A SHORT NOTE ON MAPPING CYLINDERS

ALEX AGUADO

Abstract

Given a homotopy equivalence $f: X \rightarrow Y$ we obtain an explicit formula for a strong deformation retraction of the mapping cylinder of f onto its top.

1. SETUP

The mapping cylinder M_{f} of a map $f: X \rightarrow Y$ between two topological spaces is the quotient space of the disjoint union $X \times I+Y$ by the equivalence relation arising from the identifications $(x, 0) \sim f(x)$. The quotient $\operatorname{map} q: X \times I+Y \rightarrow M_{f}$ embeds $X \times\{1\}$ and Y as closed subsets of M_{f}. Let $\widetilde{X}=q(X \times\{1\})$, and $\widetilde{Y}=q(Y)$. We will denote by $[x, t]$ and $[y]$ the equivalence classes of $(x, t) \in X \times I$, and $y \in Y$, respectively.
Theorem. A map $f: X \rightarrow Y$ between two topological spaces is a homotopy equivalence iff \tilde{X} is a strong deformation retract of M_{f}.

This theorem is well known, and its origins can be traced back to the results presented by Fox [1] and Fuchs [2]. Modern proofs are usually presented within the contexts of cofibrations or the homotopy extension property (e.g. Corollary 0.21 in [3]).

The backward implication is usually dealt with by giving an explicit formula for a strong deformation retraction of M_{f} onto its bottom \widetilde{Y} (e.g. the map H_{1} given below).

The forward implication has a conceptual proof that we believe is better than a proof by a formula. However, we also believe that it is desirable to have a formula because of computer modeling, which has become an important research tool across the scientific community. Mathematical concepts are generally easier to implement on a computer if a formula or algorithm describing the concept is found.

2. Tools

Suppose that $f: X \rightarrow Y$ is a homotopy equivalence with homotopy inverse $g: Y \rightarrow X$. Then we have homotopies $F: X \times I \rightarrow X$ from $g \circ f$ to $\mathbf{1}_{X}$, and $G: Y \times I \rightarrow Y$ from $f \circ g$ to $\mathbf{1}_{Y}$.

We want to construct a strong deformation retraction of M_{f} onto its top \widetilde{X} in terms of f, g, F and G. The following are the tools we will need:

2.1. A deformation retraction of M_{f} onto its top \widetilde{X} :

(1) Define a map $H_{1}: M_{f} \times I \rightarrow M_{f}$ by

$$
([x, t], s) \longmapsto[x, t(1-s)] \text { and }([y], s) \longmapsto[y]
$$

This is a well defined strong deformation retraction from $\mathbf{1}_{M_{f}}$ to the retraction $r: M_{f} \rightarrow M_{f}$ given by the canonical projection of the mapping cylinder onto its bottom \widetilde{Y}. That is, r is defined by $[x, t] \mapsto[x, 0]$, and $[y] \mapsto[y]$.
(2) Use f and G to define a map $H_{2}: M_{f} \times I \rightarrow M_{f}$ by

$$
([x, t], s) \longmapsto[G(f(x), 1-s)] \text { and }([y], s) \longmapsto[G(y, 1-s)]
$$

This is a well defined homotopy from r to a map $h: M_{f} \rightarrow M_{f}$ defined by $[x, t] \mapsto[g \circ f(x), 0]$ and $[y] \mapsto[g(y), 0]$.
(3) Use g and F to define a map $H_{3}: M_{f} \times I \rightarrow M_{f}$ by

$$
([x, t], s) \longmapsto[F(x, s t), s] \text { and }([y], s) \longmapsto[g(y), s]
$$

