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Abstract

We prove that the Mahonian-Stirling pairs of permutation statistics (sor, cyc) and (inv, rlmin)
are equidistributed on the set of permutations that correspond to arrangements of n non-atacking
rooks on a Ferrers board with n rows and n columns. The proofs are combinatorial and use
bijections between matchings and Dyck paths and a new statistic, sorting index for matchings,
that we define. We also prove a refinement of this equidistribution result which describes the
minimal elements in the permutation cycles and the right-to-left minimum letters. Moreover,
we define a sorting index for bicolored matchings and use it to show analogous equidistribution
results for restricted permutations of type Bn and Dn.

1 Introduction

An inversion in a permutation σ is a pair σ(i) > σ(j) such that i < j. The number of inversions
in σ is denoted by inv(σ). The distribution of inv over the symmetric group Sn was first found by
Rodriguez [9] in 1837 and is well known to be∑

σ∈Sn

qinv(σ) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Much later, MacMahon [7] defined the major index maj and proved that it has the same distribution
as inv. In his honor, all permutation statistics that are equally distributed with inv are called
Mahonian. MacMahon’s remarkable result initiated a systematic research of permutation statistics
and in particular many more Mahonian statistics have been described in the literature since then.

Another classical permutation statistic is the number of cycles, cyc. Its distribution is given by∑
σ∈Sn

tcyc(σ) = t(t+ 1)(t+ 2) · · · (t+ n− 1)

and the coefficients of this polynomial are known as the unsigned Stirling numbers of the first kind.
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Given these two distributions, it is natural then to ask which “Mahonian-Stirling” pairs of
statistics (stat1, stat2) have the distribution∑

σ∈Sn

qstat1(σ)tstat2(σ) = t(t+ q)(t+ q + q2) · · · (t+ q + · · ·+ qn−1). (1.1)

As proved by Björner and Wachs [2], (inv, rlmin) and (maj, rlmin) are two such pairs, where rlmin
is the number of right-to-left minimum letters. A right-to-left minimum letter of a permutation σ
is a letter σ(i) such that σ(i) < σ(j) for all j > i. The set of all right-to-left minimum letters in σ
will be denoted by Rlminl(σ). In fact, Björner and Wachs proved the following stronger result∑
σ∈Sn

qinv(σ)
∏

i∈Rlminl(σ)

ti =
∑
σ∈Sn

qmaj(σ)
∏

i∈Rlminl(σ)

ti = t1(t2 + q)(t3 + q + q2) · · · (tn + q + · · ·+ qn−1).

(1.2)
A natural Mahonian partner for cyc was found by Petersen [8]. For a given permutation σ ∈ Sn

there is a unique expression
σ = (i1j1)(i2j2) · · · (ikjk)

as a product of transpositions such that is < js for 1 ≤ s ≤ k and j1 < · · · < jk. The sorting index
of σ is defined to be

sor(σ) =
k∑
s=1

(js − is).

The sorting index can also be described as the total distance the elements in σ travel when σ is
sorted using the Straight Selection Sort algorithm [6] in which, using a transposition, we move the
largest number to its proper place, then the second largest to its proper place, etc. For example,
the steps for sorting σ = 6571342 are

6571342
(37)−−→ 6521347

(16)−−→ 4521367
(25)−−→ 4321567

(14)−−→ 1324567
(23)−−→ 1234567

and therefore σ = (2 3)(1 4)(2 5)(1 6)(3 7) and sor(σ) = (3−2)+(4−1)+(5−2)+(6−1)+(7−3) = 16.
The relationship to other Mahonian statistics and the Eulerian partner for sor were studied by
Wilson [10] who called the sorting index DIS.

Petersen showed that∑
σ∈Sn

qsor(σ)tcyc(σ) = t(t+ q)(t+ q + q2) · · · (t+ q + · · ·+ qn−1),

which implies equidistribution of the pairs (inv, rlmin) and (sor, cyc).
In this article we show that the pairs (inv, rlmin) and (sor, cyc) have the same distribution on

the set of restricted permutations

Sr = {σ ∈ Sn : σ(k) ≤ rk, 1 ≤ k ≤ n}

for a nondecreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. These can be described as
permutations that correspond to arrangements of n non-atacking rooks on a Ferrers board with
rows of length r1, . . . , rn. To obtain the results, in Section 2 we define a sorting index and cycles
for perfect matchings and study the distributions of these statistics over matchings of fixed type.
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We use bijections between matchings and weighted Dyck paths which enable us to keep track of
set-valued statistics and obtain more refined results similar to (1.2) for restricted permutations.

Analogously to sor, Petersen defined sorting index for signed permutations of type Bn and Dn.
Using algebraic methods he proved that

∑
σ∈Bn

qsorB(σ)t`
′
B(σ) =

∑
σ∈Bn

qinvB(σ)tnminB(σ) =
n∏
i=1

(1 + t[2i]q − t), (1.3)

where `′B(σ) is the reflection length of σ, i.e., the minimal number of transpositions in

{(ij) : 1 ≤ i < j ≤ n} ∪ {(̄ij) : 1 ≤ i < j ≤ n}

needed to represent σ; invB(σ) is the number of type Bn inversions, which is known to be equal to
the length of σ and is given by

invB(σ) = |{1 ≤ i < j ≤ n : σ(i) > σ(j)}|+ |{1 ≤ i < j ≤ n : −σ(i) > σ(j)}|+N(σ), (1.4)

where
N(σ) = number of negative signs in σ.

Finally,
nminB(σ) = |{i : σ(i) > |σ(j)| for some j > i}|+N(σ). (1.5)

Petersen also defined sorD, a sorting index for type Dn permutations and showed that it is equidis-
tributed with the number of type Dn inversions:

∑
σ∈Dn

qsorD(σ) =
∑
σ∈Dn

qinvD(σ) = [n]q ·
n−1∏
i=1

[2i]q. (1.6)

In Section 3 we define a sorting index and cycles for bicolored matchings and give a combinatorial
proof that the pairs (sorB, `

′
B) and (invB, nminB) are equidistributed on the set of restricted signed

permutations
Br = {σ ∈ Bn : |σ(k)| ≤ rk, 1 ≤ k ≤ n}

for a nondecreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. Using bijections between
bicolored matchings and weighted Dyck paths with bicolored rises, we in fact prove equidistribution
of set-valued statistics and their generating functions. Moreover, we find natural Stirling partners
for sorD and invD and prove equidistribution of the two Mahonian-Stirling pairs on sets of restricted
permutations of type Dn:

Dr = {σ ∈ Dn : |σ(k)| ≤ rk, 1 ≤ k ≤ n}.

2 Statistics on perfect matchings

A matching is a partition of a set in blocks of size at most two and if it has no single-element blocks
the matching is said to be perfect. The set of all perfect matchings with n blocks is denoted by
Mn. All matchings in this work will be perfect and henceforth we will omit this adjective.
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2.1 Statistics based on crossings and nestings

A matching in Mn can be represented by a graph with 2n labeled vertices and n edges in which
each vertex has a degree 1. The vertices 1, 2, . . . , 2n are drawn on a horizontal line in natural
order and two vertices that are in a same block are connected by a semicircular arc in the upper
half-plane. We will use i · j to denote an arc with vertices i < j. The vertex i is said to be the
opener while j is said to be the closer of the arc. For a vertex i, we will denote by M(i) the other
vertex which is in the same block in the matching M as i. Two arcs i · j and k · l with i < k can be
in three different relative positions. We say that they form a crossing if i < k < j < l, they form
a nesting if i < k < l < j, and they form an alignment if i < j < k < l. The arc with the smaller
opener will be called the left arc of the crossing, nesting, or the alignment, respectively, while the
arc with the larger opener will be called the right arc. The numbers of crossings, nestings, and
alignements in a matching M are denoted by cr(M), ne(M), and al(M), respectively.

