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A HEREDITARILY INDECOMPOSABLE BANACH SPACE
WITH RICH SPREADING MODEL STRUCTURE

SPIROS A. ARGYROS, PAVLOS MOTAKIS

ABSTRACT. We present a reflexive Banach space X which is Hered-
itarily Indecomposable and satisfies the following properties. In ev-
ery subspace Y of X,.. there exists a weakly null normalized sequence
{Yn }n, such that every subsymmetric sequence {zn }» is isomorphically
generated as a spreading model of a subsequence of {yn},. Also, in
every block subspace Y of X,... there exists a seminormalized block se-
quence {zn} and T : X,sm — Xusm an isomorphism such that for every
n € N T(z2n—1) = z2n. Thus the space is an example of an HI space
which is not tight by range in a strong sense.

INTRODUCTION

The aim of the present paper is to exhibit a space with the properties
described in the abstract. The norming set W of the space X, is sat-
urated with constraints and it is very similar to the corresponding one in
[3]. As it is pointed out in [3] the method of saturation under constraints
is suitable for defining spaces with hereditary heterogeneous structure ([I5],
[16]). The basic ingredients of the norming set W are the following. First
the unconditional frame is the ball of the dual T* of Tsirelson space [9} [19];
namely W is a subset of Br« which satisfies the following properties. As in
[3] it is closed in the operations (2%, S, ), (2—17“ Sn, 8) which create the type
I, type Ig functionals respectively. Furthermore it includes two types of
special functionals denoted as type I, and type II_ functionals. The type
II_ functionals are designed to impose the rich spreading model structure
in the space X,.m, while the type I, functionals serve a double purpose.
First they are a tool for finding ¢y spreading models in every subspace of
Xusm - The ¢y spreading models are the fundamental initial ingredient for the
ultimate construction. The second role of the type I, functionals is to show
that the space X .. is not tight by range. We recall that recently V. Ferenczi
and Th. Schlumprecht have presented in [8] a variant of Gowers-Maurey HI
space ([I1]) which is HI and not tight by range.

Since the norming set W is similar to the one in [3] many of the critical
norm evaluations in the present paper are identical with the corresponding
ones in [3]. The main difference of the present construction from the one
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in [3] concerns the “combinatorial result” which is a Ramsey type result
yielding ¢y spreading models. For the proof of this result type I1; functionals
are a key ingredient.

We pass to a more detailed description of the properties of the space X -

Theorem. The space X,.. is reflexive, HI and hereditarily unconditional
spreading model universal.

The latter means that there exists a universal constant C' > 0 such that
the following holds. For every subspace Y of X, there exists a seminormal-
ized weakly null sequence {z,}, admitting spreading models C-equivalent
to all normalized subsymmetric sequences. The fundamental property of
{xn}n deriving its spreading model universality is that for every Schreier

set ' C N the finite sequence {z,}necr < {tn}ner, where {u,}, denotes
Pelczynski’s universal unconditional basis [17) [13].

The second property of X, is that it is sequentially minimal. We recall,
from [7], that a Banach space X with a basis is sequentially minimal, if
in every infinite dimensional block subspace Y of X there exists a block
sequence {xgly)}n satisfying the following. In every subspace Z of X there

exists a Schauder basic sequence {zx } equivalent to a subsequence {x,%)}k
A dichotomy of V. Ferenczi - Ch. Rosendal classification program [7] yields
that every Banach space X with a Schauder basis {e,}, either contains a
block subspace which is tight by range or a sequentially minimal subspace.
As consequence of this dichotomy, X,.. is not tight by range. Moreover, the
following stronger fact holds.

Theorem. Every Y block subspace of X, contains a seminormalized block
sequence {x, }, satisfying the following. There exists an isomorphism 7 :
Xyem — Xuem (necessarily onto) such that T'(ze,—1) = xa, for n € N.

The above result is a direct consequence of the structure imposed to the
norming set W and hence to the space X,.., in order to achieve the rich
spreading model structure. In particular the following is proved.

Proposition. Let Y be a block subspace of X, . Then there exist {x,,, yn }n,
{fnsgn}n such that f,,g, belong to W, ranx, = ran f,, rany, = rang,,
Ty < Yn < Tnitl, {Tntn, {Yn}n are seminormalized, f,(z,) = 1,9n(yn) = 1
and {f, + gn}n generates a ¢y spreading model while {x,, — y,, }, does not
generates an f1 spreading model.

The above proposition yields that there exists a strictly singular operator
S Xuem — Xuem with S(x,) = 2, — yn and S(yn) = T — yn (see [2]). As is
explained in [7], the sequences {zy,}n, {yn}n are equivalent. It is also easy
to see that I — S is an isomorphism, satisfying the conclusion of the above
theorem.

Every operator in the space X, is of the form T' = Al + .5 with S strictly
singular. We recall that one of the main properties of the space in [3], is
that the composition of any three strictly singular operators is a compact
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one. It is show that the space X... fails such a property, by proving that
in any block subspace there exists a strictly singular operator, which is not
polynomially compact. The proof of this result is directly linked to the
variety of spreading models appearing in every block subspace of X .
The paper is organized as follows. The first section is devoted to the
definition of the norming set W of the space X..., a brief discussion is
also included concerning the role of its ingredients. The second section
concerns some basic norm evaluations on special convex combinations, which
are identical to the corresponding estimates from [3]. The third section
introduces the definition of the «, 8 indices, which are defined in the same
manner as in [3] and related results. In the fourth section, a combinatorial
result is stated and proven and it is used in the fifth section to establish
the existence of ¢y spreading models. In the sixth section the structure of
the spreading models of the space X, is studied. In the seventh and final
section it is proven that the space is sequentially minimal, it is not tight by
range it admits strictly singular non polynomially compact operators.

1. THE NORMING SET OF THE SPACE X, -

In this section we define the norming set W of the space X, As in [3],
this set is defined with the use of the sequence {S,, },, which we remind below
and also families of S,,-admissible functionals and the set W will be a subset
of the norming set Wy of Tsirelson space. The key difference between the
construction in [3] and the present one, is the way functionals of type II are
defined, which yields the properties of the space X o -

The Schreier families. The Schreier families is an increasing sequence of
families of finite subsets of the naturals, first appeared in [I], inductively
defined in the following manner.

Set Sp = {{n} :n € N} and §; = {F C N: #F < min F'}.

Suppose that S, has been defined and set S;,41 = {F C N: F = U?Zle,
where F} < -+- < F, € S, and k < min F} }

If forn,m € Nweset S, *S,, ={F C N: F = U;?ZIF]-, where F; <
- < FpeSpand {minF;: j=1,...,k} € S,}, then it is well known that
Sn * Sm = On+m-

The suppression unconditional universal basis of Pelczynski. Let
{z}r be a norm dense sequence in the unit sphere of C[0,1]. Denote by

{ug } the unit vector basis of coy and define || - ||, on ¢ as follows.
n
13 ol = sup () Y el F € {1,-...,n})
k=1 kEF
Let U be the completion of (cgo, || - ||lo). Then {uy}x is a suppression

unconditional Schauder basis for U, such that for any {yx}, suppression
unconditional Schauder basic sequence and € > 0, there exists a subsequence
of {ug }r, which is (1 + €)-equivalent to {yx }.
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The sequence {uy}x is called the unconditional basis of Pelczynski (see
[17).

Notation. A sequence of vectors x1 < --- < xj in cgp is said to be S,-
admissible if {minsuppx; :i=1,...,k} € S,.

Let G C cgp. A vector f € G is said to be an average of size s(f) = n, if
there exist f1,..., fq € G,d < n, such that f = %(fl + -4 fa)

A sequence {f;}; of averages in G is said to be very fast growing, if
fi < fo<...s(f;)>2maxsuwppfi-t and s(f;) > s(fj—1) for j > 1.

The coding function. Choose Ly = {{) : k € N},¢; > 9 an infinite subset
of the naturals such that:

(i) For any k € N we have that {3, > 2%* and
(i) 2221 57 < Tomo-
Decompose Lg into further infinite subsets L1, Lo, L3. Set
Q = {(fi,--,fm) :meN,fi <...< fm €coo
with fx(i) € Q, fori e Nk =1,...,m}

Choose a one to one function o : @ — Lo, called the coding function, such
that for any (fl, e ,fm) € Q, we have that

1
a(fl, e ,fm) > 2/mllo - max supp fm

Remark 1.1. If we set L = L1 U Lo, For any n € N we have that #L N
{n,...,22"} < 1, moreover for every n € L3, we have that LN{n,...,22"} =
.

The norming set. The norming set W is defined to be the smallest subset
of ¢qp satisfying the following properties:

1. The set {Tey, }nen is a subset of W, for any f € W we have that —f € W,
for any f € W and any FE interval of the naturals we have that Ef € W
and W is closed under rational convex combinations. Any f = *e, will be
called a functional of type 0.

2. The set W is closed in the (2%,8”,04) operation, i.e. it contains any
functional f which is of the form f = 5 Zzzl o, where {aq}gzl is an Sp-
admissible and very fast growing sequence of a-averages in W. If E is an
interval of the naturals, then ¢ = *Ef is called a functional of type I, of
weight w(g) = n.

3. The set W is closed in the (%, Sn, B) operation, i.e. it contains any func-

tional f which is of the form f = % ;lzl By {ﬁq}gzl is an S,-admissible
and very fast growing sequence of S-averages in W. If F is an interval of the

naturals, then g = TEf is called a functional of type I3, of weight w(g) = n.

4. For any special sequence {fq,gq}glzl in Wand F C {1,...,d} such that
2(#F) < minsupp fmin F, the set W contains any functional f which is of

the form f =33 cp(fq + 9q)-
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If F is an interval of the naturals, then ¢ = TEf is called a functional of
type 11 with weights w(g) = {w(fy) : ¢ € F,ran(f, + g4) N E # &}.
5. For any special sequence {fq,gq}fllzl in Wand F C {1,...,d} such that
2(#F) < minsupp fminF and {Ag}ger C Q with || X cp Aquglly < 1, where
{u} }r denotes the biorthogonals of the unconditional basis of Pelczyniski, the
set W contains any functional f which is of the form f = % > GeF X (fg—9q)-

If F is an interval of the naturals, then ¢ = TEf is called a functional of
type II_ with weights w(g) = {w(fy) : ¢ € F,ran(f, — g4) N E # &}.