This is a well defined homotopy from the map h to a retraction $r^{\prime}: M_{f} \rightarrow M_{f}$ of the mapping cylinder onto its top \widetilde{X} defined by

$$
[x, t] \longmapsto[F(x, t), 1] \text { and }[y] \longmapsto[g(y), 1] .
$$

The concatenation $H=H_{1} * H_{2} * H_{3}$ is the desired deformation retraction from $\mathbf{1}_{M_{f}}$ to a retraction r^{\prime} of M_{f} onto its top.
2.2. The Homotopy extension property of $\left(M_{f} \times I, \widetilde{X} \times I\right)$ made explicit: We need to construct a retraction $R: M_{f} \times I \times I \rightarrow M_{f} \times I \times I$ of $M_{f} \times I \times I$ onto $M_{f} \times I \times\{0\} \cup \tilde{X} \times I \times I$. This is achieved by defining first a retraction $\varphi: I^{2} \rightarrow I^{2}$ of I^{2} onto $I \times\{0\} \cup\{1\} \times I$ via radial projection from the point $(0,2)$, as the figure below illustrates.

$$
\begin{aligned}
& \varphi(u, v)= \begin{cases}\left(\frac{2 u}{2-v}, 0\right) & \text { if } v \leq 2-2 u \\
\left(1, \frac{2 u+v-2}{u}\right) & \text { if } v \geq 2-2 u .\end{cases} \\
& \text { If we let } \varphi_{1} \text { and } \varphi_{2} \text { denote the components of } \varphi \text { the retraction } R \text { is defined } \\
& \text { by } \\
& ([x, t], s, l) \longmapsto\left(\left[x, \varphi_{1}(t, l)\right], s, \varphi_{2}(t, l)\right) \text { and } \quad([y], s, l) \longmapsto([y], s, 0) .
\end{aligned}
$$

3. Construction

In order to facilitate clarity a point in M_{f} will be denoted by the letter p. If the point is in \widetilde{X} (i.e. $p=[x, 1])$ we will denote it by \tilde{p}.

Our goal is to modify the deformation retraction H constructed earlier so that it leaves \widetilde{X} fixed.
We begin by defining a homotopy $K: M_{f} \times I \rightarrow M_{f}$ by

$$
K(p, s)= \begin{cases}H^{-1}(p, 1-2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ H^{-1}\left(r^{\prime}(p), 2 s-1\right) & \text { if } \frac{1}{2} \leq s \leq 1,\end{cases}
$$

where H^{-1} denotes the inverse of H (i.e. H with s running backward). Roughly speaking, the first part of K is simply H^{-1} twice as fast, while the second half is a map that begins and ends with r^{\prime}, and is homotopic ${ }^{1}$ to H^{-1}. It easy to check that K is a well defined homotopy from $\mathbf{1}_{M_{f}}$ to r^{\prime}, and that its restriction to $\widetilde{X} \times I$ is a homotopy beginning and ending with $\mathbf{1}_{\tilde{X}}$. Moreover, it behaves well with respect to time reversal in the sense that $K(\tilde{p}, 1-s)=K(\tilde{p}, s)$.

The next step will be to define a homotopy $L:(\tilde{X} \times I) \times I \rightarrow M_{f}$. We use K and the diagram below to accomplish this.

[^0]

Roughly speaking, we want $L(\tilde{p}, s, u)$ to be independent of u below the ' V ', and independent of s above the ' V '. More formally:

$$
L(\tilde{p}, s, u)= \begin{cases}K(\tilde{p}, s) & \text { if } u \leq|2 s-1| \\ K\left(\tilde{p}, \frac{1-u}{2}\right) & \text { if } 2 s-u \leq 1 \leq 2 s+u\end{cases}
$$

This is a well defined ${ }^{2}$ homotopy from $\left.K\right|_{\tilde{X} \times I}$ to a map sending (\tilde{p}, s) to \tilde{p}. Moreover, $L(\tilde{p}, s, u)=\tilde{p}$ for $(s, u) \in \partial I \times I \cup I \times\{1\}$. Therefore, looking at the diagram above we would like to extend L to the whole mapping cylinder and then follow this extension from the lower left corner $\mathbf{1}_{M_{f}}$ along the left, top and right edges to the right corner r^{\prime}. Indeed, define a map $K_{0}: M_{f} \times I \times\{0\} \rightarrow M_{f}$ by $K_{0}(p, s, 0)=K(p, s)$, and combine it with L to give a $\operatorname{map}^{3}\left(K_{0}, L\right): M_{f} \times I \times\{0\} \cup \widetilde{X} \times I \times I \rightarrow M_{f}$. Then, define L^{\prime} by the composition

$$
M_{f} \times I \times I \xrightarrow{R} M_{f} \times I \times\{0\} \cup \tilde{X} \times I \times I \xrightarrow{\left(K_{0}, L\right)} M_{f},
$$

