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A HEREDITARILY INDECOMPOSABLE BANACH SPACE

WITH RICH SPREADING MODEL STRUCTURE

SPIROS A. ARGYROS, PAVLOS MOTAKIS

Abstract. We present a reflexive Banach space Xusm which is Hered-
itarily Indecomposable and satisfies the following properties. In ev-
ery subspace Y of Xusm there exists a weakly null normalized sequence
{yn}n, such that every subsymmetric sequence {zn}n is isomorphically
generated as a spreading model of a subsequence of {yn}n. Also, in
every block subspace Y of Xusm there exists a seminormalized block se-
quence {zn} and T : Xusm → Xusm an isomorphism such that for every
n ∈ N T (z2n−1) = z2n. Thus the space is an example of an HI space
which is not tight by range in a strong sense.

Introduction

The aim of the present paper is to exhibit a space with the properties
described in the abstract. The norming set W of the space Xusm is sat-
urated with constraints and it is very similar to the corresponding one in
[3]. As it is pointed out in [3] the method of saturation under constraints
is suitable for defining spaces with hereditary heterogeneous structure ([15],
[16]). The basic ingredients of the norming set W are the following. First
the unconditional frame is the ball of the dual T ∗ of Tsirelson space [9, 19];
namely W is a subset of BT ∗ which satisfies the following properties. As in
[3] it is closed in the operations ( 1

2n ,Sn, α), ( 1
2n ,Sn, β) which create the type

Iα, type Iβ functionals respectively. Furthermore it includes two types of
special functionals denoted as type II+ and type II− functionals. The type
II− functionals are designed to impose the rich spreading model structure
in the space Xusm , while the type II+ functionals serve a double purpose.
First they are a tool for finding c0 spreading models in every subspace of
Xusm . The c0 spreading models are the fundamental initial ingredient for the
ultimate construction. The second role of the type II+ functionals is to show
that the space Xusm is not tight by range. We recall that recently V. Ferenczi
and Th. Schlumprecht have presented in [8] a variant of Gowers-Maurey HI
space ([11]) which is HI and not tight by range.

Since the norming set W is similar to the one in [3] many of the critical
norm evaluations in the present paper are identical with the corresponding
ones in [3]. The main difference of the present construction from the one
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in [3] concerns the “combinatorial result” which is a Ramsey type result
yielding c0 spreading models. For the proof of this result type II+ functionals
are a key ingredient.

We pass to a more detailed description of the properties of the space Xusm .

Theorem. The space Xusm is reflexive, HI and hereditarily unconditional
spreading model universal.

The latter means that there exists a universal constant C > 0 such that
the following holds. For every subspace Y of Xusm there exists a seminormal-
ized weakly null sequence {xn}n admitting spreading models C-equivalent
to all normalized subsymmetric sequences. The fundamental property of
{xn}n deriving its spreading model universality is that for every Schreier

set F ⊂ N the finite sequence {xn}n∈F
C
∼ {un}n∈F , where {un}n denotes

Pelczynski’s universal unconditional basis [17, 13].
The second property of Xusm is that it is sequentially minimal. We recall,

from [7], that a Banach space X with a basis is sequentially minimal, if
in every infinite dimensional block subspace Y of X there exists a block

sequence {x
(Y )
n }n satisfying the following. In every subspace Z of X there

exists a Schauder basic sequence {zk}k equivalent to a subsequence {x
(Y )
nk }k.

A dichotomy of V. Ferenczi - Ch. Rosendal classification program [7] yields
that every Banach space X with a Schauder basis {en}n either contains a
block subspace which is tight by range or a sequentially minimal subspace.
As consequence of this dichotomy, Xusm is not tight by range. Moreover, the
following stronger fact holds.

Theorem. Every Y block subspace of Xusm contains a seminormalized block
sequence {xn}n satisfying the following. There exists an isomorphism T :
Xusm → Xusm (necessarily onto) such that T (x2n−1) = x2n for n ∈ N.

The above result is a direct consequence of the structure imposed to the
norming set W and hence to the space Xusm , in order to achieve the rich
spreading model structure. In particular the following is proved.

Proposition. Let Y be a block subspace of Xusm . Then there exist {xn, yn}n,
{fn, gn}n such that fn, gn belong to W , ranxn = ran fn, ran yn = ran gn,
xn < yn < xn+1, {xn}n, {yn}n are seminormalized, fn(xn) = 1, gn(yn) = 1
and {fn + gn}n generates a c0 spreading model while {xn − yn}n does not
generates an ℓ1 spreading model.

The above proposition yields that there exists a strictly singular operator
S : Xusm → Xusm with S(xn) = xn − yn and S(yn) = xn − yn (see [2]). As is
explained in [7], the sequences {xn}n, {yn}n are equivalent. It is also easy
to see that I − S is an isomorphism, satisfying the conclusion of the above
theorem.

Every operator in the space Xusm is of the form T = λI+S with S strictly
singular. We recall that one of the main properties of the space in [3], is
that the composition of any three strictly singular operators is a compact
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one. It is show that the space Xusm fails such a property, by proving that
in any block subspace there exists a strictly singular operator, which is not
polynomially compact. The proof of this result is directly linked to the
variety of spreading models appearing in every block subspace of Xusm .

The paper is organized as follows. The first section is devoted to the
definition of the norming set W of the space Xusm , a brief discussion is
also included concerning the role of its ingredients. The second section
concerns some basic norm evaluations on special convex combinations, which
are identical to the corresponding estimates from [3]. The third section
introduces the definition of the α, β indices, which are defined in the same
manner as in [3] and related results. In the fourth section, a combinatorial
result is stated and proven and it is used in the fifth section to establish
the existence of c0 spreading models. In the sixth section the structure of
the spreading models of the space Xusm is studied. In the seventh and final
section it is proven that the space is sequentially minimal, it is not tight by
range it admits strictly singular non polynomially compact operators.

1. The norming set of the space Xusm .

In this section we define the norming set W of the space Xusm . As in [3],
this set is defined with the use of the sequence {Sn}n which we remind below
and also families of Sn-admissible functionals and the set W will be a subset
of the norming set WT of Tsirelson space. The key difference between the
construction in [3] and the present one, is the way functionals of type II are
defined, which yields the properties of the space Xusm .

The Schreier families. The Schreier families is an increasing sequence of
families of finite subsets of the naturals, first appeared in [1], inductively
defined in the following manner.

Set S0 =
{
{n} : n ∈ N

}
and S1 = {F ⊂ N : #F 6 minF}.

Suppose that Sn has been defined and set Sn+1 = {F ⊂ N : F = ∪kj=1Fj ,

where F1 < · · · < Fk ∈ Sn and k 6 minF1}
If for n,m ∈ N we set Sn ∗ Sm = {F ⊂ N : F = ∪kj=1Fj , where F1 <

· · · < Fk ∈ Sm and {minFj : j = 1, . . . , k} ∈ Sn}, then it is well known that
Sn ∗ Sm = Sn+m.

The suppression unconditional universal basis of Pe lczyński. Let
{xk}k be a norm dense sequence in the unit sphere of C[0, 1]. Denote by
{uk}k the unit vector basis of c00 and define ‖ · ‖u on c00 as follows.

‖

n∑

k=1

αkuk‖u = sup
{
‖
∑

k∈F

αkxk‖ : F ⊂ {1, . . . , n}
}

Let U be the completion of (c00, ‖ · ‖u). Then {uk}k is a suppression
unconditional Schauder basis for U , such that for any {yk}k suppression
unconditional Schauder basic sequence and ε > 0, there exists a subsequence
of {uk}k, which is (1 + ε)-equivalent to {yk}k.
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The sequence {uk}k is called the unconditional basis of Pe lczyński (see
[17]).

Notation. A sequence of vectors x1 < · · · < xk in c00 is said to be Sn-
admissible if {min suppxi : i = 1, . . . , k} ∈ Sn.

Let G ⊂ c00. A vector f ∈ G is said to be an average of size s(f) = n, if
there exist f1, . . . , fd ∈ G, d 6 n, such that f = 1

n(f1 + · · · + fd).
A sequence {fj}j of averages in G is said to be very fast growing, if

f1 < f2 < . . ., s(fj) > 2max supp fj−1 and s(fj) > s(fj−1) for j > 1.

The coding function. Choose L0 = {ℓk : k ∈ N}, ℓ1 > 9 an infinite subset
of the naturals such that:

(i) For any k ∈ N we have that ℓk+1 > 22ℓk and
(ii)

∑∞
k=1

1
2ℓk

< 1
1000 .

Decompose L0 into further infinite subsets L1, L2, L3. Set

Q =
{(
f1, . . . , fm

)
: m ∈ N, f1 < . . . < fm ∈ c00

with fk(i) ∈ Q, for i ∈ N, k = 1, . . . ,m}

Choose a one to one function σ : Q → L2, called the coding function, such
that for any

(
f1, . . . , fm

)
∈ Q, we have that

σ
(
f1, . . . , fm

)
> 2

1

‖fm‖0 · max supp fm

Remark 1.1. If we set L = L1 ∪ L2, For any n ∈ N we have that #L ∩
{n, . . . , 22n} 6 1, moreover for every n ∈ L3, we have that L∩{n, . . . , 22n} =
∅.

The norming set. The norming set W is defined to be the smallest subset
of c00 satisfying the following properties:

1. The set {+−en}n∈N is a subset of W , for any f ∈W we have that −f ∈W ,
for any f ∈ W and any E interval of the naturals we have that Ef ∈ W
and W is closed under rational convex combinations. Any f = +

−en will be
called a functional of type 0.

2. The set W is closed in the ( 1
2n ,Sn, α) operation, i.e. it contains any

functional f which is of the form f = 1
2n

∑d
q=1 αq, where {αq}

d
q=1 is an Sn-

admissible and very fast growing sequence of α-averages in W . If E is an
interval of the naturals, then g = +

−Ef is called a functional of type Iα, of
weight w(g) = n.

3. The set W is closed in the ( 1
2n ,Sn, β) operation, i.e. it contains any func-

tional f which is of the form f = 1
2n

∑d
q=1 βq, {βq}

d
q=1 is an Sn-admissible

and very fast growing sequence of β-averages in W . If E is an interval of the
naturals, then g = +

−Ef is called a functional of type Iβ, of weight w(g) = n.

4. For any special sequence {fq, gq}
d
q=1 in W and F ⊂ {1, . . . , d} such that

2(#F ) 6 min supp fminF , the set W contains any functional f which is of
the form f = 1

2

∑
q∈F (fq + gq).
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If E is an interval of the naturals, then g = +
−Ef is called a functional of

type II+ with weights ŵ(g) = {w(fq) : q ∈ F, ran(fq + gq) ∩ E 6= ∅}.

5. For any special sequence {fq, gq}
d
q=1 in W and F ⊂ {1, . . . , d} such that

2(#F ) 6 min supp fminF and {λq}q∈F ⊂ Q with ‖
∑

q∈F λqu
∗
q‖u 6 1, where

{u∗k}k denotes the biorthogonals of the unconditional basis of Pe lczyński, the

set W contains any functional f which is of the form f = 1
2

∑
q∈F λq(fq−gq).

If E is an interval of the naturals, then g = +
−Ef is called a functional of

type II− with weights ŵ(g) = {w(fq) : q ∈ F, ran(fq − gq) ∩ E 6= ∅}.

We call a functional f ∈ W which is either of type II+ or of type II−, a
functional of type II.

For d ∈ N, a sequence of pairs of functionals of type Iα {fq, gq}
d
q=1, is

called a special sequence if

(1) f1 < g1 < f2 < g2 < · · · < fd < gd

(2) w(fq) = w(gq) for q = 1, . . . , d

(3)
w(f1) ∈ L1 and σ(f1, g1, f2, g2 . . . , fq−1, gq−1) = w(fq) for 1 < q 6 d

We call an α-average any average α ∈W of the form α = 1
n

∑d
j=1 fj, d 6

n, where f1 < · · · < fd ∈W .

