
x5

x1x4

)
+

1

2 d4

[
4

89

](
x1

x5x6

−
x5

x1x6

−
x6

x1x5

)

−
1

2 d4 x1
2

(
u0

[
0

44

]
+ u1

[
1

44

]
+ u2

[
2

44

]
+ u3

[
3

44

] )

r5 =
1

2x2

+
1

4 d5

[
5

44

](
x2

x1
2
−

2

x2

)
−

1

2 d5

[
7

55

]
x4

x2
2
+

1

2 d5

[
5

46

](
x2

x1x3

−
x1

x2x3

−
x3

x2x1

)

+
1

2 d5

[
5

68

](
x2

x3x5

−
x3

x2x5

−
x5

x2x3

)
+

1

2 d5

[
5

79

](
x2

x4x6

−
x4

x2x6

−
x6

x2x4

)

−
1

2 d5 x2
2

(
u0

[
0

55

]
+ u1

[
1

55

]
+ u2

[
2

55

]
+ u3

[
3

55

] )

r6 =
1

2x3

−
1

2 d6

[
9

66

]
x6

x3
2
+

1

2 d6

[
6

45

](
x3

x1x2

−
x2

x3x1

−
x1

x3x2

)
+

1

2 d6

[
6

47

](
x3

x1x4

−
x1

x3x4

−
x4

x1x3

)

+
1

2 d6

[
6

58

](
x3

x2x5

−
x2

x3x5

−
x5

x3x2

)
−

1

2 d6 x3
2

(
u0

[
0

66

]
+ u1

[
1

66

]
+ u2

[
2

66

]
+ u3

[
3

66

] )

r7 =
1

2x4

+
1

4 d7

[
7

55

](
x4

x2
2
−

2

x4

)
+

1

2 d7

[
7

46

](
x4

x1x3

−
x1

x3x4

−
x3

x4x1

)

+
1

2 d7

[
7

48

](
x4

x1x5

−
x1

x4x5

−
x5

x1x4

)
+

1

2 d7

[
7

59

](
x4

x2x6

−
x2

x4x6

−
x6

x2x4

)

−
1

2 d7 x4
2

(
u0

[
0

77

]
+ u1

[
1

77

]
+ u2

[
2

77

]
+ u3

[
3

77

] )

r8 =
1

2x5

+
1

2 d8

[
8

47

](
x5

x1x4

−
x1

x4x5

−
x4

x1x5

)
+

1

2 d8

[
8

56

](
x5

x2x3

−
x2

x3x5

−
x3

x2x5

)

+
1

2 d8

[
8

49

](
x5

x1x6

−
x1

x5x6

−
x6

x1x5

)
−

1

2 d8 x5
2

(
u0

[
0

88

]
+ u1

[
1

88

]
+ u2

[
2

88

]
+ u3

[
3

88

] )

r9 =
1

2x6

+
1

4 d9

[
9

66

](
x6

x3
2
−

2

x6

)
+

1

2 d9

[
9

48

](
x6

x1x5

−
x1

x5x6

−
x5

x1x6

)

+
1

2 d9

[
9

57

](
x6

x2x4

−
x2

x4x6

−
x4

x2x6

)
−

1

2 d9 x6
2

(
u0

[
0

99

]
+ u3

[
3

99

] )
.

(29)
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Proof. We use Lemma 4 and relation
∑

i,j

[
j

ki

]
= dk. Next we apply Theorem 1, (1). �

Because the irreducible submodules mi (i = 1, . . . , 6) in the decomposition (27) are pairwise inequivalent,
any E8-invariant Riemannian metric has the form of (6), that means

( , ) = x1 ·B|m1
+x2 ·B|m2

+x3 ·B|m3
+x4 ·B|m4

+x5 ·B|m5
+x6 ·B|m6

, (x1, x2, x3, x4, x5, x6) ∈ R6
+. (30)