We call a functional f € W which is either of type 11, or of type II_, a

functional of type II.

For d € N, a sequence of pairs of functionals of type I {fq, gq}d is

=D
called a special sequence if
(1) hi<g<fo<ga< - <fi<g
(2) w(fq) :w(gq) fOI' q= 17"'7d

(3)
w(fi) € i and o(fi,91,f2,92-- -, fa=1.99—1) = w(fy) for 1 < ¢ < d

We call an a-average any average o € W of the form oo = % Z;l:l fid <
n, where f1 < --- < fge W.

We call a -average any average 8 € W of the form 8 = %2?21 fj,d <
n, where f1,..., fq € W are functionals of type II, with pairwise disjoint
weights w(f;).

In general, we call a convex combination any f € W that is not of type
0, I, Ig or IL

A sequence of pairs of functionals of type I, b = {fy, gq}gil is called a
special branch, if {f, gq}gzl is a special sequence for all d € N. We denote
the set of all special branches by B.

If b= {fy,94}521 € B, we denote by by = {f; +9,:q € N} and b_ =
{fq_quQEN}'

For x € ¢y define ||z]| = sup{f(z) : f € W} and Xy = (coo(N), || - [|)-
Evidently X, has a bimonotone basis.

The features of the space X,.... Before proceeding to the study of the
space X,um, it is probably useful to explain the role of the specific ingredi-
ents in the definition of the norming set W. First, as we have mentioned
in the introduction, we will use saturation under constraints in a similar
manner as in [3]. This yields the type I,, Iz functionals and the indices
a({zk}r), B({zk}k) for block sequences {@k} in Xy, which are defined as
in [3]. As the familiar reader would observe, the special functionals in the
present construction differ from the corresponding ones in [3]. This is due to
the desirable main property of the space X,.., namely that every subspace
contains a sequence admitting all unconditional spreading sequences as a
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spreading model. This is related to property 5 in the above definition of the
norming set W.

What requires further discussion are the type I, functionals. The prim-
itive role of them is to allow to locate in every block subspace a seminor-
malized block sequence generating a ¢y spreading model. This follows from
the next proposition.

Proposition. Let {z}}; be a seminormalized block sequence in X, such
that the following hold.

(i) a({zr}r) =0 and B({zx}x) =0
(ii) For every special branch b = {fy, g,}524

lim sup {|fq(z£)| V gq(x)| : ¢ € N} =0

Then there exists a subsequence {zy,, }n of {zy}r generating a ¢y spreading
model.

Note that in [3], property (i) is sufficient for a sequence to have a sub-
sequence generating a cg spreading model. However, in the present paper
this is not the case and the special functionals of type 11, are crucial for
establishing property (ii) in the above proposition.

As consequence, we obtain that in every block subspace there exists a
block sequence generating a ¢y spreading model. As in [3], from the ¢y
spreading model one can pass to exact nodes (see Def. 64) {xk, vk, fk, 9k},
with {fx, gk}, defining a special branch. The desired sequence is the se-
quence {zy — yx}r. A secondary role of the type I, special functionals is
to determine intertwined equivalent sequences {vy, wy }r. Those are subse-
quences of the above described sequence {zy, yx } -

As in [3], the norming set of the space X,.. is a subset of the unit ball of
the dual T* of Tsirelson space (see [9]). Moreover, most of the critical norm
evaluations are identical with those in [3].

2. BASIC EVALUATIONS FOR SPECIAL CONVEX COMBINATIONS

In this section we present some results concerning estimations of the norm
of special convex combinations. These estimations are crucial throughout
the rest of the paper, as like in [3], special convex combinations are one of
the main tools used to establish the properties of the space X .. .

Definition 2.1. Let z = ZkeF crer be a vector in cgg. Then x is said to
be a (n,e) basic special convex combination (or a (n,¢) basic s.c.c.) if:

(i) FeSn,cp 20, forke Fand ), pep = 1.

(ii) For any G C F,G € S,_1, we have that ), ¢ < e.

The proof of the next proposition can be found in [4], Chapter 2, Propo-
sition 2.3.
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Proposition 2.2. For any M infinite subset of the naturals, any n € N and
€ > 0, there exists ' C M, {ck}rer, such that © = >, . crey is a (n,¢)
basic s.c.c.

Definition 2.3. Let 1 < -+ < x,,, be vectors in cyp and 1»(k) = min supp =y,
for k =1,...,m. Then x = > ;° | cxxy is said to be a (n,e) special convex
combination (or (n,¢) s.c.c.), if Y7} crey k) is a (n,€) basic s.c.c.

The proof of the following result can be found in [3], Proposition 2.5.

Proposition 2.4. Let x = ), - crer be a (n,e) basic s.c.c. and G C F.
Then the following holds.

I3 cvenllr < g Soex+e

keG keG

The next proposition is identical to Corollary 2.8 from [3].

Proposition 2.5. Let {x}}; be a block sequence in X, such that ||zx|| <
1,{cx}x C R and ¢(k) = maxsuppzy, for all k. Then:

(4) 1~ erzell <61 cresllr
k k

The following corollary is an easy consequence of Propsitions 2.4] and
and its proof can be found in [3], Corollary 2.9.

Corollary 2.6. Let x = > " | cxzg be a (n,e) s.c.c. in Xy, such that
ekl <1, for k=1,...,m. If F C {1,...,m}, then

6
1> el < o > e+ 12,

keF keF

In particular, we have that ||z < & + 12e.

The proof of the next corollary is based on Corollary It’s proof is
identical to the one of Corollary 2.10 from [3].

Corollary 2.7. The basis of X, is shrinking.

The definition of the norming set yields the following result, the proof of
which can be found in [3], Corollary 2.11.

Proposition 2.8. The basis of X, is boundedly complete.

Combining the previous two results with R. C. James’ well known result
[12], we conclude the following.

Corollary 2.9. The space X, is reflexive.

Rapidly increasing sequences are defined in the exact same manner, as in
[3], Definition 3.10.
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Definition 2.10. Let C' > 1,{ng}; be strictly increasing naturals. A
block sequence {xy} is called a (C,{ny}r) a-rapidly increasing sequence
(or (C,{nk}x) a-RIS) if the following hold.

(i) =kl < C, 2nk%Jrnaxsuppzztk < gz for all k.

(ii) For any functional f in W of type I, of weight w(f) = n, for any k

such that n < ng, we have that |f(z))| < <.

Definition 2.11. Let n € N,C > 1,0 > 0. A vector z € X, is called
a (C,0,n) vector if the following hold. There exist 0 < ¢ < and

{xr ), with ||zgx]| < C for k =1,...,m such that
22n

1
32023

(i) minsuppz; > 8C
(ii) There exist {cx}p2, C [0,1] such that > ;" | cxzy is a (n,e) s.c.c.
(iii) @ =2"Y " ey and ||z >0
If moreover there exist {n;}", strictly increasing naturals with n; > 22"
such that {x}}", is (C,{ng}}7,) a-RIS, then x is called a (C,0,n) exact
vector.

Remark 2.12. Let x be a (C,0,n) vector in X,.,. Then, using Corollary
2.6l we conclude that ||z| < 7C.

3. THE «, 3 INDICES

The « and f indices concerning block sequences in X, are identically
defined, as in [3], Definitions 3.1 and 3.2. Note that in [3], the «, 8 indices are
sufficient to fully describe the spreading models admitted by block sequences.
In the present paper, this is not the case. However, the «, 8 indices retain
an important role in determining what spreading models a block sequence
generates.

Definition 3.1. Let {zj}r be a block sequence in X, that satisfies the
following. For any n € N, for any very fast growing sequence {cy}, of
a-averages in W and for any {F}}, increasing sequence of subsets of the
naturals, such that {a,}qecr, is Sp-admissible, the following holds. For any
{2n, }x subsequence of {zy}g, we have that limg Y p [cg(zn,)| = 0.

Then we say that the a-index of {@y}y is zero and write o({a}x) = 0.
Otherwise we write a({zx};) > 0.

Definition 3.2. Let {z;}; be a block sequence in X,., that satisfies the
following. For any n € N, for any very fast growing sequence {3,}, of
B-averages in W and for any {F}}; increasing sequence of subsets of the
naturals, such that {8, }4er, is Sp-admissible, the following holds. For any
{n, i subsequence of {xj}x, we have that limg »_ . [Bq(2n, )| = 0.

Then we say that the S-index of {z} is zero and write 8({zy}x) = 0.
Otherwise we write 3({zx}r) > 0.

Remark 3.3. Let {x;}r be a block sequence in X,.,, and {Ex}; be an
increasing sequence of intervals of the natural numbers with £} C ran x;, for
all k € N. Set y, = Epzy.
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(i) If o({xr}i) =0, then a({yx}x) = 0.
(i) If B({zx}x) = 0, then S({yr}r) = 0.

Remark 3.4. Let {zx}x, {yxr}x be block sequence such that if zx = xx + yx,
{2k} is also a block sequence.

(i) If a({zx}x) =0 and a({yr}x) = 0, then o({zx}x) = 0.
(ii) I B({zx}x) = 0 and B({yx}r) = 0, then B({zx}x) = 0.

Remark 3.5. Let {zx}r be a block sequence in X,., and {Fp}r be an
increasing sequence of subsets of the natural numbers and {¢; }icp, C [0,1]
with ZiEFk c¢; =1 for all k € N. Set y;, = ZiEFk CiTi.

(i) If a({xr i) =0, then a({yx}x) = 0.
(i) If B({zx}x) = 0, then S({yr}r) = 0.

The following two Propositions are proven in [3], Proposition 3.3.

Proposition 3.6. Let {z}}x be a block sequence in X,,. Then the follow-
ing assertions are equivalent.
(i) a({zk}tk) =0
(ii) For any £ > 0 there exists jo € N such that for any j > jj there exists
k; € N such that for any k > k;, and for any {aq}gzl Sj-admissible
and very fast growing sequence of a-averages such that s(oy) > Jo,
d
for ¢ =1,...,d, we have that >/, |ag(zx)| <e.