We call a β-average any average β ∈ W of the form β = 1
n

∑d
j=1 fj, d 6

n, where f1, . . . , fd ∈ W are functionals of type II, with pairwise disjoint
weights ŵ(fj).

In general, we call a convex combination any f ∈ W that is not of type
0, Iα, Iβ or II.

A sequence of pairs of functionals of type Iα b = {fq, gq}
∞
q=1 is called a

special branch, if {fq, gq}
d
q=1 is a special sequence for all d ∈ N. We denote

the set of all special branches by B.
If b = {fq, gq}

∞
q=1 ∈ B, we denote by b+ = {fq + gq : q ∈ N} and b− =

{fq − gq : q ∈ N}.

For x ∈ c00 define ‖x‖ = sup{f(x) : f ∈ W} and Xusm = (c00(N), ‖ · ‖).
Evidently Xusm has a bimonotone basis.

The features of the space X
usm

. Before proceeding to the study of the
space Xusm , it is probably useful to explain the role of the specific ingredi-
ents in the definition of the norming set W . First, as we have mentioned
in the introduction, we will use saturation under constraints in a similar
manner as in [3]. This yields the type Iα, Iβ functionals and the indices
α
(
{xk}k

)
, β

(
{xk}k

)
for block sequences {xk}k in Xusm , which are defined as

in [3]. As the familiar reader would observe, the special functionals in the
present construction differ from the corresponding ones in [3]. This is due to
the desirable main property of the space Xusm , namely that every subspace
contains a sequence admitting all unconditional spreading sequences as a
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spreading model. This is related to property 5 in the above definition of the
norming set W .

What requires further discussion are the type II+ functionals. The prim-
itive role of them is to allow to locate in every block subspace a seminor-
malized block sequence generating a c0 spreading model. This follows from
the next proposition.

Proposition. Let {xk}k be a seminormalized block sequence in Xusm such
that the following hold.

(i) α
(
{xk}k

)
= 0 and β

(
{xk}k

)
= 0

(ii) For every special branch b = {fq, gq}
∞
q=1

lim
k

sup
{
|fq(xk)| ∨ |gq(xk)| : q ∈ N

}
= 0

Then there exists a subsequence {xkn}n of {xk}k generating a c0 spreading
model.

Note that in [3], property (i) is sufficient for a sequence to have a sub-
sequence generating a c0 spreading model. However, in the present paper
this is not the case and the special functionals of type II+ are crucial for
establishing property (ii) in the above proposition.

As consequence, we obtain that in every block subspace there exists a
block sequence generating a c0 spreading model. As in [3], from the c0
spreading model one can pass to exact nodes (see Def. 6.4) {xk, yk, fk, gk},
with {fk, gk}

∞
k=1 defining a special branch. The desired sequence is the se-

quence {xk − yk}k. A secondary role of the type II+ special functionals is
to determine intertwined equivalent sequences {vk, wk}k. Those are subse-
quences of the above described sequence {xk, yk}k.

As in [3], the norming set of the space Xusm is a subset of the unit ball of
the dual T ∗ of Tsirelson space (see [9]). Moreover, most of the critical norm
evaluations are identical with those in [3].

2. basic evaluations for special convex combinations

In this section we present some results concerning estimations of the norm
of special convex combinations. These estimations are crucial throughout
the rest of the paper, as like in [3], special convex combinations are one of
the main tools used to establish the properties of the space Xusm .

Definition 2.1. Let x =
∑

k∈F ckek be a vector in c00. Then x is said to
be a (n, ε) basic special convex combination (or a (n, ε) basic s.c.c.) if:

(i) F ∈ Sn, ck > 0, for k ∈ F and
∑

k∈F ck = 1.
(ii) For any G ⊂ F,G ∈ Sn−1, we have that

∑
k∈G ck < ε.

The proof of the next proposition can be found in [4], Chapter 2, Propo-
sition 2.3.
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Proposition 2.2. For any M infinite subset of the naturals, any n ∈ N and
ε > 0, there exists F ⊂ M, {ck}k∈F , such that x =

∑
k∈F ckek is a (n, ε)

basic s.c.c.

Definition 2.3. Let x1 < · · · < xm be vectors in c00 and ψ(k) = min suppxk,
for k = 1, . . . ,m. Then x =

∑m
k=1 ckxk is said to be a (n, ε) special convex

combination (or (n, ε) s.c.c.), if
∑m

k=1 ckeψ(k) is a (n, ε) basic s.c.c.

The proof of the following result can be found in [3], Proposition 2.5.

Proposition 2.4. Let x =
∑

k∈F ckek be a (n, ε) basic s.c.c. and G ⊂ F .
Then the following holds.

‖
∑

k∈G

ckek‖T 6
1

2n

∑

k∈G

ck + ε

The next proposition is identical to Corollary 2.8 from [3].

Proposition 2.5. Let {xk}k be a block sequence in Xusm such that ‖xk‖ 6

1, {ck}k ⊂ R and φ(k) = max suppxk for all k. Then:

(4) ‖
∑

k

ckxk‖ 6 6‖
∑

k

ckeφ(k)‖T

The following corollary is an easy consequence of Propsitions 2.4 and 2.5
and its proof can be found in [3], Corollary 2.9.

Corollary 2.6. Let x =
∑m

k=1 ckxk be a (n, ε) s.c.c. in Xusm , such that
‖xk‖ 6 1, for k = 1, . . . ,m. If F ⊂ {1, . . . ,m}, then

‖
∑

k∈F

ckxk‖ 6
6

2n

∑

k∈F

ck + 12ε.

In particular, we have that ‖x‖ 6 6
2n + 12ε.

The proof of the next corollary is based on Corollary 2.6. It’s proof is
identical to the one of Corollary 2.10 from [3].

Corollary 2.7. The basis of Xusm is shrinking.

The definition of the norming set yields the following result, the proof of
which can be found in [3], Corollary 2.11.

Proposition 2.8. The basis of Xusm is boundedly complete.

Combining the previous two results with R. C. James’ well known result
[12], we conclude the following.

Corollary 2.9. The space Xusm is reflexive.

Rapidly increasing sequences are defined in the exact same manner, as in
[3], Definition 3.10.
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Definition 2.10. Let C > 1, {nk}k be strictly increasing naturals. A
block sequence {xk}k is called a (C, {nk}k) α-rapidly increasing sequence
(or (C, {nk}k) α-RIS) if the following hold.

(i) ‖xk‖ 6 C, 1
2nk+1

max suppxk <
1

2nk
for all k.

(ii) For any functional f in W of type Iα of weight w(f) = n, for any k
such that n < nk, we have that |f(xk)| < C

2n .

Definition 2.11. Let n ∈ N, C > 1, θ > 0. A vector x ∈ Xusm is called

a (C, θ, n) vector if the following hold. There exist 0 < ε < 1
32C23n , and

{xk}
m
k=1 with ‖xk‖ 6 C for k = 1, . . . ,m such that

(i) min suppx1 > 8C22n

(ii) There exist {ck}
m
k=1 ⊂ [0, 1] such that

∑m
k=1 ckxk is a (n, ε) s.c.c.

(iii) x = 2n
∑m

k=1 ckxk and ‖x‖ > θ

If moreover there exist {nk}
m
k=1 strictly increasing naturals with n1 > 22n

such that {xk}
m
k=1 is (C, {nk}

m
k=1) α-RIS, then x is called a (C, θ, n) exact

vector.

Remark 2.12. Let x be a (C, θ, n) vector in Xusm . Then, using Corollary
2.6 we conclude that ‖x‖ < 7C.

3. The α, β indices

The α and β indices concerning block sequences in Xusm , are identically
defined, as in [3], Definitions 3.1 and 3.2. Note that in [3], the α, β indices are
sufficient to fully describe the spreading models admitted by block sequences.
In the present paper, this is not the case. However, the α, β indices retain
an important role in determining what spreading models a block sequence
generates.

Definition 3.1. Let {xk}k be a block sequence in Xusm that satisfies the
following. For any n ∈ N, for any very fast growing sequence {αq}q of
α-averages in W and for any {Fk}k increasing sequence of subsets of the
naturals, such that {αq}q∈Fk

is Sn-admissible, the following holds. For any
{xnk

}k subsequence of {xk}k, we have that limk
∑

q∈Fk
|αq(xnk

)| = 0.

Then we say that the α-index of {xk}k is zero and write α
(
{xk}k

)
= 0.

Otherwise we write α
(
{xk}k

)
> 0.

Definition 3.2. Let {xk}k be a block sequence in Xusm that satisfies the
following. For any n ∈ N, for any very fast growing sequence {βq}q of
β-averages in W and for any {Fk}k increasing sequence of subsets of the
naturals, such that {βq}q∈Fk

is Sn-admissible, the following holds. For any
{xnk

}k subsequence of {xk}k, we have that limk
∑

q∈Fk
|βq(xnk

)| = 0.

Then we say that the β-index of {xk}k is zero and write β
(
{xk}k

)
= 0.

Otherwise we write β
(
{xk}k

)
> 0.

Remark 3.3. Let {xk}k be a block sequence in Xusm and {Ek}k be an
increasing sequence of intervals of the natural numbers with Ek ⊂ ranxk for
all k ∈ N. Set yk = Ekxk.
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(i) If α
(
{xk}k

)
= 0, then α

(
{yk}k

)
= 0.

(ii) If β
(
{xk}k

)
= 0, then β

(
{yk}k

)
= 0.

Remark 3.4. Let {xk}k, {yk}k be block sequence such that if zk = xk+yk,
{zk}k is also a block sequence.

(i) If α
(
{xk}k

)
= 0 and α

(
{yk}k

)
= 0, then α

(
{zk}k

)
= 0.

(ii) If β
(
{xk}k

)
= 0 and β

(
{yk}k

)
= 0, then β

(
{zk}k

)
= 0.

Remark 3.5. Let {xk}k be a block sequence in Xusm and {Fk}k be an
increasing sequence of subsets of the natural numbers and {ci}i∈Fk

⊂ [0, 1]
with

∑
i∈Fk

ci = 1 for all k ∈ N. Set yk =
∑

i∈Fk
cixi.

(i) If α
(
{xk}k

)
= 0, then α

(
{yk}k

)
= 0.

(ii) If β
(
{xk}k

)
= 0, then β

(
{yk}k

)
= 0.

The following two Propositions are proven in [3], Proposition 3.3.

Proposition 3.6. Let {xk}k be a block sequence in Xusm . Then the follow-
ing assertions are equivalent.

(i) α
(
{xk}k

)
= 0

(ii) For any ε > 0 there exists j0 ∈ N such that for any j > j0 there exists
kj ∈ N such that for any k > kj , and for any {αq}

d
q=1 Sj-admissible

and very fast growing sequence of α-averages such that s(αq) > j0,

for q = 1, . . . , d, we have that
∑d

q=1 |αq(xk)| < ε.

Proposition 3.7. Let {xk}k be a block sequence in Xusm . Then the follow-
ing assertions are equivalent.

(i) β
(
{xk}k

)
= 0

(ii) For any ε > 0 there exists j0 ∈ N such that for any j > j0 there exists
kj ∈ N such that for any k > kj , and for any {βq}

d
q=1 Sj-admissible

and very fast growing sequence of β-averages such that s(βq) > j0,

for q = 1, . . . , d, we have that
∑d

q=1 |βq(xk)| < ε.

The next Proposition is similar to Proposition 3.5 from [3].

Proposition 3.8. Let {xk}k be a seminormalized block sequence in Xusm ,
such that either α

(
{xk}k

)
> 0, or β

(
{xk}k

)
> 0. Then there exists a

subsequence {xnk
}k of {xk}k∈N, that generates an ℓn1 spreading model, for

every n ∈ N.
In particular, there exists θ > 0 such that for any k0, n ∈ N, there exists

x a (C, θ, n) vector supported by {xk}k with min suppx > k0.
If moreover {xk}k is (C, {nk}) α-RIS, then for every n, k0 ∈ N there exists

x a (C, θ, n) exact vector supported by {xk}k with min suppx > k0.