Proposition 10. The components r̄i of the Ricci tensor r̄ for the G-invariant metric ( , ) on G/H =
E8 /U(1)× SU(2)× SU(3)× SU(5) defined by (30), are given as follows:






r̄1 =
1

2x1

−
1

2 d4

[
5

44

]
x2

x1
2
+

1

2 d4

[
4

56

](
x1

x2x3

−
x2

x1x3

−
x3

x1x2

)
+

1

2 d4

[
4

67

](
x1

x3x4

−
x3

x1x4

−
x4

x1x3

)

+
1

2 d4

[
4

78

](
x1

x4x5

−
x4

x1x5

−
x5

x1x4

)
+

1

2 d4

[
4

89

](
x1

x5x6

−
x5

x1x6

−
x6

x1x5

)

r̄2 =
1

2x2

+
1

4 d5

[
5

44

](
x2

x1
2
−

2

x2

)
−

1

2 d5

[
7

55

]
x4

x2
2
+

1

2 d5

[
5

46

](
x2

x1x3

−
x1

x2x3

−
x3

x2x1

)

+
1

2 d5

[
5

68

](
x2

x3x5

−
x3

x2x5

−
x5

x2x3

)
+

1

2 d5

[
5

79

](
x2

x4x6

−
x4

x2x6

−
x6

x2x4

)

r̄3 =
1

2x3

−
1

2 d6

[
9

66

]
x6

x3
2
+

1

2 d6

[
6

45

](
x3

x1x2

−
x2

x3x1

−
x1

x3x2

)
+

1

2 d6

[
6

47

](
x3

x1x4

−
x1

x3x4

−
x4

x1x3

)

+
1

2 d6

[
6

58

](
x3

x2x5

−
x2

x3x5

−
x5

x3x2

)

r̄4 =
1

2x4

+
1

4 d7

[
7

55

](
x4

x2
2
−

2

x4

)
+

1

2 d7

[
7

46

](
x4

x1x3

−
x1

x3x4

−
x3

x4x1

)

+
1

2 d7

[
7

48

](
x4

x1x5

−
x1

x4x5

−
x5

x1x4

)
+

1

2 d7

[
7

59

](
x4

x2x6

−
x2

x4x6

−
x6

x2x4

)

r̄5 =
1

2x5

+
1

2 d8

[
8

47

](
x5

x1x4

−
x1

x4x5

−
x4

x1x5

)
+

1

2 d8

[
8

56

](
x5

x2x3

−
x2

x3x5

−
x3

x2x5

)

+
1

2 d8

[
8

49

](
x5

x1x6

−
x1

x5x6

−
x6

x1x5

)

r̄6 =
1

2x6

+
1

4 d9

[
9

66

](
x6

x3
2
−

2

x6

)
+

1

2 d9

[
9

48

](
x6

x1x5

−
x1

x5x6

−
x5

x1x6

)

+
1

2 d9

[
9

57

](
x6

x2x4

−
x2

x4x6

−
x4

x2x6

)
.

(31)

From Proposition 2, we known that the unique E8-invariant Kähler-Einstein metric on G/H is given by
B|m1

+ 2 · B|m2
+ 3 · B|m3

+ 4 · B|m4
+ 5 · B|m5

+ 6 · B|m6
. We use these parameters to obtain the following

equations:

1

2
−

1

d4

([
5

44

]
+

[
6

45

]
+

[
7

46

]
+

[
8

47

]
+

[
9

48

])
=

1

4
+

1

d5

(
1

4

[
5

44

]
−

1

2

[
6

45

]
−

1

2

[
7

55

]
−

1

2

[
8

56

]
−

1

2

[
9

57

])
=

1

6
+

1

d6

(
1

3

[
6

45

]
−

1

3

[
7

46

]
−

1

3

[
8

56

]
−

1

3

[
9

66

])
=

1

8
+

1

d7

(
1

4

[
7

46

]
−

1

4

[
8

47

]
+

1

8

[
7

55

]
−

1

4

[
9

57

])
= (32)

1

10
+

1

d8

(
1

5

[
8

47

]
−

1

5

[
9

48

]
+

1

5

[
8

56

])
=

1

12
+

1

d9

(
1

6

[
9

48

]
+

1

6

[
9

57

]
+

1

12

[
9

66

])
.