Proposition 3.7. Let {z}}x be a block sequence in X,,. Then the follow-
ing assertions are equivalent.
(i) B({xr}r) =0
(ii) For any £ > 0 there exists jo € N such that for any j > jj there exists
k; € N such that for any k > k;, and for any {ﬁq}gzl Sj-admissible
and very fast growing sequence of [-averages such that s(8,) > jo,

for ¢ =1,...,d, we have that Zzzl |Bq(xr)| < e.

The next Proposition is similar to Proposition 3.5 from [3].

Proposition 3.8. Let {x}; be a seminormalized block sequence in Xy,
such that either a({zx}r) > 0, or B({zx}k) > 0. Then there exists a
subsequence {z,, }r of {z}ren, that generates an ¢} spreading model, for
every n € N.

In particular, there exists 8 > 0 such that for any kg,n € N, there exists
x a (C,0,n) vector supported by {xj}r with minsuppz > ko.

If moreover {xy}y is (C, {ny}) a-RIS, then for every n, ko € N there exists
x a (C,0,n) exact vector supported by {zj}x with minsuppz > k.

The proof of the following lemma, is identical to Lemma 3.6 from [3].
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Lemma 3.9. Let x = 2" " | ¢y, be a (C,0,n) vector in X, . Let also «
be an a-average and set G, = {k : rana Nranxy # @}. Then the following
holds.

()
o2 6C n
la(x)] <m1n{s(a) Z Chs @) k;ack—i-g 22n}+2C2 max{cg : k € G}

The next lemma is proven in [3], Lemma 3.7.

Lemma 3.10. Let = be a (C,0,n) vector in X,.,. Let also {aq}gzl be
a very fast growing and Sj-admissible sequence of a-averages with j < n.
Then the following holds.

d
6C’ 1
(6) Z |ag(@ + on

The following corollary is an immediate consequence of Lemma [3.10] and
it is similar with Proposition 3.9 from [3].

Corollary 3.11. Let = be a (C,6,n) vector in X,.,. Let also f be a func-
tional of type I, in W with w(f) = j < n. Then the following holds

@ £y < 2

Combining Lemma [3.10 with Corollary 31Tl we conclude the following.

Corollary 3.12. Let {xy}r be a block sequence in X,.,, such that xj is
a (C,0,ny) vector and {ny}y is strictly increasing. Then a({xk}k) = 0.
Moreover, passing if necessary to a subsequence, {xy}x is (7C,{ny}r) a-
RIS.

Notation. Let x = 2" > | cyxy be a (C,0,n) exact vector in X, , where
{ar}i, is (C, {nk}kmzl) a-RIS. Let also f = %zqu(fq + gq) be a type
II; functional (or f = 3 quF q(fq — gq) be a type II_ functional). Set
iqg = w(fy) for ¢ € F and

Ey = {q:n<i, <2}

Eiy = {q:ig<n}

Ey = {q:2"" <i,<n}

Jp = {g:nk <ig<ngy}, fork<mand Jp ={q:n, <ig}

Note that from Remark [[.1] either Eg = @ or #Ey = 1. Under the above
notation the following lemma holds, which is similar to Lemma 3.13 from
[3] and their proofs are almost identical.
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Lemma 3.13. Let = 2"} | cyz be a (C,0,n) exact vector in X .,
where {x}}7", is (C,{ng};~,) o-RIS.

Then if f = %quF(fq + g¢) is a functional of type IL,, there exists
Fy C {k:ran f Nranzy, # @} with {minsuppxy, : k € Fy} € Sy such that

flx) < %Z(fq"‘gq)(x)"_ Z ;%4_222%]3%

qeEp qEFEL k=2 q€Jy
m—1
con con .
(8) T Gt e ) e
k=1 geJi qE€E, keFy

Similarly, if f = %qu 7 A\(fq — 9q) is a functional of type II_, there
exists Fy C {k :ran f Nranxzy, # @} with {minsuppxy, : k € Fy} € Sz such
that

C ™
CIEEED SPRIARPAILEE) SR g gl

q€Ep qEE] k=2 qeJy
m—1
con co
(9) D IDIE =D PR e A Pt
k=1 q&Jy qeE> keF;

The next corollary is similar to Corollary 3.14 from [3].

Corollary 3.14. Let z be a (C, 8, n) exact vector in X, and f = % quF(fq+
gq) be a type I1; functional (or f = % > ger M(fq — gq) be a type II_ func-

tional), such that {n,...,2?"} N@(f) = @. Set i, = w(f,) for ¢ € F and
E; ={q :i; < n}. Then the following holds.

7C  2C
(10) |f(2)] < 5 T om

qEE
The lemma which follows is similar to Lemma 3.15 from [3].

Lemma 3.15. Let x = 2" Y /" | ¢y, be a (C, 0, n) exact vector in X, and
B be a [-average in W. Then there exists Fg C {k : ran 8 Nranzy, # &}
with {minsuppxy : k € Fy} € Sy such that

(11) 1B()] < % Lo Y ¢

kJEFg

The next lemma is similar to Lemma 3.16 from [3].
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Lemma 3.16. Let x be a (C,0,n) exact vector in X, and {5}221 be a
very fast growing and S;-admissible sequence of B-averages with j <n — 3.
Then the following holds

d

d
(12) S 18l < X 205 + 3
q=1 q=1 q

If moreover s(1) > minsupp z, then Zgzl 1Bq(z)| < &

The next result uses the previous lemma and it is similar to Proposition
3.17 from [3].

Corollary 3.17. Let {zy}; be a block sequence in X, such that xj is a
(C,0,n;) exact vector and {ny}y, is strictly increasing. Then 3({zx}x) = 0.

4. A COMBINATORIAL RESULT

In this section we introduce a new condition concerning the behaviour of
branches of special functionals on a block sequence {zy}; (see the definition
below). When this condition is satisfied, we shall write B ® {zx}r = 0. We
prove that one can find in every block subspace a normalized block sequence
{a}i satisfying B® {ax}r = 0, as well as o({x}x) = 0 and S({zx}r) = 0.
We then proceed to prove a Ramsey type result concerning block sequences
with B&{zx}r = 0 and ({zx}r) = 0. The above are used in the next section
to show that a block sequence {z};, with B® {zx}, = 0, o({zx}x) = 0 and
ﬁ({xk}k) = 0, has a subsequence generating a cy spreading model.

Definition 4.1. Let {x};, be a block sequence in X, and b = {f,, gq}gil €
B (see the definition of the norming set) satisfying the following. For every
e > 0 there exist kg, go € N, such that for every k > kg, q > qo we have that
|(fg£gq)(xr)| < e. Then we write b ®@ {zx}r = 0. If b ® {x}x = 0 for every
b € B, then we write B ® {xj}r = 0.

Remark 4.2. If b ® {zx}, # 0, using a pigeon hole argument, it is easy to
see that there exists M an infinite subset of the natural numbers and € > 0
such that one of the following holds.
(i) For every k € M, there exists ¢ € N such that |(f; + g4)(zr)| > .
In this case we say that by e-norms {xy }.
(ii) For every k € M, there exists ¢ € N such that |(f; — gq)(zk)| > €.
In this case we say that b_ e-norms {xy }.

In either case we say that b e-norms {zy }x.
Proposition 4.3. Let {x}}; be a bounded block sequence and b € B such

that by e-norms {zy}r. Then there exists a subsequence of {x}; that gen-
erates an ¢ spreading model.

Proof. It b = { fq,gq}gil passing, if necessary, to a subsequence, we may
assume the following.
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(i) For every k € N there exists ¢, € N such that (fy, + gq,)(2k) > €
and minsupp f,, > 2k.
(ii) For k # m € N, ran(fy, + gq,) Nranz,, = &

Then for n < k; < --- < kj,, natural numbers and {¢;}]*; non negative
real& we have that f - %Z?:l(qui + qui) € W and f(Z?:l CiZEki) >
> imy ¢i, therefore

n n
9
(13) I el >33 0
1= 1=

Since {zy}x is weakly null, every spreading model admitted by it must
be unconditional. Combining this fact with (I3]), we conclude that every
spreading model admitted by {z}x is equivalent to the usual basis of ¢;.

O

Lemma 4.4. Let {z}}; be a block sequence in X, with 5({xk}k) =0 and
€ > 0. Then there exists M an infinite subset of the natural numbers, such
that the set B. = {b € B : b e-norms {zy }reps} is finite.

Proof. Towards a contradiction, assume that for every M infinite subset of
the natural numbers, the set {b € B : b e-separates {xy }reps} is infinite. By
using induction, choose M1 D My D --- D M, D --- infinite subsets of the
natural numbers and {b, : n € N} C B with b,, # b, for n # m, satisfying
the following. For every n € N and and k € M, if b, = {f;‘,gg o1 there
exists ¢ € N such that either |(f) + g;')(zx)| > € or |(f7 — g7)(wx)| > €. To
simplify notation, from now on we will assume that |(f; + g;/)(zx)| > €.

We are going to prove the following. For every kg, m € N, there exists
k > ko and 3 a B-average in W of size s(3) = m, such that B(zy) > 5. By
Proposition [3.7] this means that B({xk}k) > 0 which yields a contradiction.

Let kg, m € N. Since b, # b; for n # [, there exists gg € N, such that for
every 1 <n <1< m, for every q1,q2 > qo, w(f7}) # w(fé2).

Choose k € M,, with £ > ky and minsuppx; > max{maxsuppgg‘o :
n = 1,...,m}. Then for n = 1,...,m there exists ¢, > ¢o such that
|(f + g2 (k)| > €. Set hy = sgn ((f2 + g2 ) (@) 5(f2 + gi ) for n =
1,...,m.

Then h, is a functional of type II in W with @w(h,) = {w(f; )} for
n=1,...,m and h,(zg) > 5. Since w(h,) Nw(h) = for 1 <n <l <m,
we have that 8 = L 3™ | h, is a B-average of size s(8) = m with B(z)) > §.
This completes the proof.

