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ON THE CLASSIFICATION OF HOMOGENEOUS EINSTEIN METRICS ON
GENERALIZED FLAG MANIFOLDS WITH b,(M) =1

IOANNIS CHRYSIKOS AND YUSUKE SAKANE

ABSTRACT. Let G be a simple compact connected Lie group. We study homogeneous Einstein metrics for
a class of compact homogeneous spaces, namely generalized flag manifolds G/H with second Betti number
b2(G/H) = 1. There are 33 such manifolds which have some common geometric features; for example they
admit a unique invariant complex structure which gives rise to unique invariant Kéhler—Einstein metric. The
most typical examples are the compact isotropy irreducible Hermitian symmetric spaces, for which the Killing
form is the unique homogeneous Einstein metric (which is Kéhler). For the remaining 26 cases, the first results
were obtained by I. Ohmura (cf. ([Sak]) and M. Kimura ([Kim]) (these results have been recently verified by a
joint work of first author with S. Anastassiou (JAnC|), where homogeneous Einstein metrics are studied from
the viewpoint of the normalized Ricci flow). Nowadays the classification of homogeneous Einstein metrics
has completed for the 24 spaces by A. Arvanitoyeorgos and first author ([AC2|, [AC3|). In this paper we
construct the Einstein equation for the two unexamined spaces (both corresponding to the Lie group Eg),
namely the cosets Eg / U(1) x SU(4) x SU(5) and Eg /U(1) x SU(2) x SU(3) x SU(5). We determine Ricci
tensors of Eg-invariant metrics explicitly by computing the non-zero structure constants. We use a method
based on comparison of left-invariant metrics of Eg which arise from different reductive decompositions. For
the first space we classify all homogeneous Einstein metrics. For the second one, we see that the Einstein
equation reduces to an algebraic system of five non-linear equations, but we fail to solve the algebraic system
of equations. Since, for the rest members of the examined class, we know that there always exists a finite
number of non-Kéahler Einstein metrics, we conjecture that the space Eg /U(1) x SU(2) x SU(3) x SU(5)
admits a finite number of homogeneous non-Kéhler Einstein metrics.
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INTRODUCTION

Given a Riemannian manifold M, the question whether M carries an Einstein metric, that is a Riemannian
metric g of constant Ricci curvature, is a fundamental one in Riemannian geometry. The Einstein equation
Ricy = A+ g (A € R) reduces to a system of a non-linear second order PDEs, and a good understanding of its
solutions in the general case seems far from being attained. If M is compact, then Einstein metrics (of volume
1) become in a natural way privileged metrics, since they are characterized variational as the critical points
of the total scalar curvature functional T : M — R, given by T'(g) = [,, SqdVj, restricted to the set M of
Riemannian metrics of volume 1. However, even in this case general existence results are difficult to obtained.
If we consider a homogeneous G-space M = G/H, then it is natural to work with G-invariant Riemannian
metrics. For such a metric the Einstein equation reduces to an algebraic system which is more manageable,
and in some cases can been solved explicity. Most known examples of Einstein manifolds are homogeneous.

A generalized flag manifold is an adjoint orbit M = Ad(G)w (w € g) of a compact connected semi-simple
Lie group G and can be represented as a compact homogeneous space of the form M = G/H = G/C(S),
where C(S) is the centralizer of a torus S in G (and thus rank G = rank H). Generalized flag manifolds have
been classified in terms of painted Dynkin diagrams and these have Kéhler metrics, that is, the homogeneous
manifolds M = G/H can be expressed as G¢/U, where G® is the complexification of G and U a parabolic
subgroup of G€. Thus on M we can define a finite number of invariant complex structures, and for any such
structure there is a compatible G-invariant Kahler-Einstein metric. In this paper we investigate invariant
Einstein metrics on generalized flag manifolds M = G/H of a compact connected simple Lie group G with
second Betti number by(M) = 1. Such a space is determined by painting black in the Dynkin diagram of
G only one simple root. By [BHi] it is known that M = G/H admits a unique invariant complex structure,
and thus a unique Kahler-Einstein metric. Compact isotropy irreducible Hermitian symmetric spaces are the
most typical examples of this category, and these are the only flag manifolds for which the Kahler-Einstein
metric is given by the Killing form. Generalized flag manifolds M = G/H with by(M) = 1 can be divided
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into following six classes, with respect to the height of the painted black simple root (see §2)), or equivalently,
with respect to the decomposition of the associated isotropy representation (see Table 1):

(A) The compact isotropy irreducible Hermitian symmetrics spaces M = G/H, which admit (up to scalling)
a unique invariant Einstein metric. In this case the height of the simple root is equal to 1.

(B) The flag manifolds M = G/H for which the isotropy representation decomposes into two inequivalent
irreducible Ad(H )-submodules, i.e., m = m; @ my. These spaces are determined by painting black a simple
root with height 2 and their classification was obtained in [ACI] (see also [Sak]).

(C) Seven flag manifolds M = G/H with m = m; @ my ¢ m3. These spaces were determined by painting
black a simple root with height 3 [Kiml].

(D) Four flag manifolds M = G/H with m = m; ®my @ mg @ my. These spaces are determined by a simple
root with height 4 [AC3].

(E) The flag manifold M = G/H = Eg /U(1) x SU(4) x SU(5). It is determined by painting black the
simple root a4 and is such that withm=m; ®--- ® ms.

(F) The flag manifold M = G/H = Eg / U(1) x SU(2) x SU(3) x SU(5). It is determined by painting black
the simple root a5 and is such that m =m; @ - - - & mg.

As we mention in Table, homogeneous Einstein metrics of the first four classes (B)-(D) have been completely
classified in [Sak], [Kim], [AC2], and [AC3| (see also the recent work [AnC|, where invariant Einstein metrics
were studied under the more general context of Ricci flow). In particular, only the spaces corresponding to
the cases (E) and (F), have not been examined yet. In this article we focus on these two flag manifolds and
we construct the homogeneous Einstein equation. Next we treat the associated algebraic systems with the
goal to prove the existence of positive real solutions and if possible to classify them. For case (E) we obtain
the full classification of homogeneous Einstein metrics.

Theorem A. The generalized flag manifold M = G/H = Eg / U(1) x SU(4) x SU(5) admits (up to a scale)
precisely five non-Kdhler Eg-invariant Einstein metrics.

TABLE 1. The number of invariant Einstein metrics on generalized flag manifolds with ba(M) = 1.

M = G/H with by (M) = 1 E(M) | M = G/H with bz(M) = 1 E(M)
(A) Hermitian Symmetric Spaces ([Woll) (C) m=m1 ®mz dmz ([Kim|)

SU(6)/S(U(p) x U(¢ —p)) =1 | F4/U@3) xSU(2) =3
SO(2¢+1)/S0O(2) x SO(2¢ —1) =1 Ee /U(2) x SU(3) x SU(3) =3
Sp(0)/ U(e) =1 | BE7/U(3)xSU®5) =3
SO(2¢)/SO(2) x SO(2¢ —2) =1 E7 /SU(2) x SU(6) x U(1) =3
SO(2¢)/U(¢) =1 Eg /Eg x SU(2) x U(1) =
Ee / U(1) x SO(10) =1 |Es/U(@8) =
E7/U(1) x Eg =1 G2 /U(2) (U(2) represented by the long root) =3
(B) m=m3 ®mz (|DiK], [AC2]) D)m=m1 ®mz ®mz dHmyg (JAC3|)
SO(2¢+1)/U(l—m)xSO2m+1) —m#1) =2 F4 /SU(3) x SU(2) x U(1) =3
Sp(£)/ U(¢ —m) x Sp(m) (m # 0) =2 E7 /SU(4) x SU(3) x SU(2) x U(1) =3
SO(2¢)/ Ul —m) x SO(2m) ({—m#1, m#0) =2 Eg /SU(7) x SU(2) x U(1) =3
G2 /U(2) (U(2) represented by the short root) =2 Eg /SO(10) x SU(3) x U(1) =
F4/SO(7) x U(1) =2 (E) m=m1 ®mz & mg G mg O ms (new)
F4/Sp(3) x U(1) =2 Eg /SU(5) x SU(4) x U(1) =6
Eg /SU(6) x U(1) =2 (F)m=m1 ®mz Gmz B my G ms & mg

Ee /SU(2) x SU(5) x U(1) =2 Eg /SU(5) x SU(3) x SU(2) x U(1) ?
Er /SU(T) x U(1) =2

E7 /SU(2) x SO(10) x U(1) =2

Er /SO(12) x U(1) =2

Eg /E7 X U(l) =2

Es /SO(14) x U(1) =2

For the second space the construction of the Einstein equation of an Eg-invariant Riemannian metric is more
complicated than case (E), since we find 9 non-zero structure constants with respect to the decomposition
g=c¢s=hdm=hdDm; & my P mgdmy ®ms B mg, a result that was presented also in [Chr] in terms of
symmetric-t-triples. To obtain the values of non-zero structure constants, we define a fibration of G/H =
Es /U(1) x SU(2) x SU(3) x SU(5) over the space G/K = Eg /SU(6) x SU(2) x SU(2) with three isotropy
summands. This gives rise to a new decomposition g = ¢s = Edn = P n; Hny P ng, such that € = hPEmg. By
comparing the Ricci components of Eg for the left-invariant metrics arising from these different decompositions,
we obtain certain conditions between the structure constants (the same approach was used also in case (E)).
Next, we use the twistor fibration of G/H over the symmetric space Eg / E7 x SU(2) to obtain some further
relations (the contribution of the twistor fibration in the construction of the homogeneous Einstein equation
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was first time highlighted in [AC2]). In this way we can write down explicitly the Ricci tensor for an Eg-
invariant metric on G/H (as well as, the Ricci tensor for Eg).