4.2.1. Comparison of left-invariant metrics on E8. From equations (32) we obtain a system with five

equations and nine unknowns, namely the triples

[
5

44

]
,

[
6

45

]
,

[
7

46

]
,

[
8

47

]
,

[
9

48

]
,

[
7

55

]
,

[
8

56

]
,

[
9

57

]
, and

[
9

66

]
.

These are the only non-zero triples of G/H with respect to the decomposition (27) (see also [Chr]).
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With the aim to obtain more conditions abouts these triples we follow the new method was applied also
in case (E). Again our goal is to determine a new left-invariant metric on << , >> on G = E8. We put
k = h ⊕ m6, k1 = h0 ⊕ h3 ⊕ m6, n1 = m1 ⊕ m5, n2 = m2 ⊕ m4 and n3 = m3. Then k is a subalgebra of g, and
from Propositon 8 we conclude that k1 is also a subalgebra of g. In particular, we have k = k1⊕h1⊕h2, where
h1 = su(2), and h2 = su(3). Also, for dimensional reasons it is k1 = su(6). Now, by using (12) we obtain the
following inclusions:

[n1, n1] ⊂ n2 ⊕ k, [n1, n3] ⊂ n2, [n2, n2] ⊂ n2 ⊕ k,
[n1, n2] ⊂ n1 ⊕ n3, [n2, n3] ⊂ n1, [n3, n3] ⊂ k.

(33)

Thus we determine an irreducible decomposition g = k1 ⊕ h1 ⊕ h2 ⊕ n1 ⊕ n2 ⊕ n3 as Ad(K)-modules, which
are mutually non-equivalent. Since h ⊂ k we can determine the fibration G/H → G/K, explicity given by

E8 /U(1)× SU(2)× SU(3)× SU(5) → E8 / SU(6)× SU(2)× SU(3).

Note that the base G/K = E8 / SU(6)×SU(2)×SU(3) is a compact homogeneous manifold with three isotropy
summands, namely n1, n2 and n3. Let us consider now the following left-invariant metrics on E8 which are
also Ad(K)-invariant:

<< , >>= y1 ·B|k1 + y2 ·B|h1
+ y3 ·B|h2

+ y4 ·B|n1
+ y5 ·B|n2

+ y6 ·B|n6
, (y1, y2, y3, y4, y5, y6) ∈ R6

+. (34)

Lemma 5. For a left invariant metric << , >> on E8 given by (34), the non-zero structure constants are
the following (and their symmetries):

[[
1

11

]]
,

[[
4

14

]]
,

[[
5

15

]]
,

[[
6

16

]]
,

[[
2

22

]]
,

[[
4

24

]]
,

[[
5

25

]]
,

[[
6

26

]]
,

[[
3

33

]]
,

[[
4

34

]]
,

[[
5

35

]]
,

[[
6

36

]]
,

[[
5

44

]]
,

[[
6

45

]]
.

Proof. This is an immediate consequence of the decomposition k = k1 ⊕ h1 ⊕ h2 and relation (33). �

We set f1 = dim k1 = 35, f2 = dim h1 = 3, f3 = dim h2 = 8, f4 = dim n1 = 72, f5 = dim n2 = 90 and
f6 = dim n3 = 40.

Proposition 11. The components of the Ricci tensor r̃ of the left-invariant metric << , >> on E8 defined
by (34), are given as follows:





r̃1 =
1

4 f1 y1

[[
1

11

]]
+

y1
4 f1 y42

[[
1

44

]]
+

y1
4 f1 y52

[[
1

55

]]
+

y1
4 f1 y62

[[
1

66

]]

r̃2 =
1

4 f2 y2

[[
2

22

]]
+

y2
4 f2 y42

[[
2

44

]]
+

y2
4 f2 y52

[[
2

55

]]
+

y2
4 f2 y62

[[
2

66

]]

r̃3 =
1

4 f3 y3

[[
3

33

]]
+

y3
4 f3 y42

[[
3

44

]]
+

y3
4 f3 y52

[[
3

55

]]
+

y3
4 f3 y62

[[
2

66

]]

r̃4 =
1

2y4
+

y5
4 f4 y42

[[
5

44

]]
+

1

2 f4

[[
4

56

]](
y4

y5 y6
−

y5
y4 y6

−
y6

y4 y5

)