O

Lemma 4.5. Let {zx}r be a block sequence in X,., with ﬁ({xk}k) = 0.
Then there exists M an infinite subset of the natural numbers, such that
the set B = {b € B : there exists ¢ > 0 such that b e-norms {xy}rers} is
countable.
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Proof. Apply Lemma [4.4] and choose M7 D My D --- D M, D --- infinite
subsets of the natural numbers such that the set B, = {b€ B:b %—norms
{zk}ren, } is finite, for every n € N. Choose M a diagonalization of { M, },.
We will show that B = {b € B : there exists € > 0 such that b e-norms
{xk}keM} C UpBy.
Let b € B. Then, there exists n € N, such that b %—norms {zk ke Tt
easily follows that b € B,,.
O

Lemma 4.6. Let {z} }; be a bounded block sequence in X, with B({xk}k) =
0. Then there exists {Fj}, an increasing sequence of subsets of the natural
numbers with #F;, < min F}, for all £ € N with limy #F} = oo such that if

Yy = ﬁ > ier, Tis then B& {yx}r = 0.

Proof. Using Lemma [£5] and passing, if necessary, to a subsequence, we may
assume that if B’ = {b € B : there exists £ > 0 such that b e-norms {zy}},
then B’ = {b,, : n € N}.

Let b,, = {f;,gg}gil forallm € N and choose M1 D My D --- D M, D ---
infinite subsets of the natural numbers such that for every n,q € N, there
exists at most one k € M, with ran(f;' + g;/) Nranzy, # .

Choose M a diagonalization of {M,, },,. Then for every n € N there exists
gn € N such that for every ¢ > ¢, there exists at most one k € M with
ran(fy + hy) Nranxy, # .

Choose {Fj}r an increasing sequence of subsets of the natural numbers
with #F, < minF} for all £ € N with limg #Fr = oo and set y, =
ﬁ > ier, @i for all k € N.

Towards a contradiction, assume that there exist ¢ > 0 and b = { f,, gq}gil €
B, such that b e-norms {y}r. For convenience, assume that by e-norms
{yr}r and choose N an infinite subset of the naturals, such that for every
k € N there exists g, € N with |(fg, + 94,.)(yx)| > €.

It follows that for every k € N, there exists i, € Fj such that |(fg, +
9g.) (i) > €. We conclude that b e-norms {xy}r and hence b € B’, i.e.
b = by, for some n € N.

Choose k € N with k > maxsuppg? and #Fj, > ¢ sup{||zy|| : k € N}.
Then for every ¢ € N, there exists at most one i € Fj, such that ran(f; +

g4) Nranz; # & and hence for every ¢ € N, we have that |(f;' + hy)(yx)| <
sup{||z||:kEN}

i < e. This contradiction completes the proof.

O

Proposition 4.7. Let {x;}; be a block sequence in X, such that zj is
a (C,0,n;) exact vector with ny € L3 (see the definition of the coding
function) and {ng}x is strictly increasing. Then B ® {x}, = 0.

Proof. Let b € B Observe that for ¢ € N, hy, = %(fqtgq) is a functional
of type II and by Corollary B.14] if i, = w(f,) for £ € N we have that

|hg(xr)| < ;T(j; + 25 . From this it easily follows that b ® {x4}x = 0. O
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Proposition 4.8. Let {x}}; be a normalized block sequence in X,,. Then
there exists {yx}r a further normalized block sequence of {xj}r such that

a({yk}k) =0, 5({1/19}19) =0 and B® {yx}r = 0.

Proof. Since X,.. does not contain a copy of ¢y, we may choose {zj}xr a
normalized block sequence of {zy}g, such that if zp = ZieGk cix;, then
limg max{|¢;| : i € G} = 0.

If a({zk}k) = 0,5({zk}k) =0 and B® {zx}r = 0, then {z} is the
desired sequence. Otherwise, we distinguish three cases.

Case 1: a({zx}x) = 0,8({zx}r) = 0 and there exist b € B, € > 0 such that
by e-norms {zj .

Using Proposition 3] and passing, if necessary, to a subsequence, we
may assume that {zj}, generates an ¢; spreading model. Apply Lemma
to find {Fj}x an increasing sequence of subsets of the natural numbers
with #F}, < min Fj, for all £ € N with lim, #F}, = oo such that if y, =
Z Licr, % then B& {yi}x = 0.

Since {zj }x generates an ¢; spreading model, we have that {y} is semi-
normalized. Moreover Remark yields that a({yk}k) = 0 as well as
B({yr}tx) = 0. We conclude that if y, = IIy—lklly’f’ then {y;}x is the desired
sequence.

Case 2: a({zx}x) = 0,8({zx}r) = 0 and there exist b € B, € > 0 such that
b_ e-norms {zj }.

If b= {fy,94}521 passing if necessary to a subsequence, we may assume
that for every k € N there exists ¢, € N such that |(fy, — gq,.)(2x)| > € and
max{|c;| : i € Fi} < 5.

Fix k € N and set i, = max{i € Gy, : ran f,, Nranz; # S}, Gi = {i €
Gy 1 < ig} andG2:{i€Gk:i>ik}. Set

21, = sgn (fg, (2)) Z ciw; + sgn (gq, (21)) Z Ci%;
i€Gy €G3
Observe the following.
fa(zk) = |fa(z)]

€
9a.(#) > 190 (k)] = lei | > 1gg, (z)| — 5

2
1
3 Sl <2
Combining the above we conclude that by setting wy = ”Z—l,”z,’g, we have that
k

(far + 9q:)(wy) > 5, ie. by F-norms {wy}. Moreover Remarks B.3] and [3.4]
yield that o({wy}x) = 0 as well as B({wy}x) = 0, hence this case has been
reduced to the previous one.

Case 3: a({zk}k) >0 or ﬁ({zk}k) > 0.
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Apply proposition B.8 to construct a sequence {y; }r of (C,6,ny) vec-
tors with {ng}x strictly increasing. Set yi = Hy—lkﬂy;f Corollary B.12] yields

that o({yr}r) = 0 and passing, if necessary to a subsequence, {yx}s is
(C,{nx}r) a-RIS.

Assume that 8 ({yk}k) = 0. Then this case is reduced either to case 1, or
to case 2.

If on the other hand S ({yk}k) > 0, apply proposition 3.8 to construct
a sequence {w} }i, of (C,0,ny) exact vectors with ny € L3 for all k € N
and {ny}x strictly increasing. Set wy = ”w—l;c”wk. Corollaries B.12] B. 17 and
Proposition [4.7] yield that {wy}x is the desired sequence.

U

The following definition is a slight variation of Definition 4.1 from [3].

Definition 4.9. Let 21 < o < x3 be vectors in Xusm, [ = J_FE(% qup(fq+

gq)) be a functional of type I, (or f = *tE(3 > ger N(fq — gq)) be a
functional of type II_), such that supp f Nranx; # &, for i = 1,2,3. Set

qo = min{q € F : ran(f, + g) Nranxzy # @}. If ran(fy, —I—gqo) Nranzs = &,
then we say that f separates x1,x9, 3.

Lemma 4.10. Let {ny}; be a strictly increasing sequence of natural num-
bers satisfying the following. For every m € N, there exists a special
sequence {f;”,gg”}gzl such that {nx : k = 1,....m} C {w(f") : ¢ =
L,...,dp}. Then there exists b = {fy,94}52; € B, such that {n), : k € N} C
fulf,) : q € N}.

Proof. We construct b by induction. Let m € N and suppose that we have
chosen natural numbers 1 < p; < --- < py, and a special sequence { f;, g4 }5:1
such that the following are satisfied. For 1 <1< m
i) {fng:k=1,.... 0} C{w(fy) :q=1,...,pi}
(i) o(f1,91, f2,92 - for> 9py) = M1
Since {ng :k=1,...,m+2} C {w(fg”“) :q=1,...,dpyt2}, there exist
1 < qo < q1 < dyp2, such that w(fgg’w) = Nype1 and w(fg’f”) = Nypio

Then

m+2 m+2 m+2 m4+2\ _
U( 791 ) fl 17gq1 1)—nm+2

Set pmy1 = q¢1 — 1. It remains to be shown that p,, < ppy11 and that
{fqvgq}z):1 = {f(;n—i—Q’gq +2}

Since
nm—l—l = U(f17gl7 fpm?gpm)
w(fm*?) = o(f"t2 gl gt

and w(fI"?) = nm41, by the fact that o is one to one, we conclude that
{fqagq}q 1= {fgl+27gq +2}q0 ! ThUS it follows that Pm = QO—l < Q1—1 =

Pm+1 and {fmgq}q:l = {ft;n+2’ggn+2 Zml
O
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Proposition 4.11. Let {zx}r be a bounded block sequence in X, , such
that 8({zx}x) = 0 and B® {2k}, = 0. Then for any € > 0, there exists M
an infinite subset of the naturals, such that for any k1 < ko < k3 € M, for
any functional f € W of type II that separates xy,,Z,,Zk,;, we have that
|f(zk,)| < e, for some i € {1,2,3}.

Proof. Towards a contradiction, assume that this is not the case. By using
Ramsey theorem [I8], we may assume that there exists € > 0 such that for
any k <l <m €N, there exists fj ., a functional of type II that separates
Tk, Ty, T a0 [ fr 1 (Tk)| > €, [frm(T)| > &, | fogm(Tm)| > €. We may also
assume that fi;,, is of type 11, for every k <1 < m € N, or that fi;,, is
of type II_, for every k <l < m € N. From now on we shall assume the
first.

For 1 < k < m € N, there exists by, = {f. km,gf;m °, € B, with

J1e,m = Egm <§ quFk,m( q A 9q7m)>- Set

Pkm = min{q € Fjp, ran(f(f’m + glg’m) Nz # T}
Qkm = min{q € Fjp, : ran(f(f’m + g];’m) Nz, # S}
Notice, that for 1 < k < m, since |fi 5 m(x1)] > ¢, it follows that, if

k, .
w( Pk,n;) = Jkm
1 €
- >
km = ||z1]| max supp 21
By applying Ramsey theorem once more, we may assume that there exists
J1 € N, such that for any 1 < k < m, we have that w( pkm) =J1-
Arguing in the same way and diagonalizing, we may assume that for
any k > 1, there exists jr € N such that for any m > k, we have that

k .
w( qkﬁ) = Jk-
Moreover, for every 1 < k < m € N, the following holds.

