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THE MINIMAL GENUS PROBLEM FOR ELLIPTIC SURFACES

M. J. D. HAMILTON

ABSTRACT. We partly solve the minimal genus problem for embedded surfaces
in the case of elliptic 4-manifolds. This involves a certainrestricted transitivity
property of the action of the orientation preserving diffeomorphism group on the
second homology. In all cases we consider we get the minimal possible genus
allowed by the adjunction inequality.

1. INTRODUCTION

Starting with the classical work of Kervaire and Milnor [8],who showed that
certain second homology classes in simply-connected 4-manifolds are not repre-
sented by embedded spheres, the question arose to find for a given homology class
in a 4-manifold the minimal genus of an embedded closed connected oriented sur-
face realizing that class. This question has been solved at least partly for rational
and ruled surfaces and for 4-manifolds with a free circle action [3, 4, 12, 13, 14, 15,
16, 17, 23]. On symplectic 4-manifolds the question is related to the Thom con-
jecture [10, 20, 21]. In particular, the adjunction inequality from Seiberg-Witten
theory gives a lower bound on the genus of a surface representing a homology class
in a closed, oriented 4-manifold with a basic class and we canthen ask if this lower
bound is indeed realized. Usually the question is more tractable for classes of pos-
itive self-intersection and is still open in most situations in the case of negative
self-intersections. In particular, it is still unknown whether there exist embedded
spheres inK3 of arbitrarily negative self-intersection.

Another interesting class of 4-manifolds are elliptic surfaces. We will restrict to
relatively minimal simply-connected elliptic surfaces with b+

2
> 1, but generaliza-

tions should be possible. Note that every orientation preserving diffeomorphism of
a closed, oriented 4-manifold induces an isometry of the intersection form on the
second homology (modulo torsion). A very useful fact is thatfor elliptic surfaces
the image of the orientation preserving diffeomorphism group in the orthogonal
group of the intersection form is known. This is due to Borcea, Donaldson and
Matumoto [1, 2, 19] for theK3 surface and to Friedman-Morgan and Lönne in
the general case [5, 18]. We will combine this knowledge withthe work of Wall
on the transitivity of the orthogonal groups of unimodular quadratic forms [24].
Similar to the case of rational surfaces, this will allow us to reduce the problem
of representing a homology class by a minimal genus surface to certain special
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classes. We cannot treat the minimal genus problem in full generality. Instead we
will concentrate on the first interesting special cases thatcome to mind.

We are also interested if we can realize homology classes by surfaces that are
contained in certain nice neighbourhoods inside the elliptic surface. The neigh-
bourhood we consider is the Gompf nucleusN(2).

Notations. In the followingX will denote a relatively minimal simply-connected
elliptic surface with the complex orientation. Using the classification of such ellip-
tic surfaces [7]X is diffeomorphic toE(n)p,q, where the coprime indices denote
logarithmic transformations. We restrict to the casen ≥ 2 or equivalentlyb+

2
> 1;

see [12] for a discussion of Dolgachev surfaces. All self-diffeomorphisms ofX are
orientation preserving.

2. ACTION OF THE DIFFEOMORPHISM GROUP

LetH2(X) denote the integral second homology ofX and Diff+(X) the group
of orientation preserving self-diffeomorphisms ofX. The intersection form on sec-
ond homology induces a unimodular quadratic form onH2(X). We denote byO
the orthogonal group of all automorphisms ofH2(X) that preserve the intersection
form. The action of diffeomorphisms on homology define a group homomorphism
Diff +(X) → O. Thespinor normof an elementφ ∈ O is defined to be±1 de-
pending on whetherφ preserves or reverses an orientation on a maximal positive
definite subspace ofH2(X;R), see Section 6.1.2 of Chapter VI in [5] for a precise
definition. The subgroup ofO of elements of spinor norm1 is denoted byO′.

Definition 1. We let K denote the canonical class ofX. If X is not theK3
surface letk denote the Poincaré dual ofK divided by its divisibility. If K is the
K3 surface letk denote the class of a general fibre. In any case,k is a primitive
class of self-intersection zero. We also choose a second homology classV such
that k · V = 1. For example ifX has no multiple fibres we can choose forV a
section of an elliptic fibration. We denote byOk the automorphisms fixingk and
byO′

k those of spinor norm1.

The following was proved in [18].

Theorem 2. The image of the diffeomorphism group Diff+(X) in O is equal toO′

for theK3 surface and containsO′

k for all other elliptic surfacesX.