If o1 < · · · < on and c1 < · · · < cn are the openers and the closers in M , respectively, let

Long(M) = {k : ok ·M(ok) is not a right arc in a nesting}

and
Short(M) = {k : M(ck) · ck is not a left arc in a nesting}.

Similarly, let
Left(M) = {k : ok ·M(ok) is not a right arc in a crossing}.

We will use lower-case letters to denote the cardinalities of the sets. For example, long(M) =
|Long(M)|.

Example 2.1. For the matchingM in Figure 1 we have ne(M) = cr(M) = al(M) = 5, Long(M) =
{1, 2}, Short(M) = {1, 2, 3, 5}, and Left(M) = {1, 5}.

The pair of sets ({o1, . . . , on}, {c1, . . . , cn}) of openers and closers of a matching M is called the
type of M . There is a natural one-to-one correspondence between types of matchings in Mn and
Dyck paths of semilength n, i.e., lattice paths that start at (0, 0), end at (2n, 0), use steps (1, 1)
(rises) and (1,−1) (falls), and never go below the x-axis. The set of all such Dyck paths will be
denoted by Dn. Namely, the openers in the type correspond to the rises in the Dyck path while
the closers correspond to the falls. Therefore, for convenience, we will say that a matching in Mn

is of type D, for some Dyck path D ∈ Dn, and we will denote the set of all matchings of type D
by Mn(D).

The height of a rise of a Dyck path is the y-coordinate of the right endpoint of the corresponding
(1, 1) segment. The sequence (h1, . . . , hn) of the heights of the rises of a D ∈ Dn when read from
left to right will be called shortly the height sequence of D. For example, the height sequence of the
Dyck path in Figure 1 is (1, 2, 3, 3, 3, 4). A weighted Dyck path is a pair (D, (w1, . . . , wn)) where
D ∈ Dn with height sequence (h1, . . . , hn) and wi ∈ Z with 1 ≤ wi ≤ hi. There is a well-known
bijection ϕ1 from the set WDn of weighted Dyck paths of semilength n to Mn [3]. Namely, the
openers o1 < o2 < · · · < on of the matching that corresponds to a given (D, (w1, . . . , wn)) ∈ WDn
are determined according to the type D. To construct the corresponding matching M , we connect
the openers from right to left, starting from on. After on, on−1, . . . , ok+1 are connected to a closer,
there are exactly hk unconnected closers that are larger than ok. We connect ok to the wk-th of
the available closers, when they are listed in decreasing order (see Figure 1).

Via the bijection ϕ1 we immediately get the following generating function.
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1

ϕ1

c6c5c4c3o6o5c2o4c1o2o1 o3

Figure 1: The bijection ϕ1 between weighted Dyck paths and matchings.

Theorem 2.2. If D ∈ Dn has a height sequence (h1, . . . , hn), then

∑
M∈Mn(D)

pcr(M)qne(M)
∏

i∈Left(M)

si
∏

i∈Long(M)

ti =
n∏
k=1

(tkp
hk−1+phk−2q+· · ·+pqhk−2+skq

hk−1). (2.1)

Proof. The edge ok · M(ok) will be a right arc in exactly wk − 1 nestings and exactly hk − wk
crossings in M = ϕ1(D, (w1, . . . , wn)). So, k ∈ Long(M) if and only if wk = 1 while the closer that
is connected to ok is in Left(M) if and only if wk = hk.

The map ϕ1 also has the following property. The definition of Rlminl was given for permutations
but it extends to words in a straightforward way.

Proposition 2.3. Let (D, (w1, . . . , wn)) ∈ WDn and M = ϕ1(D, (w1, . . . , wn)). Then

Short(M) = Rlminl(2− w1, 3− w2, . . . , n+ 1− wn). (2.2)

Proof. The proof is by induction on n, the number of arcs in the matching. If n = 1, the only
matching with one arc is M = {o1 · c1}, and Short(M) = {1}. The corresponding weighted Dyck
path has only one rise with weight w1 = 1. So, Rlminl(2− w1) = Rlminl(1) = {1}.

Suppose (2.2) holds for all matchings with n− 1 arcs. If M is a matching with n arcs, openers
o1 < · · · < on and closers c1 < · · · < cn, let M ′ be the matching obtained from M by deleting the
arc on ·M(on). The weight sequence associated to M ′ via the map ϕ−1

1 is (w1, . . . , wn−1), since
wk− 1 is the number of nestings in which the arc of the k-th opener is a right arc, and this number
is the same in both M and M ′. Not also that M(on) = cn+1−wn .

Let the closers in M ′ be c′1 < · · · < c′n−1. Then for i < n and 1 ≤ k < n+ 1− wn, oi · ck is an
arc in M if and only if oi · c′k is an arc in M ′. On the other hand, for n+ 1−wn < k ≤ n, oi · ck is
an arc in M if and only if oi · c′k−1 is an arc in M ′.

For a number k ∈ [n] there are two possibilities:

1. k ∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)

If k = n + 1 − wn then k ∈ Short(M) because on · cn+1−wn is an arc in M and there are no
arcs nested below it.

If k 6= n+1−wn then necessarily k < n+1−wn. Also k ∈ Rlminl(2−w1, 3−w2, . . . , n−wn−1) =
Short(M ′), which implies that the arc M ′(c′k) · c′k in M ′ has no arcs nested below it. But then
M(ck) · ck is an arc in M and the additional arc on · cn+1−wn in M is not nested below it. So,
k ∈ Short(M).
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2. k /∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)

Necessarily, k 6= n+ 1− wn.

If k < n + 1 − wn, then k /∈ Rlminl(2 − w1, 3 − w2, . . . , n − wn−1) and, by the induction
hypothesis, there is an arc or · c′s nested below M ′(c′k) · c′k in M ′. But then the arc or · cs is
nested below M(ck) · ck in M , and consequently, k /∈ Short(M).

If k > n + 1 − wn, then since on is the largest opener in M and ck > cn+1−wn , the arc
on · cn+1−wn is nested below M(ck) · ck, and so k /∈ Short(M).

2.2 Cycles and sorting index for matchings

Let M0 be a matching in Mn(D). For M ∈ Mn(D) define cyc(M,M0) as the number of cycles in
the graph G = (M,M0) on 2n vertices in which the arcs from M are drawn in the upper half-plane
as usual and the arcs of M0 are drawn in the lower half-plane, reflected about the number axis. If
the openers of M are o1 < · · · < on, we define

Cyc(M,M0) = {k : ok is a minimal vertex in a cycle in the graph (M,M0)}.

Figure 2 shows the calculation of cyc and Cyc for all matchings of type with respect to the
nonnesting matching of that type.

cyc(M3,M4) = 2cyc(M1,M4) = 1

Cyc(M1,M4) = {1} Cyc(M2,M4) = {1, 2} Cyc(M3,M4) = {1, 3} Cyc(M4,M4) = {1, 2, 3}

cyc(M2,M4) = 2 cyc(M4,M4) = 3

Figure 2: Counting cycles in matchings.