2(#Fm) < minsupp fk ™ < max supp x1

4e
maxsupp xi’

(14) IEk,m( (S5 4 gp™ ) (@m)| > €

Since fi k.m separates Z1, Tk, T, it follows that vy ., > g m-
Set igm = w(fk o) forall 1 <k <m €N and

A= {{kv l7m} € [N \ {1}]3 : Z'k,m = Z.l,m,}
Applying Ramsey theorem once more, we may assume that either [N\
{1} c Aor [N\ {1}]3 C A°.
Assume that [N\ {1}]> C A°. Then, for m > 2, we have that

hy = sgn <Ek,m( (fhm +gi™) (:vm)>Ek,m( (flm +g5™))

Setting &’ = there exists 7y, € F) , such that
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are functionals of type II with pairwise disjoint weights w(h) and hg(x,,) >
¢ for k=2,...,m — 1. We conclude that 3 = ﬁ EZ:; hy, is a B-average
in W of size s(8) = m — 2 and B(z,,) > €. Proposition B.7 yields that
B({zk}x) > 0, which is absurd.

Hence, we may assume that [N\ {1}]> C A4, i.e. for every m > 2, there
exists i,, € N, such that for every 1 < k < m, iy, = i,,. By the fact that o

™m

is one to one, we conclude that for every m > 2, by setting {f ¢ 90 2 =
“1({i,n}) the following holds.

(15) {FFm gemye ™ ={fir gy yomy, forl<k<m

Set
O = {{k,1} € [N\ {1}]* : jiv # i}
Applying Ramsey theorem once more, we may assume that either [N\
{1})2c C or [N\ {1}]? c C=.
Assume that [N\ {1}]2 € C¢. Then there exists jo € N, such that ji, = jo
for all £k > 1. For 1 < k < m, by ([I5) {f kkrfn,qum} e {19y

2m

1,. Tm} Since for 2 < k < m, jo = ji, we conclude that {f, 2m,ng?n} =

km
qk m’qu m}

Set hy, = 5( (122’77,2 +g§;’;). By the fact that fa,,, fr—1,m separate x1, 2, T,
and Z1, Ty, —1, T, respectively, we conclude that ran 2, C ran hy, and |hy, (zx)| >
efork =3,...,m—2. Choose h a w*-limit point of {hy, },. Then |h(xy)| > ¢
for every k > 2. Corollary 2.7] yields a contradiction.

Hence, we may assume that [N\ {1}]> C C, and that {j}) is strictly
increasing. Lemma[.I0land (I5) yield that there exists b = {fy, g, }g521 € B,
such that {j; : k € N} C {w(f,) : ¢ € N}.

We will show that b &’-norms {xj}r, which will complete the proof. Let
1<k< m € N. Arguing as previously, there exists tj ,, € F} ,, such that

\(ftk o+ gtk ") > €. Evidently, qxm < thm < Tkm Set
D= {{k,;m} € N\ {1} : trm < Thom}

Applying Ramsey theorem one last time, we may assume that either [N\
{1})2 ¢ D, or [N\ {1}]?> C D=
If [N\ {1}]> C D¢, then for m > 3, by ([[5) we have that t,_2,, =

— m ,m m ,m m—2m m—2my . .
Tm—2m = Tm + 1 and {f{", g1" ..., 2 90 fi _ oo s Tt 2m} is a special

sequence.
Similarly, by (5 we have that t;,—1m = rm—1,m = ™m + 1 and that

{f g, gl fe Lm gm=Lmy s a special sequence.

t'm 1m7 t'm 1,m
Since ¢m—1,m < Tm—1,m = tm—1,m, we have that there exists g < ry,, such
m—1m m—1m

that {me 1m7.ng lm} { q 7gq
This means the following.

max supp Tp—2 < MINSUPP Tpp—1 < MAXSUPD G 1.

= maxsupp gq < min supp f [

tm— 2,m
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We conclude that ran(f/" 2™ + g 2:) N ran xm 9 = @. This cannot be

tm— 2,m

the case and hence we conclude that [N\ {1}]?> C

Let k£ € N. We will show that fi iig + gfkit‘;’ € by. First, observe that

by (T and the fact that t g1+3 < rg g3 — 1 = 7443, we have that
kk+3 | kk+3 k+3 | Kk+3
(ftkk+3+gtkk+3) € {f+ —|—g+ tq=1,..., 143}

k+1, k+3 k+1,k4+3 k+3 k+3 . _
(ka+1 k+3 g%+1,k+3) € {f + g 4= 1’

k+2,k+3 k+2,k+3 k+3 k+3
(ka+2 k+3 + 94k+2,k+3) € {

L) Tk+3}

tq=1,..., 1543}
Thus, we moreover have that

k,k+3 k,k+3 k+1,k4+3 k+1,k4+3 k+2,k+3 k+2,k+3
(ftk k+3 + gtk k+3) < (kaH—l + g%+1 ) (kaJrz g%+2 )

kk3 k,k+3
+ +}€

By the fact that o is one to one, we conclude that {f tenrs Tt ss

Y {gkr2}) € {{fq- 94} 1 @ € N}. .

5. ¢p SPREADING MODELS

In this section we prove that a sequence {zy }x satisfying B ® {z\}r = 0,
a({xk}k) =0 as well as ﬁ({xk}k) = 0 has a subsequence generating a ¢y
spreading model. This is crucial, as a spreading model universal sequence
is constructed on a sequence generating a cg spreading model.

Proposition 5.1. Let 1 < --- < x, be a seminormalized block sequence in
Xem, such that ||zg|| < 1for k=1,...,n,n > 3 and there exist n+3 < j; <
- < jp strictly increasing naturals, such that the following are satisfied.

(i) For any ko € {1,...,n}, for any k > ko,k € {1,...,n}, for any
{aq}gzl very fast growing and S;-admissible sequence of a-averages,
with j < ji, and s(a1) > minsupp z,, we have that 23:1 lag(zr)] <

1

o

ii Igor any kg € {1,...,n}, for any k > ko,k € {1,...,n}, for an

(ii) y y y
{54} _, very fast growmg and §; adm1881ble sequence Of 5- averages
with j < ji, and s(f1) > minsupp xy,, we have that Zq:l |Bq(x)| <

1
n-2m"

(iii) For k =1,.. — 1, the following holds: ]k — mMax supp ry < 2n.
(iv) For any 1 < k:1 < ko < k3 < n, for any functlonal fe W of type II
that separates xy,,Zr,, Tr,, we have that |f(zg,)| < for some
ie{1,2,3}.
Then {z}}_, is equivalent to ¢ basis, with an upper constant 4 + 2%
Moreover, for any functional f € W of type I, with weight w(f) = j < ji,

we have that | f(3,_; xx)| < 4+2” .

n2n7

Proof. As in the proof of Proposition 4.7 from [3], we will inductively prove,
that for any {cx}}_; C [—1,1] the following hold.
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(i) For any f € W, we have that |f(})_; ckar)| < (44 2) max{|ck| :

k=1,...,n}.

(ii) If f is of tifpe I, and w(f) > 3, then |f(>p_;crar)] < (1 +
=)max{|cy| 1 k=1,...,n}.

(iif) If f is of type I and w(f) = j < ji, then |[f(O°}_; ckar)| <
4;2% max{|cg| : k=1,...,n}.

For any functional f € Wy the inductive assumption holds. Assume that
it holds for any f € W, and let f € W,,,4;. If f is a convex combination,
then there is nothing to prove.

Assume that f is of type I, f = 2% Zzzl oy, where {ozq}g:l is a very fast
growing and Sj-admissible sequence of a-averages in W,,.

Set k1 = min{k : ran f Nranzy, # @} and ¢ = min{q : ran oy Nranxy, #
a}.

We distinguish 3 cases.

Case 1: j < 7.
For ¢ > ¢, we have that s(a,) > minsupp z,, therefore we conclude that

(16) Z |aq(z k)| < %max{|ck| ck=1,...,n}

q>q1 k=1

while the inductive assumption yields that

5
(17) g, ( chazk | < (4+ gy max{lex| : b =1,....n}
k=1

Then (I6) and (I7) allow us to conclude that

(18) chiﬂk )| <

max{|ck| kE=1,...,n}

Hence, (iii) from the inductive assumption is satisfied.

Case 2: There exists kg < n, such that ji, <7 < jry+1-
Arguing as previously we get that

(19)
1
|f( Z ckTy)| < max{|ck| E=1,...,n} < 2—nmax{|ck| ck=1,...,n}
k>ko
and
(20) Z ckTk)| max{\ck] k=1,...,n}

k<ko
Using (19)), (20), the fact that |f (xk0)| < 1, we conclude that

(21) chxk <+, )max{|ck| k=1,...,n}

Case 3: j = jn
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By using the same arguments, we conclude that
= 1
(22) £ ern)| < (1+ o) max{leg sk =1,...,n}
k=1

Then (I8)), 2I)) and [22)) yield that (ii) from the inductive assumption is
satisfied.
If f is of type I, then the proof is exactly the same, therefore assume

that f is of type I, f = % dep(fq +9q), where { fy, g4 }qer are functionals
of type 1. Set

E = {k : ‘f(xk)’ > n,12n}

E; = {k € E: there exist at least two ¢ such that ran(f, + g,) Nranxzy # &}

Then #E; < 2. Indeed, if k1 < ky < k3 € Eq, then f separates zy,, zy, and
Tk, which contradicts our initial assumptions.

If moreover we set J = {q : there exists k € E \ E; such that ran(f, +
gq) Nranxy # @}, then for the same reasons we get that #.J < 2.