We now consider integral unimodular quadratic forms in general. We letH
denote the even hyperbolic form of rank2 andE8 the standard positive definite
even form of rank8. A standard basisfor H is a basise, f such that

e2 = 0, f2 = 0, e · f = 1.

Let Q denote the quadratic formQ = lH ⊕ m(−E8) with l ≥ 2 andm ∈ Z. In
[24] Wall proved the following.

Theorem 3. The orthogonal group ofQ acts transitively on primitive elements of
given square.

We want to deduce the following.
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Proposition 4. The subgroup of elements of spinor norm 1 in the orthogonal group
ofQ acts transitively on primitive elements of given square.

We first prove the following lemma.

Lemma 5. For any even number2a there exist primitive elementsp andq of square
2a and automorphisms ofQ of spinor norm+1 and−1 which mapp to q.

Proof. We considerQ = lH ⊕ m(−E8) and lete, f denote a standard basis for
the firstH summand. Letp = e + af and q = −e − af . Thenp2 = q2 =
2a. Consider the automorphism ofQ which is minus the identity on the firstH
summand and the identity on all other summands and the automorphism which
is minus the identity on the first twoH summands and the identity on all other
summands. These automorphisms have spinor norm−1 and+1 and mapp to
q. �

We now prove Proposition 4.

Proof. Let x andy be arbitrary primitive elements of square2a and letp andq be
the elements from the lemma of the same square. By Wall’s theorem there exist
automorphisms inO mappingx to p andq to y. Choosing an automorphism that
mapsp to q of the correct spinor norm we get by composing an automorphism of
spinor norm+1 mappingx to y. �

We now consider the elliptic surfaceX.

Lemma 6. The self-intersection numberV 2 is even if and only ifX is spin.

Proof. The intersection form on the span ofk andV is unimodular, hence it is uni-
modular on the orthogonal complement. The intersection form on this complement
is even, since the canonical classK is characteristic. The claim now follows be-
causeX is spin if and only if the intersection form on both summands is even. �

Let V 2 = 2a in the spin case andV 2 = 2a+ 1 in the non-spin case.

Definition 7. Define elementse1 = k andf1 = V − ak. Then the intersection
form on the span ofe1, f1 is H in the spin case andH ′ given by

H ′ =

(

0 1
1 1

)

in the non-spin case. Note thatH ′ is isomorphic to〈+1〉 ⊕ 〈−1〉.

The complete intersection form ofX is then given by

(1) H ⊕ lH ⊕m(−E8) orH ′ ⊕ lH ⊕m(−E8),

wherel ≥ 2 sinceb+
2
≥ 3. We also want to choose a standard basis for the second

H summand: TheK3 surface is known to contain a rim torusR of self-intersection
zero and a vanishing sphereS of self-intersection−2 such thatR andS intersect
transversely in one positive point (see Section 4 for an explicit model ofR). Both
are contained in a nucleusN(2) [6], defined as the neighbourhood of a cusp fibre
and a section inK3. Since this nucleus is disjoint from a general fibre it is still
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contained in an arbitrary elliptic surfaceX of the type above. We also choose the
surface representing the classV to be disjoint from this nucleus.

Definition 8. Definee2 = R andf2 = S + R. These are a standard basis for the
secondH summand in the intersection form of the elliptic surfaceX.

Using Theorem 2 and Proposition 4 we deduce the following:

Proposition 9. Let A ∈ H2(X) be an arbitrary primitive element. Then there
exists a self-diffeomorphism ofX which mapsA to

A′ = αe1 + βf1 + γe2 + δf2,

whereα, β, γ, δ are certain integers. IfX is theK3 surface we can mapA via a
self-diffeomorphism to

A′ = αe1 + f1.

The self-diffeomorphisms of theK3 surface act transitively on primitive elements
of given square.

For the proof in the non-K3 case we choose the identity on the first summand
of the intersection form as in equation (1) and a suitable automorphism given by
Proposition 4 on the rest. The result for theK3 surface, which is well-known
[9, 12], follows similarly.

3. MINIMAL GENUS PROBLEM FOR THEK3 SURFACE

The minimal genus problem for classes of non-negative square in theK3 surface
has already been solved [12] using theK3 case of Proposition 9. We want to recall
this solution and also say something about realizing these surfaces in a nucleus
N(2). Note that the adjunction inequality for theK3 surface implies for the genus
of a smooth surfaceΣ that2g(Σ) − 2 ≥ Σ · Σ if the homology class represented
by this surface is non-zero.

