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THE MINIMAL GENUS PROBLEM FOR ELLIPTIC SURFACES

M. J. D. HAMILTON

ABSTRACT. We partly solve the minimal genus problem for embeddedsed
in the case of elliptic 4-manifolds. This involves a certestricted transitivity
property of the action of the orientation preserving diffemphism group on the
second homology. In all cases we consider we get the miniwsgiple genus
allowed by the adjunction inequality.

1. INTRODUCTION

Starting with the classical work of Kervaire and Milnor [8ho showed that
certain second homology classes in simply-connected 4fahds are not repre-
sented by embedded spheres, the question arose to find fe@ratgimology class
in a 4-manifold the minimal genus of an embedded closed aiad®riented sur-
face realizing that class. This question has been solveshat partly for rational
and ruled surfaces and for 4-manifolds with a free circlioadB,/4,12[ 13, 14, 15,
16,[17,23]. On symplectic 4-manifolds the question is eglab the Thom con-
jecture [10/ 20| 21]. In particular, the adjunction inedyairom Seiberg-Witten
theory gives a lower bound on the genus of a surface repiegenhomology class
in a closed, oriented 4-manifold with a basic class and weloamask if this lower
bound is indeed realized. Usually the question is moredldetfor classes of pos-
itive self-intersection and is still open in most situatoin the case of negative
self-intersections. In particular, it is still unknown viher there exist embedded
spheres ink 3 of arbitrarily negative self-intersection.

Another interesting class of 4-manifolds are elliptic aggs. We will restrict to
relatively minimal simply-connected elliptic surfacesié; > 1, but generaliza-
tions should be possible. Note that every orientation pvasg diffeomorphism of
a closed, oriented 4-manifold induces an isometry of thergaiction form on the
second homology (modulo torsion). A very useful fact is tloatelliptic surfaces
the image of the orientation preserving diffeomorphismugran the orthogonal
group of the intersection form is known. This is due to Bordeanaldson and
Matumoto [1,02] 19] for the/3 surface and to Friedman-Morgan and Lonne in
the general case][5, 18]. We will combine this knowledge i work of Wall
on the transitivity of the orthogonal groups of unimodulaadratic forms[[24].
Similar to the case of rational surfaces, this will allow osréduce the problem
of representing a homology class by a minimal genus surfaaeitain special

Date June 7, 2012.
2010Mathematics Subject ClassificatioRrimary 14327, 57N13, 57R95; Secondary 57R57.
Key words and phrasegt-manifold, elliptic surface, diffeomorphism group, miral genus.

1


http://arxiv.org/abs/1206.1260v1

2 M. J. D. HAMILTON

classes. We cannot treat the minimal genus problem in fukkgdity. Instead we
will concentrate on the first interesting special casesdbate to mind.

We are also interested if we can realize homology classesiffigcgs that are
contained in certain nice neighbourhoods inside the @liptirface. The neigh-
bourhood we consider is the Gompf nucleVi§2).

Notations. In the following X will denote a relatively minimal simply-connected
elliptic surface with the complex orientation. Using thasdification of such ellip-
tic surfacesl[[r]X is diffeomorphic toE(n), 4, where the coprime indices denote
logarithmic transformations. We restrict to the case 2 or equivalentlyb; > 1;
see[[12] for a discussion of Dolgachev surfaces. All séfedmorphisms ofX are
orientation preserving.

2. ACTION OF THE DIFFEOMORPHISM GROUP

Let Ho(X) denote the integral second homologyXfand Difft (X) the group
of orientation preserving self-diffeomorphismsXf The intersection form on sec-
ond homology induces a unimodular quadratic form/(X). We denote byO
the orthogonal group of all automorphismsif (X ) that preserve the intersection
form. The action of diffeomorphisms on homology define a grbamomorphism
Diff *(X) — O. Thespinor normof an element € O is defined to bek1 de-
pending on whethep preserves or reverses an orientation on a maximal positive
definite subspace df»(X;R), see Section 6.1.2 of Chapter VI I [5] for a precise
definition. The subgroup ab of elements of spinor normis denoted by)’.

Definition 1. We let K denote the canonical class &f. If X is not the K3
surface letk denote the Poincaré dual &f divided by its divisibility. If K is the
K3 surface lett denote the class of a general fibre. In any c&sis, a primitive
class of self-intersection zero. We also choose a seconalbggnclassl” such
thatk - V = 1. For example ifX has no multiple fibres we can choose fora
section of an elliptic fibration. We denote 163, the automorphisms fixing and
by Oy, those of spinor norn.