Since for any j, we have that w(f;),w(gq) € Lo, we get that w(f;) > 9,
therefore:

n

4
(23) | £( Z )| < (24 2—n)max{]ck] ck=1,...,n}
keE\E,
(24) |f(z k)] < 2max{|ex|:k=1,...,n}
keE;
- 1
(25) |f(zck$k)| < n-mmax{|6k| ck=1,...,n}
k¢E

Finally, 23) to (7)) yield the following.
- 5
|f(kz_10k33k)| <@+ g)max{leg| k=1,....n}

If f is of type II_, the proof is exactly the same. This means that (i)
from the inductive assumption is satisfied an this completes the proof.
O

Proposition 5.2. Let {x} }ren be a seminormalized block sequence in X ., ,
such that |lzx|| < 1 for all k € N, a({zx}r) = 0 as well as S({zx}r) = 0
and B ® {xx}r = 0. Then it has a subsequence, again denoted by {zj}ren
satisfying the following.

(i) {xr}ren generates a ¢y spreading model. More precisely, for any
n <k < < ky, we have that || >0 x| < 5.
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(i) There exists a strictly increasing sequence of naturals {j, }nen, such
that for any n < k1 < --- < ky,, for any functional f of type I, with
w(f) =j < jn, we have that

o)l < o
=1

6. SPREADING MODEL UNIVERSAL BLOCK SEQUENCES

In this section we define exact pairs and exact nodes in X, . Then, using
a sequence generating a ¢y spreading model, we pass to a sequence of exact
nodes {x, Yk, fr, gk }, such that {fi, g5 }72, defines a special branch. Setting
2k = Tk — Y, we prove that {z;}x is a spreading model universal sequence.
Using the structure of such sequences, we also prove that the space X s is
hereditarily indecomposable.

Definition 6.1. A pair {z, f}, where z € X,..., f € W is called an n-exact
pair if the following hold.
(i) f is a functional of type I, with w(f) = n, minsupp z < minsupp f
and max supp z < maxsupp f.
(i) There exists 2’ € X, a (5,1,n) exact vector such that 1 > f(2') >
35 z’

%andx:m.

Remark 6.2. If {z, f} is a n-exact pair, then f(z) =1 and by Remark 2.12]
we have that 1 < ||z]| < 36.

Proposition 6.3. Let {z}}x be a block sequence in X, and n € N. Then
there exists  supported by {z}r and f € W such that {x, f} is an n-exact
pair.

Proof. By Proposition [L.8] there exists {yx}r a further normalized block se-
quence satisfying the assumptions of Proposition Therefore we may
choose {ny} a strictly increasing sequence of natural numbers and {F}}
an increasing sequence of subsets of the naturals satisfying the following.

(i) #F) < min Fy, therefore 1 < [| 3 vill <5, for all k € N.

(il) #Fjyq > 2M8X59PPYmaxry - for all k € N.

(iii) For any j,k € N with j < ni and f a functional of type I, in W

with w(f) = j, we have that |f(3_;cp, vi)| < 2%

Setting zx = > ;cp, ¥i, by (1) and (iii) we conclude that {2y}, is (5, {r }x) -
RIS. By Proposition 2.2, for 0 < ¢ < W, there exists G a subset of
the natural numbers with minsupp zming = 8- 5 - 227, Nming > 22" and
{ck}rea C [0,1], such that >, 2k is a (n,e(1 —€)) s.c.c.

Setting ¢, = k;ﬁ, it is straightforward to check that EkeG\{maX G} ChZk
isa (n,e) s.c.c.

Set ' = 2"} ) e\ fmaxqy Ck2k- In order for 2’ to be a (5,1,n) exact
vector, it remains to be shown that ||2/]] > 1.
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We shall prove that for any n > 0, there exists f, a functional of type
I, in W with minsupp’ < minsupp f;, maxsuppz’ < maxsupp f, and
w(fy) =n, such that 1 > f,(2') >1—n.

Observe that for k € G, there exists oy an a-average in W with s(ax) =
#Fy,, such that ranay C ranz, and 1 > ag(zg) > 1 —n.

By (ii) we conclude that {ay}req is very fast growing and since ran ay, C
ran zy, it is S, admissible. Therefore f, = 2% Y keq O is of type I, in W
with minsupp 2’ < minsupp f,, maxsuppz’ < maxsupp f, and w(f,) = n.
By doing some easy calculations we conclude that it is the desired functional,
hence ||2/| > 1.

Moreover, for 0 < n < 1/36, f = f, and = = fé‘;,), we have that {z, f} is

the desired exact pair.
O

Definition 6.4. A quadruple {z,y, f, g} is called an n-exact node if {z, f}
and {y, g} are both n-exact pairs and max supp f < minsuppy.

A sequence of quadruples {xy,yi, fr,gr}po, is called a dependent se-
quence, if {xg, yk, fx, gr} is an nyg exact node for all k € N, max supp gx <
minsupp zx41 for all & € N and {fx, gx}32, is a special branch.

Remarks 6.5. If {x,y, f,g} is an n-exact node, then (f + g)(z +vy) =
2,(f=9)z—y) =2,(f+9)(z—y) =0,(f+9)(x) =L (f+9)(y) =1 and
1< ||z tyl| <72

If {&k, Yk, fr, 9 }7o is a dependent sequence, by the above and Proposi-
tion[4.3], we conclude that any spreading model admitted by {xx+yg t, {zk }x
or {yk}k, is 41.

Moreover, for kg € N and k > kg by Lemma B.I0 and the fact that
minsuppzg, = 8-5 - 220 we have that for any very fast growing and
Sj-admissible sequence of a-averages {aq}gzl with j < ng, and s(aq) >
min supp x,, we have that

d
)
(26) 3 lag(a + 1) < g
q=1
Similarly, by Lemma [B.I5] for any very fast growing and S;-admissible
sequence of B-averages {ﬁq}gzl with j < ng, — 2 and s(81) > minsupp z,,
we have that

d
(21) S 18, 9)] < g
g=1

Lemma 6.6. Let {xy,yk, fi, g1} 5o, be a dependent sequence. Then for
every k € N, if np = w(fx) and ngi1 = w(fr+1), the following holds.

1 1

W maxsupp yr < QTk

(28)



24 S.A. ARGYROS, P. MOTAKIS

Proof. By the definition of the coding function o, we have that ngy; >
2"k max supp g = 2™ max supp yx.

Since ny,; € L, we have that niyq > 9. It easily follows that 27++173 >
ni+1. Combining this with the above, we conclude the desired result. O

Proposition 6.7. Let Y be a block subspace of X..,. Then there ex-
ist {xk}x, {yr}r block sequences in Y and b = {fi, gx}7>, € B, such that
{2k, Y fr, 95 }72, is a dependent sequence.

Proof. Choose n1 € Ly. By Proposition there exists {x1,y1, f1,01} an
ni-exact node in Y.

Suppose that we have chosen {zg, vk, fx,gr} ni-exact nodes for k =
1,...,m such that {f, gx}}, is a special sequence and maxsuppgy <
minsuppziyi for k=1,...,m —1.

Set nm+1 = o(f1,91,- -+ fmsgm)- Then applying Proposition once
more, there exists {41, Ym+1, frnt1s gm+1} an ny,t1-exact node in Y, such
that maxsupp ¢g,, < minsupp Ty, +1-

The inductive construction is complete and {zx, yi, fi, gk }5e; is a depen-
dent sequence.

O

An easy modification of the above proof yields the following.

Corollary 6.8. If X,Y are block subspaces of X,.., then a dependent
sequence {k, Yk, fi, 9k }re; can be chosen, such that x, € X and y, € Y for
all k€ N.

Proposition 6.9. Let {xy,yk, fr, 9x} 7o, be a dependent sequence and set
2z, = Tk — Yr. Then for every m < k1 < .-+ < kp, natural numbers and
C1,...,Cn real numbers, the following holds.

m m m
(29) 1D ciunllu <Y cize |l < 1461 ) crun
i=1 i=1 i=1

Proof. Set ny = w(fy) for all & € N. Choose m < k; < --- < k;,, natural
numbers and ¢1, ..., ¢y, C [—1,1], such that || Y7, ciug,|lw = 1.

We first prove that || > 7", iz, || = 1.

Since min supp zj, = min supp xx, > minsupp r,, > 40 - 22" > 40-2™ >
2m and minsupp fx, = minsuppxy,, by the definition of the norming
set W, it follows that for every Aq,..., A\, rational numbers such that
3721 Aiug, [lu < 1, the functional f = 3" Xi(fr, — gk,) is a functional
of type II_ in W. We conclude that

m m 1 m
I ;Cizkill > sup { ; g (Fr—gr)(eizn) - {AHE € Q1) A [lu < 1}

i=1
By Remark 6.5, for Aj,...,A; as above, we have that ) ", %)\,(fkl -
gk, )(Cizk;) = D ity Aic;. This yields the following.
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m m m
1D izl = sup{D_ Niei: {02 € Q| N lu < 13
=1 =1 i=1
m
= ) ciuglle=1
=1

To prove the inverse inequality, we will follow similar steps, as in the proof
of Proposition [5.J1 We shall inductively prove the following.
(i) For any f € W, we have that | f(D_,_; cxay)| < 146.
(ii) If f is of type I, or type Ig and w(f) > 9, then |f(O_)_; crxr)| <
72 +1/4.

For any functional in Wy the inductive assumption holds.Assume that it
holds for any f € W), and let f € Wj41. If f is a convex combination, then
there is nothing to prove.

Assume that f is of type I, f = 2% Zzzl Bq, where {ﬁq}gzl is a very fast
growing and Sj-admissible sequence of 3-averages in W),

Set ¢ = min {q :ran f; Nran 2, # @ for some i € {1,... ,m}}.

We distinguish 3 cases.

Case 1: j+2 < ng,.

For ¢ > ¢1, we have that s(8,) > minsuppzg,, therefore, using (27) we

conclude that

(30) > 184( chzk — < 2—m <1

q>q1 i=1

while the inductive assumption yields that
m

(31) 1B (D cizn,)| < 146
i=1

Then (B0) and (B3I allow us to conclude that

147
(32) chzk | < —

Case 2: There exists 19 < m, such that Nk < J+2 <Ny 41
Arguing as previously we get that

147 147 1
(33) ZC’Z’f 9Tk +1 <o < 3§

1>10

and by Lemma

1 1
1<10
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Using (B3), (34) and the fact that [f(z,, )| < 72, we conclude that

1

(35) £ )| < 72+ 1

k=1

Case 3: j+2 > ny,
By using the same arguments, we conclude that

m
1
36 cizi)| <72+ —
(36) 1O el <724 5

Then [B2), B3) and ([B4) yield that (i) and (ii) from the inductive as-
sumption are satisfied.

