A SHORT NOTE ON MAPPING CYLINDERS

ALEX AGUADO

ABSTRACT. Given a homotopy equivalence $f: X \longrightarrow Y$ we obtain an explicit formula for a strong deformation retraction of the mapping cylinder of f onto its top.

1. Setup

The mapping cylinder M_f of a map $f: X \to Y$ between two topological spaces is the quotient space of the disjoint union $X \times I + Y$ by the equivalence relation arising from the identifications $(x, 0) \sim f(x)$. The quotient map $q: X \times I + Y \to M_f$ embeds $X \times \{1\}$ and Y as closed subsets of M_f . Let $\widetilde{X} = q(X \times \{1\})$, and $\widetilde{Y} = q(Y)$. We will denote by [x, t] and [y] the equivalence classes of $(x, t) \in X \times I$, and $y \in Y$, respectively.

Theorem. A map $f: X \to Y$ between two topological spaces is a homotopy equivalence iff \widetilde{X} is a strong deformation retract of M_f .

This theorem is well known, and its origins can be traced back to the results presented by Fox [1] and Fuchs [2]. Modern proofs are usually presented within the contexts of cofibrations or the homotopy extension property (e.g. Corollary 0.21 in [3]).

The backward implication is usually dealt with by giving an explicit formula for a strong deformation retraction of M_f onto its bottom \widetilde{Y} (e.g. the map H_1 given below).

The forward implication has a conceptual proof that we believe is better than a proof by a formula. However, we also believe that it is desirable to have a formula because of computer modeling, which has become an important research tool across the scientific community. Mathematical concepts are generally easier to implement on a computer if a formula or algorithm describing the concept is found.

2. Tools

Suppose that $f: X \to Y$ is a homotopy equivalence with homotopy inverse $g: Y \to X$. Then we have homotopies $F: X \times I \to X$ from $g \circ f$ to $\mathbf{1}_X$, and $G: Y \times I \to Y$ from $f \circ g$ to $\mathbf{1}_Y$.

We want to construct a strong deformation retraction of M_f onto its top \widetilde{X} in terms of f, g, F and G. The following are the tools we will need:

2.1. A deformation retraction of M_f onto its top \widetilde{X} :

(1) Define a map $H_1: M_f \times I \longrightarrow M_f$ by

$$([x,t],s) \longmapsto [x,t(1-s)]$$
 and $([y],s) \longmapsto [y]$

This is a well defined strong deformation retraction from $\mathbf{1}_{M_f}$ to the retraction $r: M_f \to M_f$ given by the canonical projection of the mapping cylinder onto its bottom \widetilde{Y} . That is, r is defined by $[x,t] \mapsto [x,0]$, and $[y] \mapsto [y]$.

(2) Use f and G to define a map $H_2: M_f \times I \longrightarrow M_f$ by

$$([x,t],s) \mapsto [G(f(x),1-s)]$$
 and $([y],s) \mapsto [G(y,1-s)]$

This is a well defined homotopy from r to a map $h: M_f \to M_f$ defined by $[x, t] \mapsto [g \circ f(x), 0]$ and $[y] \mapsto [g(y), 0]$.

1

(3) Use g and F to define a map $H_3: M_f \times I \longrightarrow M_f$ by

$$([x,t],s) \longmapsto [F(x,st),s] \text{ and } ([y],s) \longmapsto [g(y),s]$$

This is a well defined homotopy from the map h to a retraction $r': M_f \to M_f$ of the mapping cylinder onto its top \widetilde{X} defined by

$$[x,t] \longmapsto [F(x,t),1]$$
 and $[y] \longmapsto [g(y),1]$.

The concatenation $H = H_1 * H_2 * H_3$ is the desired deformation retraction from $\mathbf{1}_{M_f}$ to a retraction r' of M_f onto its top.

2.2. The Homotopy extension property of $(M_f \times I, \widetilde{X} \times I)$ made explicit: We need to construct a retraction $R: M_f \times I \times I \to M_f \times I \times I$ of $M_f \times I \times I$ onto $M_f \times I \times \{0\} \cup \widetilde{X} \times I \times I$. This is achieved by defining first a retraction $\varphi: I^2 \to I^2$ of I^2 onto $I \times \{0\} \cup \{1\} \times I$ via radial projection from the point (0,2), as the figure below illustrates.

$$\varphi(u,v) = \begin{cases} \left(\frac{2u}{2-v}, 0\right) & \text{if } v \le 2 - 2u\\ \left(1, \frac{2u+v-2}{u}\right) & \text{if } v \ge 2 - 2u. \end{cases}$$

If we let φ_1 and φ_2 denote the components of φ the retraction R is defined

$$([x,t],s,l) \longmapsto ([x,\varphi_1(t,l)],s,\varphi_2(t,l))$$
 and $([y],s,l) \longmapsto ([y],s,0)$.