−
1

2 f4

(
y1
y42

[[
1

44

]]
+

y2
y42

[[
2

44

]]
+

y3
y42

[[
3

44

]])

r̃5 =
1

2y5
+

1

4 f5

[[
5

44

]](
y5
y42

−
2

y5

)
+

1

2 f5

[[
5

46

]](
y5

y4 y6
−

y4
y5 y6

−
y6

y4 y5

)

−
1

2 f5

(
y1
y52

[[
1

55

]]
+

y2
y52

[[
2

55

]]
+

y3
y52

[[
3

55

]])

r̃6 =
1

2y6
+

1

2 f6

[[
6

45

]](
y6

y4 y5
−

y4
y5 y6

−
y5

y4 y6

)
−

1

2 f6

(
y1
y62

[[
1

66

]]
+

y2
y62

[[
2

66

]]
+

y3
y62

[[
3

66

]])

(35)

Proof. We use Lemma 5 and we apply again Theorem 1, (1). �

Observe that equations (35) are obtained from (29) by setting y1 = u0 = u3 = x6, y2 = u1, y3 = u2,
y4 = x1 = x5, y5 = x2 = x4 and y6 = x3. For these values the metrics < , > and << , >> on G coincide, so
the components of the corresponding Ricci tensor must be equal. Therefore, from relation y4 = x1 = x5 we
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conclude that r̃4 = r4 = r8, and from y5 = x2 = x4 it must be r̃5 = r5 = r7. Thus we obtain the following
equations.

1

2 f4

[[
6

45

]]
=

1

2d4

[
6

45

]
+

1

2d4

[
7

46

]
=

1

2d8

[
8

56

]

1

2 f5

[[
6

45

]]
=

1

2d5

[
6

45

]
+

1

2d5

[
8

56

]
=

1

2d7

[
7

46

]

1

2 f5

[[
5

44

]]
=

1

4d5

[
5

44

]
=

1

2d7

[
8

47

]






. (36)

4.2.2. The contribution of the twistor fibration. For the computation of the triples

[
7

55

]
and

[
9

57

]
we

use the twistor fibration which admits any flag manifold M = G/H of a compact (semi)-simple Lie group
G, over an irreducible symmetric space G/L of compact type ([BuR, pp. 43-44]). This method was initially
apllied in [AC2].

We set l = h⊕m2⊕m4⊕m6 and p = m1⊕m3⊕m5. Then, in view of the inclusions given by (12) we conclude
that [l, l] ⊂ l, [l, p] ⊂ p, and [p, p] ⊂ l. Let L be the connected Lie subgroup of G with Lie algebra l. Then
g = l ⊕ p is a reductive decomposition of G/L, and from the latter relations it follows that G/L is a locally
symmetric space. In particular, since G = E8 is a simply connected Lie group, G/L is also simply connected
and thus it is a symmetric space. Because G is simple (and compact), G/L is an irreducible symmetric space
(of compact type). In our case we have that dim l = 136, thus it must be G/L = E8 /E7 × SU(2), since
dimG/L = dimG− dimL = 278− 136 = 112 = dim p. Due to the inlusion h ⊂ l it follows that H ⊂ L, and

thus we can determine the fibration L/H → G/H
π→ G/L, explicitly given as follows:

E7 × SU(2)/U(1)× SU(2)× SU(3)× SU(5) −→ E8 /U(1) × SU(2)× SU(3)× SU(5)
π

→ E8 /E7 × SU(2).

We observe that on the fiber L/H , the Lie group L does not act (almost) effectively, that is H contains
some non-trivial normal subgroups of L. Let L′ the normal subgroup of L which acts effectively on L/H with
isotropy subgroup H ′. Then L/H = L′/H ′, that is

L/H = E7 × SU(2)/U(1)× SU(2)× SU(3) × SU(5) = E7 /U(1)× SU(3)× SU(5) = L′/H ′.