If f is of type I, using (26]) and the exact same arguments one can prove
that (i) and (ii) from the inductive assumption are again satisfied.

Assume now that f is of type II_ (or fis of type Il ), f = E(% 2?21 Aji( éj—
g;j)) (or f=E(3 Z;l:l( ot g;j))), where E is an interval of the natural
numbers, {f;, g, o2 € B, 1 < -+ < qq and 2g4 < minsupp f, .

We may clearly assume that ran(f), Tgp ) Nran(3 ", ciz,) # @ and
min £ > minsupp fy, .

Similarly, we assume that ran(f, g, JNran(d 1", ciz,) # @ and max E <
max supp g, .

The inductive assumption yields the following.

1 “ 1
(37) B (5 (Fat06,)) Qe < 72+ 4
i=1
Set t; = w(f[;j) for j = 1,...,d. By the definition of the coding function,
we have that t; > 2* minsupp xy, > minsuppz,, > 40-2™, for j = 2,...,d.
We conclude the following.

Z 72m < 144m 144m

(38) 2tj = 2t2 < 240 . om

< 1
; 4
j>1
We distinguish two cases.
Case 1: There exist 2 < jo < d and k € N such that t; = ny.
In this case, the fact that o is one to one, yields that fi *g; = f4,%g,,
for 2 < j < jo and hence

1 Jo—1 m 1 Jo—1 m
|E(§ S =g )OO am)l = 5 S on =) iz,
=2 i=1 =2 i=1

Jo—

1 1 m
(39) = 15 XNy~ 0Pl <1
j=2 =1
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if f is of type II_ and
Jo—1

1
IE(2quj+gqj Zczzk = |
j=2

1

(f5, + 9,) Z Cih,)

.

0

DN =
<.
||
[N}

oL
S
|

—

(40) = | (fq] ‘|‘9q] Zczzk |=0

DN =
<.
||
[N}

if f is of type IL;.
The inductive assumption yields that

1 , - 1
(41) B (5 (= 91y ) (O izl < 72+ 7
i=1

Moreover, using Corollary BI4 for i =1,...,m we have that

72 22
Z Ni(fo, = 9 @)l < Y 35 + g

J =jo+1 J>jo
Combining this with (B8]
d

1 2m e 22
E(y > Milfy, — ) Zczzk < Do T g
J=jo+1 j>1 i=1
1 22 1
42 < — —_—< =
(42) + 1000 2
Similarly,
T
(43) ’E(§ Z qu ‘|‘qu Zczzk ’ < 9
Jj=jo+1

If f is of type II_ Combining (37), ([B9) and (42]), we conclude that
|f(OoM cizp,)| < 146, while if f is of type I} combining (B7), (40) and
@3), we conclude that |f(3 7%, cizk,)| < 145

Case 1: t; #ny, forall j =2,...,dand k € N.

Arguing as previously, we conclude that

d m
1 1
(44) 5 ZA] I gqj (Z cizr)| < 3 and
J=2 =
1 d
30 ) S <
j=2

Therefore, [B1) and (45) yield that | f(x)| < 73. The induction is complete
and so is the proof.
U
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Proposition 6.10. Let Y be a block subspace of X..,. Then there exist
{zk}1 a seminormalized block sequence in Y and {z}}; a seminormalized
block sequence in X*_ satisfying the following.

(i) z;(zn) = Okn

(ii) For every unconditional and spreading sequence {w, },, there exists
{kn}n a strictly increasing sequence of natural numbers, such that
{2k, }n generates a spreading model which is 146-equivalent to {wy, },
and {2z}, }n generates a spreading model which is 146-equivalent to

{w; }n

Proof. By Proposition [6.7, there exists {xk, Y, fr, gr}7>, a dependent se-
quence in Y. Set zp = x, — yi and z;, = %(fk — gk)- Then 2 (2,) = Ok n-

Let {wy, }, be an unconditional and spreading sequence, which also yields
that it is suppression unconditional and hence there exists {k;,}, a strictly
increasing sequence of natural numbers, such that {uy, }n>; is 1 +¢; equiv-
alent to {wy }n>j, where {;}; is null sequence of positive reals.

Moreover, due to unconditionality, {u}, }n>; is 1+€; equivalent to {wy, }n>;.

Proposition yields that for every m < n; < -+ < n,, natural numbers
and cq,--- , ¢y real numbers, we have that

1 m m m
45) 1 +Em||;@wz\| < ;Ciznki\l < (1 +em)146] ;ciwill

This yields that any spreading model admitted by {z, }» is 146-equivalent

to {wp }n.
Moreover, by the definition of the norming set, for every m <n; < --- <
n,, natural numbers and ¢y, - - - , ¢y, real numbers, we have that

m m m
(46) 1D ez, I <N ciun, Nl < (L4 em)l ) e
i=1 i=1 i=1

Property (i) and (@3] yield the following.

1 m m
47 - Wk < o
(47) e DRI DILEN
Combining (46]) and (46]), we conclude that any spreading model admitted
by {2} }n is 146-equivalent to {wy, }n. O

Proposition 6.11. The space X, is hereditarily indecomposable.

Proof. 1t is enough to show that for X, Y block subspaces of X, and ¢ > 0,
there exist € X and y € Y such that ||z +y|| > 1 and ||z — y|| < e.

By Corollary [6.8] there exists {xy, Yk, fr, gr}5o, a dependent sequence,
with x; € X and y; € Y for all k£ € N.

By Remark and Proposition [6.9] there exists {k;, }, a strictly increas-
ing sequence of natural numbers, such that {zy, + yi, }n generates an ¢;
spreading model and {xj, — yx, }» generates a ¢y spreading model.
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Fix ¢ > 0 such that for any m < ny < --+ < n,, natural numbers the
following holds.

LIS (o, — o)l < =
— n  Ykn, X
m’ = i i c-m
m
=Y (@, + ) =€
i=1
Fix m < n; < .-+ < ng,, natural numbers such that C2lm < ¢ and set

_ 1 m _ 1 m
T = i Tk, and Yy = 20 300 Uk,

Then ||z +y|| > 1 and ||z — y|| < = <e.

7. BOUNDED OPERATORS ON X,

This section is devoted to operators on X,... We prove that in every
block subspace of X, there exist equivalent intertwined block sequences
{zk}k, {yx }x and an onto isomorphism 7" : X,un — Xuem, such that Txp = yi.
This yields that X,., does not contain a block subspace that is tight by
range and hence, X, is saturated with sequentially minimal subspaces
(see [7]). We then proceed to identify block sequences witnessing this fact.
We moreover construct a strictly singular operator S : X,on — Xuem which
is not polynomially compact. All the above properties of X, are based on
the way type II functionals are constructed in the norming set W and the
rich spreading model structure of X4 -

The following result is proven in a similar manner as Theorem 5.6 from
[3] and therefore its proof is omitted.

Proposition 7.1. Let Y be an infinite dimensional closed subspace of X,
and T : Y — X,.. be a bounded linear operator. Then there exists A € R,
such that T — /\Iweusm 1Y — Xy is strictly singular.

The following result follows from Proposition 3.1 from [2], see also [14].

Proposition 7.2. Let {z},}, be a block sequence in XY generating a
¢o spreading model and {zy}r be a block sequence in X,., generating a
spreading model which is not equivalent to ¢1. Then there exists a strictly
increasing sequence of natural numbers {t;};, such that the following is sat-
isfied. For every strictly increasing sequence of natural numbers {my, }; with
my, = ty, for all k € N, the map T : X — Xoow with T = >"722 ()
is bounded and non compact.

The proof of the following result uses an argument, which first appeared
in [8], namely the following. If {xx}x, {yr}r are basic sequences in a space
X, such that the maps zp — = — yr and yp — = — Y extend to bounded
linear operators, then {zy}x is equivalent to {yg }x.
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Proposition 7.3. Let {zy, vk, fr, 9k }72, be a dependent sequence. Then
there exists {kj,}, a strictly increasing sequence of natural numbers, such
that {z,, }n is equivalent to {yx, }n. More precisely, there exists T : X o —
X,sm an onto isomorphism, with T'zy, = yz,, for all n € N.

Proof. First observe the following, for any k& € N, we have that

Tr + Yk 2
22 > ) >
| fe + gkl (fk+gk)(ka+yk”) =

Hence { fx + g}« is seminormalized and by the definition of the norming set
W, any spreading model admitted by it, is ¢g.

By Proposition [6.9] {zx — y }r admits a ¢y spreading model. Proposition
[[2] yields that there exists {k,}, a strictly increasing sequence of natural
numbers, such that the operator S : X, — Xuam with

o
Sz =Y " (frn + g1, (@) (@, — i)
n=1
is bounded.

Then, for every n € N we have that Sxy, = zy, —yk,. Setting T =1-2S5,
we evidently have that T'zy, = yg,, hence {zy}x is dominated by {yx }«.

Similarly, for every n € N we have that Syi, = zk, — yk,. Setting
Q = I+, we evidently have that Qyy, = xx, . Therefore {yy }1 is dominated
by {zx}x, which yields that they are actually equivalent.

We shall moreover prove that T is invertible, in fact Q = T~'. Notice
that TQ = QT = I — S?. Tt remains to be shown that S? = 0.

Since Sxy, = x, — Yk, = Syr, for all n € N, we evidently have that
S(zk, — Yk,) = 0 for all n € N. This yields that [{xr, — vk, }n] C kerS.
Evidently, we have that S[X..m] C [{Zk, — Yk, }n], therefore S[X ] C ker S.
We conclude that S? = 0 and this completes the proof. O

Before the statement of the next result, we remind the notion of even-
odd sequences and intertwined block sequences. A Schauder basic sequence
{xk } is called even-odd, if {xoy }k is equivalent to {xop_1}x (see [10]).

Two block sequences {zx}x, {yr}r are called intertwined, if z; < yr <
Zyaq for all k € N.