For M,M0 ∈ Mn(D), we define the sorting index of M with respect to M0, denoted by
sor(M,M0), in the following way. Let o1 < o2 < · · · < on be the openers in M and M0. We
construct a sequence of matchings Mn,Mn−1, . . . ,M2,M1 as follows. First, set Mn = M . Then, if
Mk(ok) = M0(ok), set Mk−1 = Mk. Otherwise, set Mk−1 to be the matching obtained by replacing
the edges ok ·Mk(ok) and Mk(M0(ok)) ·M0(ok) in the matching Mk by the edges ok ·M0(ok) and
Mk(M0(ok)) ·Mk(ok). It follows from the definition that M1 = M0. In other words, we gradually
sort the matching M by reconnecting the openers to the closers as “prescribed” by M0. Note that
when swapping of edges takes place, it is always true that Mk(M0(ok)) < ok and therefore all the
intermediary matchings we get in the process are of type D. Define

sork(M,M0) =

{
|{c : c > ok, c ∈ [Mk(ok),M0(ok)] and M0(c) < ok}|, if Mk(ok) ≤M0(ok)

|{c : c > ok, c /∈ (M0(ok),Mk(ok)) and M0(c) < ok}|, if M0(ok) < Mk(ok)

and

sor(M,M0) =

n∑
k=1

sork(M,M0).
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Example 2.4. Figure 3 shows the intermediate matchings that are obtained when M = M6 is
sorted to M0 = M1. So,

sor6(M,M0) = |{c3, c5, c6}| = 3, sor5(M,M0) = |{c3, c5}| = 2, sor4(M,M0) = |{c2, c5}| = 2,
sor3(M,M0) = |∅| = 0, sor2(M,M0) = |{c5}| = 1, sor1(M,M0) = |∅| = 0,

and sor(M,M0) = 0 + 1 + 0 + 2 + 2 + 3 = 8.

o1

M6 : M3 :

M2 :M5 :

M4 : M1 :

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2o1 o3

c6c5c4c3o6o5c2o4c1o2 o3

Figure 3: Sorting of the matching M = M6 to the matching M0 = M1. The dashed lines indicate
arcs that are about to be swapped while the bold lines represent arcs that have been placed in
correct position.

Theorem 2.5. Let D be a Dyck path with height sequence (h1, . . . , hn). For each M0 ∈ Mn(D),
there is a bijection

φ1 : {(w1, w2, . . . , wn) : 1 ≤ wi ≤ hi} →Mn(D)

which depends on M0 such that

(a) sor(φ1(w1, . . . , wn),M0) =
∑n

i=1(wi − 1),

(b) Cyc(φ1(w1, . . . , wn),M0) = {k : wk = 1}.

Additionally, if M0 is the unique nonnesting matching of type D, then

(c) Short(φ1(w1, . . . , wn)) = Rlminl(2− w1, 3− w2, . . . , n+ 1− wn).

Proof. Fix M0 ∈ Mn(D). We construct the bijection φ1 in the following way. Draw the matching
M0 with arcs in the lower half-plane. Suppose o1 < · · · < on are the openers of M0. To construct
M = φ1(w1, . . . , wn), we draw arcs in the upper half plane by connecting the openers from right to
left to closers as follows.

Suppose that the openers on, on−1, . . . , ok+1 are already connected to a closer and denote the
partial matching in the upper half-plane by Nk. To connect ok, we consider all the closers c with
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the property c > ok and M0(c) ≤ ok. There are exactly hk such closers, call them candidates for
ok.

Let ck0 be the closer which is wk-th on the list when all those hk candidates are listed starting
from M0(ok) and then going cyclically to left. If ck0 is not connected to an opener by an arc in
the upper half-plane, draw the arc ok · ck0 . Otherwise, there is a maximal path in the graph of the
type: ck0 , Nk(ck0),M0(Nk(ck0)), Nk(M0(Nk(ck0))), . . . , c∗ which starts with ck0 , follows arcs in Nk

and M0 alternately and ends with a closer c∗ which has not been connected to an opener yet (see
Figure 4). Due to the order in which we have been drawing the arcs in the upper half-plane, all
vertices in the aforementioned path are to the right of ok. In particular, c∗ is to the right of ok
and is not one of the candidates for ok. Draw an arc in the upper half-plane connecting ok to c∗.
After all openers are connected in this manner, the resulting matching in the upper half-plane is
M = φ1(w1, . . . , wn).

c6c5c1o2

Figure 4: The solid arcs in the top half-plane represent the partial matching N2. The candidates
for o2 are c1 and c5. If w2 = 1, o2 will try to connect to c1, but since it is already connected to an
opener, we follow the bold path that starts with c1 to reach c∗ = c6 and connect it to o2.

Let Mn = M,Mn−1, . . . ,M2,M1 = M0 be the intermediary sequence of matchings constructed
when sorting M to M0. Then Mk(ok) is exactly the closer ck0 defined above. This means that
sork(M,M0) = wk − 1 and therefore sor(M,M0) =

∑n
k=1(wk − 1). This property also gives us

a way of finding the sequence w1, . . . , wn) which corresponds to a given M ∈ Mn(D). Namely,
wk = sork(M,M0) + 1.

To prove the second property of φ1, we analyze when connecting ok by an arc will close a cycle.
There are two cases.

1. The closer ck0 which was wk-th on the list of candidates for ok was not incident to an arc
in the partial matching Nk and we drew the arc ok · ck0 . If wk = 1, then ck0 = M0(ok) and
the arcs connecting ok and ck0 in the upper and lower half-planes close a cycle. Otherwise,
M0(ck0) < ok and therefore M0(ck0) is not incident to an arc in Nk and the arc ok · ck0 will
not close a cycle.

2. The closer ck0 which was wk-th on the list of candidates for ok was incident to an arc in the
partial matching Nk and we drew the arc ok · c∗. If wk = 1, the path traced from ck0 to c∗,
the arc ok · ck0 in M0, and the newly added arc ok · c∗ form a cycle. Otherwise, connecting ok
to c∗ does not close a cycle since the opener M0(ck0) is in the same connected component of
the graph (M,M0) as ok, but is not connected to a closer yet, since M0(ck0) < ok.

We conclude that a cycle is closed exactly when wk = 1 and therefore

Cyc(φ1(w1, . . . , wn),M0) = {k : wk = 1}.
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Finally, we prove the third property of φ1. If M0 is a nonnesting matching, its edges are ok · ck
where the openers and closers are indexed in ascending order. Let M = φ1(w1, . . . , wn). The
following observations are helpful. When connecting ok in the construction of M , the first choice
for ok, i.e., the wk-th candidate for ok is exactly ck+1−wk

. Also, M(ok) ≥ ck+1−wk
. Furthermore, if

ck was not a candidate for M(ck), i.e. if the edge ck was chosen as a partner for M(ck) by following
a path in the graph as described above, then k /∈ Short(M). Namely the edge M(ck0) · ck0 , where
ck0 was the first choice when the opener M(ck) was connected in the construction of M , is nested
below it.

For a number k ∈ [n] there are three possibilities:

1. k /∈ {2− w1, 3− w2, . . . , n+ 1− wn}
In this case, ck was not a first choice for any of the openers and therefore must have been con-
nected to an opener by following a path in the graph (M,M0). It follows from the observation
above that k /∈ Short(M).

2. k ∈ {2− w1, 3− w2, . . . , n+ 1− wn} and k ∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)

Then ck was a first choice for at least one opener. Let o be the largest one. Then all openers
to the right of o got connected to a closer which is greater than ck, so no edge is nested below
o · ck ∈M . Consequently, k ∈ Short(M).

3. k ∈ {2− w1, 3− w2, . . . , n+ 1− wn} but k /∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn)

In this case, let m+ 1−wm be the rightmost number in the sequence (2−w1, . . . , n+ 1−wn)
which is smaller than k. It is necessarily to the right of k in this sequence and belongs to
Rlminl(2 − w1, . . . , n + 1 − wn). This implies that the edge om · cm+1−wm is in M , while
M(ol) > ck for all l > m. So, M(ck) < om and therefore the edge om · cm+1−wm is nested
below M(ck) · ck, which means that k /∈ Rlminl(2− w1, 3− w2, . . . , n+ 1− wn).