The proof of the following lemma, is identical to Lemma 3.6 from [3].
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Lemma 3.9. Let x = 2n
∑m

k=1 ckxk be a (C, θ, n) vector in Xusm . Let also α
be an α-average and set Gα = {k : ranα ∩ ranxk 6= ∅}. Then the following
holds.
(5)

|α(x)| < min
{C2n

s(α)

∑

k∈Gα

ck,
6C

s(α)

∑

k∈Gα

ck+
1

3 · 22n
}

+2C2n max{ck : k ∈ Gα}

The next lemma is proven in [3], Lemma 3.7.

Lemma 3.10. Let x be a (C, θ, n) vector in Xusm . Let also {αq}
d
q=1 be

a very fast growing and Sj-admissible sequence of α-averages with j < n.
Then the following holds.

(6)

d∑

q=1

|αq(x)| <
6C

s(α1)
+

1

2n

The following corollary is an immediate consequence of Lemma 3.10 and
it is similar with Proposition 3.9 from [3].

Corollary 3.11. Let x be a (C, θ, n) vector in Xusm . Let also f be a func-
tional of type Iα in W with w(f) = j < n. Then the following holds

(7) |f(x)| <
6C + 1/2n

2j

Combining Lemma 3.10 with Corollary 3.11 we conclude the following.

Corollary 3.12. Let {xk}k be a block sequence in Xusm , such that xk is
a (C, θ, nk) vector and {nk}k is strictly increasing. Then α

(
{xk}k

)
= 0.

Moreover, passing if necessary to a subsequence, {xk}k is (7C, {nk}k) α-
RIS.

Notation. Let x = 2n
∑m

k=1 ckxk be a (C, θ, n) exact vector in Xusm , where

{xk}
m
k=1 is (C, {nk}

m
k=1) α-RIS. Let also f = 1

2

∑
q∈F (fq + gq) be a type

II+ functional (or f = 1
2

∑
q∈F λq(fq − gq) be a type II− functional). Set

iq = w(fq) for q ∈ F and

E0 = {q : n 6 iq < 22n}

E1 = {q : iq < n}

E2 = {q : 22n < iq < n1}

Jk = {q : nk 6 iq < nk+1}, for k < m and Jm = {q : nm 6 iq}

Note that from Remark 1.1 either E0 = ∅ or #E0 = 1. Under the above
notation the following lemma holds, which is similar to Lemma 3.13 from
[3] and their proofs are almost identical.
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Lemma 3.13. Let x = 2n
∑m

k=1 ckxk be a (C, θ, n) exact vector in Xusm ,
where {xk}

m
k=1 is (C, {nk}

m
k=1) α-RIS.

Then if f = 1
2

∑
q∈F (fq + gq) is a functional of type II+, there exists

Ff ⊂ {k : ran f ∩ ranxk 6= ∅} with {min suppxk : k ∈ Ff} ∈ S2 such that

f(x) <
1

2

∑

q∈E0

(fq + gq)(x) +
∑

q∈E1

7C

2iq
+

m∑

k=2

∑

q∈Jk

2nk

2iq+nk−1

+

m−1∑

k=1

∑

q∈Jk

C2n

2iq
+

∑

q∈E2

C2n

2iq
+ C2n

∑

k∈Ff

ck(8)

Similarly, if f = 1
2

∑
q∈F λq(fq − gq) is a functional of type II−, there

exists Ff ⊂ {k : ran f ∩ ranxk 6= ∅} with {min suppxk : k ∈ Ff} ∈ S2 such
that

f(x) <
1

2

∑

q∈E0

λq(fq − gq)(x) +
∑

q∈E1

7C

2iq
+

m∑

k=2

∑

q∈Jk

2nk

2iq+nk−1

+
m−1∑

k=1

∑

q∈Jk

C2n

2iq
+

∑

q∈E2

C2n

2iq
+ C2n

∑

k∈Ff

ck(9)

The next corollary is similar to Corollary 3.14 from [3].

Corollary 3.14. Let x be a (C, θ, n) exact vector in Xusm and f = 1
2

∑
q∈F (fq+

gq) be a type II+ functional (or f = 1
2

∑
q∈F λq(fq − gq) be a type II− func-

tional), such that {n, . . . , 22n} ∩ ŵ(f) = ∅. Set iq = w(fq) for q ∈ F and
E1 = {q : iq < n}. Then the following holds.

(10) |f(x)| <
∑

q∈E1

7C

2iq
+

2C

2n

The lemma which follows is similar to Lemma 3.15 from [3].

Lemma 3.15. Let x = 2n
∑m

k=1 ckxk be a (C, θ, n) exact vector in Xusm and
β be a β-average in W . Then there exists Fβ ⊂ {k : ran β ∩ ranxk 6= ∅}
with {min suppxk : k ∈ Ff} ∈ S2 such that

(11) |β(x)| <
8C

s(β)
+ C2n

∑

k∈Fβ

ck

The next lemma is similar to Lemma 3.16 from [3].
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Lemma 3.16. Let x be a (C, θ, n) exact vector in Xusm and {β}dq=1 be a
very fast growing and Sj-admissible sequence of β-averages with j 6 n− 3.
Then the following holds

(12)

d∑

q=1

|βq(x)| <

d∑

q=1

8C

s(βq)
+

1

2n

If moreover s(β1) > min suppx, then
∑d

q=1 |βq(x)| < 2
2n

The next result uses the previous lemma and it is similar to Proposition
3.17 from [3].

Corollary 3.17. Let {xk}k be a block sequence in Xusm , such that xk is a
(C, θ, nk) exact vector and {nk}k is strictly increasing. Then β

(
{xk}k

)
= 0.

4. A combinatorial result

In this section we introduce a new condition concerning the behaviour of
branches of special functionals on a block sequence {xk}k (see the definition
below). When this condition is satisfied, we shall write B ⊗ {xk}k = 0. We
prove that one can find in every block subspace a normalized block sequence
{xk}k satisfying B ⊗ {xk}k = 0, as well as α

(
{xk}k

)
= 0 and β

(
{xk}k

)
= 0.

We then proceed to prove a Ramsey type result concerning block sequences
with B⊗{xk}k = 0 and β

(
{xk}k

)
= 0. The above are used in the next section

to show that a block sequence {xk}k with B⊗{xk}k = 0, α
(
{xk}k

)
= 0 and

β
(
{xk}k

)
= 0, has a subsequence generating a c0 spreading model.

Definition 4.1. Let {xk}k be a block sequence in Xusm and b = {fq, gq}
∞
q=1 ∈

B (see the definition of the norming set) satisfying the following. For every
ε > 0 there exist k0, q0 ∈ N, such that for every k > k0, q > q0 we have that
|(fq+−gq)(xk)| < ε. Then we write b⊗ {xk}k = 0. If b⊗ {xk}k = 0 for every
b ∈ B, then we write B ⊗ {xk}k = 0.

Remark 4.2. If b⊗ {xk}k 6= 0, using a pigeon hole argument, it is easy to
see that there exists M an infinite subset of the natural numbers and ε > 0
such that one of the following holds.

(i) For every k ∈ M , there exists q ∈ N such that |(fq + gq)(xk)| > ε.
In this case we say that b+ ε-norms {xk}k.

(ii) For every k ∈ M , there exists q ∈ N such that |(fq − gq)(xk)| > ε.
In this case we say that b− ε-norms {xk}k.

In either case we say that b ε-norms {xk}k.

Proposition 4.3. Let {xk}k be a bounded block sequence and b ∈ B such
that b+ ε-norms {xk}k. Then there exists a subsequence of {xk}k that gen-
erates an ℓ1 spreading model.

Proof. If b = {fq, gq}
∞
q=1 passing, if necessary, to a subsequence, we may

assume the following.
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(i) For every k ∈ N there exists qk ∈ N such that (fqk + gqk)(xk) > ε
and min supp fqk > 2k.

(ii) For k 6= m ∈ N, ran(fqk + gqk) ∩ ranxm = ∅

Then for n 6 k1 < · · · < kn natural numbers and {ci}
n
i=1 non negative

reals, we have that f = 1
2

∑n
i=1(fqki + gqki ) ∈ W and f(

∑n
i=1 cixki) >

ε
2

∑n
i=1 ci, therefore

(13) ‖

n∑

i=1

cixki‖ >
ε

2

n∑

i=1

ci

Since {xk}k is weakly null, every spreading model admitted by it must
be unconditional. Combining this fact with (13), we conclude that every
spreading model admitted by {xk}k is equivalent to the usual basis of ℓ1.

�

Lemma 4.4. Let {xk}k be a block sequence in Xusm with β
(
{xk}k

)
= 0 and

ε > 0. Then there exists M an infinite subset of the natural numbers, such
that the set Bε = {b ∈ B : b ε-norms {xk}k∈M} is finite.

Proof. Towards a contradiction, assume that for every M infinite subset of
the natural numbers, the set {b ∈ B : b ε-separates {xk}k∈M} is infinite. By
using induction, choose M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ · · · infinite subsets of the
natural numbers and {bn : n ∈ N} ⊂ B with bn 6= bm for n 6= m, satisfying
the following. For every n ∈ N and and k ∈ Mn, if bn = {fnq , g

n
q }

∞
q=1 there

exists q ∈ N such that either |(fnq + gnq )(xk)| > ε or |(fnq − gnq )(xk)| > ε. To
simplify notation, from now on we will assume that |(fnq + gnq )(xk)| > ε.

We are going to prove the following. For every k0,m ∈ N, there exists
k > k0 and β a β-average in W of size s(β) = m, such that β(xk) >

ε
2 . By

Proposition 3.7, this means that β
(
{xk}k

)
> 0 which yields a contradiction.

Let k0,m ∈ N. Since bn 6= bl for n 6= l, there exists q0 ∈ N, such that for
every 1 6 n < l 6 m, for every q1, q2 > q0, w(fnq1) 6= w(f lq2).

Choose k ∈ Mm with k > k0 and min suppxk ≥ max{max supp gnq0 :
n = 1, . . . ,m}. Then for n = 1, . . . ,m there exists qn > q0 such that
|(fnqn + gnqn)(xk)| > ε. Set hn = sgn

(
(fnqn + gnqn)(xk)

)
1
2(fnqn + gnqn) for n =

1, . . . ,m.
Then hn is a functional of type II in W with ŵ(hn) = {w(fnqn)} for

n = 1, . . . ,m and hn(xk) > ε
2 . Since ŵ(hn) ∩ ŵ(hl) = ∅ for 1 6 n < l 6 m,

we have that β = 1
m

∑m
n=1 hn is a β-average of size s(β) = m with β(xk) >

ε
2 .

This completes the proof.
�

Lemma 4.5. Let {xk}k be a block sequence in Xusm with β
(
{xk}k

)
= 0.

Then there exists M an infinite subset of the natural numbers, such that
the set B = {b ∈ B : there exists ε > 0 such that b ε-norms {xk}k∈M} is
countable.
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Proof. Apply Lemma 4.4 and choose M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ · · · infinite
subsets of the natural numbers such that the set Bn = {b ∈ B : b 1

n -norms
{xk}k∈Mn} is finite, for every n ∈ N. Choose M a diagonalization of {Mn}n.

We will show that B = {b ∈ B : there exists ε > 0 such that b ε-norms
{xk}k∈M} ⊂ ∪nBn.

Let b ∈ B. Then, there exists n ∈ N, such that b 1
n -norms {xk}k∈M . It

easily follows that b ∈ Bn.
�

Lemma 4.6. Let {xk}k be a bounded block sequence in Xusm with β
(
{xk}k

)
=

0. Then there exists {Fk}k an increasing sequence of subsets of the natural
numbers with #Fk 6 minFk for all k ∈ N with limk #Fk = ∞ such that if
yk = 1

#Fk

∑
i∈Fk

xi, then B ⊗ {yk}k = 0.