For Eg /U(1) x SU(2) x SU(3) x SU(5), the system of algebraic equations which gives the homogeneous
Einstein equation consists of five non-linear polynomial equations. We have tried to compute a Grobner basis,
but we fail to obtain it. Since for the spaces arising from cases (B)-(E) we have proved that they always admit
a finite number of (non-Kahler) invariant Einstein metrics (see Table 1, for the number £(M)), we conjecture
the following:

Conjecture B. Let G a compact connected simple Lie group and let M = G/H be a generalized flag
manifold with first Betti number equal to 1, which is not an irreducible Hermitian symmetric space of compact
type. Then M admits a finite number of non-isometric G-invariant Einstein metrics, which are not Kahler.

The paper is organized as follows: In §1 we describe the Ricci tensor on a reductive homogeneous space,
and in §2 we discuss the algebraic setting of flag manifolds. In §3 we treat the space M = G/H = Eg /U(1) x
SU(4) x SU(5), we write down explicitly the homogeneous Einstein equation and we prove Theorem A. The
last section §4 is about the space M = G/H = Eg / U(1) x SU(2) x SU(3) x SU(5).

1. THE RICCI TENSOR OF A G-INVARIANT METRIC

Let G be a compact connected semi-simple Lie group with Lie algebra g, and let H be a closed subgroup
of G with Lie algebra h C g. We denote by B the negative of the Killing form of g. Then B is an Ad(G)-
invariant inner product on g. Let m be an Ad(H)-invariant orthogonal complement of ) with respect to B,
that means g = h ® m and Ad(H)m C m. As usual we identify m = T,G/H, where o = eH € G/H. Let
now h =ho ® b1 @--- @ h, be a decomposition of h into its ideals, i.e. [h,h;] C b;, for any i = 0,1,...,p,
where by is the center of h and b; (i = 1,--- ,p) are simple ideals of . We assume that b; (i =1,--- ,p) are
mutually non-isomorphic and that dimby < 1. We also assume that m = T,G/H admits a decomposition
m=my & - P my into ¢ irreducible Ad(H)-modules m; (j =1,---,q), which are mutually non-equivalent.

Let us consider now the following left-invariant Riemannian metric on G:

<, >= u0~B|b0+u1-B|hl+~-~+up~B|bp+a:1-B|m1+-~-—|—:17q-B|mq, U, Ut, - -+, Up, X1, - ,Tq € Ry (1)
This metric is also Ad(H)-invariant. We also consider the G-invariant Riemannian metric on G/H, given by
(,)=a21Blm ++ - +2¢ Blm,, @1, ,24 ERy. (2)

Because m; 2 m; for any ¢ # j, any G-invariant metric on G/H is given by (2). For practical reasons,
next we will write the decomposition g = ho®h1 ® - - dh, dmy O --- Dm, (resp. m=my O --- D my,) as
g=1p DD - D, Wyt D B1o,p, (Tesp. M =1wpp1 D+ B1o,4,). Then, the space of left invariant
symmetric covariant 2-tensors on G which are Ad(H)-invariant is given by

{vo - Blwo +v1 - Blw, +** + Uptq - Blw,y, | V0,01, "+, Uptq € R} (3)
and the space of G-invariant symmetric covariant 2-tensors on G/H is given by
{zp+1 - Blwo,y + -+ 2prq Blwoyyy | 2ps1,0  2p4q €R} (4)

In particular, the Ricci tensor r of a left invariant Riemannian metric < , > on G is a left invariant symmetric
covariant 2-tensor on G which is Ad(H )-invariant and thus r is of the form (B)), and the Ricci tensor 7 of a
G-invariant Riemannian metric on G/H is a G-invariant symmetric covariant 2-tensor on G/H, and thus 7 is
of the form ). Let {e,} be a B-orthonormal basis adapted to the decomposition of g, i.e., e, € to; for some i,
and a < Bifi < j (with eq € 1; and eg € ;). Weset A) 5 = B([ea, es], e4) so that [eq, e5] =30 A] ge, and

k
set cfj = LJ] = Z(Al5)2, where the sum is taken over all indices «, 3,7 with e, € ;, eg € 10, ey € t0y.

Then cfj is independent of the B-orthonormal bases chosen for w;, tv;, tv;, and symmetric in all three indices,

ko ok _ .J
=ci,=c

Le. ¢i; =¢j i (see [WZ2]). Now, we write a left-invariant metric on G of the form (), by

9= Blw, + Y1 Blw, + -+ ¥Yp Blw, + ¥pt1 - Bl + + Uptg Blw,ys Y0, Y1, s Yptq € Ry, (5)
and a G-invariant Riemannian metric on G/H of the form (2), by

h=wpy1 - Blw,, + - F Wpig Bl Wpy1,- - Wpag € Ry (6)
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Theorem 1. (JAMS]) Let di = dimwy. (1) The components ro,r1,- - ,7prq Of the Ricci tensor v of the
metric g of the form @) on G, are given by
1 1 Yk [k} 1 Yj {J]
e = o) | k=01, -, ptaq), 7
T oy T ady, ]z;ygyz Ji]  2dg ]z;yk% ki ( pta) ™

where the sum is taken over all i,7 =0,1,--- ,p+ q. Moreover, for each k we have Z [é] = dg.
i

2%
(2) The components Tpi1,- -+ ,Tpyq Of the Ricci tensor 7 of the metric h given by @) on G/H, are given by
N 1 1 wi |k 1 wj [ J
=—+ — - — k= 1, - 8
Tk S + 1d; JZZ Wy LZ] 24, ; Wet; [kl ( p+1, , P+4q), (8)

where the sum is taken over all i,7=p+1,--- ,p+q.

2. DECOMPOSITION ASSOCIATED TO GENERALIZED FLAG MANIFOLDS

In this section we review briefly the Lie theoretic description of a flag manifold in terms of painted Dynkin
diagrams, and next we recall some notions from the geometry and the topology of such a space.

Let G be a compact semi-simple Lie group, g the Lie algebra of G and t a maximal abelian subalgebra
of g. We denote by g© and t© the complexification of g and t, respectively. Then € is a Cartan subalgebra
of g¢. We assume that dimc t€ = ¢ = rank g©. We identify an element of the root system A of g€ relative
to t© with an element of /—1t, by the duality defined by the Killing form of g€. Consider the root space

decomposition of g€ relative to t€, i.e., g = tCBP o 05. Let IT = {ay, -+, a,} be a fundamental system of
Aand {A,---,A,} the fundamental weights of g© corresponding to II, that is 2(A;, o) /(a;, o) = 6, for any
1 <i,j < L. We choose a subset II; C IT and we set ITy; = II\ITy = {a;,,--- o } (1 <oy <+ <oy <A).

We put [IT,] = ANspany{Il,} and [[Io]* = AT Nspany{IIy}, where spany{II,} denotes the subspace of /—1t
generated by II, with integer coefficients, and A™ is the set of all positive roots relative to II. Take a Weyl
basis {E, € g5 : o € A} (see [AC2]), and set A, = E, + E_, and B, = /—1(E, — E_,). Then the Lie
algebra g, is a real form of g€ which can be identified with the fixed-point set g™ of the complex conjugation
7 in g€, that means g7 = g = t® P, cr+ {RAa + RBy} (see [Hell). Now, the subalgebra u C g© defined by
@), is a parabolic subalgebra u of g€, since it contains the Borel subalgebra b =€ @ Dacar oC c g%

u :tCGB @ gg. (9)

a€[IlJUA+

Let G€ be a simply connected complex semi-simple Lie group whose Lie algebra is g€ and U the parabolic
subgroup of G® generated by u. Since U is connected, the complex homogeneous manifold G€/U is simply
connected (and compact). Moreover, G acts transitively on G®/U with isotropy group the connected closed
subgroup H = GNU C G, thus G°/U = G/H as C*®-manifolds. This identification implies that G€/U
carries a G-invariant Kéhler metric. Moreover H = G N U is the centralizer of a torus S C T in G, where T
is the maximal torus generated from the ad-diagonal subalgebra t. Thus rank G = rank H. The homogeneous
space M = G®/U = G/H is called generalized flag manifold, and any generalized flag manifold is constructed
in this way. Let b be the Lie algebra of H and let h® be its complexification. In view of @) and due to the
inclusion t¢© € h© C u, we obtain a direct sum decomposition u = € @ n, such that g N u = h, where the
the nilradical n of u and the subalgebra h* are given by n = @aeA+7[HO]+ gC and b© = C o ®ae[no} oS,
respectively. The real subalgebra b is given by h = t® @aG[Hg]+{RAa + RB,}.

Let a = Zi:l ckap, be the highest (or maximal) root of g©, that is ¢, > mj for any positive root

a = Ei:l mrar € RY. The postive integer ¢; is called the height of the simple root «; € II, for any
t=1,...,0. Next we will use the map ht : IT = Z,, a;; — ht(a;) := ¢;.

Proposition 1. ([BuRl Proposition 4.3]) Let 3 be the center of the nilpotent Lie algebra n. Then we have
ad(h€)(3) C 3 and the action of BC on 3 is irreducible. Moreover, the ad(h®)-module 3 is generated by the
highest root space gg.