Corollary 2.6. Let M0 ∈Mn(D) and let (h1, . . . , hn) be the height sequence of D. Then

∑
M∈Mn(D)

qsor(M,M0)
∏

i∈Cyc(M,M0)

ti =
n∏
k=1

(tk + q + · · ·+ qhk−1). (2.3)

Combining Theorem 2.2 and Corollary 2.6 we get the following corollary.

Corollary 2.7. Let M0 ∈Mn(D) and let (h1, . . . , hn) be the height sequence of D. Then∑
M∈Mn(D)

qsor(M,M0)
∏

i∈Cyc(M,M0)

ti =
∑

M∈Mn(D)

qne(M)
∏

i∈Long(M)

ti.

Corollary 2.8. If M0 is the unique nonnesting matching of type D then the multisets

{(sor(M,M0),Cyc(M,M0), Short(M)) : M ∈Mn(D)}

and
{(ne(M),Long(M),Short(M)) : M ∈Mn(D)}

are equal.

Proof. Follows from Proposition 2.3 and Theorem 2.5.
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2.3 Connections with restricted permutations

For a fixed n, let r denote the non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n. Let

Sr = {σ ∈ Sn : σ(k) ≤ rk, 1 ≤ k ≤ n}.

Note that Sr 6= ∅ precisely when rk ≥ k, for all k, so we will consider only the sequences that
satisfy this condition without explicitly mentioning it. Let D(r) be the unique Dyck path whose
k-th fall is preceded by exactly rk rises. Consider the following bijection fr : Sr →Mn(D(r)). If
σ ∈ Sr, then fr(σ) is the matching in Mn(D(r)) with edges oσ(k) · ck, where o1 < · · · < on are the
openers and c1 < · · · < cn are the closers. It is not difficult to see that fr is well defined and that
it is a bijection.

Two arcs oσ(j) · cj and oσ(k) · ck in fr(σ) with j < k form a nesting if and only if σ(j) > σ(k).
So, ne(fr(σ)) = inv(σ). Moreover, σ(j) ∈ Rlminl(σ) if and only if σ(j) does not form an inversion
with a σ(k) for any k > j, which means if and only if oσ(j) · cj is not nested within anything in
fr(σ), i.e., σ(j) ∈ Long(fr(σ)). From Theorem 2.2 we get the following corollary.

Corollary 2.9. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with
rk ≥ k, for all k. Then

∑
σ∈Sr

qinv(σ)
∏

i∈Rlminl(σ)

ti =
n∏
k=1

(tk + q + q2 + · · ·+ qhk−1)

where (h1, . . . , hn) is the height sequence of D(r). In particular,

∑
σ∈Sr

qinv(σ)trlminl(σ) =

n∏
k=1

(t+ q + q2 + · · ·+ qrk−k).

Proof. The first result follows directly from the discussion above and Theorem 2.2. For the second
equality, note that the height sequence (h1, . . . , hn) of the Dyck path D(r) is a permutation of
the sequence of the heights of the falls in D(r), where the height of a fall is the y-coordinate of
the higher end of the corresponding (1,−1) step. The height of the k-th fall is easily seen to be
rk − k + 1.

In particular, when r1 = r2 = · · · = rn = n, we have Sr = Sn. The height sequence of D(r) is
(1, 2, . . . , n) and we recover the result of Björner and Wachs about the distribution of (inv,Rlmin)
given in (1.2).

If M0 ∈M(D(r)) the sorting index sor( · ,M0) induces a permutation statistic on Sr. Namely,
if σ, σ0 ∈ Sr, define

sorr(σ, σ0) = sor(f−1
r (σ), f−1

r (σ0)).

Equivalently, the statistic sorr(σ, σ0) on Sr can be defined directly via a sorting algorithm similar
to Straight Selection Sort. Namely, permute the elements in σ ∈ Sr by applying transpositions
which place the largest element n in position σ−1

0 (n), then the element n − 1 in position σ−1
0 (n −

1), etc. Let σn = σ, σn−1, . . . , σ1 = σ0, be the sequence of permutations obtained in this way.
Specifically, σ−1

k (i) = σ−1
0 (i) for i > k, and σk−1 is obtained by swapping k and σk(σ

−1
0 (k)) in σk.

Let l = σ−1
k (k) and m = σ−1

0 (k). Define

10



ak =


|{i : l ≤ i ≤ m,σ0(i) < k}|, l < m

0, l = m

|{i : ri ≥ k, i /∈ (m, l), σ0(i) < k}|, l > m.

(2.4)

Then

sorr(σ, σ0) =
n∑
k=1

ak.

Note that, sorr(σ, σ0) in general depends on r. However, the case when σ0 is the identity
permutation is an exception.

Lemma 2.10. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with
rk ≥ k, for all k. Let σ ∈ Sr. Then

sorr(σ, id) = sor(σ).

Proof. First note that the case l > m in (2.4) cannot occur. Namely, in the case when σ0 = id,
we have m = k and if l > k, σ−1

k (l) = σ−1
0 (l) = l. This contradicts l = σ−1

k (k). Therefore, the
definition of ak simplifies to

ak = |{i : l ≤ i < k}|.

This is precisely the “distance” that k travels when being placed in its correct position with the
Straight Selection Sort algorithm.

Corollary 2.11. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with
rk ≥ k, for all k. Let σ0 ∈ Sr. Then

∑
σ∈Sr

qsorr(σ,σ0)
∏

i∈Cyc(σσ−1
0 )

ti =
n∏
i=1

(ti + q + · · ·+ qhi−1), (2.5)

where (h1, . . . , hn) is the height sequence of D(r) and Cyc(σ) is the set of the minimal elements in
the cycles of σ. In particular,

∑
σ∈Sr

qsor(σ)
∏

i∈Cyc(σ)

ti =

n∏
i=1

(tk + q + · · ·+ qhk−1) (2.6)

and ∑
σ∈Sr

qsor(σ)tcyc(σ) =
∑
σ∈Sr

qinv(σ)trlminl(σ) (2.7)

Proof. Let fr(σ0) = M0 and fr(σ) = M . The cycle k → σ0σ
−1(k)→ · · · → (σ0σ

−1)s(k) = k of the
permutation σ0σ

−1 corresponds to the cycle ok M(ok) M0(M(ok)) · · · ok in the
graph (M,M0). So, k ∈ Cyc(σ0σ

−1) if and only if k ∈ Cyc(M,M0). Now, (2.5) follows from (2.3)
and the fact that the cycles of σσ−1

0 are equal to the cycles of σ0σ
−1 reversed. Since id ∈ Sr for

every sequence r, we get (2.6) as a corollary of Lemma 2.10.

11



Let Lrmaxp(σ) denote the set of left-to-right maximum places in the permutation σ, i.e,

Lrmaxp(σ) = {k : σ(k) > σ(j) for all j < k}.

From Corollary 2.8 we get the following result for restricted permutations.

Corollary 2.12. The triples (inv,Rlminl,Lrmaxp) and (sor,Cyc,Lrmaxp) are equidistributed on
Sr. That is, the multisets

{(inv(σ),Rlminl(σ),Lrmaxp(σ)) : σ ∈ Sr}

and
{(sor(σ),Cyc(σ),Lrmaxp(σ)) : σ ∈ Sr}

are equal.

The equidistribution of the pairs (Rlminl,Lrmaxp) and (Cyc,Lrmaxp) on Sr for the special
case when the corresponding Dyck path D(r) is of the form uk1dk1uk2dk2 · · ·uksdks was shown by
Foata and Han [4] .