Definition 10. By the standard surface of genusg embedded in the nucleusN(2)
we mean the section of self-intersection−2 (g = 0), the general fibre of self-
intersection0 (g = 1) or the surface of genusg ≥ 2 and self-intersection2g − 2
obtained by smoothing the intersection points of the section andg parallel copies
of the general fibre.

Using the fact that theK3 surface contains a nucleusN(2) and Proposition 9
we get the following.

Corollary 11. Consider theK3 surface. Every primitive class of self-intersection
2c−2 with c ≥ 0 is represented by a surface of genusc, embedded as the standard
surface in a nucleusN(2) insideK3. This is the minimal possible genus.

To solve the case of divisible classes with non-negative square we use Lemma
7.7 in [11] due to Kronheimer-Mrowka (see also Lemma 14 in [12]):
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Lemma 12. Let Y be a closed, connected, oriented 4-manifold. Leta(Σ) =
2g(Σ) − 2 − Σ · Σ. If h ∈ H2(Y ) is a homology class withh · h ≥ 0 andΣh

is a surface of genusg representingh andg ≥ 1 whenΣh · Σh = 0, then for all
r > 0, the classrh can be represented by an embedded surfaceΣrh with

a(Σrh) = ra(Σh).

Note that in our casea(Σh) is zero, hence alsoa(Σrh) is zero and the classrh is
represented by a minimal genus surface. In particular, we can apply the construc-
tion of this lemma to divisible classes of non-negative square inside the nucleus
N(2) to get new standard surfaces, representing these classes inthe nucleus (the
construction in the proof of this lemma works in a tubular neighbourhood ofΣh

and does not need the assumption thatY is closed). The transitivity of the action of
the diffeomorphism group then implies that every divisibleclass of non-negative
square inK3 can also be represented by such a standard surface inside a nucleus
N(2). Hence Corollary 11 holds without the assumption that the class is primitive.

4. MINIMAL GENUS PROBLEM FOR OTHER ELLIPTIC SURFACES

We now consider the general case of relatively minimal simply-connected ellip-
tic surfacesX with b+

2
> 1. Note that the adjunction inequality implies for surfaces

Σ orthogonal toK again that2g(Σ) − 2 ≥ Σ · Σ. The self-intersection of such a
surface is even. Using Proposition 9, Lemma 12 and the discussion following it we
get:

Corollary 13. LetX be an elliptic surface. Then every classA of self-intersection
2c − 2 with c ≥ 0 that is orthogonal to the classesK andV is represented by a
standard surface of genusc in a nucleusN(2) in the 4-manifoldX. This is the
minimal possible genus if the class is non-zero.

Proof. For theK3 surface this is a special case of what has been proved above.
In the general case, the assumptions imply thatA can be mapped via a diffeomor-
phism toA′ = γe2 + δf2. Sincee2 andf2 are constructed in a nucleusN(2) the
claim follows. �

Remark 14. If we relax the assumption and only assume thatA is orthogonal toK
it seems that the surface is in general not contained in a nucleusN(2). For example
the general fibre is contained in a nucleusN(n)p,q.

We can deal with the caseA2 = −2 in a slightly more general situation:

Proposition 15. LetX be an elliptic surface. Then any classA orthogonal toK
and of self-intersection−2 is represented by the standard sphere in a nucleusN(2)
in the 4-manifoldX.

Proof. We may assume thatX is different from theK3 surface. The assumptions
imply that there exists a self-diffeomorphism ofX mappingA to

A′ = αk + S,
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whereS is the vanishing sphere. Consider the following mapφ onH2(X) which
on the first two summands of the intersection form is given by

k 7→ k

V 7→ V + αR

R 7→ R

S 7→ S − αk

and is the identity on all other summands. It is easy to check thatφ is an isometry.
Lettingα be a real number and takingα → 0 we see thatφ has spinor norm+1.
Hence it is an element inO′

k and therefore induced by a self-diffeomorphism. It
mapsA′ to S. This implies the claim. �

Remark 16. This result should be compared to the fact that every class ofsquare
−2 in the complement of a general fibre inX is represented by an embedded
sphere [5, 18]. Using an adjunction inequality for spheres [22] one can show that
every elliptic surfaceX different from theK3 surface has a class of square−2 that
intersects the canonical class and is not represented by an embedded sphere.

We now restrict to the case of elliptic surfaces without multiple fibres, i.e.X =
E(n). The classk is represented by a general fibreF . We also have the rim torus
R. Proposition 9 implies:

Lemma 17. If A is a class orthogonal toK and of self-intersection zero then there
exists a self-diffeomorphism ofX that mapsA to

A′ = αF + γR.