3. Construction

In order to facilitate clarity a point in M_f will be denoted by the letter p. If the point is in \widetilde{X} (i.e. p = [x, 1]) we will denote it by \tilde{p} .

Our goal is to modify the deformation retraction H constructed earlier so that it leaves \widetilde{X} fixed.

We begin by defining a homotopy $K: M_f \times I \longrightarrow M_f$ by

$$K(p,s) = \begin{cases} H^{-1}(p, 1-2s) & \text{if } 0 \le s \le \frac{1}{2} \\ \\ H^{-1}(r'(p), 2s-1) & \text{if } \frac{1}{2} \le s \le 1, \end{cases}$$

where H^{-1} denotes the *inverse* of H (i.e. H with s running backward). Roughly speaking, the first part of K is simply H^{-1} twice as fast, while the second half is a map that begins and ends with r', and is homotopic¹ to H^{-1} . It easy to check that K is a well defined homotopy from $\mathbf{1}_{M_f}$ to r', and that its restriction to $X \times I$ is a homotopy beginning and ending with $1_{\tilde{X}}$. Moreover, it behaves well with respect to time reversal in the sense that $K(\tilde{p}, 1 - s) = K(\tilde{p}, s)$.

The next step will be to define a homotopy $L: (\widetilde{X} \times I) \times I \longrightarrow M_f$. We use K and the diagram below to accomplish this.

¹Because $\mathbf{1}_{M_f} \sim r'$ implies that $\mathbf{1}_{M_f} \times \mathbf{1}_I \sim r' \times \mathbf{1}_I$, and therefore $H^{-1} \sim H^{-1} \circ (r' \times \mathbf{1}_I)$.

Roughly speaking, we want $L(\tilde{p}, s, u)$ to be independent of u below the 'V', and independent of s above the 'V'. More formally:

$$L(\tilde{p},s,u) = \begin{cases} K(\tilde{p},s) & \text{if } u \leq |2s-1| \\ K\left(\tilde{p},\frac{1-u}{2}\right) & \text{if } 2s-u \leq 1 \leq 2s+u. \end{cases}$$

This is a well defined homotopy from $K |_{\tilde{X} \times I}$ to a map sending (\tilde{p}, s) to \tilde{p} . Moreover, $L(\tilde{p}, s, u) = \tilde{p}$ for $(s,u) \in \partial I \times I \cup I \times \{1\}$. Therefore, looking at the diagram above we would like to extend L to the whole mapping cylinder and then follow this extension from the lower left corner $\mathbf{1}_{M_f}$ along the left, top and right edges to the right corner r'. Indeed, define a map $K_0: M_f \times I \times \{0\} \longrightarrow M_f$ by $K_0(p, s, 0) = K(p, s)$, and combine it with L to give a map³ $(K_0, L): M_f \times I \times \{0\} \cup \widetilde{X} \times I \times I \longrightarrow M_f$. Then, define L' by the composition

$$M_f \times I \times I \xrightarrow{R} M_f \times I \times \{0\} \cup \widetilde{X} \times I \times I \xrightarrow{(K_0, L)} M_f,$$

This map clearly extends L and satisfies L'(p,s,0)=K(p,s). Finally, define a map $\Gamma:M_f\times I\to M_f$ by

$$\Gamma(p,s) = \begin{cases} L'(p,0,3s) & \text{if } 0 \le s \le \frac{1}{3} \\ L'(p,3s-1,1) & \text{if } \frac{1}{3} \le s \le \frac{2}{3} \\ L'(p,1,3-3s) & \text{if } \frac{2}{3} \le s \le 1. \end{cases}$$

It is easy to check that this map verifies the following:

- $\Gamma(p,0) = L'(p,0,0) = K(p,0) = p$.
- $\Gamma(p,1) = L'(p,1,0) = K(p,1) = r'(p)$,
- $\Gamma(\tilde{p}, s) = \tilde{p}$ because L' is an extension of L.