The following was proved iri [18].

Theorem 2. The image of the diffeomorphism group Diff{) in O is equal toO’
for the K'3 surface and contain®;, for all other elliptic surfacesX.

We now consider integral unimodular quadratic forms in gahneWe let H
denote the even hyperbolic form of raBkand Eg the standard positive definite
even form of rank8. A standard basifor H is a basis:, f such that

e2=0,f2=0,e-f=1.

Let ) denote the quadratic for) = [H & m(—Es) with{ > 2 andm € Z. In
[24] Wall proved the following.

Theorem 3. The orthogonal group of) acts transitively on primitive elements of
given square.

We want to deduce the following.
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Proposition 4. The subgroup of elements of spinor norm 1 in the orthogoraigr
of () acts transitively on primitive elements of given square.

We first prove the following lemma.

Lemma 5. For any even numbe& there exist primitive elemengsandq of square
2a and automorphisms @ of spinor norm+-1 and —1 which mapp to q.

Proof. We consider) = [H & m(—Eg) and lete, f denote a standard basis for
the first @ summand. Lep = e + af andg = —e — af. Thenp? = ¢ =
2a. Consider the automorphism @f which is minus the identity on the firgi
summand and the identity on all other summands and the agbtimsm which
is minus the identity on the first twé/ summands and the identity on all other
summands. These automorphisms have spinor netnand +1 and mapp to
q. O

We now prove Propositidn 4.

Proof. Let x andy be arbitrary primitive elements of squate and letp andq be
the elements from the lemma of the same square. By Wall'sd¢nedhere exist
automorphisms i mappingz to p andq to y. Choosing an automorphism that
mapsp to ¢ of the correct spinor norm we get by composing an automanplois
spinor normy-1 mappingz to y. O

We now consider the elliptic surface.
Lemma 6. The self-intersection numb&f? is even if and only ifX is spin.

Proof. The intersection form on the spanfoandV is unimodular, hence it is uni-
modular on the orthogonal complement. The intersectiom fmm this complement
is even, since the canonical claksis characteristic. The claim now follows be-
causeX is spin if and only if the intersection form on both summargieven. [

Let V2 = 2q in the spin case and? = 2a + 1 in the non-spin case.

Definition 7. Define elementg; = k and f{ = V — ak. Then the intersection
form on the span of;, f; is H in the spin case andl’ given by

=(11)
in the non-spin case. Note th&at is isomorphic to(+1) & (—1).
The complete intersection form o&f is then given by
(1) H @ IH @& m(—Eg)or H @ 1H @ m(—FEg),

wherel > 2 sincebgr > 3. We also want to choose a standard basis for the second
H summand: Thd{3 surface is known to contain a rim tor&sof self-intersection
zero and a vanishing sphesfeof self-intersection—2 such thatR and S intersect
transversely in one positive point (see Seclibn 4 for anieixphodel of R). Both

are contained in a nucleu$(2) [6], defined as the neighbourhood of a cusp fibre
and a section inK3. Since this nucleus is disjoint from a general fibre it id stil



4 M. J. D. HAMILTON

contained in an arbitrary elliptic surfacé of the type above. We also choose the
surface representing the cldggo be disjoint from this nucleus.

Definition 8. Definee; = Randfs = S + R. These are a standard basis for the
secondd summand in the intersection form of the elliptic surfae

Using Theorem]2 and Propositibh 4 we deduce the following:

Proposition 9. Let A € Hy(X) be an arbitrary primitive element. Then there
exists a self-diffeomorphism &f which mapsA to

A" = aer + Bf1+vea + dfa,

whereq, 3,~, 6 are certain integers. X is the K3 surface we can magd via a
self-diffeomorphism to

A =oel + f1.

The self-diffeomorphisms of th#€3 surface act transitively on primitive elements
of given square.

For the proof in the nork'3 case we choose the identity on the first summand
of the intersection form as in equatidd (1) and a suitableraotphism given by
Proposition’ 4 on the rest. The result for thé3 surface, which is well-known
[9,112], follows similarly.

3. MINIMAL GENUS PROBLEM FOR THEK 3 SURFACE

The minimal genus problem for classes of non-negative sgnaheK 3 surface
has already been solved [12] using i@ case of Proposition 9. We want to recall
this solution and also say something about realizing thagaces in a nucleus
N (2). Note that the adjunction inequality for t#€3 surface implies for the genus
of a smooth surfac& that2g(X) — 2 > X - 3 if the homology class represented
by this surface is non-zero.