We want to show thatA′ can be represented by an embedded torus. The con-
struction involves the circle sum from [17]. The idea is the following: Let Σ0

andΣ1 denote two disjoint connected embedded oriented surfaces in a 4-manifold
Y . We can tube them together in the standard way to get a surfaceof genus
g(Σ0) + g(Σ1). Sometimes, however, we can perform a different surgery that
results in a surface of smaller genus. LetS1

i ⊂ Σi denote embedded circles that
represent non-trivial homology classes in the surfaces. Ineach surface we delete
an annulusS1

i × I. We get two disjoint surfaces whose boundaries consist of two
circles for each surface. We want to connect these circles byannuli embedded in
Y . There are several ways to do this: One possibility is to connect the circles from
the same surface. In this way we simply get back the surfacesΣ0 andΣ1. An-
other possibility is to connect the boundary circles from different surfaces. If this
is possible we get an embedded connected surface of genusg(Σ0) + g(Σ1) − 1
representing the class[Σ0] + [Σ1].

The construction works if we can find an embedded annulus∆ in Y that inter-
sects the surfacesΣ0 andΣ1 precisely in the circlesS1

0 andS1
1 . We also need a

nowhere vanishing normal vector field along∆ that at the ends of∆ is tangential
to the surfacesΣ0 andΣ1. The annuli connecting the four boundary circles are
then constructed as normal push-offs of the annulus∆.
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Lemma 18. There exists an embedded annulus∆ connecting the toriF andR that
satisfies the necessary assumptions for the circle sum in[17].

Proof. The elliptic surfaceX = E(n) is obtained as a fibre sum ofE(n − 1) and
E(1) along a general fibre. LetS1 × S1 ×D2 denote a tubular neighbourhood of
the fibre in one of the summands. We think ofD2 as the unit disk in the complex
plane and letI denote the interval[1

2
, 1] along the real axis. In forming the fibre

sum we delete the open tubular neighbourhood of radius1

4
of the general fibre. The

fibreF in X is realized asS1×S1×{1

2
} while the rim torusR isS1×{∗}×∂D2.

Consider the annulus∆ = S1 × {∗} × I. It intersects the toriF andR precisely
in the circlesS1

F = S1 × {∗} × {1

2
} andS1

R = S1 × {∗} × {1}. Let vF be a unit
tangent vector toS1 in the point∗ andvR a unit tangent vector to∂D2 in 1. Then

eF = S1 × vF ×

{

1

2

}

and
eR = S1 × {∗} × vR

are framings of the circlesS1
F andS1

R inside the tori. Consider the normal vector
field along the annulus∆ given onS1 × {∗} × t by

e = S1 × (2− 2t)vF × t× (2t− 1)vR.

This is equal to the framingseF andeR on the boundary and is the required framing
of the annulus. �

This construction allows us to circle sumF andR. A similar, but easier con-
struction allows us to circle sumα parallel copies ofF andγ parallel copies ofR
to get embedded toriΣ0 andΣ1. The torusΣ0 contains as an open subset a copy of
the torusF with an annulus deleted, and similarly forΣ1. Circle summingΣ0 and
Σ1 along these subsets we get an embedded torus representing the classαF + γR.
This construction proves:

Theorem 19. LetX be an elliptic surface without multiple fibres. Then any class
A orthogonal toK and of self-intersection zero is represented by an embedded
torus.

This is clearly the minimal possible genus allowed by the adjunction inequality
if the classA is non-zero. The same method can be used to prove the following for
even self-intersection numbers greater or equal to2:

Theorem 20. LetX be an elliptic surface without multiple fibres. SupposeA is a
class orthogonal toK such thatA2 = 2c − 2 with c ≥ 2. ThenA is represented
by a surface of genusc in X. This is the minimal possible genus.

Proof. The assumptions imply that there exists a self-diffeomorphism ofX map-
pingA to

A′ = αF + γe2 + δf2,

whereγ andδ are positive withγδ = c− 1. We circle sumα parallel copies ofF
to get a torusΣ0. The classese2 andf2 are represented by embedded toriR and
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T of self-intersection zero that intersect transversely in asingle positive point, the
torusT being obtained by smoothing the intersection betweenR andS. Taking
circle sums of parallel copies we get tori representingγe2 andδf2 that intersect
transversely inγδ points. Smoothing these intersections we get a surfaceΣ1 of
genusγδ + 1 = c. This surface contains as an open subset a copy of the torusR

with an annulus andδ points deleted. We circle sum the surfaceΣ1 to the torusΣ0

to get an embedded surface of genusc representingA′. �
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