Corollary 2.13. Let σ0 ∈ Sr. Then

∑
σ∈Sr

tcyc(σσ−1
0 ) =

n∏
k=1

(t+ rk − k). (2.8)

In particular, the left-hand side of (2.8) does not depend on σ0.

We remark that the sets {σσ−1
0 : σ ∈ Sr} and Sr are in general not equal. For example, let

σ0 = 143265 ∈ S[4,4,4,6,6,6]. Then σ = 231546 ∈ S[4,4,4,6,6,6] but σσ−1
0 = 251364 /∈ S[4,4,4,6,6,6].

The polynomial
∏n
k=1(t+ rk− k) is well-known in rook theory. It is equal [5] to the polynomial

n∑
k=0

rn−k(t− 1)(t− 2) · · · (t− k)

where rk is the number of placements of k non-atacking rooks on a Ferrers board with rows of
length r1, r2, . . . , rn.

3 Bicolored matchings

In this section we consider statistics on the setM(2)
n of bicolored matchings on [2n], whose n edges

are colored with one of two colors: red or blue.

3.1 Bicolored crossings and nestings

Bicolored matchings have four types of crossings, depending on the color of the right and the left
edge that form the crossing, as well as four types of nestings and four types of alignments. Let
cr∗r(M) be the number of crossings in M in which the right edge is red, regardless of the color of
the left edge, and analogously define the numbers cr∗b(M), ne∗r(M), ne∗b(M), al∗r(M), al∗b(M).

12



Additionally, let b(M) denote the total number of blue edges in M , and let longr(M) denote the
number of long red edges – red edges in M that are not nested within any other edge, while

Longr(M) = {k : ok ·M(ok) is a large red edge}.

The generating function of these refined statistics for bicolored matchings of type D

PD(q, p, t) =
∑

M∈M(2)
n (D)

q
ne∗r(M)
1 q

ne∗b(M)
2 q

cr∗r(M)
3 q

cr∗b(M)
4 q

al∗r(M)
5 q

al∗b(M)
6 pb(M)

∏
i∈Longr(M)

ti

is given by the following theorem. In the proof we will use the setWD(2)
n of all (partially) bicolored

weighted Dyck paths whose rises are colored red or blue. The elements in WD(2)
n can be written

as triples (D, (w1, . . . , wn), (ε1, . . . , εn)) where D is a Dyck path of semilength n, wi ∈ Z with
1 ≤ wi ≤ hi, where (h1, . . . , hn) is the height sequence of D, and εi ∈ {0, 1}, for 1 ≤ i ≤ n. Here
we are using εi = 0 to represent a red rise and εi = 1 to represent a blue rise.

Theorem 3.1. Let D be a Dyck path with height sequence (h1, . . . , hn). Then

PD(q, p, t) =

n∏
i=1

hi∑
k=1

(qk−1
1 qhi−k3 qi−hi5 t

δk,1
i + qhi−k2 qk−1

4 qi−hi6 p),

where δi,j is the Kronecker delta function.

Proof. To find PD(q1, q2, q3, q4, q5, q6, p, t) we will describe an appropriate bijection ϕ2 from WD2
n

to M(2)
n . Let (D, (w1, . . . , wn), (ε1, . . . , εn)) ∈ WD(2)

n . The corresponding matching M has type D
and is constructed in the following way. The openers o1 < · · · < on of M are connected to closers
from right to left starting with on. If εk = 0, connect the opener ok to the wi-th available closer
from right to left and color the edge red. If εk = 1, connect the opener to the (hi − wi + 1)-st
available closer to the right of ok counted from right to left and color the edge blue. Then if εk = 0
the corresponding red edge ok ·M(ok) will be a right edge in wi− 1 nestings, hi−wi crossings, and
i − hi alignments. It will be a long edge if and only if wi = 1. Similarly, if εk = 1, then the blue
edge ok ·M(ok) will be a right edge in hi −wi nestings, wi − 1 crossings, and i− hi alignments. It
will not be a long edge but it will contribute to b(M). The theorem follows by summing over all
possible colorings and weightings of the path D.

This theorem gives the generating function for statistics that can be defined in terms of nestings,
crossing, and alignments with right edges of specified color. In particular, define

mix(M) = ne(M) + 2cr∗b(M) + 2al∗b(M) + b(M).

Corollary 3.2. Let D be a Dyck path with height sequence (h1, . . . , hn).

∑
M∈M(2)

n (D)

qmix(M)
∏

i∈Longr(M)

ti =

n∏
k=1

(
tk + q[hk − 1]q + q2k−hk [hk]q

)
.

Proof. It follows from Theorem 3.1 by setting q1 = q2 = q, q4 = q6 = q2, q3 = q5 = 1, and p = q.

13



3.2 Sorting index and cycles for bicolored matchings

For a vertex v in a bicolored matching M , denote

col(v,M) =

{
0, if the edge in M incident with v is red

1, if the edge in M incident with v is blue.

Let M0 be a matching with only red edges of type D. For M ∈M(2)
n (D) we define sor(M,M0)

similarly as for monochromatic matchings. Namely, let o1 < o2 < · · · < on be the openers in M
(and consequently in M0 as well). Define the sequence of bicolored matchings

M = Mn,Mn−1, . . . ,M2,M1

as follows. Supose Mn, . . . ,Mk are defined for some k ≤ n. Then, if Mk(ok) = M0(ok) the matching
Mk−1 has the same edges as Mk with colors

col(oi,Mk−1) =

{
col(oi,Mk), if i 6= k

0, if i = k.

Otherwise, Mk−1 is the bicolored matching obtained by replacing the two edges ok ·Mk(ok) and
Mk(M0(ok)) ·M0(ok) in the matching Mk by the edges ok ·M0(ok) and Mk(M0(ok)) ·Mk(ok) and
setting their colors to be

col(oi,Mk−1) =

{
col(oi,Mk), if oi 6= ok and oi 6= Mk(M0(ok))

col(oi,Mk) + col(ok,Mk)(mod 2), otherwise.

In other words, the sequence of matchings M = Mn,Mn−1, . . . ,M2,M1 is the one we get when
we gradually sort the matching M from right to left by connecting the openers to the closers as
prescribed by M0 and recoloring edges depending on the color of the edge which is currently being
“processed”. Note that col(ok,Mi) = 0 for i < k and so the final matching that we get after n steps
is indeed the desired M0.

The sorting index sor(M,M0) is now defined in the following way.
If col(ok,Mk) = 0 define

sork(M,M0) =

{
|{c : c > ok, c ∈ [Mk(ok),M0(ok)] and M0(c) < ok}|, if Mk(ok) ≤M0(ok)

|{c : c > ok, c /∈ (M0(ok),Mk(ok)) and M0(c) < ok}|, if M0(ok) < Mk(ok)

while if col(ok,Mk) = 1 define

sork(M,M0) =


2k − 1− |{c : c > ok, c ∈ [Mk(ok),M0(ok)],M0(c) < ok}|,

if Mk(ok) ≤M0(ok)

2k − 1− |{c : c > ok, c /∈ (M0(ok),Mk(ok)),M0(c) < ok}|,
if M0(ok) < Mk(ok).

Then sor(M,M0) is defined as

sor(M,M0) =

n∑
k=1

sork(M,M0).
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In particular, if M has only red edges, sor(M,M0) is equal to sor(M,M0) defined for monochromatic
matchings in Section 2.

Similarly to the monochromatic case, we define cyc(M,M0) to be the number of cycles in the
graph (M,M0). However, in this case we can distinguish between two types of cycles: cyc0(M,M0)
will denote the number of cycles with even number of blue edges, while cyc1(M,M0) will denote the
number of cycles with odd number of blue edges. We will denote by Cyc0(M,M0) and Cyc1(M,M0)
the indices of the minimal openers in the respective sets.