Therefore, Γ is the desired strong deformation retraction from the identity $\mathbf{1}_{M_f}$ to a retraction r' of the mapping cylinder onto its top \widetilde{X} .

4. Formula

If we unravel Γ we will obtain the desired formula in terms of f, g, F and G. It is given in the next two pages.

²Because $K(\tilde{p}, 1-s) = K(\tilde{p}, s)$ implies that $K(\tilde{p}, \frac{1-u}{2}) = K(\tilde{p}, \frac{1+u}{2})$.

³This map is unambiguously defined because $K_0 = L$ on the overlap $\widetilde{X} \times I \times \{0\}$. Continuity follows from the gluing lemma because \widetilde{X} is a closed subset of in M_f .

$$\Gamma([x,t],s) = \begin{cases} \text{if } 0 \leq s \leq \frac{1}{3} \\ \begin{cases} [x,2t] \\ [x,1] \end{cases} & \text{if } s \geq \frac{2-2t}{3} \end{cases} \\ \begin{cases} [x,2t(7-18s)] \\ [x,1] \end{cases} & \text{if } \frac{1}{3} \leq s \leq \frac{7}{18} \end{cases} \\ \begin{cases} [x,2t(7-18s)] \\ [x,2t(18s-8)] \end{cases} & \text{if } \frac{1}{3} \leq s \leq \frac{7}{18} \end{cases} \\ \begin{cases} [x,2t(18s-8)] \\ [x,2t(18s-8)] \end{cases} & \text{if } \frac{7}{18} \leq s \leq \frac{8}{18} \end{cases} \\ \begin{cases} [x,2t(18s-8)] \\ [x,2t(18s-8)] \end{cases} & \text{if } \frac{1}{8} \leq s \leq \frac{1}{2} \end{cases} \\ \begin{cases} [x,2t(18s-8)] \\ [x,2t(18s-8)] \end{cases} & \text{if } \frac{1}{2} \leq s \leq \frac{10}{18} \end{cases} \\ \begin{cases} [x,2t(18s-8)] \\ [x,2t(18s-10)] \end{cases} & \text{if } \frac{1}{18} \leq s \leq \frac{1}{2} \end{cases} \\ \begin{cases} [x,7-18s] \\ [x,2t(18s-11)] \end{cases} & \text{if } \frac{1}{3} \leq s \leq \frac{7}{18} \end{cases} \\ \begin{cases} [x,7-18s] \\ [x,18s-18s] \end{cases} & \text{if } \frac{1}{3} \leq s \leq \frac{1}{2} \end{cases} \\ \begin{cases} [x,18s-8],18s-8 \end{cases} & \text{if } \frac{1}{8} \leq s \leq \frac{1}{2} \end{cases} \\ \begin{cases} [x,18s-8],18s-8 \end{cases} & \text{if } \frac{1}{2} \leq s \leq \frac{10}{18} \end{cases} \\ \begin{cases} [x,18s-10] \end{cases} & \text{if } \frac{10}{18} \leq s \leq \frac{11}{18} \end{cases} \\ \begin{cases} [x,18s-11] \end{cases} & \text{if } \frac{10}{18} \leq s \leq \frac{11}{3} \end{cases} \end{cases} \\ \begin{cases} [x,13s-11] \end{cases} & \text{if } s \leq \frac{1+2t}{3} \end{cases}$$

$$\Gamma([y], s) = \begin{cases} [y] & \text{if } 0 \le s \le \frac{7}{18} \\ [G(y, 8 - 18s)] & \text{if } \frac{7}{18} \le s \le \frac{8}{18} \\ [g(y), 18s - 8] & \text{if } \frac{8}{18} \le s \le \frac{1}{2} \\ [F(g(y), 10 - 18s)] & \text{if } \frac{1}{2} \le s \le \frac{10}{18} \\ [G(f \circ g(y), 18s - 10)] & \text{if } \frac{10}{18} \le s \le \frac{11}{18} \\ [g(y), 18s - 11] & \text{if } \frac{11}{18} \le s \le \frac{2}{3} \\ [g(y), 1] & \text{if } \frac{2}{3} \le s \le 1 \end{cases}$$

References

- [1] R.H. Fox, On homotopy type and deformation retracts, Ann. of Math., Vol. 44, 1 (1943), 40-50.
- [2] M. Fuchs, A note on mapping cylinders, Michigan Math. J., Vol. 18, 4 (1971), 289-290.
- [3] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NC 27708-0320 $E\text{-}mail\ address$: aaguado@math.duke.edu