The fiber L′/H ′ is a flag manifold with three isotropy summands ([Kim]): Let l′ = h′ ⊕ f be a reductive
decomposition of l′ with repsect to BE7

, the negative of the Killing form of E7. Then To′(L
′/H ′) = f =

f1 ⊕ f2 ⊕ f3, where f1 = m2, f2 = m4, and f3 = m6. We set D1 = dim f1 = 60, D2 = dim f2 = 30 and
D3 = dim f3 = 10 and we consider E7-invariant metrics on E7 /U(1)× SU(3)× SU(5), of the form

gf = w1 ·BE7

∣∣∣
f1

+ w2 · BE7

∣∣∣
f2

+ w3 ·BE7

∣∣∣
f3

, (w1, w2, w3) ∈ R3
+. (37)

Lemma 6. For a L′-invariant metric gf on the fiber L′/H ′ given by (37), the non-zero structure constants[
k

ij

]

f

are

[
2

11

]

f

and

[
3

12

]

f

(and their symmetries).

Proof. This result follows from the inclusions [f1, f1] ⊂ h′ ⊕ f2, [f1, f2] ⊂ f1 ⊕ f3, [f1, f3] ⊂ f2, [f2, f2] ⊂ h′,
[f2, f3] ⊂ f1, and [f3, f3] ⊂ h′, which are easily obtained from relations given in (12). �

Let Ri be the components of the Ricci tensor Ricgf for the E7-invariant metric gf on the fiber L′/H ′ =
E7 /U(1) × SU(3) × SU(5), defined by (37). Then, in view of Lemma 6 and by applying Theoren 1, (2), we
obtain the following forms for the components Ri.

Proposition 12. The components Ri of the Ricci tensor for an E7-invariant metric gf on the fiber L′/H ′ =
E7 /U(1)× SU(3)× SU(5) defined by (37), are given as follows:






R1 =
1

2w1

−
1

2D1

[
2

11

]
w2

w1
2
+

1

2D1

[
1

23

](
w1

w2 w3

−
w2

w1 w3

−
w3

w1 w2

)

R2 =
1

2w2

+
1

4D2

[
2

11

](
w2

w1
2
−

2

w2

)
+

1

2D2

[
2

13

](
w2

w1 w3

−
w1

w2 w3

−
w3

w1 w2

)

R3 =
1

2w3

+
1

2D3

[
3

12

](
w3

w1 w2

−
w1

w2 w3

−
w2

w1 w3

)

(38)
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From Proposition 2 we know that E7 /U(1) × SU(3) × SU(5) admits a unique Kähler-Einstein metric,

explicitly given by 1 ·BE7

∣∣∣
f1
+2 ·BE7

∣∣∣
f2
+3 ·BE7

∣∣∣
f3
. Thus, by solving the system

{
R1−R2 = 0, R2−R3 = 0

}
,

we obtain the values

[
2

11

]

f

= 10 and

[
3

12

]

f

= 10/3.

Since L′ = E7 is a simple Lie subgoup of E8 there is a positive number c, such that BE7
= c · BE8

, where
BE8

= B is the Killing form of E8. In particular it is c = BE7
/BE8

= 3/5 (cf. [Brb]). Then, by applying an

easy computation based on the definition of the structure constants

[
k

ij

]
we obtain that

[
7

55

]
and

[
9

57

]
are

given as follows (see for example [AC3, Lemma 1]):
[
7

55

]
= c ·

[
2

11

]

f

= 3/5 · 10 = 6,

[
9

57

]
= c ·

[
3

12

]

f

= 3/5 · 10/3 = 2.