Theorem 3.3. Let M0 ∈M(2)
n (D) be a matching with all red edges of type D and let (h1, . . . , hn)

be the height sequence of D. There is a bijection which depends on M0

φ2 : {((w1, . . . , wn), (ε1, . . . , εn)) : wi ∈ Z, 1 ≤ wi ≤ hi, εi ∈ {0, 1}} →M (2)
n (D)

such that the matching M = φ2((w1, . . . , wn), (ε1, . . . , εn)) has the following properties:

sor(M,M0) =
n∑
k=1

(wk + εk(2k − hk)− 1), (3.1)

and
cyc(M,M0) = |{k : wk = 1 + εk(hk − 1)}|. (3.2)

Moreover, Cyc0(M,M0) = {k : (wk, εk) = (1, 0)} and Cyc1(M,M0) = {k : (wk, εk) = (hk, 1)}.

Proof. We construct φ2 in the following way. Draw the matching M0 with red arcs in the lower half-
plane. Let o1 < · · · < on be the vertices that are to be openers in M = ϕ((w1, . . . , wn), (ε1, . . . , εn))
as determined by the type D. We draw arcs in the upper half plane by connecting the openers
from right to left to closers as follows.

Suppose that the openers on, on−1, . . . , ok+1 are already connected to a closer and denote the
partial matching in the upper half-plane by Nk. In particular, Nn is the empty matching. To
connect ok, we consider all the closers c with the property c > ok and M0(c) ≤ ok. Note that there
are exactly hk such closers, call them candidates for ok.

If εk = 0, let ck0 be the closer which is wk-th on the list when all those hk candidates are listed
starting from M0(ok) and then going cyclically to the left. Otherwise, let ck0 be the closer which is
(hk−wk + 1)-st on that list. If ck0 is not connected to an opener by an arc in the upper half-plane,
draw the arc ok · ck0 with color col(ok, Nk−1) = εk. Otherwise, there is a maximal path in the graph
of the type

ck0 , Nk(ck0),M0(Nk(ck0)), Nk(M0(Nk(ck0))), . . . , c∗ (3.3)

which starts with ck0 , follows arcs in Nk and M0 alternately and ends with a closer c∗ which has
not been connected to an opener yet. Note that, due to the order in which the arcs in the upper
half-plane are drawn, all vertices in the aforementioned path are to the right of ok. In particular,
c∗ is to the right of ok and is not one of the candidates for ok. Draw an arc in the upper half-plane
connecting ok to c∗ and set its color to be

col(ok, Nk−1) = εk + the sum of the colors of the edges in that path (mod 2). (3.4)

When all the openers are connected in this manner, the resulting matching in the upper half-plane
is M = φ2((w1, . . . , wn), (ε1, . . . εn)).
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Let Mn = M,Mn−1, . . . ,M2,M1 be the sequence of intermediary matchings constructed when
M is sorted to M0. Then Mk(ok) is exactly the closer ck0 defined above and we claim that
col(ok,Mk) = εk. To prove this claim, consider the following graph G which represents the ef-
fects of color changing of arcs. The vertices of G are {1, 2, . . . , n}. Two vertices l < k are connected
by an edge if the Mk(M0(ok))) = ol. This means that

col(ol,Mk−1) = col(ol,Mk) + col(ok,Mk).

Let Gk be the induced subgraph of G on the vertices {k, k+ 1, . . . , n}. One can prove by induction
that when connecting the opener ok in the construction of φ2, the arcs that are traced in the
path (3.3) are exactly the ones that have openers that are in the connected component of k in Gk
and col(ok,Mk) = εk.

Now that we know how the sequence of matchings Mn = M,Mn−1, . . . ,M2,M1 relates to
(w1, . . . , wn), (ε1, . . . εn), it is not difficult to find sork(M,M0). Suppose first that Mk(ok) ≤M0(ok)
and consider the closers in the set

{c : c > ok, c ∈ [Mk(ok),M0(ok)] and M0(c) ≤ ok}.

If εk = 0, the elements in this set are exactly the first wk candidates for ok in the construction of
M . If εk = 1, this set contains the first hk − wk + 1 candidates for ok. So, in this case

sork(M,M0) =

{
wk − 1, if εk = 0

2k − 1− hk + wk, if εk = 1.
(3.5)

The case M0(ok) < Mk(ok) is similar and we get again (3.5). This proves (3.1).
We note that the inverse map φ−1

2 is not difficult to construct. To recover wk and εk that
correspond to a given matching M , sort M to M0. If Mn = M,Mn−1, . . . ,M1 is the sequence of
intermediary matchings obtained in the process, set εk = col(ok,Mk) and

wk = sork(M,M0) + 1− col(ok,Mk)(2k − hk).

Similarly as in the case of monochromatic matchings, a cycle in the graph (M,M0) is closed
exactly when ck0 = M0(ok), which means when wk = 1 and εk = 0 or when wk = hk and εk = 1.
This proves the second property of φ2. Moreover, it follows from (3.4) that if the edge ok ·M(ok)
is the edge with the smallest opener in its own cycle (i.e. the edge that closes a cycle when
φ2((w1, . . . , wn), (ε1, . . . , εn)) is constructed), then

εk = the sum of the colors of the edges in that cycle(mod2).

Hence the minimal openers of the cycles with even number of blue edges correspond to the pairs
(1, 0) among (w1, ε1), (w2, ε2), . . . , (wn, εn) while the minimal openers of the cycles with odd number
of blue edges correspond to the pairs (wk, εk) = (hk, 1) in that list.

From the properties of the map φ2, we get the following generating function.

Corollary 3.4. Let (h1, . . . , hn) be the height sequence of the Dyck path D and let M0 ∈M(2)
n (D)

be a matching with all red edges. Then
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∑
M∈M(2)

n (D)

qsor(M,M0)
∏

i∈Cyc0(M,M0)

ti
∏

i∈Cyc1(M,M0)

si =
n∏
k=1

(
tk + (q + q2k−hk)[hk − 1]q + skq

2k−1
)

(3.6)

Corollary 3.5. Let (h1, . . . , hn) be the height sequence of the Dyck path D and let M0 ∈M(2)
n (D)

be a matching with all red edges. Then∑
M∈M(2)

n (D)

qsor(M,M0)
∏

i∈Cyc0(M,M0)

ti =
∑

M∈M(2)
n (D)

qmix(M)
∏

i∈Longr(M)

ti.

3.3 Connections with restricted signed permutations

Petersen [8] defined a sorting index for signed permutations. Every signed permutation σ ∈ Bn can
be uniquely written as a product

σ = (i1j1)(i2j2) · · · (ikjk)

of transpositions such that is < js for 1 ≤ s ≤ k and 0 < j1 < · · · < jk. Here the transposition (ij)
means to swap both i with j and ī with j̄ (provided i 6= j̄). The type Bn sorting index is defined
to be

sor(σ) =

k∑
s=1

(js − is − χ(is < 0)).

As before, the sorting index keeps track of the total distance the elements in σ move when σ
is sorted using a “type B” Straight Selection Sort algorithm in which, using a transposition, the
largest number is moved to its proper place, then the second largest, and so on. For example, the
steps for sorting σ = 5̄134̄2̄ are

243̄1̄5 5̄134̄2̄
(1̄5)−−→ 5̄43̄1̄2̄ 2134̄5

(4̄4)−−→ 5̄4̄3̄1̄2̄ 21345
(12)−−→ 5̄4̄3̄2̄1̄ 12345

and therefore σ = (12)(4̄4)(1̄5) and sor(σ) = (2− 1) + (4− (−4)− 1) + (5− (−1)− 1) = 13.
Let r be a nondecreasing sequence of positive integers r1 ≤ r2 ≤ · · · ≤ rn ≤ n and let

Br = {σ ∈ Bn : σ(i) ≤ ri}.