We denote by b the center of b, and h§ its complexification. Since h is a reductive subalgebra of g©, it
admits the decomposition h® = hS @ b<,, where h, is the semisimple part of hC, given by b, = [HC, h¢] =

Doen, CaDepmy g%, The set [IIp] is the root system of hS, and Iy is a basis of simple roots for it. For
convenience, we will denote the set [IIp] by Ay. We set Ay = A\Apgy. Roots belong to Aps are called
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complementary roots and they have a significant role in the geometry of M = G/H. For example, let m be
the orthogonal complement of h in g with respect to B. Then we have g = h@m, [h, m] C m, and we identify
m with the tangent space T,G/H in o = eH € G/H. Set A}, = AT\A};, where A} is the system of positive
roots of hC, i.e., A}, = [lp]*. Then

m= P {RA,+RB,}. (10)

aGAL

The complexified tangent space m® is given by m® = DI g%, and the set {F, : a € A/} is a basis of mC.
Note that although the set ITj; consists of all these complerentary roots which are simple, is not in general a
basis of Ajs, that is Ay is not in general a root system.

Generalized flag manifolds M = G/H of a compact connected simple Lie group G are classified by using
the Dynkin diagram of G, as follows: Let I' = T'(TII) be the Dynkin diagram corresponding to the base of
simple roots I of the root system A of g relative to the Cartan subalgebra tC.

Definition 1. The painted Dynkin diagram of M = G/H is obtained from the Dynkin diagram T' = T'(IT) by
painting black the nodes which correspond to the simple roots of I1pr. The subdiagram of white nodes with the
connecting lines between them determines the semisimple part Hss of the Lie algebra b of H, and each black
node gives rise to one u(1)-summand (their totality forms the center ho of b).

Thus, the painted Dynkin diagram determines the isotropy group H and the space M = G/H completely.
It should be noted that the resulting painted Dynkin diagram does not depend on the choise of a maximal
abelian subalgebra t and hence of A. On the other hand the necessity of making a choise of a base II for A (or
equivalently of an ordering A" in A) reduces the number of painted Dynkin diagrams. By using certain rules
to determine whether different painted Dynkin diagrams define isomorphic flag manifolds, one can obtain all
flag manifolds G/H of a compact connected simple Lie group G (cf. [AA]).

Remark 1. The (real) dimension of the center ho of the subalgebra b is equal to the number of black
nodes in the painted Dynkin diagram of M = G/H, or equivalent equal to the number of u(1) summands
in the decomposition of h. By assuming that IIy; = {c; ,--- ,«; }, it follows that the fundamental weights
Ay, ... A, form a basis of the dual space b of ho. Since b = bo, via the Killing form of g, we obtain
dim by = r = ||, where || is the cardinality of I (cf. [APe]). From [BHil p. 507] we have that
H?(M;R) = H'(H;R) = ho. Thus, the second Betti number by (M) of the flag manifold M = G/H is equal to
dim b, and it is obtained directly from the painted Dynkin diagram. Moreover, any flag manifold M = G/H
of a simple Lie group G with b2(M) = r, is determined by a subset IIp; C II with |[IIp/| = r and it is
constructed in the above way.

From now on we assume that G is simple. Moreover, we choose a subset Il C II such that II; =
IT — Iy = {a;}, for some fixed ¢ with 1 < ¢ < £. Then the corresponding flag manifold M = G/H is
such that dimbhy = 1 and be(M) = 1. We also assume that ht(o;) = N € Z*. To an integer k with

1 < k < N we associate the set AT (q;, k) = {a e At

o= Zle m;a, mi = k} Then it is obvious that

Ay = ANAY = Uj<pen At (ai, k). We define a subspace ny of the nilradical n by ny = Doca+(air) Cla-
Then ny (k= 1,--- ,N) are ad(h®)-invariant subspaces, and n = @jvzl n; is an irreducible decomposition of
n (see [Wo2]). In view of Proposition [I] we have that 3 = ny. We also define subspaces my, of m, given by

mr= P {R(Es+E_a)+RV=-1(E, — E_a)}. (11)
acAt (o k)

Note that my are Ad(H)-invariant submodules of m which are matually inequivalent each other, for any
k=1,---,N ([Kim]). We also recall the following useful inclusions (see for example [AC2]):

b, m] Cmg, [mg,m] Ch+my, [mg,m;] Cm;+my,_y (0 #Jj). (12)
By using ([I0), we get a characterization of m in terms of the submodules my:

Lemma 1. Let M = G®/U = C/H be a flag manifold of a compact connected simple Lie group G, defined
by a subset Ipy = {; : ht(oy;) = N} C II. Then, m = T,M admits a decomposition m = @ivzl m, into N
irreducible, inequivalent Ad(H)-submodules my, defined by ([I1l). Moreover, it is dy, = dimg my, = 2-|A% (ay, k)],
forany 1 <k <N.

Note that according to the notation of §1, for the space M = G¢/U = G/H in Lemmal[ll it is N = q.
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Remark 2. It is well known (cf. [Tak], [AP¢], [AC3]) that for a flag manifold G/H, there is a 1-1 corre-
spondence between G-invariant complex structures J and compatible G-invariant K&hler-Einstein metrics h s,
given by J <> hy = {hg = (0m, ) : @ € AL}, where h, = h;j(E,, E_,) are the components of the metric hy
with respect to the base {F, : « € Ay} of mC. The weight §p = (1/2) Z,@EAL B € /—1t is called Koszul
form. If we assume that M is defined by a subset IIp; = {a,,...,a;.}, then the following relation holds:
20m = Uiy - A%l 4+, Ao‘w' The positive integers u;; > 0,...,u;,. > 0 are called Koszul numbers.

Proposition 2. ([BHi|, [Tak]) Let M = G¢/U = G/H be a flag manifold defined as in Lemmal[l. Then M

admits a unique G-invariant Kdhler-Einstein metric given by
hy=Blm +2 - Blmy, + -+ N Bluy- (13)

Proof. We give a short proof here since one is difficult to find it in the literature. By [BHi, Proposition
13.8], we know that M admits a unique G-invariant complex structure J, induced by the invariant ordering
A;\r/[ = At/ A}; (we identify J with its conjugate .J which is induced by the invariant ordering Ay = —AL).
The complex structure J is described by an ad(h®)-invariant endomorphism J, on m® with J? = —Idc,
explicitly determined by the formulae J,F+q = ++v/—1F4,, for any a € A]T/_[. In view of Remark[2, M admits
a unique G-inavriant Kahler-Einstein metric h; compatible with J. Because II3; = {o; : ht(a;) = N}, (where
iis fixed, 1 < i < ¢), we have dy = u;/2 - A;, where u; > 0. From Lemma [l it is m = @gzl my, thus the
G-invariant metric hy on M has the form [@]), that is hy = Efgvzl hi - Bluw,, with (hi,...,hy) € RY. Here we
denote by hy the components of the metric hy on my, that means hy, = hj(E,, E_,) where o € At (ay, k), for
any 1 < k < N, By applying Remark 2l we get hy = hj(Eq, F—4) = (0m, ), where a € AT (ay, k). Because
(Ai,ai) = (ai,ai)/2, it is

hi = (6m, ) = (%-Ai,mlal—l—---—l—kai—i—---—i—mgag):(%-Ai,kai):k-ui-(ai,ai).

Since the simple root «; is fixed, the number wu; - (v, ;) is constant and indepedent of the integer k, for any
1 < k < N. By normalizing the metric the proof is complete. ([

3. HOMOGENEOUS EINSTEIN METRICS ON FEg/U(1) x SU(4) x SU(5)

3.1. The flag manifold Eg / U(1) x SU(4) x SU(5). Let G = Es. A basis of simple roots for the root system
of Eg is given by Il = {ag = €1 —ea,...,a7r = ey —eg,ag = eg + €7 + eg}, and & = 21 + 3as + 4z + bay +
6as + das + 2a7 + 3ag (cf. [AA], [AC3]). We set Iy = {ay}, thus Iy = {a1, @z, a3, a5, ag, az,as}t. So we
obtain the (extended) painted Dynkin diagram (the douple circle denotes the negative of &)

Q1 Q2 Q3 Q4 Q5 Qg Q7

@—o—o—o—'—I—o—o
ag

It defines the flag manifold M = G/H = Eg / U(1)xSU(4) xSU(5). Let g = hdm be a reductive decomposition
of g with respect to B. Because ht(ay) = 5, from Lemma [II it follows that N = 5 = ¢, that is m =
m; Gmy, @ mgdmy dmg. In this way we find a pair (I1, 1) for g = eg, which has an irreducible decomposition

g=bo®h1 Shadm EmyGmy Dmy B my (14)

as Ad(H)-modules, where hg is the center of h and h; = su(4), ho = su(5). Note that dy = dimbhy = 1,
dp = dimb; = 15 and d» = dimbh, = 24. Also, by applying the second part of Lemma [Il we obtain that
ds = dimm; = 80, dy = dimm, = 60, d5 = dimmy = 40, dg = dimm, = 20 and d7 = dimmy = 8.