Proof. Using Lemma 4.5 and passing, if necessary, to a subsequence, we may
assume that if B′ = {b ∈ B : there exists ε > 0 such that b ε-norms {xk}k},
then B′ = {bn : n ∈ N}.

Let bn = {fnq , g
n
q }

∞
q=1 for all n ∈ N and choose M1 ⊃M2 ⊃ · · · ⊃Mn ⊃ · · ·

infinite subsets of the natural numbers such that for every n, q ∈ N, there
exists at most one k ∈Mn, with ran(fnq + gnq ) ∩ ranxk 6= ∅.

Choose M a diagonalization of {Mn}n. Then for every n ∈ N there exists
qn ∈ N such that for every q > qn there exists at most one k ∈ M with
ran(fnq + hnq ) ∩ ranxk 6= ∅.

Choose {Fk}k an increasing sequence of subsets of the natural numbers
with #Fk 6 minFk for all k ∈ N with limk #Fk = ∞ and set yk =
1

#Fk

∑
i∈Fk

xi for all k ∈ N.

Towards a contradiction, assume that there exist ε > 0 and b = {fq, gq}
∞
q=1 ∈

B, such that b ε-norms {yk}k. For convenience, assume that b+ ε-norms
{yk}k and choose N an infinite subset of the naturals, such that for every
k ∈ N there exists qk ∈ N with |(fqk + gqk)(yk)| > ε.

It follows that for every k ∈ N , there exists ik ∈ Fk such that |(fqk +
gqk)(xik)| > ε. We conclude that b ε-norms {xk}k and hence b ∈ B′, i.e.
b = bn, for some n ∈ N.

Choose k ∈ N with k > max supp gnqn and #Fk > ε−1 sup{‖xk‖ : k ∈ N}.
Then for every q ∈ N, there exists at most one i ∈ Fk, such that ran(fnq +
gnq ) ∩ ranxi 6= ∅ and hence for every q ∈ N, we have that |(fnq + hnq )(yk)| <
sup{‖xk‖:k∈N}

#Fk
< ε. This contradiction completes the proof.

�

Proposition 4.7. Let {xk}k be a block sequence in Xusm such that xk is
a (C, θ, nk) exact vector with nk ∈ L3 (see the definition of the coding
function) and {nk}k is strictly increasing. Then B ⊗ {xk}k = 0.

Proof. Let b ∈ B Observe that for q ∈ N, hq = 1
2 (fq+−gq) is a functional

of type II and by Corollary 3.14, if iq = w(fq) for k ∈ N we have that

|hq(xk)| <
7C
2iq

+ 2C
2nk . From this it easily follows that b⊗ {xk}k = 0. �



RICH SPREADING MODEL STRUCTURE 15

Proposition 4.8. Let {xk}k be a normalized block sequence in Xusm . Then
there exists {yk}k a further normalized block sequence of {xk}k such that
α
(
{yk}k

)
= 0, β

(
{yk}k

)
= 0 and B ⊗ {yk}k = 0.

Proof. Since Xusm does not contain a copy of c0, we may choose {zk}k a
normalized block sequence of {xk}k, such that if zk =

∑
i∈Gk

cixi, then

limk max{|ci| : i ∈ Gk} = 0.
If α

(
{zk}k

)
= 0, β

(
{zk}k

)
= 0 and B ⊗ {zk}k = 0, then {zk}k is the

desired sequence. Otherwise, we distinguish three cases.

Case 1: α
(
{zk}k

)
= 0, β

(
{zk}k

)
= 0 and there exist b ∈ B, ε > 0 such that

b+ ε-norms {zk}k.
Using Proposition 4.3 and passing, if necessary, to a subsequence, we

may assume that {zk}k generates an ℓ1 spreading model. Apply Lemma
4.6 to find {Fk}k an increasing sequence of subsets of the natural numbers
with #Fk 6 minFk for all k ∈ N with limk #Fk = ∞ such that if yk =
1

#Fk

∑
i∈Fk

zi, then B ⊗ {yk}k = 0.

Since {zk}k generates an ℓ1 spreading model, we have that {yk}k is semi-
normalized. Moreover Remark 3.5 yields that α

(
{yk}k

)
= 0 as well as

β
(
{yk}k

)
= 0. We conclude that if y′k = 1

‖yk‖
yk, then {y′k}k is the desired

sequence.

Case 2: α
(
{zk}k

)
= 0, β

(
{zk}k

)
= 0 and there exist b ∈ B, ε > 0 such that

b− ε-norms {zk}k.
If b = {fq, gq}

∞
q=1 passing if necessary to a subsequence, we may assume

that for every k ∈ N there exists qk ∈ N such that |(fqk − gqk)(zk)| > ε and
max{|ci| : i ∈ Fk} <

ε
2 .

Fix k ∈ N and set ik = max{i ∈ Gk : ran fqk ∩ ranxi 6= ∅}, G1
k = {i ∈

Gk : i 6 ik} and G2
k = {i ∈ Gk : i > ik}. Set

z′k = sgn
(
fqk(zk)

) ∑

i∈G1
k

cixi + sgn
(
gqk(zk)

) ∑

i∈G2
k

cixi

Observe the following.

fqk(z′k) = |fqk(zk)|

gqk(z′k) > |gqk(zk)| − |cik | > |gqk(zk)| −
ε

2

1

2
6 ‖z′k‖ 6 2

Combining the above we conclude that by setting wk = 1
‖z′k‖

z′k, we have that

(fqk + gqk)(wk) > ε
4 , i.e. b+

ε
4 -norms {wk}k. Moreover Remarks 3.3 and 3.4

yield that α
(
{wk}k

)
= 0 as well as β

(
{wk}k

)
= 0, hence this case has been

reduced to the previous one.

Case 3: α
(
{zk}k

)
> 0 or β

(
{zk}k

)
> 0.
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Apply proposition 3.8 to construct a sequence {y′k}k of (C, θ, nk) vec-

tors with {nk}k strictly increasing. Set yk = 1
‖yk‖

y′k. Corollary 3.12 yields

that α
(
{yk}k

)
= 0 and passing, if necessary to a subsequence, {yk}k is

(C, {nk}k) α-RIS.
Assume that β

(
{yk}k

)
= 0. Then this case is reduced either to case 1, or

to case 2.
If on the other hand β

(
{yk}k

)
> 0, apply proposition 3.8 to construct

a sequence {w′
k}k of (C, θ, nk) exact vectors with nk ∈ L3 for all k ∈ N

and {nk}k strictly increasing. Set wk = 1
‖w′

k‖
wk. Corollaries 3.12, 3.17 and

Proposition 4.7 yield that {wk}k is the desired sequence.
�

The following definition is a slight variation of Definition 4.1 from [3].

Definition 4.9. Let x1 < x2 < x3 be vectors in Xusm , f = +
−E

(
1
2

∑
q∈F (fq+

gq)
)

be a functional of type II+ ( or f = +
−E

(
1
2

∑
q∈F λq(fq − gq)

)
be a

functional of type II−), such that supp f ∩ ranxi 6= ∅, for i = 1, 2, 3. Set
q0 = min{q ∈ F : ran(fq + gq) ∩ ranx2 6= ∅}. If ran(fq0 + gq0) ∩ ranx3 = ∅,
then we say that f separates x1, x2, x3.

Lemma 4.10. Let {nk}k be a strictly increasing sequence of natural num-
bers satisfying the following. For every m ∈ N, there exists a special
sequence {fmq , g

m
q }dmq=1 such that {nk : k = 1, . . . ,m} ⊂ {w(fmq ) : q =

1, . . . , dm}. Then there exists b = {fq, gq}
∞
q=1 ∈ B, such that {nk : k ∈ N} ⊂

{w(fq) : q ∈ N}.

Proof. We construct b by induction. Let m ∈ N and suppose that we have
chosen natural numbers 1 6 p1 < · · · < pm and a special sequence {fq, gq}

pm
q=1

such that the following are satisfied. For 1 6 l 6 m

(i) {nk : k = 1, . . . , l} ⊂ {w(fq) : q = 1, . . . , pl}
(ii) σ(f1, g1, f2, g2 . . . , fpl , gpl) = nl+1

Since {nk : k = 1, . . . ,m+ 2} ⊂ {w(fm+2
q ) : q = 1, . . . , dm+2}, there exist

1 < q0 < q1 6 dm+2, such that w(fm+2
q0 ) = nm+1 and w(fm+2

q1 ) = nm+2

Then
σ(fm+2

1 , gm+2
1 , . . . , fm+2

q1−1 , g
m+2
q1−1) = nm+2

Set pm+1 = q1 − 1. It remains to be shown that pm < pm+1 and that
{fq, gq}

pm
q=1 = {fm+2

q , gm+2
q }pmq=1.

Since

nm+1 = σ(f1, g1, . . . , fpm , gpm)

w(fm+2
q0 ) = σ(fm+2

1 , gm+2
1 , . . . , fm+2

q0−1 , g
m+2
q0−1)

and w(fm+2
q0 ) = nm+1, by the fact that σ is one to one, we conclude that

{fq, gq}
pm
q=1 = {fm+2

q , gm+2
q }q0−1

q=1 . Thus, it follows that pm = q0−1 < q1−1 =

pm+1 and {fq, gq}
pm
q=1 = {fm+2

q , gm+2
q }pmq=1.

�
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Proposition 4.11. Let {xk}k be a bounded block sequence in Xusm , such
that β

(
{xk}k

)
= 0 and B ⊗ {xk}k = 0. Then for any ε > 0, there exists M

an infinite subset of the naturals, such that for any k1 < k2 < k3 ∈ M , for
any functional f ∈ W of type II that separates xk1 , xk2 , xk3 , we have that
|f(xki)| < ε, for some i ∈ {1, 2, 3}.

Proof. Towards a contradiction, assume that this is not the case. By using
Ramsey theorem [18], we may assume that there exists ε > 0 such that for
any k < l < m ∈ N, there exists fk,l,m a functional of type II that separates
xk, xl, xm and |fk,l,m(xk)| > ε, |fk,l,m(xl)| > ε, |fk,l,m(xm)| > ε. We may also
assume that fk,l,m is of type II+, for every k < l < m ∈ N, or that fk,l,m is
of type II−, for every k < l < m ∈ N. From now on we shall assume the
first.

For 1 < k < m ∈ N, there exists bk,m = {fk,mq , gk,mq }∞q=1 ∈ B, with

f1,k,m = Ek,m

(
1
2

∑
q∈Fk,m

(fk,mq + gk,mq )

)
. Set

pk,m = min{q ∈ Fk,m : ran(fk,mq + gk,mq ) ∩ x1 6= ∅}

qk,m = min{q ∈ Fk,m : ran(fk,mq + gk,mq ) ∩ xk 6= ∅}

Notice, that for 1 < k < m, since |f1,k,m(x1)| > ε, it follows that, if

w(fk,mpk,m) = jk,m
1

2jk,m
>

ε

‖x1‖max suppx1
By applying Ramsey theorem once more, we may assume that there exists

j1 ∈ N, such that for any 1 < k < m, we have that w(fk,mpk,m) = j1.
Arguing in the same way and diagonalizing, we may assume that for

any k > 1, there exists jk ∈ N such that for any m > k, we have that

w(fk,mqk,m) = jk.
Moreover, for every 1 < k < m ∈ N, the following holds.

2(#Fk,m) 6 min supp fk,mpk,m 6 max suppx1

Setting ε′ = 4ε
max suppx1

, there exists rk,m ∈ Fk,m such that

(14) |Ek,m
(1

2
(fk,mrk,m + gk,mrk,m)

)
(xm)| > ε′

Since f1,k,m separates x1, xk, xm, it follows that rk,m > qk,m.