Definition 10. By the standard surface of gengeembedded in the nuclelé(2)
we mean the section of self-intersectier2 (¢ = 0), the general fibre of self-
intersection0 (¢ = 1) or the surface of genug > 2 and self-intersectiolg — 2
obtained by smoothing the intersection points of the seaiadg parallel copies
of the general fibre.

Using the fact that thé(3 surface contains a nucleug(2) and Proposition]9
we get the following.

Corollary 11. Consider the/(3 surface. Every primitive class of self-intersection
2c—2 with ¢ > 0 is represented by a surface of genyembedded as the standard
surface in a nucleusV(2) inside K3. This is the minimal possible genus.

To solve the case of divisible classes with non-negativeusgwe use Lemma
7.7 in [11] due to Kronheimer-Mrowka (see also Lemma 14 if)i12
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Lemma 12. Let Y be a closed, connected, oriented 4-manifold. &et) =
29(X) —2—-X-X%. If h € Ho(Y) is a homology class with - h > 0 and %,
is a surface of genug representingh andg > 1 whenX;, - 3, = 0, then for all
r > 0, the class-h can be represented by an embedded surfagewith

a(X,p) = ra(Xp).

Note that in our case(X;,) is zero, hence alse(X, ) is zero and the class: is
represented by a minimal genus surface. In particular, weapply the construc-
tion of this lemma to divisible classes of non-negative sgunside the nucleus
N (2) to get new standard surfaces, representing these clastes mucleus (the
construction in the proof of this lemma works in a tubularghdiourhood o,
and does not need the assumption thas closed). The transitivity of the action of
the diffeomorphism group then implies that every divisiblass of non-negative
square inK'3 can also be represented by such a standard surface insiddeasiu
N(2). Hence Corollary 11 holds without the assumption that the<cis primitive.

4. MINIMAL GENUS PROBLEM FOR OTHER ELLIPTIC SURFACES

We now consider the general case of relatively minimal syrgoinnected ellip-
tic surfacesX with b > 1. Note that the adjunction inequality implies for surfaces
¥, orthogonal toK again thatg(X) — 2 > ¥ - 3. The self-intersection of such a
surface is even. Using Propositioh 9, Lenimh 12 and the digmu$ollowing it we
get:

Corollary 13. Let X be an elliptic surface. Then every cladsf self-intersection

2c¢ — 2 with ¢ > 0 that is orthogonal to the classgs and V' is represented by a
standard surface of genusin a nucleusN (2) in the 4-manifoldX. This is the

minimal possible genus if the class is non-zero.

Proof. For the K'3 surface this is a special case of what has been proved above.
In the general case, the assumptions imply thagan be mapped via a diffeomor-
phism toA’ = ~es + d f2. Sincees and f are constructed in a nucle®$(2) the
claim follows. O

Remark 14. If we relax the assumption and only assume tha orthogonal ta<
it seems that the surface is in general not contained in @unsdl(2). For example
the general fibre is contained in a nuclevign),, ,.

We can deal with the casé® = —2 in a slightly more general situation:

Proposition 15. Let X be an elliptic surface. Then any clagdsorthogonal toK
and of self-intersection-2 is represented by the standard sphere in a nuclg(2)
in the 4-manifoldX .

Proof. We may assume thaf is different from theK3 surface. The assumptions
imply that there exists a self-diffeomorphism &fmappingA to

A =ak + S,
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whereS is the vanishing sphere. Consider the following ngepn Hy(X') which
on the first two summands of the intersection form is given by

k—k
Vi V+aR
R— R
S— S —ak

and is the identity on all other summands. It is easy to chieal/tis an isometry.
Letting « be a real number and taking — 0 we see that has spinor norm-1.
Hence it is an element i@, and therefore induced by a self-diffeomorphism. It
mapsA’ to S. This implies the claim. O

Remark 16. This result should be compared to the fact that every clasgudre
—2 in the complement of a general fibre X is represented by an embedded
spherel[5,_18]. Using an adjunction inequality for sphe® pne can show that
every elliptic surfaceX different from theK'3 surface has a class of squaré that
intersects the canonical class and is not represented ylaedeled sphere.