Proposition 3. In the decomposition ([I4]) we can take the ideal s such that [h2, ms] = {0}.
Proof. We can assume that hs # {0}. Note that there is only a simple root aj;, = ag with (aj,, @) #

0
and thus we can take the ideal ho so that [bg,Ea} = {0}. Since ns = [h%, E5], we have that [bg,% =
[hS, [0, E5]] C [[bS,0%], Ex] + [bC, [bS, E5]] = {0}. By the definition of ms, we get the result. O
3.2. Proof of Theorem 1. Following the notation of §1, we consider left-invariant Riemannian metrics on
the compact Lie group Eg, given by
<, >=ug- B|h0 + uq - B|h1 + uo - B|h2

+ x1 'B|m1 + x2 'B|m2 + x3 'B|m3 + 24 B|m4 + 25 - B|m5a
for positive real numbers ug, u1, us, 1, T2, T3, 4, r5. Note that the left-invariant metric (5] is also Ad(H)-
invariant.

(15)
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k
Lemma 2. For a left invariant metric < , > on Eg given by (I3), the non-zero structure constants [ } are
i

the following (and their symmetries):

o Lo o) o L] L)L L ] - L

e e Y M e A A

iven by ([I2). We also

Proof. This fact follows from relations [h;, h;] C b;, [hs, o] = {0} and the inclusions g

7
mention that an important consequence of Proposition Bis the following one: 27] =

[-0 o

Proposition 4. The components of the Ricci tensor r for a left-invariant Riemannian metric < , > on Eg

defined by (I3, are given as follows:

1 1 [4] 2o n 1 [3 T T2 T3
r3 = —— — — — + — — -
3 25[:1 2d3 33 1'12 2d3 45 ToX3 r1x3 T1X2

T7u00+u00+u00+u00+u0_0
O T 4x2(33) T Amp? |44] T 452 |55] T das? |66] T das? |77
[ (1) 1), w1
T Tdyu |11 T Adi 2?33 T Adyaa? |44) T dy 2 |55)
+ U1 1 + ul 1
4d1 $42 _66_ 4d1 $52 _77_
” - 1 -2-+ u9 -2-+ u9 -2-+ u2 -2-+ u9
2T 4d2 ug _22_ 4d2 {E12 _33_ 4d1 {E22 _44_ 4d1 {E32 _55_ 4d1 I42

I I3 T4 1 3 X1 T4 Is

T 2dsz2 \ 0|33 33 33

S N R I W
YT 9, T 4dy 33|\ 22 2o 2d, |44 ] 242
4

1 2
+ uy + ug

2d3 56 T3T4 14 Tr1x3 2d3 67 T4y 15 T1X4

_2d4x22(u0 44} Ty T2y

T2 Ty €3 T2 L3 L5
2d4 35 T1X3 23 T2X1 2d4 57 T35 T2y T2X3

_ 1 n 1 |6 T4 2 n 1 |6 T4 x T3
o= 25[:4 4d6 44 $22 T4 2d6 35 T1X3 T3X4g Ty
1

1 1 7 I5 To T3
rp o= — 4 —— - -
2{E5 2 d7 45 To2T3 T35 To2T5

+ 1 7 Ts5 x1 T4 1 0 + 1
— — — — U U .
2 d7 36 T1X4 T4s 1T 2 d7 $52 0 77 ! 77

1 + 1 5 I3 T2 T + 1 5 I3 T
'S = — _— —_ _ _— _ —_
> 25[:3 2 d5 34 T1X2 T3X1 I3 2 d5 36 T1Xg 34 r1X3

4 1 5 I3 xI9 I5 1 0 4 1 T
— — — — U u U
2 d5 47 ToXs5 3Ty I3 2 d5 $32 0 55 ! 55 2

n 1 Ty T T5 1 0 n n
— — — — U U U
2 d6 37 15 Tys T1X4 2 d6 $42 0 66 ! 66 2

(16)

Proof. This is an immediate application of Theorem[I] (1). Ofcourse we use the results of Lemma 2] and the

relation Z [Z} =d;.
1

4,J

O
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Now, an Eg-invariant Riemannian metric on G/H = Eg / U(1) x SU(4) x SU(5) is determined completely by
an Ad(H)-invariant inner product on the tangent space m = T,,G/H, which we will denote by (, ). Because of
the decomposition m = m; Pmo P mzPmy B ms, it depends on five real positive parameters. In particular, and
since the irrducible submodules m; are pairwise inequivalent for any ¢ = 1,...,5, any G-invariant Riemannian
metric on G/H will be expressed from relation (), that means

( ) ):xl-B|m1+x2~B|m2+x3~B|m3+:174~B|m4+:175~B|m5, (IlaIQaI37$47x5)€R3—' (17)
By applying a similar procedure like as Proposition M and by using Lemma 2] we also obtain that:

Proposition 5. The components 7; of the Ricci tensor ¥ for the G-invariant metric ( , ) on G/H defined by
@@, are given as follows

_ o 1 1 4 To 1 3 I T2 T3
" B 2$1 2d3 |:33:| xl t 94 2d3 |:45:| (IQIEg B Tr1x3 B I1I2>
1 |3 T T3 T4 1 (3 x T4 Ts5
+E |:56:| ($3$4 B T1Xg B $1$3> + E |:67:| <£L‘4LL‘5 B 15 B $1$4)
_ 4 2 1 |6
"2 2332 4d[ K _?2)_2 [43;2

1 i) T3 I5
2d4 T1X3 1'21'3 £L'2$1 d 57 T35 T2y T2X3

_ 1 + 1 5 I3 I9 X1 + 1 5 I3 T T4
T = T - - S 7 - -
8 2{E3 2d5 34 T1X2 Tr3x1 3T 2d5 36 T1X4 T34 Tr1x3 (18)
" 1 5 xs3 ) Ts5
2 d5 47 ToXs5 3Ty I3
1 1 16 T 2 1 1]6
Py o= — 4 — r4 4 4 T4 _ Z1 _ Z3
2{E4 4d6 44 I22 T4 2d6 35 13 T3X4 Ty1
" 1 6 T4 x1 L5
2 d6 37 15 Tys T1X4
B 1 1 [7 Ts5 T2 3
Fs = — + — - -
2{E5 2d7 45 23 T35 ToT5
" 1 7 x5 1 T4
2d7 36 T1X4 T4s 1T

From Proposition[2] we known that the metric Blm, +2- Blm, + 3 Blm; +4 - Blm, + 5 - B|m, is the unique
Kéhler-Einstein on G/H. By substituting these values in the system {7, = 7o = 73 = 74 = 75}, we obtain

11 ([4], voaafa] oafs] afe] _1f7]y_ (19)
2 ds\|33 4 ds\4|33| 2(34| 244 2|45|)
voafs]oafe] afrly o1 aafe] Jafr] afely_ 1 1 af7] 1f7
6  ds\3(34| 3|35 3|45 8 ds\4(35| 4(36| 8|44/ 10 dr\5(36| 5|45|/°
3.2.1. Comparison of left-invariant metrics. From ([I9) we obtain a system with four equations and six
4 5 6 7 6 7
knowns, namely the triples and the fact that G/H has six non-zero
unknowns, namely rip [33}[34}[35}[36}[44} n {45]( / ix non-zer
structures constants with respect to the decomposition (I4]), has been recently proved by the first author
in terms of symmetric t-triples, see [Chr] but be aware of a different enumeration). In order to compute
them explicitly, we need two more equations. In this direction, we will construct a new left-invariant metric
<<, >> on G = Eg, corresponding to a different decomposition of our Lie algebra g = eg. By comparing
this metric with the previous one <, >, one can obtain crucial relations between the non-zero structure
constants.
We put ¢ =H P ms, 81 = bho B by Dms, n; =my Hmy and ng = my mz . Then ¢ is a subalgebra of g, and

from Propositon [B] we see that ¢; is also a subalgebra of g. In particular it is € = £ @ bho, where hy = su(5),
and for dimensional reasons we also obtain that ¢ = su(5). By using (IZ) we get that

5
34

6
35

7
36

+ +

[I‘ll, 111] Cng B¢ [I‘ll, 112] C n; @ ng, [HQ, 112] Cny e (20)
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Thus, we obtain an irreducible decomposition g = £; @ ha B ny; @ ng as Ad(K)-modules, which are mutually
non-equivalent (cf. [WZI| p. 575]). Since h C ¢ we determine a fibration G/H — G/K, given by Eg / U(1) x
SU(4) x SU(5) — Eg / SU(5) x SU(5). The base space G/K = Eg /SU(5) x SU(5) has two isotropy summands,
namely ny and np. We consider the following left-invariant metrics on G = Eg which are also Ad(K)-invariant:

<<, >>=y1-Bly, +y2- Bly, +y3- Bla, + ya- Blny, (1,92, y3,y4) € RS (21)
Next, we will use the notation f; = dim#; = 24, fo = dimby = 24, f3 = dimn; = 100 and f; = dimn, = 100.

Lemma 3. For a left-invariant metric << , >> on Eg given by (21l), the non-zero structure constants are

the following (and their symmetries): Hlllﬂ , [[133]] , [[144]] , [[222]] , [[233ﬂ , [[:4}} , [[;3ﬂ , [[32]}.