Set ik,m = w(fk,mrk,m) for all 1 < k < m ∈ N and

A =
{
{k, l,m} ∈ [N \ {1}]3 : ik,m = il,m

}

Applying Ramsey theorem once more, we may assume that either [N \
{1}]3 ⊂ A or [N \ {1}]3 ⊂ Ac.

Assume that [N \ {1}]3 ⊂ Ac. Then, for m > 2, we have that

hk = sgn

(
Ek,m

(1

2
(fk,mrk,m + gk,mrk,m)

)
(xm)

)
Ek,m

(1

2
(fk,mrk,m + gk,mrk,m)

)
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are functionals of type II with pairwise disjoint weights ŵ(hk) and hk(xm) >

ε′ for k = 2, . . . ,m− 1. We conclude that β = 1
m−2

∑m−1
k=2 hk is a β-average

in W of size s(β) = m − 2 and β(xm) > ε′. Proposition 3.7 yields that
β
(
{xk}k

)
> 0, which is absurd.

Hence, we may assume that [N \ {1}]3 ⊂ A, i.e. for every m > 2, there
exists im ∈ N, such that for every 1 < k < m, ik,m = im. By the fact that σ
is one to one, we conclude that for every m > 2, by setting {fmq , g

m
q }rmq=1 =

σ−1({im}) the following holds.

(15) {fk,mq , gk,mq }
rk,m−1
q=1 = {fmq , g

m
q }rmq=1, for 1 < k < m

Set

C =
{
{k, l} ∈ [N \ {1}]2 : jk 6= jl

}

Applying Ramsey theorem once more, we may assume that either [N \
{1}]2 ⊂ C or [N \ {1}]2 ⊂ Cc.

Assume that [N \ {1}]2 ⊂ Cc. Then there exists j0 ∈ N, such that jk = j0
for all k > 1. For 1 < k < m, by (15) {fk,mqk,m, g

k,m
qk,m} ∈ {fmq , g

m
q : q =

1, . . . , rm}. Since for 2 < k < m, j2 = jk, we conclude that {f2,mq2,m , g
2,m
q2,m} =

{fk,mqk,m, g
k,m
qk,m}.

Set hm = 1
2(f2,mq2,m+g2,mq2,m). By the fact that f2,m, fm−1,m separate x1, x2, xm

and x1, xm−1, xm respectively, we conclude that ranxk ⊂ ranhm and |hm(xk)| >
ε for k = 3, . . . ,m−2. Choose h a w∗-limit point of {hm}m. Then |h(xk)| > ε
for every k > 2. Corollary 2.7 yields a contradiction.

Hence, we may assume that [N \ {1}]2 ⊂ C, and that {jk}k is strictly
increasing. Lemma 4.10 and (15) yield that there exists b = {fq, gq}

∞
q=1 ∈ B,

such that {jk : k ∈ N} ⊂ {w(fq) : q ∈ N}.
We will show that b ε′-norms {xk}k, which will complete the proof. Let

1 < k < m ∈ N. Arguing as previously, there exists tk,m ∈ Fk,m, such that

|(fk,mtk,m + gk,mtk,m)| > ε′. Evidently, qk,m 6 tk,m 6 rk,m Set

D = {{k,m} ∈ [N \ {1}]2 : tk,m < rk,m}

Applying Ramsey theorem one last time, we may assume that either [N \
{1}]2 ⊂ D, or [N \ {1}]2 ⊂ Dc.

If [N \ {1}]2 ⊂ Dc, then for m > 3, by (15) we have that tm−2,m =

rm−2,m = rm + 1 and {fm1 , g
m
1 , . . . , f

m
rm , g

m
rm , f

m−2,m
tm−2,m

, gm−2,m
tm−2,m

} is a special
sequence.

Similarly, by (15) we have that tm−1,m = rm−1,m = rm + 1 and that

{fm1 , g
m
1 , . . . , f

m
rm , g

m
rm , f

m−1,m
tm−1,m

, gm−1,m
tm−1,m

} is a special sequence.

Since qm−1,m < rm−1,m = tm−1,m, we have that there exists q 6 rm, such

that {fm−1,m
qm−1,m , g

m−1,m
qm−1,m} = {fmq , g

m
q }.

This means the following.

max suppxm−2 < min suppxm−1 6 max supp gqm−1,m

= max supp gmq < min supp fm−2,m
tm−2,m
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We conclude that ran(fm−2,m
tm−2,m

+ gm−2,m
tm−2,m

) ∩ ranxm−2 = ∅. This cannot be

the case and hence we conclude that [N \ {1}]2 ⊂ D.

Let k ∈ N. We will show that fk,k+3
tk,k+3

+ gk,k+3
tk,k+3

∈ b+. First, observe that

by (15) and the fact that tk,k+3 6 rk,k+3 − 1 = rk+3, we have that

(fk,k+3
tk,k+3

+ gk,k+3
tk,k+3

) ∈ {fk+3
q + gk+3

q : q = 1, . . . , rk+3}

(fk+1,k+3
qk+1,k+3

+ gk+1,k+3
qk+1,k+3

) ∈ {fk+3
q + gk+3

q : q = 1, . . . , rk+3}

(fk+2,k+3
qk+2,k+3

+ gk+2,k+3
qk+2,k+3

) ∈ {fk+3
q + gk+3

q : q = 1, . . . , rk+3}

Thus, we moreover have that

(fk,k+3
tk,k+3

+ gk,k+3
tk,k+3

) 6 (fk+1,k+3
qk+1−1 + gk+1,k+3

qk+1
) < (fk+2,k+3

qk+2
+ gk+2,k+3

qk+2
)

By the fact that σ is one to one, we conclude that {fk,k+3
tk,k+3

, gk,k+3
tk,k+3

} ∈

σ−1({jk+2}) ⊂
{
{fq, gq} : q ∈ N

}
.

�

5. c0 spreading models

In this section we prove that a sequence {xk}k satisfying B ⊗ {xk}k = 0,
α
(
{xk}k

)
= 0 as well as β

(
{xk}k

)
= 0 has a subsequence generating a c0

spreading model. This is crucial, as a spreading model universal sequence
is constructed on a sequence generating a c0 spreading model.

Proposition 5.1. Let x1 < · · · < xn be a seminormalized block sequence in
Xusm , such that ‖xk‖ 6 1 for k = 1, . . . , n, n > 3 and there exist n+3 6 j1 <
· · · < jn strictly increasing naturals, such that the following are satisfied.

(i) For any k0 ∈ {1, . . . , n}, for any k > k0, k ∈ {1, . . . , n}, for any
{αq}

d
q=1 very fast growing and Sj-admissible sequence of α-averages,

with j < jk0 and s(α1) > min suppxk0 , we have that
∑d

q=1 |αq(xk)| <
1

n·2n .
(ii) For any k0 ∈ {1, . . . , n}, for any k > k0, k ∈ {1, . . . , n}, for any

{βq}
d
q=1 very fast growing and Sj-admissible sequence of β-averages,

with j < jk0 and s(β1) > min suppxk0 , we have that
∑d

q=1 |βq(xk)| <
1

n·2n .

(iii) For k = 1, . . . , n− 1, the following holds: 1
2jk+1

max suppxk <
1
2n .

(iv) For any 1 6 k1 < k2 < k3 6 n, for any functional f ∈ W of type II
that separates xk1 , xk2 , xk3 , we have that |f(xki)| <

1
n·2n , for some

i ∈ {1, 2, 3}.

Then {xk}
n
k=1 is equivalent to ℓn∞ basis, with an upper constant 4 + 5

2n .
Moreover, for any functional f ∈ W of type Iα with weight w(f) = j < j1,

we have that |f(
∑n

k=1 xk)| <
4+ 6

2n

2j
.

Proof. As in the proof of Proposition 4.7 from [3], we will inductively prove,
that for any {ck}

n
k=1 ⊂ [−1, 1] the following hold.
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(i) For any f ∈ W , we have that |f(
∑n

k=1 ckxk)| < (4 + 5
2n ) max{|ck| :

k = 1, . . . , n}.
(ii) If f is of type Iα and w(f) > 3, then |f(

∑n
k=1 ckxk)| < (1 +

2
2n ) max{|ck| : k = 1, . . . , n}.

(iii) If f is of type Iα and w(f) = j < j1, then |f(
∑n

k=1 ckxk)| <
4+ 6

2n

2j
max{|ck| : k = 1, . . . , n}.

For any functional f ∈W0 the inductive assumption holds. Assume that
it holds for any f ∈ Wm and let f ∈ Wm+1. If f is a convex combination,
then there is nothing to prove.

Assume that f is of type Iα, f = 1
2j

∑d
q=1 αq, where {αq}

d
q=1 is a very fast

growing and Sj-admissible sequence of α-averages in Wm.
Set k1 = min{k : ran f ∩ ranxk 6= ∅} and q1 = min{q : ranαq ∩ ranxk1 6=

∅}.
We distinguish 3 cases.

Case 1: j < j1.
For q > q1, we have that s(αq) > min suppxk1 , therefore we conclude that

(16)
∑

q>q1

|αq(
n∑

k=1

ckxk)| <
1

2n
max{|ck| : k = 1, . . . , n}

while the inductive assumption yields that

(17) |αq1(

n∑

k=1

ckxk)| < (4 +
5

2n
) max{|ck| : k = 1, . . . , n}

Then (16) and (17) allow us to conclude that

(18) |f(

n∑

k=1

ckxk)| <
4 + 6

2n

2j
max{|ck| : k = 1, . . . , n}

Hence, (iii) from the inductive assumption is satisfied.

Case 2: There exists k0 < n, such that jk0 6 j < jk0+1.
Arguing as previously we get that

(19)

|f(
∑

k>k0

ckxk)| <
4 + 6

2n

2jk0
max{|ck| : k = 1, . . . , n} <

1

2n
max{|ck| : k = 1, . . . , n}

and

(20) |f(
∑

k<k0

ckxk)| <
1

2n
max{|ck| : k = 1, . . . , n}

Using (19), (20), the fact that |f(xk0)| 6 1, we conclude that

(21) |f(

n∑

k=1

ckxk)| < (1 +
2

2n
) max{|ck| : k = 1, . . . , n}

Case 3: j > jn
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By using the same arguments, we conclude that

(22) |f(

n∑

k=1

ckxk)| < (1 +
1

2n
) max{|ck| : k = 1, . . . , n}

Then (18), (21) and (22) yield that (ii) from the inductive assumption is
satisfied.

If f is of type Iβ, then the proof is exactly the same, therefore assume

that f is of type II+, f = 1
2

∑d
q∈F (fq+gq), where {fq, gq}q∈F are functionals

of type Iα. Set

E = {k : |f(xk)| >
1

n · 2n
}

E1 = {k ∈ E : there exist at least two q such that ran(fq + gq) ∩ ranxk 6= ∅}

Then #E1 6 2. Indeed, if k1 < k2 < k3 ∈ E1, then f separates xk1 , xk2 and
xk3 which contradicts our initial assumptions.

If moreover we set J = {q : there exists k ∈ E \ E1 such that ran(fq +
gq) ∩ ranxk 6= ∅}, then for the same reasons we get that #J 6 2.

Since for any j, we have that w(fq), w(gq) ∈ L0, we get that w(fj) > 9,
therefore:

|f(

n∑

k∈E\E1

ckxk)| < (2 +
4

2n
) max{|ck| : k = 1, . . . , n}(23)

|f(

n∑

k∈E1

ckxk)| 6 2 max{|ck| : k = 1, . . . , n}(24)

|f(

n∑

k/∈E

ckxk)| 6 n ·
1

n · 2n
max{|ck| : k = 1, . . . , n}(25)

Finally, (23) to (25) yield the following.

|f(

n∑

k=1

ckxk)| < (4 +
5

2n
) max{|ck| : k = 1, . . . , n}

If f is of type II−, the proof is exactly the same. This means that (i)
from the inductive assumption is satisfied an this completes the proof.