We now restrict to the case of elliptic surfaces without iplétfibres, i.e X =
E(n). The class: is represented by a general fibfe We also have the rim torus
R. Propositio D implies:

Lemma 17. If Ais a class orthogonal té& and of self-intersection zero then there
exists a self-diffeomorphism &f that mapsA to

A" = aF +~R.

We want to show thatl’ can be represented by an embedded torus. The con-
struction involves the circle sum from_[17]. The idea is tiodldwing: Let X
andX; denote two disjoint connected embedded oriented surfacegimanifold
Y. We can tube them together in the standard way to get a sudfagenus
g9(30) + g(31). Sometimes, however, we can perform a different surgery tha
results in a surface of smaller genus. 1%t C ¥, denote embedded circles that
represent non-trivial homology classes in the surfacesabth surface we delete
an annulusS} x I. We get two disjoint surfaces whose boundaries consist of tw
circles for each surface. We want to connect these circleenbyli embedded in
Y. There are several ways to do this: One possibility is to eohthe circles from
the same surface. In this way we simply get back the surfageand X;. An-
other possibility is to connect the boundary circles froffiedent surfaces. If this
is possible we get an embedded connected surface of gghus$ + g(21) — 1
representing the class] + [24].

The construction works if we can find an embedded annilus Y that inter-
sects the surfaces, and¥; precisely in the circless} and S{. We also need a
nowhere vanishing normal vector field alodgthat at the ends oA is tangential
to the surfacesy andX;. The annuli connecting the four boundary circles are
then constructed as normal push-offs of the annius
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Lemma 18. There exists an embedded annulusonnecting the torf” and R that
satisfies the necessary assumptions for the circle syrivin

Proof. The elliptic surfaceX = F(n) is obtained as a fibre sum éf(n — 1) and
E(1) along a general fibre. Let' x S' x D? denote a tubular neighbourhood of
the fibre in one of the summands. We thinkof as the unit disk in the complex
plane and leff denote the interva{l%, 1] along the real axis. In forming the fibre
sum we delete the open tubular neighbourhood of raﬁiimlisthe general fibre. The
fibore Fin X is realized ass* x St x {1} while the rim torusR is S x {*} x D2,
Consider the annulud = S* x {x} x I. Itintersects the torF" and R precisely
in the circlesS}. = S x {x} x {3} andS} = S x {x} x {1}. Letvy be a unit
tangent vector t&'! in the pointx andvx a unit tangent vector t8D? in 1. Then

1
EFZSIXUFX{i}

er = S x {} x vp
are framings of the circleS}. and S}, inside the tori. Consider the normal vector
field along the annulud given onS* x {x} x t by
e =S8 % (2—2t)up x t x (2t — 1)vg.

This is equal to the framings- ander on the boundary and is the required framing
of the annulus. O

and

This construction allows us to circle sumand R. A similar, but easier con-
struction allows us to circle sum parallel copies of" and~ parallel copies ofR
to get embedded tokiy andX;. The torus:, contains as an open subset a copy of
the torusE’ with an annulus deleted, and similarly fai. Circle summing:, and
31 along these subsets we get an embedded torus represemticigsby 7' + v R.
This construction proves:

Theorem 19. Let X be an elliptic surface without multiple fibres. Then any slas
A orthogonal toK and of self-intersection zero is represented by an embedded
torus.

This is clearly the minimal possible genus allowed by theiadjion inequality
if the classA is non-zero. The same method can be used to prove the folidain
even self-intersection numbers greater or equal to

Theorem 20. Let X be an elliptic surface without multiple fibres. Suppoke a
class orthogonal td< such that4? = 2¢ — 2 with ¢ > 2. ThenA is represented
by a surface of genusin X. This is the minimal possible genus.

Proof. The assumptions imply that there exists a self-diffeomismhof X map-
ping A to

A =aF + ves + 4 fa,
wherey and§ are positive withyd = ¢ — 1. We circle sun parallel copies of”
to get a torusy. The classess and f, are represented by embedded t&rand
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T of self-intersection zero that intersect transversely single positive point, the
torus T being obtained by smoothing the intersection betwBeand S. Taking
circle sums of parallel copies we get tori representifag and ¢ f> that intersect
transversely inyd points. Smoothing these intersections we get a surfacef
genusyé + 1 = ¢. This surface contains as an open subset a copy of the forus
with an annulus and points deleted. We circle sum the surfaceto the torus:

to get an embedded surface of genuspresentingd’. O
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