Proof. This result follows from the decomposition £ = £ @ b2 and the relations given in ([20). Note that since
o 1 2 3
[hg,nl]cnl,and ho L €, it is |:|:23:|:|— |:|:13:|:| = |:|:12:|:| =0. O

Proposition 6. The components 7; of the Ricci tensor v of the left-invariant metric << , >> on Eg defined
by 1)), are given as follows:

- 1 1 Y1 1 m 1

i Hllﬂ TR [[33ﬂ T Thoe H44ﬂ

= i ) * i Lol 7 L)

" 2%/3 ! 41‘};% [[434} - % <% H313H i nyQ H323H i % [[343ﬂ i y% [[?iﬂ)
e 2_;4 * 4fZ4@/32 [[343} - 2%“4 (5712 [{414]] " 372 [{424]] - % [[434ﬂ " y_14 [[31}})'

. 1 [ 3 4 2 3 4
Proof. We use the relations [[Hﬂ + {_13]] + [[14ﬂ = f1, [[ZZH + [[23]] + [[24]] = fy and Lemma [3l Then,
the result is a straightforward application of Theorem [ (1).

(22)

Observe that equations ([22)) are obtained from equations ([I8) by setting y1 = up = u1 = x5, y2 = ua,
ys = x1 = x4 and y4 = ro = x3. In fact, for these values the metrics < , > and << , >> on Eg coincide,
so the components of the corresponding Ricci tensors must be equal. Thus, from relation y3 = 1 = x4 it
follows that 73 = r3 = rg, and relation y4 = 22 = x3 implies that 74, = r4 = r5. By using the first relation, we
obtain the following equations:

{% [{344]] - %3{354] - 2%6 {464}’ 2%03 [[343ﬂ - % [343] " % [365] N 2%6 {365] } (23)

So, from equations (I9) and (23], we get a system of equations:

04 [;3} - [354} -7 [365] -7 [376] 2 {464] * {475] B [365: 0 {376] * {464] - {475] B
ORI R OO
o) [

By solving system (24]), we can obtain the explicit values of all non-zero triples.

Proposition 7. For the G-invariant metric (, ) on M = G/H = Eg /U(1) x SU(4) x SU(5), the non-zero

k 4 5 6 7 6 7
structure constants L]] are given by [33] =12, [34] =38, [35] =4, [36] =4/3, [44} =4, and [45] = 2.
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3.2.2. Solutions of the homogeneous Einstein equation. It is obvious that due to Proposition [7, the
components 7; (1 <4 < 5) of the Ricci tensor are completely determined by equation ([I8]). Thus, a G-invariant
metric on G/H given by (1), is an Einstein metric, if and only if it is a positive real solution of the system

equations {771 —7ro =0, To—7T3=0, T3—7T4 =0, 74 —75 = O}. We normalize our equations by setting
x1 = 1. Then, we obtain the following system of polynomial equations:

fl = —15$23$3$4$5 — 14$23$4$5 — 2$23$4 — 3$22$32$5 — $22$3$42 + 60$22$3$4$5

+$22$3 - 3$22$42$5 + 31[:22&[:5 + 2$2$32$4$5 + 2$2$32$4 - $2$52($2$3 - 2$4)
—48xox3xaxs + ldxoT 425 + 4$3$42$5 =0,

fa = 6223232425 + 202032425 + BxodTs — 620°3%25 + 622224225 — 602022475 + 622275
—2020232 2405 — DLows Ty + A8Xax3 x4 x5 + ToTaxs? + dxoxaxs — dx3rs’as =0,

f3 = —12.’[,'23.”[,'4$5 - 3$23$4 + 18$22$32$5 — 4$22$3l‘42 - 48$22$3$5 + 4$22$3

—18$22$42$5 + 60$22$4$5 + 6.’[:22$5 + 12$2$32$4$5 + 3.%'2.%‘32.”[:4 + $2$52(4$2$3 - 3$4)
—12$2$4$5 — 6$3$42$5 = O,

f4 = 151723564 - 1256221732175 + 1417225631742 - 605622173564 + 485622173175 + 65622173 + 1217225642565
—12222%w5 + 15m923°% 24 — wow5?(1470w3 + 1524) + 62374%05 = 0

(25)

To find non zero solutions of equations (28)), we consider a polynomial ring R = Q[y, 22, ©3, 24, 5] and an ideal
I generated by {f1, fo, fs, f1, yxoxszsxs — 1}. We take a lexicographic order > with y > xo > x3 > x4 > x5
for a monomial ordering on R. Then a Grébner basis for the ideal I contains the following polynomials:

(x5 —5) ha(zs),
where

hi(zs) = 472503696291214596081218605828422459398400000000000000000000000000002:5 5°
—445027213262367075950017524668494176540963909120000000000000000000000002:5 7
—1279278998030669108196261442062499352647351000813915200000000000000000000002:5 ®
+309844411362081247568050234562367119437896246836797863213273600000000000000005
—940766709280130791476429434092634106625687345357953090011471021054400000000000025 76
+65382614408418207926807990146120488896895299649432712538979047173998528000000000025
—197449903712626658670096070942650709064323241115231399455675397800949280620000000002:5 *
+2954179066092568535575816419664189912798961603433559819729506406567466803680360000002:5 7
—176228533077602260920301368306952302530637787792869831852411538068564319744689060000025 2
—1046236185467170199810454458084776095437596899660662779136438578766485164584588532000025 "
+273127964290226652149141156670977938236643366070118489705861324916144055316096761573400x5 7
—2111960629350008712997729037300817756734290413479373882702240599399189871243689591006 17525 %°
+566755624374899545938624085080684887315350862749140632457597822177836903443056435853525525 %
+369167960121909858399957670689430160227686551890079210737186311645689848231806296551657 7415 57
—480043427227103386168410236919150532667731905301793775626334375100142985164103040894427418x5
+266946686557070975759120322786196928820881838845338759887587094567831686583305577733106783 725
—9139370219515428062586925971255785108269027010839943296284679421606792256118374978308738385x5
+18376803759786690759067819429109389235442878023601624262304528005033176015099771716603198053 5 5
—4434598744236049037326921750693065341554718105773585135509719297194724179269332415901304 11525 5
—122942453999875131691082705626502798782543273422369717227890460735397667123586813903863256137x5 1
+557044613769919358881831475859775849297414765785797612342131072020815759345208096609159899463 25 *°
—1582112308015166781511553070705918330645094458016283031865801964437503183281716531594941551364x5 5
+34644727366300405259708245695215424352583487605273975428875037540988297558312647440307641569922 5 °°
—6250670258507879661868513807468438130915325390449197827806590463302339618860631493983543773283x557
+95429576614023796268856038752848533197745616076395000425026028547262529540330260344573228091512:5 %5
—12380004909823904423519609523695561586238828918412816342069646226607551412829930248134407593884 x5 5
+134010221743576088993284463244065539349673944480149667773579038651458459427043701046439312729265 >
—1145485916272303243684372400311072924735841506296319533331955782937376535997579300682557108094 15 >3
+65315542211839644662746416120499183235835782104450144009103079638298498253751624105854895706212:5 %
—31664144533161575832348073162811438049746131915615733642608903277748685821166255390297951839425 °*
—451136022394794316867553974377543511436220615180457593535655004510086350254871682033313475269425 5
+608711568832957007233843512037381171654523604287859922874401770450408936908371936261996818355525 +
—4675893250266918680202453179124610578591031860399899777892566560016181423243816648324498543187x5®
+214342944534103178638926554943439142220672738304959403289327164737230898651479293787044481557 125 %7
—231253045030947791112644037512828421572241934695401544926933559695048747164457004283398204533 15 *°
—532301826949158300720392632394449627646398404633944476773039073687691695675258965276247513891 x5 *
+55208249415800490041034565736174687250402447334237248897195468725679491695230260224259731893 725 **
—35485830031557517663611611401771052903915662188774305043536660421820740829300009392981399074815 *3
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+1849784974820480105095148375922808958446648207368901466965133581618407627724999786430512279002 5 *2
—7540859214958973232765685770043874581916764813014326596040323964231726227400533622412418564 125!
+10531002385007869761389438060270926428468620545143636302432569599048769385446663398985254001 25 +°
+18187017225550037690927397428615858931020886094928386776380715717452961856063861286331543150x5 >
—2066441747003318973708466584633742776495208017319811270008893006469436561718353278627514276815 %
+1191605597080885492289964430733177725355238698615610056201285119237993868823969010892306088 75 >”
—37085553212053313484294265367310989234542185745190942594063550180125291085837999056926261 7525 6
—96480805739056976294601239992813599254269508846338418923366185888654809823550296258388334x5 >
+77952139680981876278305371232284078079611897586146627810282078274610363490757425925327989025 %4
—442928305317101231218698431501006044423392364446878989062913546917526691594291366407500029:5 >
+132177537460041732222335574951671464735043143702524016111303113595306993873098919838904985:x5 32
—1611414757720046038419963536755780124744413864898079512163272996880739939528021701409564515 5!
—384952687994868987213095535269692279622433159877945191386949638011640242365435548214168525 3°
+235161056483650091126749543625130100146170456203654734348190243446870149463602863080182525 >
—712516460616616751913578501294263306534891480500617074968174235211114694431876638085575x:5 2
+2824520756627933201381875295115958414246272883216486292987680911075566210458362945355005 2
—1383747500457715628448285159410704909398154575474407669458797144222702118893921194680005 *°
+501247653808115081595675778873265338405207305590172784547601099963793393009859477348752:5 %
—107623564908669926284565058287080958653314863027120833166937291282316977685884727093 7525 %*
+77099510274236262503099184477259395427135173476043785306370447159640737882731810000025 >3
+2386725340507079949506824059385636855894752410267657363033698007723064411966637187502:5 2
—T770153698603494882306765798173583880952527500793412291136577994389814927103417968 7525 %
+1620340736404473596623110543507255619926118509177972754906946957675063391715429687525 2
—777617285062140320538523081114144202788280459808914363116307578082247334665234375025 1°
+3517442589328862894719995442588428798753284776977135499703475875542210752011718750x5 1
—9319184761932130371067616435404958706459396340429250703049933459250470858886718 752517
+1301922922657982144943406564233283729671732375114847892544270034906991784667968 7515 *°
—45569056403318500114029351197251590012142897094697984734244948555913073730468 7525 1
—95004070364029266828987349976369420642510293066587604345147522930768432617187525 4
—3471530147042555958326335028409047247145346265037344188529109946511840820312525 13
+34377820359803276597707941399767708854437189185308316691176341939544677734375x5 12
+294091362421033343366544009941357927003366923843725365386724944152832031250025 1
—2363102107715118264887281080330080805393498571519911950217269393920898437500x5 *°
+22854167748312450426711116616330911545654104347068089758745981216430664062525°
+689853561391946956826040081711205206209134427868968948824095726013183593 7525 °
—21969901363014354399798457903330176488165228491480734636769294738769531250x5 "
+21459117161445162283647845978308203949654417273775960862636566162109375005 °
—135871620562561411079521499572126884573430444627000808715820312500000005
—113579338554211660050349064914773078472948595595288276672363281250000002:5 *
+7380993932820199496090852212620704634399632835388183593750000000000005 *
—152886115741814936180194597692737011995334625244140625000000000000005 2
—59644112767739370853341375818406829833984375000000000000000000005
+2196564210665606805546184930686950683593750000000000000000000000,