Now, from equations (32) and (36) we get the following system




60− 5

[
5

44

]
− 2

[
6

45

]
− 4

[
7

46

]
− 4

[
8

47

]
− 4

[
9

48

]
+ 2

[
7

55

]
+ 2

[
8

56

]
+ 2

[
9

57

]
= 0

20 +

[
5

44

]
− 4

[
6

45

]
+ 2

[
7

46

]
− 2

[
7

55

]
− 2

[
9

57

]
+ 2

[
9

66

]
= 0

10 + 2

[
6

45

]
− 4

[
7

46

]
+ 2

[
8

47

]
−

[
7

55

]
− 2

[
8

56

]
+ 2

[
9

57

]
− 2

[
9

66

]
= 0

6 + 2

[
7

46

]
− 6

[
8

47

]
+ 4

[
9

48

]
+

[
7

55

]
− 4

[
8

56

]
− 2

[
9

57

]
= 0

2 + 2

[
8

47

]
− 4

[
9

48

]
+ 2

[
8

56

]
− 2

[
9

57

]
−
[
9

66

]
= 0

[
6

45

]
+

[
7

46

]
− 5

[
8

56

]
= 0

[
6

45

]
− 2

[
7

46

]
+

[
8

56

]
= 0

[
5

44

]
− 4

[
8

47

]
= 0.

(39)

Thus, by substituting the values

[
7

55

]
= 6,

[
9

57

]
= 2, and solving equations (39) we get the explicit values of

all non-zero triples of E8 /U(1)× SU(2)× SU(3)× SU(5) with respect to the reductive decomposition (27).

Proposition 13. For the E8-invariant metric ( , ) on M = G/H = E8 /U(1)× SU(2)× SU(3)× SU(5), the

non-zero structure constants

[
k

ij

]
are given as follows:

[
5

44

]
= 8,

[
6

45

]
= 6,

[
7

46

]
= 4,

[
8

47

]
= 2,

[
9

48

]
= 1,

[
7

55

]
= 6,

[
8

56

]
= 2,

[
9

57

]
= 2,

[
9

66

]
= 2.

4.2.3. Solutions of the homogeneous Einstein equation. By using Proposition 13 and the dimensions
di = dimR mi presented in §4.1, the components r̄i (1 ≤ i ≤ 6) of the Ricci tensor are completely determined
by equation (31). In particular, a G-invariant metric ( , ) = (x1, x2, x3, x4, x5, x6) ∈ R6

+ on G/H = E8 /U(1)×
SU(2)×SU(3)×SU(5), is an Einstein metric, if and only if it is a positive real solution of the following system

{
r̄1 − r̄2 = 0, r̄2 − r̄3 = 0, r̄3 − r̄4 = 0, r̄4 − r̄5 = 0, r̄5 − r̄6 = 0

}
, (40)
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where the components r̄i are given as follows:





r̄1 =
1

2x1

−
x2

15x1
2
+

1

20

(
x1

x2x3

−
x2

x1x3

−
x3

x1x2

)
+

1

30

(
x1

x3x4

−
x3

x1x4

−
x4

x1x3

)

+
1

60

(
x1

x4x5

−
x4

x1x5

−
x5

x1x4

)
+

1

120

(
x1

x5x6

−
x5

x1x6

−
x6

x1x5

)

r̄2 =
1

2x2

+
1

30

(
x2

x1
2
−

2

x2

)
−

1

20

x4

x2
2
+

1

20

(
x2

x1x3

−
x1

x2x3

−
x3

x1x2

)
+

1

60

(
x2

x3x5

−
x3

x2x5

−
x5

x2x3

)

+
1

60

(
x2

x4x6

−
x4

x2x6

−
x6

x2x4

)

r̄3 =
1

2x3

−
1

40

x6

x3
2
+

3

40

(
x3

x1x2

−
x2

x1x3

−
x1

x3x2

)
+

1

20

(
x3

x1x4

−
x1

x3x4

−
x4

x1x3

)

+
1

40

(
x3

x2x5

−
x2

x3x5

−
x5

x3x2

)

r̄4 =
1

2x4

+
1

20

(
x4

x2
2
−

2

x4

)
+

1

15

(
x4

x1x3

−
x1

x3x4

−
x3

x1x4

)
+

1

30

(
x4

x1x5

−
x1

x4x5

−
x5

x1x4

)