As before, only sequences r for which ri ≥ i are of interest as otherwise the set Br is empty. There
is a canonical bijection

gr : Br →M(2)
n (D(r))

that takes a permutation σ ∈ Br to the matching with edges o|σ(k)| · ck colored red if σ(k) > 0 and
colored blue if σ(k) < 0, for k ∈ {1, 2, . . . , n}.

As in the monochromatic case, for each σ0 ∈ Br with σ(k) > 0 for k > 0, this map induces a
statistic on Br, which we will denote sorr( · , σ0):

sorr(σ, σ0) = sor(g−1
r (σ), g−1

r (σ0)).
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The direct definition of sorr(σ, σ0) on Br via a sorting algorithm similar to Straight Selection
Sort is as follows. Permute the elements in σ ∈ Br by applying transpositions which place the
largest element n in position σ−1

0 (n), then the element n − 1 in position σ−1
0 (n − 1), etc. Let

σ = σn, σn−1, . . . , σ1, be the sequence of intermediary permutations obtained in this way. In
particular, σ−1

k (i) = σ−1
0 (i) for |i| > k, and σk−1 is obtained by swapping k and σk(σ

−1
0 (k)) in σk.

Let l = σ−1
k (k) and m = σ−1

0 (k) > 0. Define

bk =



0, l = m

|{i : l ≤ i ≤ m,σ0(i) < k}|, 0 < l < m

|{i : ri ≥ k, i /∈ (m, l), σ0(i) < k}|, l > m

2k − 1, l = −m
2k − 1− |{i : l ≤ i ≤ m,σ0(i) < k}|, 0 > l > −m
2k − 1− |{i : ri ≥ k, i /∈ (m, l), σ0(i) < k}|, l < −m.

(3.7)

Then

sorr(σ, σ0) =

n∑
k=1

bk.

As before, sorr(σ, σ0) in general depends not only on σ0, but on r as well. However, the case
when σ0 is the identity permutation is an exception.

Lemma 3.6. Let r be a non-decreasing sequence of integers 1 ≤ r1 ≤ r2 ≤ · · · ≤ rn ≤ n with
rk ≥ k, for all k. Let σ ∈ Br. Then

sorr(σ, id) = sor(σ).

Proof. The case |l| > m in (3.7) cannot occur. Namely, in the case when σ0 = id, we have m = k
and if |l| > k, σ−1

k (l) = σ−1
0 (l) = l. This contradicts l = σ−1

k (k). Therefore, the definition of bk
simplifies to

bk =

{
|{i : l ≤ i < k}|, 0 < l ≤ k
2k − 1− |{i : l ≤ i < k}|, 0 > l > −k.

This is precisely the “distance” that k travels when being placed in its correct position with the
sorting algorithm.

Signed permutations can be decomposed into two types of cycles. The cycles can be of the form
(a1, . . . , ak) (this cycle also takes ā1 to ā2, etc.) or of the form (a1, . . . , ak, ā1, . . . , āk), for k ≥ 1
and all a1, . . . , ak different. The former cycles are called balanced and the letter ones unbalanced.
Let

Cyc0(σ) = {|k| : k is the minimal number in absolute value in a balanced cycle of σ},

Cyc1(σ) = {|k| : k is the minimal number in absolute value in a unbalanced cycle of σ},

and let cyc0(σ) = |Cyc0(σ)| and cyc1(σ) = |Cyc1(σ)|. For example, the permutation σ = 3̄9̄5̄7̄16̄4̄8̄2
can be decomposed into σ = (13̄5)(29̄2̄9)(47̄)(66̄)(8), so Cyc0(σ) = {1, 4, 8} and Cyc1(σ) = {2, 6}.
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Corollary 3.7. Let σ0 ∈ Br with σ(k) > 0 for k > 0. Then

∑
σ∈Br

qsorr(σ,σ0)
∏

i∈Cyc0(σσ−1
0 )

ti
∏

i∈Cyc1(σσ−1
0 )

si =
n∏
k=1

(
ti + (q + q2k−hk)[hk − 1]q + siq

2k−1
)
. (3.8)

Proof. As in the monochromatic case, there is a natural correspondence between the cycles of the
permutation σσ−1

0 and the cycles in the bicolored graph (gr(σ), gr(σ0)).

Corollary 3.8. Let σ0 ∈ Br with σ(k) > 0 for k > 0. Then

∑
σ∈Br

qsorr(σ,σ0)t`
′
B(σσ−1

0 ) =
n∏
k=1

(
1 + q[hk − 1]qt+ q2k−hk [hk]qt

)
. (3.9)

In particular, ∑
σ∈Br

qsorr(σ)t`
′
B(σ) =

n∏
k=1

(
1 + q[hk − 1]qt+ q2k−hk [hk]qt

)
. (3.10)

Proof. It is not difficult to see that the reflection length of a balanced cycle (a1, . . . , ak) is k − 1,
while the reflection length of an unbalanced cycle is k. Therefore, `′B(σ) = n− cyc0(σ). The result
follows from (3.8).

The minimal number of terms in {(11̄)} ∪ {(i i + 1) : 1 ≤ i ≤ n} needed to express σ ∈ Bn is
called the length of σ. It is known to be equal to the type Bn inversion number invB given in (1.4).

Lemma 3.9. Let σ ∈ Br and M = gr(σ). Then

invB(σ) = mix(M).

Proof. Clearly, N(σ) is equal to the number of blue edges in M . Moreover, two arcs M(ci) · ci and
M(cj) · cj with i < j can be in three different relative positions.

(i) They form a nesting. If the right arc is red, we have σ(i) > σ(j) but not −σ(i) > σ(j). If the
right arc is blue, we have −σ(i) > σ(j), but not σ(i) > σ(j).

(ii) They form a crossing. If the right arc is blue, we have both σ(i) > σ(j) and −σ(i) > σ(j). If
the right arc is red, neither σ(i) > σ(j) nor σ(i) > σ(j) is true.

(iii) They form an alignment. This case is the same as (ii).

For a signed permutation σ we define the set of positive right-to-left minimum letters to be

Prlminl(σ) = {k : 0 < σ(k) < |σ(l)| for all l > k}.

It is not difficult to see that ok ·gr(σ)(ok) is a large red edge if and only if k ∈ Prlminl(σ). Therefore
we get the following corollary.
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Corollary 3.10. Let σ0 ∈ Br with σ(k) > 0 for k > 0. Then

∑
σ∈Br

qsorr(σ,σ0)
∏

i∈Cyc0(σσ−1
0 )

ti =
∑
σ∈Br

qinvB(σ)
∏

i∈Prlminl(σ)

ti =
n∏
k=1

(
ti + q[hk − 1]q + q2k−hk [hk]q

)
.

Proof. The positive right-to-left minimum letters in the signed permutation σ correspond to the
openers of the long red edges in gr(σ). So, the result follows from Corollary 3.7, Lemma 3.9, and
Corollary 3.2.

Recall that
nminB(σ) = |{i : σ(i) > |σ(j) for some j > i}|+N(σ).

It is readily seen that
nminB(σ) = n− |Prlminl(σ)|.

Corollary 3.11. Let σ0 ∈ Br with σ(k) > 0 for k > 0. Then∑
σ∈Br

qinvB(σ)tnminB(σ) =
∑
σ∈Br

qsorr(σ,σ0)t`
′
B(σσ−1

0 ). (3.11)

Since id ∈ Br for every sequence r, this generalizes the equidistribution result (1.3) for signed
permutations [8].