and polynomials of the form
bQCCQ —+ (%) (I5), ngg —+ V3 (I5), b4I4 =+ V4 (I5) (26)

where ba, b3, by are integers and va(x5),v3(x5), va(z5) are polynomials of x5 with degree 80 of integer coeffi-
cients.
For the case when x5 —5 = 0, we consider ideals I of the polynomial ring R = Qly, x2, 23, x4, 5] generated
by
{f1, fos f3, fa, y, wow3245 — 1,05 — 5}
Then, by taking a lexicographic order > with y > xzo > x3 > x4 > x5 for a monomial ordering on R, we
obtain a Grobner basis for the ideals I; that contains polynomials

{ze — 2,23 — 3,24 — 4,25 — 5}.

This solution corresponds to the Kéhler Einstein metric.

For the case hi(x5) = 0, we see that there are 18 positive solutions for z5. After substituting these values
in the equations boxzg + vo(x5) = 0, bsxs + v3(ws) = 0,bax4 + v4(x5) = 0, we see that there are 5 cases that all
values for xo, 3 and x4 are positive.
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Thus we get :
Theorem A. The generalized flag manifold M = G/H = Eg/U(1) x SU(4) x SU(5) admits (up to a
scale) precisely five non-Kdhler Es-invariant Einstein metrics. These Eg-invariant Einstein metrics g =
(x1, 22,23, 24, x5) are given approximately by

(1) 21 =1, x5~ 1.0213742, x5 ~ 0.54600746, x4 ~ 1.0535169, x5 ~ 1.1087938,
(2) 21 =1, x5~ 1.0373227, a5~ 1.0471761, x4~ 1.0308150, a5 ~ 0.29861996,
(3) 21 =1, x5~ 0.59978523, x5~ 1.0837088, x4 ~ 0.90182312, =5~ 1.2229122,
(4) 21 =1, x5 ~0.72071315, 3~ 1.0254588, x4 ~ 0.47523403, x5~ 1.0709463,
(5) 21 =1, x5~ 1.0829413, x5~ 1.0408835, x4 ~ 0.53261506, x5~ 1.1035115.

4. HOMOGENEOUS EINSTEIN METRICS ON Eg /U(1) x SU(2) x SU(3) x SU(5)

4.1. The flag manifold Eg /U(1) x SU(2) x SU(3) x SU(5). We will exam now the case (F). We consider
again the Lie group G = Eg and we set IIy; = {as}, thus Iy = {a1, ag, ag, ag, ag, ar, ag}. This choice gives
rise to the following (extended) painted Dynkin diagram

a1 QG (O3 Q4 Q5 OGg Q7

@—o—o—o—o—l—o—o
as

It defines the flag manifold M = G/H = Eg /U(1) x SU(2) x SU(3) x SU(5). From Lemma [Il and since we
have ht(as) = 6, it follows that N = 6 = ¢, that is m = m; & my G m3 & my B ms & mg. Thus we can find a
pair (IL, IIy) for g = eg, which has an irreducible decomposition

g=ho®h1 ©ha®hsdm Gmy G my O my G my S mg (27)

as Ad(H)-modules, where ho is the center of h and h; = su(2), ha = su(3), hs = su(5). Note that dy =
dimby = 1, dy = dimbh; = 3, do = dimbh, = 8 and d3 = dimbhs = 24. Also from Lemma [I] we obtain
thet dy = dimm; = 60, ds = dimm, = 60, d¢ = dimm, = 40, d7 = dimm, = 30, dg = dimmy; = 12 and
dg = dlmmg = 10.

Proposition 8. In the decomposition [2]) we can take the ideals b1, and ho, such that [, mg] = [h2, mg] = {0}.

Proof. Since h; = su(2), and ha = su(3), we can assume that h; # {0} and hy # {0}. Note that there
is only a simple root aj;, = ag with (aj,,&) # 0 and thus we can take the ideals h; and hs such that
(b5, Es] = [bS, Es] = {0}. Since ng = [T, E5], we have that [h$,ng] = [0, (b, E5]] C [[bF,bC], E5] +
[f)(c, [f)(i:, Eaﬂ = {0}. By the definition of mg, we get the result. Similar for hs. O

4.2. The construction of the homogeneous Einstein equation. Following the notation of §1, next we
consider left-invariant Riemannian metrics on the compact Lie group Eg, given by

<, >= UQ'B|h0+U1'B|h1 +U2'B|b2+u3'B|b3

28
+ 21 'B|m1 + 22 'B|m2 + x3 'B|m3 +«T4'B|m4 +«T5'B|m5 +«T6'B|m67 ( )

for some positive real numbers ug, u1, ..., us, 1, Z2,. .., Ts. Note that a metric 28] is also Ad(H )-invariant.

k
Lemma 4. For a left invariant metric < , > on Eg given by (28), the non-zero structure constants [ } are
L

IR SRR e
R EEEE B E R

Proof. We use the relations [b;, ;] C bs, [hi,ho] = {0} and the inclusions arising by applying (I2). From

.. . 9 9 1 9 9 2
Proposition [§l we also obtain that [19] = [91} = [99} =0 and [29} = [92] = _99} =0. O
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Proposition 9. The components of the Ricci tensor r for the left-invariant Riemannian metric < , > on Eg

defined by (28), are given as follows:

To

1

T2

3

T4

s

T6

r7

8

T9

o uo 0 + uo 0 + uo 0 + uo 0 + uo 0 + uo 0
T 4xq2 (44| 4292 |55| 432 |66  4xa? |TT|  4xs52|88]  4w62 |99
1 _1_+ ur 1_+ ur _1_+ u 1_+ ur 1_+ u 1]
- 4d1 Ul 11 4d1 :E12 44 4d1 1’22 55 4d1 :E32 66 4d1 1’42 77 4d1 1’52 88
! _2_+ us 2_+ us _2_+ us 2_+ us 2_+ us [ 2]
o 4d2 uz 22 4d2 5012 44 4d2 $22 55 4d2 5032 66 4d2 $42 77 4d2 $52 88
o -3-+ us 3-+ us '3'+ us 3-+ us 3-+ us [ 3]
o 4d3 us 33 4d3 5012 44 4d3 $22 55 4d3 5032 66 4d3 $42 77 4d3 $52 88
us 3
+4d3 $62 99
i_ 1 5 1 4 X1 _:Cz _:Cg +L4 X1 _$3 _$4
2%1 2d 2d4 56 T2X3 r1x3 Tr1x2 2d4 67 X3T4 14 r1x3
o o x5 4+ 4 X1 _ T5 _ X6
2d4 Ts T1xs5 T1x4 2d4 |89 \ z576 r1T6 r1Ts5
tun| | | 2
2d4m1 44 Ylaa] TP aa| TP a4

. i " 1 5 T2 3 Iy 1 S U
T 2x9  4ds |44\ z12 o T2 2ds |46 | \ x1x3 213 X271
+ 1 5 2 o o T2 _ Ty _ Te
2ds |68 \ z3x5 T2m5  T2T3 T4l  T2Te  Lola
_ 1 0 tu 1 tu tu
2ds 72 55 155 ? 55 *155
_L_L 9 X6 L 6 xrs3 _ i) _ X1 L 6 xrs3 _ X1 _ X4
o 2%3 2d6 66 2 dg 45 12 Tr3T1 32 2d6 47 1,4 Tr3T4 r1x3
+L 6 xr3 . xr2 . Is . » 0 +u 1 +u 2 +u 3
2dg |58| \zaws  wsws wswa) 2dews? \ |66 'l66 *le6| " *|66
SR R
- 2:04 4d7 55 $22 2d7 46 xr1x3 X3T4 X421
+L 7 4 . X1 . Is +— 7 T4 T2 _ Te
2d7 |48 | \ z125 TaTs T1x4 2d7 |59 \ zaxe 4T ToX4
1 0 tu 1 tu 2 tu 3
2drxa2 \ |77 e e d B e
. L " L 8 Ty x;1 T4 " L 8 Ts X2 xs3
- 2:05 2d8 47 14 X4Ts X1Ts 2d8 56 o3 r3xs5 25
+L 8 Ts  ® Te _ 1 u 0 4 L 4 3
2ds |49| \z1w6  wsws  miws) 2dsas?\ |88 '188 *188 %188
_1 o, fo]fee 2), 1 [9) (e @
o 4d9 66 $32 Te 2d9 48 X1Ts5 T5T6 T1Te
1 9 Te ) T4 3
+2—d9 |:57:| <$2$4 - X4aZTe - $2$6>_2d9 5062 0 99 + us 99:| )