+
1

30

(
x4

x2x6

−
x2

x4x6

−
x6

x2x4

)

r̄5 =
1

2x5

+
1

12

(
x5

x1x4

−
x1

x4x5

−
x4

x1x5

)
+

1

12

(
x5

x2x3

−
x2

x3x5

−
x3

x2x5

)
+

1

24

(
x5

x1x6

−
x1

x5x6

−
x6

x1x5

)

r̄6 =
1

2x6

+
1

20

(
x6

x3
2
−

2

x6

)
+

1

20

(
x6

x1x5

−
x1

x5x6

−
x5

x1x6

)
+

1

10

(
x6

x2x4

−
x2

x4x6

−
x4

x2x6

)
.

(41)

We normalize our equations by setting x1 = 1. We see that the system of equations (40) reduces to the
following system of polynomial equations:





f1 = −6x3x
2

4x5x6 + 2x3

2

(
x4(1 + 6x5)x6 + x3(x5 + 6x4x5x6)

)
− 2x2

(
x2

3x4x6 + x4x5(6 + x5)x6

+x3x5(x
2

4 − 26x4x6 + x2

6)
)
+ x2

2

(
4x2

3x5x6 + 4(−1 + x2

4)x5x6 + x3

(
2x2

4x6 + 2(−1 + x2

5)x6

+x4(−1 + x2

5 − 60x5x6 + x2

6)
))

= 0

f2 = −6x2

3x
2

4x5x6 + 3x2

2x5x6

(
− 2x3

3 + 2x3(1− 10x4 + x2

4) + x4x6

)
+ x3

2x3

(
5x4(1 + 3x5)x6

+2x3(x5 + 2x4x5x6)
)
+ x2x3

(
x4x5(3 + x5)x6 − 5x2

3x4(1 + 3x5)x6 − 2x3x5(x
2

4 − 26x4x6 + x2

6)
)
= 0

f3 = −6x2

3x
2

4x5x6 + x2

2x6

(
14x3

3x5 + 2x3(1 + 30x4 − 7x2

4)x5 − 4x2

3(−1 + x2

4 + 12x5 − x2

5)− 3x4x5x6

)

+x3

2x3

(
4x3x5 − 3x4(1 + 3x5)x6

)
+ x2x3

(
− 3x4x5(3 + x5)x6 + 3x2

3x4(1 + 3x5)x6 + 4x3x5(−x2

4 + x2

6)
)
= 0

f4 = 6x3x
2

4x5x6 + x3

2(−4x3x5 + 10x4x6) + 2x2

(
5x2

3x4x6 − 5x4x
2

5x6 + 2x3x5(x
2

4 − x2

6)
)
+ x2

2

(
− 8x2

3x5x6

+8(−1 + x2

4)x5x6 + x3

(
14x2

4x6 + 2(3 + 24x5 − 7x2

5)x6 − 5x4(−1 + x2

5 + 12x6 − x2

6)
))

= 0

f5 = 2x2

2x3(6x3x5 − 5x4x6)− 2x3

(
5x2

3x4x6 − 5x4x
2

5x6 + 6x3x5(−x2

4 + x2

6)
)

+x2

(
− 6x4x5x

2

6 + x2

3

(
− 10x2

4x6 + 10(−1 + x2

5)x6 + x4(1− 48x5 + 11x2

5 + 60x6 − 11x2

6)
))

= 0.

(42)

To find non zero solutions of equations (42), we consider a polynomial ring R = Q[y, x2, x3, x4, x5, x6] and
an ideal I generated by

{f1, f2, f3, f4, f5, y x2x3x4x5x6 − 1}.
But we fail to compute a Gröbner basis for the ideal I. However, we conjecture that E8 /U(1) × SU(2) ×
SU(3)× SU(5) would admit a finite number non-Kähler invariant Einstein metrics, since the rest members of
the examined class admit a finite number of non-Kähler Einstein metrics. Note that the Böhm-Wang-Ziller’s
conjecture ([BWZ]), the so called finiteness conjecture, states that there exist a finite number of invariant
Einstein metrics on compact homogeneous space G/H with rankG = rankH .
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