�

Proposition 5.2. Let {xk}k∈N be a seminormalized block sequence in Xusm ,
such that ‖xk‖ 6 1 for all k ∈ N, α

(
{xk}k

)
= 0 as well as β

(
{xk}k

)
= 0

and B ⊗ {xk}k = 0. Then it has a subsequence, again denoted by {xk}k∈N
satisfying the following.

(i) {xk}k∈N generates a c0 spreading model. More precisely, for any
n 6 k1 < · · · < kn, we have that ‖

∑n
i=1 xki‖ 6 5.
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(i) There exists a strictly increasing sequence of naturals {jn}n∈N, such
that for any n 6 k1 < · · · < kn, for any functional f of type Iα with
w(f) = j < jn, we have that

|f(

n∑

i=1

xki)| <
5

2j

6. Spreading model universal block sequences

In this section we define exact pairs and exact nodes in Xusm . Then, using
a sequence generating a c0 spreading model, we pass to a sequence of exact
nodes {xk, yk, fk, gk}, such that {fk, gk}

∞
k=1 defines a special branch. Setting

zk = xk − yk, we prove that {zk}k is a spreading model universal sequence.
Using the structure of such sequences, we also prove that the space Xusm is
hereditarily indecomposable.

Definition 6.1. A pair {x, f}, where x ∈ Xusm , f ∈W is called an n-exact
pair if the following hold.

(i) f is a functional of type Iα with w(f) = n, min suppx 6 min supp f
and max suppx 6 max supp f .

(ii) There exists x′ ∈ Xusm a (5, 1, n) exact vector such that 1 > f(x′) >
35
36 and x = x′

f(x′) .

Remark 6.2. If {x, f} is a n-exact pair, then f(x) = 1 and by Remark 2.12
we have that 1 6 ‖x‖ 6 36.

Proposition 6.3. Let {xk}k be a block sequence in Xusm and n ∈ N. Then
there exists x supported by {xk}k and f ∈W such that {x, f} is an n-exact
pair.

Proof. By Proposition 4.8 there exists {yk}k a further normalized block se-
quence satisfying the assumptions of Proposition 5.2. Therefore we may
choose {nk}k a strictly increasing sequence of natural numbers and {Fk}k
an increasing sequence of subsets of the naturals satisfying the following.

(i) #Fk 6 minFk, therefore 1 6 ‖
∑

i∈Fk
yi‖ 6 5, for all k ∈ N.

(ii) #Fk+1 > 2max supp ymaxFk , for all k ∈ N.
(iii) For any j, k ∈ N with j < nk and f a functional of type Iα in W

with w(f) = j, we have that |f(
∑

i∈Fk
yi)| <

5
2j

.

Setting zk =
∑

i∈Fk
yi, by (i) and (iii) we conclude that {zk}k is (5, {nk}k) α-

RIS. By Proposition 2.2, for 0 < ε < 1
32·5·23n

, there exists G a subset of

the natural numbers with min supp zminG > 8 · 5 · 22n, nminG > 22n and
{ck}k∈G ⊂ [0, 1], such that

∑
k∈G c

′
kzk is a (n, ε(1 − ε)) s.c.c.

Setting ck =
c′k

1−cmaxG
, it is straightforward to check that

∑
k∈G\{maxG} ckzk

is a (n, ε) s.c.c.
Set x′ = 2n

∑
k∈G\{maxG} ckzk. In order for x′ to be a (5, 1, n) exact

vector, it remains to be shown that ‖x′‖ > 1.
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We shall prove that for any η > 0, there exists fη a functional of type
Iα in W with min suppx′ 6 min supp fη, max suppx′ 6 max supp fη and
w(fη) = n, such that 1 > fη(x

′) > 1 − η.
Observe that for k ∈ G, there exists αk an α-average in W with s(αk) =

#Fk, such that ranαk ⊂ ran zk and 1 > αk(zk) > 1 − η.
By (ii) we conclude that {αk}k∈G is very fast growing and since ranαk ⊂

ran zk, it is Sn admissible. Therefore fη = 1
2n

∑
k∈G αk is of type Iα in W

with min suppx′ 6 min supp fη, max suppx′ 6 max supp fη and w(fη) = n.
By doing some easy calculations we conclude that it is the desired functional,
hence ‖x′‖ > 1.

Moreover, for 0 < η < 1/36, f = fη and x = x′

f(x′) , we have that {x, f} is

the desired exact pair.
�

Definition 6.4. A quadruple {x, y, f, g} is called an n-exact node if {x, f}
and {y, g} are both n-exact pairs and max supp f < min supp y.

A sequence of quadruples {xk, yk, fk, gk}
∞
k=1 is called a dependent se-

quence, if {xk, yk, fk, gk} is an nk exact node for all k ∈ N, max supp gk <
min suppxk+1 for all k ∈ N and {fk, gk}

∞
k=1 is a special branch.

Remarks 6.5. If {x, y, f, g} is an n-exact node, then (f + g)(x + y) =
2, (f − g)(x − y) = 2, (f + g)(x− y) = 0, (f + g)(x) = 1, (f + g)(y) = 1 and
1 6 ‖x +

− y‖ 6 72.
If {xk, yk, fk, gk}

∞
k=1 is a dependent sequence, by the above and Proposi-

tion 4.3, we conclude that any spreading model admitted by {xk+yk}k, {xk}k
or {yk}k, is ℓ1.

Moreover, for k0 ∈ N and k > k0 by Lemma 3.10 and the fact that
min suppxk0 > 8 · 5 · 22nk0 , we have that for any very fast growing and
Sj-admissible sequence of α-averages {αq}

d
q=1 with j < nk0 and s(α1) >

min suppxk0 , we have that

(26)

d∑

q=1

|αq(xk +
− yk)| <

5

2nk0

Similarly, by Lemma 3.15, for any very fast growing and Sj-admissible

sequence of β-averages {βq}
d
q=1 with j < nk0 − 2 and s(β1) > min suppxk0 ,

we have that

(27)

d∑

q=1

|βq(x +
− y)| <

5

2nk0

Lemma 6.6. Let {xk, yk, fk, gk}
∞
k=1 be a dependent sequence. Then for

every k ∈ N, if nk = w(fk) and nk+1 = w(fk+1), the following holds.

(28)
1

2nk+1−3 max supp yk <
1

2nk
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Proof. By the definition of the coding function σ, we have that nk+1 >
2nk max supp gk > 2nk max supp yk.

Since nk+1 ∈ L, we have that nk+1 > 9. It easily follows that 2nk+1−3 >
nk+1. Combining this with the above, we conclude the desired result. �

Proposition 6.7. Let Y be a block subspace of Xusm . Then there ex-
ist {xk}k, {yk}k block sequences in Y and b = {fk, gk}

∞
k=1 ∈ B, such that

{xk, yk, fk, gk}
∞
k=1 is a dependent sequence.

Proof. Choose n1 ∈ L1. By Proposition 6.3 there exists {x1, y1, f1, g1} an
n1-exact node in Y .

Suppose that we have chosen {xk, yk, fk, gk} nk-exact nodes for k =
1, . . . ,m such that {fk, gk}

m
k=1 is a special sequence and max supp gk <

min suppxk+1 for k = 1, . . . ,m− 1.
Set nm+1 = σ(f1, g1, . . . , fm, gm). Then applying Proposition 6.3 once

more, there exists {xm+1, ym+1, fm+1, gm+1} an nm+1-exact node in Y , such
that max supp gm < min suppxm+1.

The inductive construction is complete and {xk, yk, fk, gk}
∞
k=1 is a depen-

dent sequence.
�

An easy modification of the above proof yields the following.

Corollary 6.8. If X,Y are block subspaces of Xusm , then a dependent
sequence {xk, yk, fk, gk}

∞
k=1 can be chosen, such that xk ∈ X and yk ∈ Y for

all k ∈ N.

Proposition 6.9. Let {xk, yk, fk, gk}
∞
k=1 be a dependent sequence and set

zk = xk − yk. Then for every m 6 k1 < · · · < km natural numbers and
c1, . . . , cm real numbers, the following holds.

(29) ‖
m∑

i=1

ciuki‖u 6 ‖
m∑

i=1

cizki‖ 6 146‖
m∑

i=1

ciuki‖u

Proof. Set nk = w(fk) for all k ∈ N. Choose m 6 k1 < · · · < km natural
numbers and c1, . . . , cm ⊂ [−1, 1], such that ‖

∑m
i=1 ciuki‖u = 1.

We first prove that ‖
∑m

i=1 cizki‖ > 1.
Since min supp zk1 = min suppxk1 > min suppxm > 40 · 22nm > 40 · 2m >

2m and min supp fk1 > min suppxk1 , by the definition of the norming
set W , it follows that for every λ1, . . . , λm rational numbers such that
‖
∑m

i=1 λiu
∗
ki
‖u 6 1, the functional f = 1

2

∑m
i=1 λi(fki − gki) is a functional

of type II− in W . We conclude that

‖

m∑

i=1

cizki‖ > sup
{ m∑

i=1

1

2
λi(fki−gki)(cizki) : {λi}

m
i=1 ⊂ Q, ‖

m∑

i=1

λiu
∗
ki‖u 6 1

}

By Remark 6.5, for λ1, . . . , λq as above, we have that
∑m

i=1
1
2λi(fki −

gki)(cizki) =
∑m

i=1 λici. This yields the following.
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‖
m∑

i=1

cizki‖ > sup
{ m∑

i=1

λici : {λi}
m
i=1 ⊂ Q, ‖

m∑

i=1

λiu
∗
ki‖u 6 1

}

= ‖

m∑

i=1

ciuki‖u = 1

To prove the inverse inequality, we will follow similar steps, as in the proof
of Proposition 5.1. We shall inductively prove the following.

(i) For any f ∈W , we have that |f(
∑n

k=1 ckxk)| < 146.
(ii) If f is of type Iα or type Iβ and w(f) > 9, then |f(

∑n
k=1 ckxk)| <

72 + 1/4.

For any functional in W0 the inductive assumption holds.Assume that it
holds for any f ∈Wp and let f ∈Wp+1. If f is a convex combination, then
there is nothing to prove.

Assume that f is of type Iβ, f = 1
2j

∑d
q=1 βq, where {βq}

d
q=1 is a very fast

growing and Sj-admissible sequence of β-averages in Wp.
Set q1 = min

{
q : ran βq ∩ ran zki 6= ∅ for some i ∈ {1, . . . ,m}

}
.

We distinguish 3 cases.

Case 1: j + 2 < nk1 .
For q > q1, we have that s(βq) > min suppxk1 , therefore, using (27) we

conclude that

(30)
∑

q>q1

|βq(

m∑

i=1

cizki)| <
m

2nk1
<

m

2m
< 1

while the inductive assumption yields that

(31) |βq1(

m∑

i=1

cizki)| < 146

Then (30) and (31) allow us to conclude that

(32) |f(
m∑

i=1

cizki)| <
147

2j

Case 2: There exists i0 < m, such that nki0 6 j + 2 < nki0+1.
Arguing as previously we get that

(33) |f(
∑

i>i0

cizki)| <
147

2
nki0

+1
<

147

211
<

1

8

and by Lemma 6.6

(34) |f(
∑

i<i0

cizki)| <
1

2nk1
<

1

8
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Using (33), (34) and the fact that |f(zki0 )| 6 72, we conclude that

(35) |f(

m∑

k=1

ckxk)| < 72 +
1

4

Case 3: j + 2 > nkm
By using the same arguments, we conclude that

(36) |f(

m∑

i=1

cizki)| < 72 +
1

4

Then (32), (35) and (36) yield that (i) and (ii) from the inductive as-
sumption are satisfied.

If f is of type Iα, using (26) and the exact same arguments one can prove
that (i) and (ii) from the inductive assumption are again satisfied.