Evidently, two intertwined block sequences {zx}x, {yx}r are equivalent,
if and only if the sequence {z; } with zo_1 = z) and 29, = yj, for all k € N|
is an even-odd sequence.

Proposition 7.4. Every block subspace of X, contains an even-odd block
sequence. More precisely, in every block subspace Y of X, there exists a
block sequence {z;}r and T : X, — Xuem an onto isomorphism, such that
Tzop_1 = zok, for all k € N.

Proof. By Proposition [6.7), there exists {xk, Yk, fi, gk} 1oy @ dependent se-
quence in Y and by Proposition [7.3] there exist {k,}, a strictly increasing
sequence of natural numbers and T : X,., — X.an an onto isomorphism,
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such that Tz, = y,, for all k € N. Setting 2911 = =, and 29, = yy, for
all k € N we have that {zj } is the desired even-odd block sequence and T’
the desired operator. O

Corollary 7.5. The space X,.. does not contain a block subspace which is
tight by range.

Theorem 1.4 from [7] yields that X,.,, is saturated with sequentially mini-
mal block subspaces. The next result identifies block subspaces of X, with
the aforementioned property.

Proposition 7.6. There exists a set of block sequences {{x,(gy)}k 1Y isa

block subspace of X, }, with {a;,(ﬁy)}k C Y for every Y block subspace of
X.uem, satisfying the following. For every Y, Z block subspaces of X, there
exist {ky}n, {mn,}n strictly increasing sequences of natural numbers, such

that {x,g)}n and {x%,? }n are intertwined and equivalent. More precisely,

there exists T : X om — Xy an onto isomorphism, such that T :E](:;) = x,(f,?

for all n € N.

Proof. Let Y be a block subspace of X.... By Proposition 6.3, we may
choose a block sequence {zy}x in Y, satisfying the following.

(i) There exists {fx}x a sequence of type I, functionals in W, such that
{xk, fr} is a w(fx)-exact pair for all k € N.
(ii) For every n € N, the set {k € N : w(f;) = n} is infinite.

For every Y block subspace of X, choose {a;,(fy)}k satisfying properties
(i) and (ii).

Let now Y, Z be block subspaces of X..m. We shall recursively choose
{kn}n, {mn }n strictly increasing sequences of natural numbers and { f,, }n, {gn }n
sequences of type I, functionals, such that {:E](:;), :E%,? s s On oy
sequence.

Choose p1 € Ly and k1 € N, f; € W a functional of type I, such that
{x,(jl/), f1} is a py exact pair.

Similarly, choose m; € N,g; € W a functional of type I, such that
{x%i,fl} is a py exact pair and maxsupp f1 < minsupp x%i

Suppose that we have chosen {k,}_;, {m,}‘_; strictly increasing se-

quences of natural numbers and {f,}_;,{gn}!,—;, sequences of type I,

is an exact

functionals, such that {a;,(:;), a:SnZ,B y fry gn } are pp-exact nodes for k=1,...,¢
)

ne, {fn, gn}flzl is a special sequence and maxsupp g, < minsuppz,, ;| for
k=1,...,m—1.
Set ppv1 = o(fi,91,---,fe,9¢). Then arguing as previously, we may

choose kyr1 > kg,mygi1 > my and fyy1, ger1 functionals of type I, such that

Y Z . . Y
{xl(wjl , xgnl)ﬂ, fer1, ger1} is an pyy1-exact node and max supp gy < min supp $£nz)+1.
The inductive construction is complete and {:13,(:;),:17%3, nyntolq 1s a

dependent sequence.
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Proposition [7.3] yields the desired result. O
A related result to the following can be found in [I4], Proposition 2.1.

Proposition 7.7. Let 1 < ¢ < oo, ¢’ be its conjugate and set t; = [(4 -
2t1)4"7. Then the following holds.

If {m;}, is a strictly increasing sequence of natural numbers with m; > t;
for all j € N, {z},}, is a block sequence in X’ and {zy}r is a block
sequence in X, satisfying the following,

(i) {x},}m is either generating an ¢, spreading model, with p > ¢/, or a
co spreading model
(ii) {xg} is either generating an ¢, spreading model with r > ¢, or a ¢
spreading model
then the map T : Xy — Xyom with Tz =Y 70, Ty, (z)xy is bounded and
non compact.
If moreover dim(Y/[{xy}r]) = oo, then T is strictly singular.

Proof. Tf {x},},, generates a ¢y spreading model, fix ¢’ < p < co. Note that

by the choice of ¢;, we have that

ﬁ < ((4 : 2j+1)(.1l i 1)1/p < (- 2j+-1)q’/p + i

2j 27 27 27
1 1

(21-4'/p)i t 2

— gd/p

Since p > ¢/, we have that ZJO’;I ( < 00. We conclude that if we set

1
21—d"/p)j

e 1
_ Qd/p _
a=38 E (@17 7r); +1
J=1

Then
(48) .

J_<a
J
=2

Fix C > 0 such that for any n < my < --- < m, natural numbers and
c1,...,Cy real numbers the following holds.

(49) 1D ez | SCQ_ les?)'”
i=1 1=1

By multiplying the xz; with an appropriate scalar, we may assume that
lzg|| < 1/2 for all k € N and that for any n < m; < --- < m, natural
numbers and ¢y, ..., ¢, real numbers the following holds.

(50) 1Y cimmll < el
i=1 i=1
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Let x € X, ||z|| =1, z* € Y*,||lz*|| = 1. For j € N, set

< Ja* (@) < =)

Bj:{k‘EN 2

23—1—1

Then {B;}; is a partition of the natural numbers and

(51) |2 (Tz)| Z\ > at

Jj=1 keB;

We will show that #B; <t;

Assume that this is not the case. Then we may choose F' C B; with
#F >t;/2 and #F < min F'.

Set

F = {k € Bj : x*(mk) = O}
F, = {keBj:xz"(z) <0}

Then either #F; > t;/4, or #F, > t;/4 and we shall assume the first.
Choose G C Fy with #G = [t;/4].
Then, by (50) and the choice of G, we have the following.

WY w2 () >

keG keG

We conclude that t; < (4 -2/+1)?, which contradicts the choice of t;.
Set

Cj={keBj:k>j}, Dj=B;\Cj
Evidently #D; < j — 1, hence
(52) | Y 2 (@), (@) < 5

kGDj

Moreover,
#{my : k € C;} <t; <min{ty : k € Cj} < min{my, : k € C;}
Therefore, using ([@9) and the definition of Cj,

Y @n)an, (@) < Y @@,

k)ECj kJECj

C-
Z |2* (2 |P) /P < —L—

kel

1/p
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The above, combined with (8], (5I) and (52)) yields the following.

¥ (T2)] < Y1) a*(@)ay,, (@)

7j=1 k)EBj
o o

< DY A, @)+ Y1 Y et @), (@)
7j=1 kGCj 7=1 kEDj

o] 1/17 o]
L

i1
S 027+;]2j
iz

j=1

< C-a+1

We conclude that ||T']] < C -« + 1. The non compactness of T follows
easily, if we consider {z}, the biorthogonals of {x, }r. Then {2} is
seminormalized and {T'zx}r = {xy }x, therefore it is not norm convergent.

We now prove that T is strictly singular. Suppose that it is not, then by
Proposition [T1] there exists A # 0 such that @ = T — \I is strictly singular.
Since A is a Fredholm operator and () is strictly singular, it follows that
T = @Q + M is also a Fredholm operator, therefore dim (X o /T [Xuem]) <
0o. The fact that T'[X,m| C [{zk}i] and dim(X o /[{zk }r]) = oo yields a
contradiction.

O

Proposition 7.8. There exists S : X sm — Xuam a strictly singular operator
which is not polynomially compact.

Proof. Choose {p,}, a strictly increasing sequence of real numbers, with
p1 > 2 and let p/, be the conjugate of p, for all n € N.

By Proposition 6.10, for every n € N there exist {z}}; a seminormal-
ized block sequence in X, with ||z} > 1 for all k,n € N and {z}*}; a
seminormalized block sequence in X¥_ , satisfying the following.

(i) a3 () = Sim
(ii) {x}}r generates an £, spreading model and {z}}* };, generates an £,
spreading model.

If we set £} = ran(ran ) Uranz}*), using a diagonal argument we may
assume that the intervals {£}'}; ,, are pairwise disjoint.
Set my = [(4-281)2] and S, : Xuem — Xuem With

o0
_ n* n+1
Snr = Z Ty (m)xmk
k=1

Proposition [(77] (for ¢ = pp+1), yields that S, is bounded and strictly sin-
gular. Moreover the following holds.

(a) For every k,n e N, Spap, = aitt

(b) For every n #1€Nand k €N, Szl =0.
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Set S =3, mé’n. Then S is strictly singular and we shall prove

that that it is not polynomially compact.
Properties (a) and (b), yield that for every k,n € N we have that Sz, =

1 n+1
PRI RO

Using an easy induction we conclude the following.

n

1
(53) S”:Eink = (H ] )x”mtl, for every k,n € N
j=1
Set a,, = H?:l m for n € N and ag = 1.
Let now T = Ei:o b, S™ be a non zero polynomial of S. Then, using

([B3), for every k € N, we have that
d
Tx,lnk = Z bnan$:7lj];1
n=0

The fact that the basis of X, is bimonotone, the x}nk, ... ,xfn*;l are dis-

jointly ranged and [z}, || > 1, for all k,n € N, yields that | Tz}, | >

max{|anb,| : n = 0,...,d}, for all k € N. We conclude that {T'z;, }i has
no norm convergent subsequence, therefore 1" is not compact. O

Remark 7.9. A slight modification of the above yields that in every block
subspace of X, there exists a strictly singular operator which is not poly-
nomially compact.

We close the paper with the following two problems, which are open to
us.

Problem 1. Does there exist a reflexive Banach space with an unconditional
basis, which is hereditarily unconditional spreading model universal?

Although it does not seem necessary to use conditional structure in order
to construct a hereditarily unconditional spreading model universal space,
in our approach the conditional structure of the type I1; functionals cannot
be avoided, resulting in an HI space.

Problem 2. Does there exist a Banach space hereditarily spreading model
universal, for both conditional and unconditional spreading sequences?
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