3.4 Type Dn permutations

The type Dn permutations can be defined as signed permutations with an even number of minus
signs. The type Dn inversion number is defined as

invD(σ) = |{1 ≤ i < j ≤ n : σ(i) > σ(j)}|+ |{1 ≤ i < j ≤ n : −σ(i) > σ(j)|.

It is well known [1] that invD(σ) is equal to the length of σ, i.e., the minimal number of transposi-
tions in {(1̄2), (12), (23), . . . , (n− 1 n)} needed to express σ and that

∑
σ∈Dn

qinvD(σ) =
n−1∏
i=1

(1 + qi)[i+ 1]q = [n]q ·
n−1∏
i=1

[2i]q.

For type Dn permutations, we define

Prlminl′(σ) = {σ(k) : 1 < σ(k) < |σ(l)| for all l > k}.

If σ = (i1j1) · · · (ikjk) is the unique factorization with 1 < j1 < · · · < jk, the type Dn sorting
index is defined to be

sorD(σ) =

k∑
s=1

(js − is − 2 · χ(is < 0)) .

Petersen [8] proved that ∑
σ∈Dn

qsorD(σ) =
∑
σ∈Dn

qinvD(σ). (3.12)
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The type Dn permutations correspond to bicolored matchings with an even number of blue
edges via the map gr. Therefore, results for type Dn permutations analogous to those given for
signed permutations can be derived by considering appropriate restrictions of the bijections ϕ2 and
φ2. Namely, the color of the first rise of a bicolored weighted Dyck path that corresponds to a
bicolored matching with an even number of blue edges via any of these two bijections is determined
by the colors of the other rises. The type Dn inversions correspond to a modified mix statistic of
bicolored matchings. Let

mix′(M) = ne(M) + 2cr∗b(M) + 2al∗b(M) and Longr′(M) = Longr(M)\{1}.

Corollary 3.12. Let D be a Dyck path with height sequence (h1, . . . , hn). Then∑
M

qmix′(M)
∏

i∈Longr′(M)

ti =

n∏
i=2

(
ti + q[hi − 1]q + q2i−hi−1[hi]q

)
, (3.13)

where the sum is over all bicolored matchings of type D with an even number of blue edges.

Proof. We use the bijection ϕ2 restricted to the bicolored weighted Dyck paths with even number
of blue edges. Similarly as in the proof of Theorem 3.1, we get that∑

M

q
ne∗r(M)
1 q

ne∗b(M)
2 q

cr∗r(M)
3 q

cr∗b(M)
4 q

al∗r(M)
5 q

al∗b(M)
6

∏
i∈Longr′(M)

ti,

where the sum is over all bicolored matchings of type D with an even number of blue edges, is
equal to

n∏
i=2

hi∑
k=1

(qk−1
1 qhi−k3 qi−hi5 t

δk,1
i + qhi−k2 qk−1

4 qi−hi6 ).

Setting q1 = q2 = q, q4 = q6 = q2, and q3 = q5 = 1 yields (3.13).

The type Dn sorting index of a permutation corresponds to the following modified sorting index
of bicolored matchings. The matching M is sorted to M0 as before and

sor′(M) =

n∑
k=2

sor′k(M,M0)

where, for 2 ≤ k ≤ n,

sor′k(M,M0) =

{
sork(M,M0), if col(ok,Mk) = 0

sork(M,M0)− 1, if col(ok,Mk) = 1.
(3.14)

Also, let Cyc′0(M,M0) = Cyc0(M,M0)\{1} and Cyc′1(M,M0) = Cyc1(M,M0)\{1}.

Lemma 3.13. Let M0 be a matching with all red edges of type D and let (h1, . . . , hn) be the height
sequence of D. Suppose M = φ2((w1, . . . , wn), (ε1, . . . , εn)) is a bicolored matching of type D with
an even number of blue edges, where φ2 depends on M0. Then

sor′(M,M0) =
n∑
k=2

(wk + εk(2k − 1− hk)− 1) .
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Proof. It follows from the property (3.5) of the bijection φ2 and (3.14).

Therefore, via the bijection φ2 we get the following multivariate generating function.

Corollary 3.14. Let D be a Dyck path with height sequence (h1, . . . , hn) and M0 a matching of
type D with only red edges.

∑
M

qsor′(M,M0)
∏

i∈Cyc′0(M,M0)

ti
∏

i∈Cyc′1(M,M0)

si =
n∏
i=2

(
ti + (q + q2i−hi−1)[hi − 1]q + q2i−2si)

)
,

where the sum is over all bicolored matchings of type D with an even number of blue edges.

The results for the bicolored matchings with even number of blue edges yield results for restricted
permutations of type Dn. Let

Dn(r) = {σ ∈ Dn : |σ(k)| ≤ rk, 1 ≤ k ≤ n}.

For σ ∈ Dn, define Cyc′0(σ) = Cyc0(σ)\{1} and Cyc′1(σ) = Cyc1(σ)\{1}.

Corollary 3.15. Let r : 1 ≤ r1 ≤ · · · rn ≤ n be a nondecreasing integer sequence such that rk ≥ k.
Let (h1, . . . , hn) be the height sequence of the corresponding Dyck path D(r).

∑
σ∈Dn(r)

qinvD(σ)
∏

i∈Prlminl′(σ)

ti =

n∏
i=2

(
ti + q[hi − 1]q + q2i−hi−1[hi]q

)
(3.15)

Moreover, suppose that σ0 ∈ Dn(r) with σ(k) > 0 for all k ≥ 1. Then

∑
σ∈Dn(r)

qsorD(σσ−1
0 )

∏
i∈Cyc′0(σσ−1

0 )

ti
∏

i∈Cyc′1(σσ−1
0 )

si =
n∏
i=2

(
ti + (q + q2i−hi−1)[hi − 1]q + q2i−2si

)
.

(3.16)

Proof. Note that invD(σ) = invB(σ)−N(σ) = mix(M)− b(M) = mix′(M), where M = gr(σ).

Corollary 3.16. Let r : 1 ≤ r1 ≤ · · · rn ≤ n be a nondecreasing integer sequence such that rk ≥ k.
Let (h1, . . . , hn) be the height sequence of the corresponding Dyck path D(r). Also let σ0 ∈ Dn(r)
with σ(k) > 0 for all k ≥ 1. Then∑

σ∈Dn(r)

qsorD(σσ−1
0 )

∏
i∈Cyc′0(σσ−1

0 )

ti =
∑

σ∈Dn(r)

qinvD(σ)
∏

i∈Prlminl′(σ)

ti. (3.17)

In particular, when r1 = · · · = rn = n we have Dn(r) = Dn, hk = k, and

∑
σ∈Dn

qinvD(σ)
∏

i∈Prlminl′(σ)

ti =
∑
σ∈Dn

qsorD(σ)
∏

i∈Cyc′0(σ)

ti =
n∏
i=2

(
ti + q[i− 1]q + qi−1[i]q

)
. (3.18)
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[9] O. Rodriguez, Note sur les inversions, ou dérangements produits dans les permutations, J. de
Math. 4 (1839), 236–240. 1

[10] M.C. Wilson, An interesting new Mahonian permutation statistic, Electron. J. Combin. 17
(2010), #R147. 2

23


	1 Introduction
	2 Statistics on perfect matchings
	2.1 Statistics based on crossings and nestings
	2.2 Cycles and sorting index for matchings
	2.3 Connections with restricted permutations

	3 Bicolored matchings
	3.1 Bicolored crossings and nestings
	3.2 Sorting index and cycles for bicolored matchings
	3.3 Connections with restricted signed permutations
	3.4 Type Dn permutations