Assume now that f is of type II− (or f is of type II+), f = E
(
1
2

∑d
j=1 λj(f

′
qj−

g′qj)
)

(or f = E
(
1
2

∑d
j=1(f

′
qj + g′qj)

)
), where E is an interval of the natural

numbers, {f ′q, g
′
q}

∞
q=1 ∈ B, q1 < · · · < qd and 2qd 6 min supp f ′q1 .

We may clearly assume that ran(f ′q1
+
−g

′
q1) ∩ ran(

∑m
i=1 cizki) 6= ∅ and

minE > min supp f ′q1 .

Similarly, we assume that ran(f ′qd
+
−g

′
qd

)∩ran(
∑m

i=1 cizki) 6= ∅ and maxE 6

max supp g′qd .
The inductive assumption yields the following.

(37) |E
(1

2
(f ′q1

+
−g

′
q1)

)
(

m∑

i=1

cizki)| < 72 +
1

4

Set tj = w(f ′qj) for j = 1, . . . , d. By the definition of the coding function,

we have that tj > 2t1 min suppxk1 > min suppxm > 40 ·2m, for j = 2, . . . , d.
We conclude the following.

(38)
∑

j>1

72m

2tj
6

144m

2t2
<

144m

240 · 2m
<

1

4

We distinguish two cases.

Case 1: There exist 2 6 j0 6 d and k ∈ N such that tj = nk.

In this case, the fact that σ is one to one, yields that f ′qj
+
−g

′
qj = fqj

+
−ggj

for 2 6 j < j0 and hence

|E
(1

2

j0−1∑

j=2

λj(f
′
qj − g′qj )

)
(

m∑

i=1

cizki)| = |
1

2

j0−1∑

j=2

λj(f
′
qj − g′qj)(

m∑

i=1

cizki)|

= |
1

2

j0−1∑

j=2

λj(fqj − gqj)(

m∑

i=1

cizki)| 6 1(39)
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if f is of type II− and

|E
(1

2

j0−1∑

j=2

(f ′qj + g′qj )
)
(
m∑

i=1

cizki)| = |
1

2

j0−1∑

j=2

(f ′qj + g′qj )(
m∑

i=1

cizki)|

= |
1

2

j0−1∑

j=2

(fqj + gqj )(
m∑

i=1

cizki)| = 0(40)

if f is of type II+.
The inductive assumption yields that

(41) |E
(1

2
(f ′qj0

− g′qj0
)
)
(

m∑

i=1

cizki)| < 72 +
1

4

Moreover, using Corollary 3.14, for i = 1, . . . ,m we have that

|E
(1

2

d∑

j=j0+1

λj(f
′
qj − g′qj)

)
(zki)| <

∑

j>j0

72

2tj
+

22

2nki

Combining this with (38)

|E
(1

2

d∑

j=j0+1

λj(f
′
qj − g′qj )

)
(

m∑

i=1

cizki)| <
∑

j>1

72m

2tj
+

m∑

i=1

22

2nki

<
1

4
+

22

1000
<

1

2
(42)

Similarly,

(43) |E
(1

2

d∑

j=j0+1

(f ′qj + g′qj )
)
(

m∑

i=1

cizki)| <
1

2

If f is of type II− Combining (37), (39) and (42), we conclude that
|f(

∑m
i=1 cizki)| < 146, while if f is of type II+ combining (37), (40) and

(43), we conclude that |f(
∑m

i=1 cizki)| < 145

Case 1: tj 6= nk, for all j = 2, . . . , d and k ∈ N.

Arguing as previously, we conclude that

|E
(1

2

d∑

j=2

λj(f
′
qj − g′qj )

)
(

m∑

i=1

cizki)| <
1

2
and(44)

|E
(1

2

d∑

j=2

(f ′qj + g′qj)
)
(
m∑

i=1

cizki)| <
1

2

Therefore, (37) and (45) yield that |f(x)| < 73. The induction is complete
and so is the proof.

�
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Proposition 6.10. Let Y be a block subspace of Xusm . Then there exist
{zk}k a seminormalized block sequence in Y and {z∗k}k a seminormalized
block sequence in X

∗
usm

satisfying the following.

(i) z∗k(zn) = δk,n
(ii) For every unconditional and spreading sequence {wn}n, there exists

{kn}n a strictly increasing sequence of natural numbers, such that
{zkn}n generates a spreading model which is 146-equivalent to {wn}n
and {z∗kn}n generates a spreading model which is 146-equivalent to
{w∗

n}n

Proof. By Proposition 6.7, there exists {xk, yk, fk, gk}
∞
k=1 a dependent se-

quence in Y . Set zk = xk − yk and z∗k = 1
2 (fk − gk). Then z∗k(zn) = δk,n.

Let {wn}n be an unconditional and spreading sequence, which also yields
that it is suppression unconditional and hence there exists {kn}n a strictly
increasing sequence of natural numbers, such that {ukn}n>j is 1 + εj equiv-
alent to {wn}n>j, where {εj}j is null sequence of positive reals.

Moreover, due to unconditionality, {u∗kn}n>j is 1+εj equivalent to {w∗
n}n>j .

Proposition 6.9 yields that for every m 6 n1 < · · · < nm natural numbers
and c1, · · · , cm real numbers, we have that

(45)
1

1 + εm
‖

m∑

i=1

ciwi‖ 6 ‖
m∑

i=1

ciznki
‖ 6 (1 + εm)146‖

m∑

i=1

ciwi‖

This yields that any spreading model admitted by {zkn}n is 146-equivalent
to {wn}n.

Moreover, by the definition of the norming set, for every m 6 n1 < · · · <
nm natural numbers and c1, · · · , cm real numbers, we have that

(46) ‖
m∑

i=1

ciz
∗
nki

‖ 6 ‖
m∑

i=1

ciu
∗
nki

‖u 6 (1 + εm)‖
m∑

i=1

ciw
∗
i ‖

Property (i) and (45) yield the following.

(47)
1

146(1 + εm)
‖

m∑

i=1

ciw
∗
i ‖ 6 ‖

m∑

i=1

ciz
∗
nki

‖

Combining (46) and (46), we conclude that any spreading model admitted
by {z∗kn}n is 146-equivalent to {w∗

n}n. �

Proposition 6.11. The space Xusm is hereditarily indecomposable.

Proof. It is enough to show that for X,Y block subspaces of Xusm and ε > 0,
there exist x ∈ X and y ∈ Y such that ‖x + y‖ > 1 and ‖x− y‖ < ε.

By Corollary 6.8, there exists {xk, yk, fk, gk}
∞
k=1 a dependent sequence,

with xk ∈ X and yk ∈ Y for all k ∈ N.
By Remark 6.5 and Proposition 6.9, there exists {kn}n a strictly increas-

ing sequence of natural numbers, such that {xkn + ykn}n generates an ℓ1
spreading model and {xkn − ykn}n generates a c0 spreading model.



RICH SPREADING MODEL STRUCTURE 29

Fix c > 0 such that for any m 6 n1 < · · · < nm natural numbers the
following holds.

1

m
‖

m∑

i=1

(xkni
− ykni

)‖ 6
1

c ·m

1

m
‖

m∑

i=1

(xkni
+ ykni

)‖ > c

Fix m 6 n1 < · · · < nm natural numbers such that 1
c2m

< ε and set

x = 1
c·m

∑m
i=1 xkni

and y = 1
c·m

∑m
i=1 ykni

.

Then ‖x+ y‖ > 1 and ‖x− y‖ 6 1
c2m

< ε.
�

7. Bounded operators on Xusm

This section is devoted to operators on Xusm . We prove that in every
block subspace of Xusm there exist equivalent intertwined block sequences
{xk}k, {yk}k and an onto isomorphism T : Xusm → Xusm , such that Txk = yk.
This yields that Xusm does not contain a block subspace that is tight by
range and hence, Xusm is saturated with sequentially minimal subspaces
(see [7]). We then proceed to identify block sequences witnessing this fact.
We moreover construct a strictly singular operator S : Xusm → Xusm which
is not polynomially compact. All the above properties of Xusm are based on
the way type II functionals are constructed in the norming set W and the
rich spreading model structure of Xusm .

The following result is proven in a similar manner as Theorem 5.6 from
[3] and therefore its proof is omitted.

Proposition 7.1. Let Y be an infinite dimensional closed subspace of Xusm

and T : Y → Xusm be a bounded linear operator. Then there exists λ ∈ R,
such that T − λI

Y,Xusm
: Y → Xusm is strictly singular.

The following result follows from Proposition 3.1 from [2], see also [14].

Proposition 7.2. Let {x∗m}m be a block sequence in X
∗
usm

generating a
c0 spreading model and {xk}k be a block sequence in Xusm generating a
spreading model which is not equivalent to ℓ1. Then there exists a strictly
increasing sequence of natural numbers {tj}j , such that the following is sat-
isfied. For every strictly increasing sequence of natural numbers {mk}k with
mk > tk for all k ∈ N, the map T : Xusm → Xusm with Tx =

∑∞
k=1 x

∗
mk

(x)xk
is bounded and non compact.

The proof of the following result uses an argument, which first appeared
in [8], namely the following. If {xk}k, {yk}k are basic sequences in a space
X, such that the maps xk → xk − yk and yk → xk − yk extend to bounded
linear operators, then {xk}k is equivalent to {yk}k.
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Proposition 7.3. Let {xk, yk, fk, gk}
∞
k=1 be a dependent sequence. Then

there exists {kn}n a strictly increasing sequence of natural numbers, such
that {xkn}n is equivalent to {ykn}n. More precisely, there exists T : Xusm →
Xusm an onto isomorphism, with Txkn = ykn for all n ∈ N.

Proof. First observe the following, for any k ∈ N, we have that

2 > ‖fk + gk‖ > (fk + gk)
( xk + yk
‖xk + yk‖

)
>

2

72

Hence {fk + gk}k is seminormalized and by the definition of the norming set
W , any spreading model admitted by it, is c0.

By Proposition 6.9, {xk − yk}k admits a c0 spreading model. Proposition
7.2, yields that there exists {kn}n a strictly increasing sequence of natural
numbers, such that the operator S : Xusm → Xusm with

Sx =

∞∑

n=1

(fkn + gkn)(x)(xkn − ykn)

is bounded.
Then, for every n ∈ N we have that Sxkn = xkn − ykn . Setting T = I−S,

we evidently have that Txkn = ykn , hence {xk}k is dominated by {yk}k.
Similarly, for every n ∈ N we have that Sykn = xkn − ykn . Setting

Q = I+S, we evidently have that Qykn = xkn . Therefore {yk}k is dominated
by {xk}k, which yields that they are actually equivalent.

We shall moreover prove that T is invertible, in fact Q = T−1. Notice
that TQ = QT = I − S2. It remains to be shown that S2 = 0.

Since Sxkn = xkn − ykn = Sykn for all n ∈ N, we evidently have that
S(xkn − ykn) = 0 for all n ∈ N. This yields that [{xkn − ykn}n] ⊂ kerS.
Evidently, we have that S[Xusm ] ⊂ [{xkn −ykn}n], therefore S[Xusm ] ⊂ kerS.
We conclude that S2 = 0 and this completes the proof. �

Before the statement of the next result, we remind the notion of even-
odd sequences and intertwined block sequences. A Schauder basic sequence
{xk}k is called even-odd, if {x2k}k is equivalent to {x2k−1}k (see [10]).

Two block sequences {xk}k, {yk}k are called intertwined, if xk < yk <
xk+1 for all k ∈ N.

Evidently, two intertwined block sequences {xk}k, {yk}k are equivalent,
if and only if the sequence {zk}k with z2k−1 = xk and z2k = yk for all k ∈ N,
is an even-odd sequence.

Proposition 7.4. Every block subspace of Xusm contains an even-odd block
sequence. More precisely, in every block subspace Y of Xusm , there exists a
block sequence {zk}k and T : Xusm → Xusm an onto isomorphism, such that
Tz2k−1 = z2k, for all k ∈ N.