(29)
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Proof. We use Lemma [4] and relation Z [Z ] = dj. Next we apply Theorem [ (1). O
— 1
0.
Because the irreducible submodules m; (i = 1,...,6) in the decomposition ([27]) are pairwise inequivalent,
any Eg-invariant Riemannian metric has the form of (6), that means
( y ) = ZCl B|m1 “I‘IQ B|m2 +I3 B|m.§ +I4 B|m4 +I5 B ms “I‘IG 'B|rn67 (Il,IQ,Ig,ZC;l,ZCEj,IG) S Ri (30)

Proposition 10. The components 7; of the Ricci tensor T for the G-invariant metric ( , ) on G/H =

Es /U(1) x SU(2) x SU(3) x SU(5) defined by (30), are given as follows:

+L 4 X1 . X4 . X5 + L 4 X1 _ T5 _ Te
2ds | 78| \ zazxs T1T5 T1x4 2d4 |89 \ z576 r1T6 r1Ts5
- _L _5 __3 _L7_4+ 1 (5 T2  ®m ®3
2 o 2:0 4 X2 55 2d5 46 xr1x3 o3 21
+L _ _ L x2 . ZTa _ Te
d $3$5 25 XoX3 d 79 T4ZTe X2Te o4
- _L_LQ B _m +L6 T3 ®m T4
8 o 2:03 2d6 66 2 da r1x2 r3x1 r3x2 2d6 47 14 X34 r1x3
6w e
de | 58 T2X5 T3xs T3x2
_ _ 1 1 7 X4 2 1 7 X4 X1 xrs3
"4 o E + 4_d7 |:55:| <_ N >+_ |:46:| (:1:1:1:3 B X3T4 B :E4:E1)
+L 7 Ta _ Ta Tz Te
2d7 48 X1X5 X445 X1X4 X2Te T4Te o4
_ 1 1 8 X5 X1 X4 1 8 X5 X2 xrs3
s = ——+— - - + 5 - -
2xs 2dg |47 T1T4  XT4T5  T1T5 2dg |56 ToT3  XT3T5  T2Ts5
L 8 T5 _ X1 _ X6
49 16 T5T6 X1Ts5
_ o 1 1 9 T6 2 1 9 X6 X1 T5
e a 21”6 + 4dg |:66:| < >+2dg |:48:| (:1:1:1:5 T5T6 :1:11:6)

2ds
L 9 Te T2 X4
2do |57 | \@2ma mazs T2T6 )

- L_L5x2+14 7 T +L4 Ty ®3 x4
! 2:01 2d4 44 2d4 o3 r1x3 r1x2 2d4 67 X3T4 14 r1x3

From Proposition 2 we known that the unique Eg-invariant K&hler-Einstein metric on G/H is given by

ms + 6 - Blmg. We use these parameters to obtain the following

(32)

equations:

11 5+6+7+8+_9_ v aqafs]oafe] afrl oafs] 1oy _
2 dg\ |44| " |45 " 46| T [a7| T |a8]) T a T as\d|4a| " 2045 " 2|s5| 2|56 2|57|)
toaafe] afr] oafs] afoly _ o1 1afr] 1fs A

6  ds\3|45| 3|46 3|56| 3|66 8 dr\4146| 4|47 55| 457/

(9

9 1
6 |57

48

9
48

i

+ +

A8y o1, 1
5|56 12 do \6

1 1(1fs] 1
10  ds \ 5|47 5

11}

4.2.1. Comparison of left-invariant metrics on Eg. From equations ([B2) we obtain a system with five

equations and nine unknowns, namely the triples > 6 7 ] 0 7 8 ;
d ’ Y P51 4a) a5)7 |46]7 |47)7 |48] |55)7 |56]7 |57)

and {9]
66

These are the only non-zero triples of G/H with respect to the decomposition ([27)) (see also [Chr]).
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With the aim to obtain more conditions abouts these triples we follow the new method was applied also
in case (E). Again our goal is to determine a new left-invariant metric on << , >> on G = Eg. We put
t=hBmg, 1 = ho P hs P mg, n; = my D ms, no = mo G my and ng = mz. Then € is a subalgebra of g, and
from Propositon [ we conclude that £; is also a subalgebra of g. In particular, we have € = £; ® b1 P ho, where
b1 = su(2), and h2 = su(3). Also, for dimensional reasons it is ¢, = su(6). Now, by using (I2]) we obtain the
following inclusions:

[nl, nl] Cng @ ¢, [111, 113] C nog, [112,‘[12] Cny ¢,
(33)
[nl, ng] C ny; @ ng, [112,‘[13] C nyq, [113,‘[13] C t
Thus we determine an irreducible decomposition g = €; @ h1 B ha B ny O ne ® ng as Ad(K)-modules, which
are mutually non-equivalent. Since h C £ we can determine the fibration G/H — G/K, explicity given by

Es /U(1) x SU(2) x SU(3) x SU(5) — Eg /SU(6) x SU(2) x SU(3).

Note that the base G/K = Eg / SU(6) x SU(2) x SU(3) is a compact homogeneous manifold with three isotropy
summands, namely ny,ny and ng. Let us consider now the following left-invariant metrics on Eg which are
also Ad(K)-invariant:

<<, >>=y1- By, +vy2-Bly, +v3-Bly, +y4-Bln, + Y5 Bln, + Y6 Blag,  (1,42,3,94,5,56) € RS (34)

Lemma 5. For a left invariant metric << , >> on Eg given by (34)), the non-zero structure constants are
the following (and their symmetries):

L)l Bl ol Gl Tl Bl ol Bl ol B D - [

Proof. This is an immediate consequence of the decomposition ¢ = €; & h; @ by and relation ([B3)). ([l

We set fl = dlm?l = 35, f2 = dlmf)l = 3, f3 = dlmbg = 8, f4 = dimm = 72, f5 = dimng = 90 and
f6 = dimn3 = 40.

Proposition 11. The components of the Ricci tensor T of the left-invariant metric << , >> on Eg defined
by (54), are given as follows:

= ﬁ “111“ +7 Jfl“yf 414 +1 fillysz 515 * 4f11/1yr>2 616

T = 4fi v 222 i 4&42 424 ! 4&52 525 ! 4&62 626

s leg 333 gV 4?:1 T 535 T 626

e s o] o] (o) .
(e i) i)

2ys 4 fs |[44(| \va® s 2fs ||46]| \yaye Ysys Yays

1 Y1 Y2 2 Y3 3
2f5 <y52 * y52 |:|:55:|:| * y52 55

1 1 |6 Yo Ya Ys Ly |1 Yz || 2 ys || 3
Te = —— + —F - - 572\ 3 + ) + -
2y6  2fe |[45|| \vays Ysyse Yaye 2 fo \ y6? || 66 ye2 || 66 ye2 ||66

Proof. We use Lemma [0l and we apply again Theorem [} (1). O

ot

Observe that equations (B8] are obtained from ([29) by setting y1 = ug = us = x6, Y2 = U1, Y3 = Ua,
Ya = T1 = Ty, Y5 = T2 = x4 and yg = x3. For these values the metrics < , > and <<, >> on G coincide, so
the components of the corresponding Ricci tensor must be equal. Therefore, from relation y4 = x1 = x5 we
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conclude that 7y = ry = rg, and from y5 = xo = x4 it must be 5 = r5 = r7. Thus we obtain the following
equations.

L e _ Lf6), L[7]_ LJs

2fs [[45]]  2d4 [45] © 2d4 [46]  2ds |56

1 [[6] 1[6] 178 1[7

- - — - — . 36
2 f5 |45]  2ds |45] T2 [56} 2d; [46] (36)
1 57  1[5] 178

2 f5 |44~ 4ds [44]  2d7 |47

7 9
4.2.2. The contribution of the twistor fibration. For the computation of the triples [55] and [57} we

use the twistor fibration which admits any flag manifold M = G/H of a compact (semi)-simple Lie group
G, over an irreducible symmetric space G/L of compact type ([BuRl pp. 43-44]). This method was initially
apllied in [AC2].

We set [ = hpma@dmyPBmg and p = my Bmgdmy. Then, in view of the inclusions given by (I2)) we conclude
that [[,[] C I, [Il,p] C p, and [p,p] C I. Let L be the connected Lie subgroup of G with Lie algebra [. Then
g = [P p is a reductive decomposition of G/L, and from the latter relations it follows that G/L is a locally
symmetric space. In particular, since G = Eg is a simply connected Lie group, G/L is also simply connected
and thus it is a symmetric space. Because G is simple (and compact), G/L is an irreducible symmetric space
(of compact type). In our case we have that dim[ = 136, thus it must be G/L = Eg /E; x SU(2), since
dimG/L = dim G —dim L = 278 — 136 = 112 = dim p. Due to the inlusion h C [ it follows that H C L, and

thus we can determine the fibration L/H — G/H = G/L, explicitly given as follows:
E7 x SU(2)/ U(1) x SU(2) x SU(3) x SU(5) — Es / U(1) x SU(2) x SU(3) x SU(5) = Es / Er x SU(2).