Proof. By Proposition 6.7, there exists {xk, yk, fk, gk}
∞
k=1 a dependent se-

quence in Y and by Proposition 7.3 there exist {kn}n a strictly increasing
sequence of natural numbers and T : Xusm → Xusm an onto isomorphism,
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such that Txnk
= ynk

for all k ∈ N. Setting z2k−1 = xnk
and z2k = ynk

for
all k ∈ N, we have that {zk}k is the desired even-odd block sequence and T
the desired operator. �

Corollary 7.5. The space Xusm does not contain a block subspace which is
tight by range.

Theorem 1.4 from [7] yields that Xusm is saturated with sequentially mini-
mal block subspaces. The next result identifies block subspaces of Xusm with
the aforementioned property.

Proposition 7.6. There exists a set of block sequences
{
{x

(Y )
k }k : Y is a

block subspace of Xusm

}
, with {x

(Y )
k }k ⊂ Y for every Y block subspace of

Xusm , satisfying the following. For every Y,Z block subspaces of Xusm , there
exist {kn}n, {mn}n strictly increasing sequences of natural numbers, such

that {x
(Y )
kn

}n and {x
(Z)
mn}n are intertwined and equivalent. More precisely,

there exists T : Xusm → Xusm an onto isomorphism, such that Tx
(Y )
kn

= x
(Z)
mn

for all n ∈ N.

Proof. Let Y be a block subspace of Xusm . By Proposition 6.3, we may
choose a block sequence {xk}k in Y , satisfying the following.

(i) There exists {fk}k a sequence of type Iα functionals in W , such that
{xk, fk} is a w(fk)-exact pair for all k ∈ N.

(ii) For every n ∈ N, the set {k ∈ N : w(fk) = n} is infinite.

For every Y block subspace of Xusm , choose {x
(Y )
k }k satisfying properties

(i) and (ii).
Let now Y,Z be block subspaces of Xusm . We shall recursively choose

{kn}n, {mn}n strictly increasing sequences of natural numbers and {fn}n, {gn}n

sequences of type Iα functionals, such that {x
(Y )
kn
, x

(Z)
mn , fn, gn}

∞
n=1 is an exact

sequence.
Choose p1 ∈ L1 and k1 ∈ N, f1 ∈ W a functional of type Iα, such that

{x
(Y )
k1
, f1} is a p1 exact pair.

Similarly, choose m1 ∈ N, g1 ∈ W a functional of type Iα, such that

{x
(z)
m1
, f1} is a p1 exact pair and max supp f1 < min suppx

(z)
m1

.
Suppose that we have chosen {kn}

ℓ
n=1, {mn}

ℓ
n=1 strictly increasing se-

quences of natural numbers and {fn}
ℓ
n=1, {gn}

ℓ
n=1, sequences of type Iα

functionals, such that {x
(Y )
kn
, x

(Z)
mn , fn, gn} are pn-exact nodes for k = 1, . . . , ℓ

nℓ, {fn, gn}
ℓ
n=1 is a special sequence and max supp gn < min suppx

(Y )
n+1 for

k = 1, . . . ,m− 1.
Set pℓ+1 = σ(f1, g1, . . . , fℓ, gℓ). Then arguing as previously, we may

choose kℓ+1 > kℓ,mℓ+1 > mℓ and fℓ+1, gℓ+1 functionals of type Iα, such that

{x
(Y )
kℓ+1

, x
(Z)
mℓ+1

, fℓ+1, gℓ+1} is an pℓ+1-exact node and max supp gℓ < min suppx
(Y )
mℓ+1

.

The inductive construction is complete and {x
(Y )
kn
, x

(Z)
mn , fn, gn}

∞
n=1 is a

dependent sequence.
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Proposition 7.3 yields the desired result. �

A related result to the following can be found in [14], Proposition 2.1.

Proposition 7.7. Let 1 < q < ∞, q′ be its conjugate and set tj = ⌈(4 ·

2j+1)q
′
⌉. Then the following holds.

If {mj}j is a strictly increasing sequence of natural numbers with mj > tj
for all j ∈ N, {x∗m}m is a block sequence in X

∗
usm

and {xk}k is a block
sequence in Xusm satisfying the following,

(i) {x∗m}m is either generating an ℓp spreading model, with p > q′, or a
c0 spreading model

(ii) {xk}k is either generating an ℓr spreading model with r > q, or a c0
spreading model

then the map T : Xusm → Xusm with Tx =
∑∞

k=1 x
∗
mk

(x)xk is bounded and
non compact.

If moreover dim(Y/[{xk}k]) = ∞, then T is strictly singular.

Proof. If {x∗m}m generates a c0 spreading model, fix q′ < p <∞. Note that
by the choice of tj , we have that

t
1/p
j

2j
6

(
(4 · 2j+1)q

′
+ 1

)1/p

2j
6

(4 · 2j+1)q
′/p

2j
+

1

2j

= 8q
′/p 1

(21−q
′/p)j

+
1

2j

Since p > q′, we have that
∑∞

j=1
1

(21−q′/p)j
<∞. We conclude that if we set

α = 8q
′/p

∞∑

j=1

1

(21−q′/p)j
+ 1

Then

(48)

∞∑

j=1

t
1/p
j

2j
6 α

Fix C > 0 such that for any n 6 m1 < · · · < mn natural numbers and
c1, . . . , cm real numbers the following holds.

(49) ‖

n∑

i=1

cix
∗
mi

‖ 6 C(

n∑

i=1

|ci|
p)1/p

By multiplying the xk with an appropriate scalar, we may assume that
‖xk‖ 6 1/2 for all k ∈ N and that for any n 6 m1 < · · · < mn natural
numbers and c1, . . . , cm real numbers the following holds.

(50) ‖

n∑

i=1

cixmi‖ 6 (

n∑

i=1

|ci|
q)1/q
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Let x ∈ X, ‖x‖ = 1, x∗ ∈ Y ∗, ‖x∗‖ = 1. For j ∈ N, set

Bj = {k ∈ N :
1

2j+1
< |x∗(xk)| 6

1

2j
}

Then {Bj}j is a partition of the natural numbers and

(51) |x∗(Tx)| 6

∞∑

j=1

|
∑

k∈Bj

x∗(x)x∗mk
(x)|

We will show that #Bj 6 tj.
Assume that this is not the case. Then we may choose F ⊂ Bj with

#F > tj/2 and #F 6 minF .
Set

F1 = {k ∈ Bj : x∗(xk) > 0}

F2 = {k ∈ Bj : x∗(xk) < 0}

Then either #F1 > tj/4, or #F2 > tj/4 and we shall assume the first.
Choose G ⊂ F1 with #G = ⌈tj/4⌉.

Then, by (50) and the choice of G, we have the following.

t
1/q
j > ‖

∑

k∈G

xk‖ > x∗(
∑

k∈G

xk) >
tj

4 · 2j+1

We conclude that tj < (4 · 2j+1)q
′
, which contradicts the choice of tj.

Set

Cj = {k ∈ Bj : k > j}, Dj = Bj \ Cj

Evidently #Dj 6 j − 1, hence

(52) |
∑

k∈Dj

x∗(xk)x
∗
mk

(x)| 6
j − 1

2j

Moreover,

#{mk : k ∈ Cj} 6 tj 6 min{tk : k ∈ Cj} 6 min{mk : k ∈ Cj}

Therefore, using (49) and the definition of Cj,

|
∑

k∈Cj

x∗(xk)x
∗
mk

(x)| 6 ‖
∑

k∈Cj

x∗(xk)x∗mk
‖

6 C(
∑

k∈Cj

|x∗(xk)|
p)1/p 6

C · t
1/p
j

2j
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The above, combined with (48), (51) and (52) yields the following.

|x∗(Tx)| 6

∞∑

j=1

|
∑

k∈Bj

x∗(x)x∗mk
(x)|

6

∞∑

j=1

|
∑

k∈Cj

x∗(xk)x∗mk
(x)| +

∞∑

j=1

|
∑

k∈Dj

x∗(xk)x∗mk
(x)|

6 C

∞∑

j=1

t
1/p
j

2j
+

∞∑

j=1

j − 1

2j

6 C · α+ 1

We conclude that ‖T‖ 6 C · α + 1. The non compactness of T follows
easily, if we consider {zk}k the biorthogonals of {x∗mk

}k. Then {zk}k is
seminormalized and {Tzk}k = {xk}k, therefore it is not norm convergent.

We now prove that T is strictly singular. Suppose that it is not, then by
Proposition 7.1, there exists λ 6= 0 such that Q = T −λI is strictly singular.
Since λI is a Fredholm operator and Q is strictly singular, it follows that
T = Q + λI is also a Fredholm operator, therefore dim(Xusm/T [Xusm ]) <
∞. The fact that T [Xusm ] ⊂ [{xk}k] and dim(Xusm/[{xk}k]) = ∞ yields a
contradiction.

�

Proposition 7.8. There exists S : Xusm → Xusm a strictly singular operator
which is not polynomially compact.

Proof. Choose {pn}n a strictly increasing sequence of real numbers, with
p1 > 2 and let p′n be the conjugate of pn for all n ∈ N.

By Proposition 6.10, for every n ∈ N there exist {xnk}k a seminormal-
ized block sequence in Xusm , with ‖xnk‖ > 1 for all k, n ∈ N and {xn∗k }k a
seminormalized block sequence in X

∗
usm

, satisfying the following.

(i) xn∗k (xnm) = δk,m
(ii) {xnk}k generates an ℓpn spreading model and {xn∗k }k generates an ℓp′n

spreading model.

If we set Enk = ran(ran xnk ∪ ranxn∗k ), using a diagonal argument we may
assume that the intervals {Enk }k,n are pairwise disjoint.

Set mk = ⌈(4 · 2k+1)2⌉ and Sn : Xusm → Xusm with

Snx =

∞∑

k=1

xn∗mk
(x)xn+1

mk

Proposition 7.7 (for q = pn+1), yields that Sn is bounded and strictly sin-
gular. Moreover the following holds.

(a) For every k, n ∈ N, Snx
n
mk

= xn+1
mk

(b) For every n 6= l ∈ N and k ∈ N, Snx
l
mk

= 0.
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Set S =
∑∞

n=1
1

2n‖Sn‖
Sn. Then S is strictly singular and we shall prove

that that it is not polynomially compact.
Properties (a) and (b), yield that for every k, n ∈ N we have that Sxnmk

=
1

2n‖Sn‖
xn+1
mk

.

Using an easy induction we conclude the following.

(53) Snx1mk
=

( n∏

j=1

1

2j‖Sj‖

)
xn+1
mk

, for every k, n ∈ N

Set an =
∏n
j=1

1
2j‖Sj‖

for n ∈ N and a0 = 1.

Let now T =
∑d

n=0 bnS
n be a non zero polynomial of S. Then, using

(53), for every k ∈ N, we have that

Tx1mk
=

d∑

n=0

bnanx
n+1
mk

The fact that the basis of Xusm is bimonotone, the x1mk
, . . . , xd+1

mk
are dis-

jointly ranged and ‖xnmk
‖ > 1, for all k, n ∈ N, yields that ‖Tx1mk

‖ >

max{|anbn| : n = 0, . . . , d}, for all k ∈ N. We conclude that {Tx1mk
}k has

no norm convergent subsequence, therefore T is not compact. �

Remark 7.9. A slight modification of the above yields that in every block
subspace of Xusm there exists a strictly singular operator which is not poly-
nomially compact.

We close the paper with the following two problems, which are open to
us.

Problem 1. Does there exist a reflexive Banach space with an unconditional
basis, which is hereditarily unconditional spreading model universal?

Although it does not seem necessary to use conditional structure in order
to construct a hereditarily unconditional spreading model universal space,
in our approach the conditional structure of the type II+ functionals cannot
be avoided, resulting in an HI space.

Problem 2. Does there exist a Banach space hereditarily spreading model
universal, for both conditional and unconditional spreading sequences?
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