We observe that on the fiber L/H, the Lie group L does not act (almost) effectively, that is H contains
some non-trivial normal subgroups of L. Let L’ the normal subgroup of L which acts effectively on L/H with
isotropy subgroup H'. Then L/H = L’'/H’, that is

L/H = E7 x SU(2)/ U(1) x SU(2) x SU(3) x SU(5) = E7 / U(1) x SU(3) x SU(5) = L'/H'.

The fiber L'/H’ is a flag manifold with three isotropy summands ([Kim|): Let ' = §’ @ f be a reductive
decomposition of " with repsect to Bg,, the negative of the Killing form of E;. Then T, (L'/H’') = § =
f1 D f2 ® f3, where f; = ma, fo = my, and f3 = mg. We set D; = dimf; = 60, Ds = dimf, = 30 and
D3 = dim f3 = 10 and we consider Ez-invariant metrics on E7 / U(1) x SU(3) x SU(5), of the form

g; = w; - By, f + wy - Bg, ; + ws - Bi, o (w1, wa, w3) € R3. (37)
1 2 3

Lemma 6. For a L'-invariant metric g; on the fiber L' /H' given by (37), the non-zero structure constants

k 2
[, } are [ } and [3} (and their symmetries).
il 11 f 12 ;

Proof. This result follows from the inclusions [f1,f1] C b" @ fa, [f1,f2] C f1 ® f3, [f1,f3] C fo, [f2,F2] C b,
[f2,f3] C f1, and [fs, f3] C b’, which are easily obtained from relations given in (I2). O

Let R; be the components of the Ricci tensor Ricgy, for the E7-invariant metric g; on the fiber L'/H =
E7 /U(1) x SU(3) x SU(5), defined by (7). Then, in view of Lemma [6] and by applying Theoren [, (2), we
obtain the following forms for the components R;.

Proposition 12. The components R; of the Ricci tensor for an E-invariant metric g; on the fiber L' /H' =
E7 /U(1) x SU(3) x SU(5) defined by ([37), are given as follows:

_ 1 2- &+ 1 1 w1 w2 w3
2D1 |11 ]| w2 2D 23| \waw3s wiws wiws
1 1 [2] /w2 1 [2]/ we w ws
Ry = — — - — - - 38
2 2w2 + 4D2 11 <w12 'LU2> + 2D2 |:13:| <w1 ws w2 W3 w1 'LU2> ( )

1 1 3 w w w
me L ( 5w )
w1 W2 w2 W3 w1 w3

Ry =

N
2|+
flry
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From Proposition 2] we know that E7 /U(1) x SU(3) x SU(5) admits a unique Kéhler-Einstein metric,

explicitly given by 1By, | +2-By, ’f 43 BE7’ Thus, by solving the system {Rl “Ry=0, Ry— Ry = 0}
1

we obtain the values 2 =10 and 5 =10/3.
11 f 12 f

Since L' = E7 is a simple Lie subgoup of Eg there is a positive number ¢, such that Bg, = ¢ - Bg,, where
Bg, = B is the Killing form of Eg. In particular it is ¢ = Bg,/Bg, = 3/5 (cf. [Brb]). Then, by applying an

k 7 9
easy computation based on the definition of the structure constants | | we obtain that 55 and {57] are
v)

given as follows (see for example [AC3| Lemma 1)):

{575] —c. [121L_3/5.10_6, {597] —e. {132L_3/5.10/3_2.

Now, from equations ([32]) and (B6) we get the following system

o g {2 (i) (2] ) -
e 2] )] 2 e

vl g] i i) ] )] )
RHRARARUROE
RN O
4 1o
RMEEE
3]

7
Thus, by substituting the values [ 5 5} =6, 57} = 2, and solving equations ([B9) we get the explicit values of

all non-zero triples of Eg / U(1) x SU(2) x SU(3) x SU(5) with respect to the reductive decomposition (27]).

2] =

(39)

Proposition 13. For the Eg-invariant metric (, ) on M = G/H = Eg / U(1) x SU(2) x SU(3) x SU(5), the

k
non-zero structure constants [ } are given as follows:
tJ
5 6 7 8 9 7 8 9 9
i =5 L] = L = L] = ) = L] =0 L] =[] =2 la] =2

4.2.3. Solutions of the homogeneous Einstein equation. By using Proposition [I3] and the dimensions
d; = dimg m; presented in 4.1} the components 7; (1 < i < 6) of the Ricci tensor are completely determined
by equation (BI)). In particular, a G-invariant metric ( , ) = (z1, z2, ¥3, 24, z5,76) € RS on G/H = Eg / U(1) x
SU(2) x SU(3) x SU(5), is an Einstein metric, if and only if it is a positive real solution of the following system

{71—52:0, 7o —7T3=0, r3—74=0, 74 —75 =0, 775—77620}, (40)
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where the components 7; are given as follows:

_ 1 X2 1 X1 i) xrs3 1 X1 xrs3 X4
== — 5+ o0n — — + — — —
21 1521 20 \ zox3 T1T3 T1T2 30 \ z3x4 T1T4 T1T3
1 1 T4 Ts5 1 1 Ts5 Te
+_ — — - —
60 45 X1Ts5 14 120 T5T6 T1Te X1Ts5

o — 1 +1 o 2 1134+1 X2 X1 X3 +1 i) xrs3 X5
272:02 30\ z12 9 20 x22 20\ x1x3  T2x3 T1X2 60 \ x3xs 215 T2T3

_~_i Tz T4 Te
60 \ x4x6 T2x6 T2T4
_ 1 1 Te 3 X3 X2 X1 1 X3 X1 T4
Fg=o—— ——%+ - - + = - -
2:03 40 1332 40 r1x2 X1x3 r3x2 20 X1X4 r3x4 X1x3 (41)
" 1 3 T2 T5
40 T2Xs5 35 xr3x2

b U (@ 2\ 1w w a N, 1w @

17 2%4 20 :Ezz X4 15 r1x3 X3T4 14 30 X1Ts 45 X124

T4 i) Te

ToZe T4Te T2X4
7o = 1+i Tz Ty T4 _‘_i rs  @x2 X3 +i Tz T Te

25 12 \ x124 TaTs T1Ts5 12 \ x2x3 T3Ts5 Toxs 24 \ z1x6 T5T6 r1Ts5

_ 1 1 Te 2 1 X6 X1 T5 1 X6 X2 X4
e = 21”6 * 20 (:E32 xa) * 20 <:E1:E5 T5T6 :1:11:6) * 10 (:1:2:04 T4aTe T2Xe ’

We normalize our equations by setting z1 = 1. We see that the system of equations ([@0) reduces to the
following system of polynomial equations:

fi= —6173:02:05:06 + 2:0% (:174(1 + 6x5)z6 + z3(x5 + 6:04x5x6)) — 219 (:c%:c4:c6 + x425(6 4+ 5)T6

+1:31:5(1:Z — 262476 + :cg)) + a3 (41:%1:5:05 +4(-1+ :ci):c5:c5 + 23 (21:3:05 +2(-1+ :cg):ca

+a4(—1+ 22 — 60xs526 + x%))) =0

fo = —6x2x3zs36 + 3:0%:05:06( — 223 4+ 223(1 — 1024 + 23) + x4x6) + i, (5:04(1 + 3x5) w6

+223(25 + 2x42576)) + T2w3 (2425 (3 + @5)we — Srzwa(l + 3ws)we — 20325 (v] — 26z476 + 23)) =0

fs = —6x3x3rsas + :c%:ca(lllxg:cs + 2x3(1 4 3024 — 7:cﬁ)x5 - 4:0%(—1 + 23+ 1225 — xg) - 31:41:5:052 (42)
+adzs (4:03175 —3za(1+ 3x5):c6) + xgxg( — 3zax5(3 4+ z5)w6 + 317%,:04(1 + 3xs5)w6 + 4:03175(—172 + :06)) =0
f1 = 6x3x3w506 + :c%(—4:c3:c5 + 10z4we) + 22 (51:%1:41:6 — Sxqxize + 2:031:5(1:2 — 1:(2;)) +23( — 8z2asx6
+8(—1+ xi)xg.xs + x3(14xix6 +2(3+ 24x5 — 717%)176 — 5xa(—1+ z2 + 12z¢ — :c%))) =0

fs = 2a323(6w3w5 — braxe) — 23 (5a3wazs — Sraxiwe + 6waws(—ai + 23))

+x2( — bzazsTE + x%( — 10z326 + 10(—1 4 22)z6 + 24(1 — 4825 + 1127 + 60x6 — 1117(2;))) =0.

To find non zero solutions of equations ([#2]), we consider a polynomial ring R = Qly, x2, 3, x4, x5, xg] and
an ideal I generated by

{f1, fou f3, far f5, y 2223082506 — 1}

But we fail to compute a Grébner basis for the ideal I. However, we conjecture that Eg /U(1) x SU(2) x
SU(3) x SU(5) would admit a finite number non-Kéhler invariant Einstein metrics, since the rest members of
the examined class admit a finite number of non-Kéahler Einstein metrics. Note that the Bohm-Wang-Ziller’s
conjecture ([BWZ]), the so called finiteness conjecture, states that there exist a finite number of invariant
Einstein metrics on compact homogeneous space G/H with rank G = rank H.
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