This map clearly extends L and satisfies $L^{\prime}(p, s, 0)=K(p, s)$. Finally, define a map $\Gamma: M_{f} \times I \rightarrow M_{f}$ by

$$
\Gamma(p, s)= \begin{cases}L^{\prime}(p, 0,3 s) & \text { if } 0 \leq s \leq \frac{1}{3} \\ L^{\prime}(p, 3 s-1,1) & \text { if } \frac{1}{3} \leq s \leq \frac{2}{3} \\ L^{\prime}(p, 1,3-3 s) & \text { if } \frac{2}{3} \leq s \leq 1\end{cases}
$$

It is easy to check that this map verifies the following:

- $\Gamma(p, 0)=L^{\prime}(p, 0,0)=K(p, 0)=p$,
- $\Gamma(p, 1)=L^{\prime}(p, 1,0)=K(p, 1)=r^{\prime}(p)$,
- $\Gamma(\tilde{p}, s)=\tilde{p}$ because L^{\prime} is an extension of L.

Therefore, Γ is the desired strong deformation retraction from the identity $\mathbf{1}_{M_{f}}$ to a retraction r^{\prime} of the mapping cylinder onto its top \widetilde{X}.

4. Formula

If we unravel Γ we will obtain the desired formula in terms of f, g, F and G. It is given in the next two pages.

[^1]\[

$$
\begin{aligned}
& \text { if } \frac{2}{3} \leq s \leq 1 \begin{cases}{\left[F\left(x, \frac{2 t}{3 s-1}\right), 1\right]} & \text { if } s \geq \frac{1+2 t}{3} \\
{[x, 1]} & \text { if } s \leq \frac{1+2 t}{3}\end{cases}
\end{aligned}
$$
\]

$$
\Gamma([y], s)= \begin{cases}{[y]} & \text { if } 0 \leq s \leq \frac{7}{18} \\ {[G(y, 8-18 s)]} & \text { if } \frac{7}{18} \leq s \leq \frac{8}{18} \\ {[g(y), 18 s-8]} & \text { if } \frac{8}{18} \leq s \leq \frac{1}{2} \\ {[F(g(y), 10-18 s)]} & \text { if } \frac{1}{2} \leq s \leq \frac{10}{18} \\ {[G(f \circ g(y), 18 s-10)]} & \text { if } \frac{10}{18} \leq s \leq \frac{11}{18} \\ {[g(y), 18 s-11]} & \text { if } \frac{11}{18} \leq s \leq \frac{2}{3} \\ {[g(y), 1]} & \text { if } \frac{2}{3} \leq s \leq 1\end{cases}
$$

References

[1] R.H. Fox, On homotopy type and deformation retracts, Ann. of Math., Vol. 44, 1 (1943), 40-50.
[2] M. Fuchs, A note on mapping cylinders, Michigan Math. J., Vol. 18, 4 (1971), 289-290.
[3] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
Department of Mathematics, Duke University, Durham, NC 27708-0320
E-mail address: aaguado@math.duke.edu

[^0]: ${ }^{1}$ Because $\mathbf{1}_{M_{f}} \sim r^{\prime}$ implies that $\mathbf{1}_{M_{f}} \times \mathbf{1}_{I} \sim r^{\prime} \times \mathbf{1}_{I}$, and therefore $H^{-1} \sim H^{-1} \circ\left(r^{\prime} \times \mathbf{1}_{I}\right)$.

[^1]: ${ }^{2}$ Because $K(\tilde{p}, 1-s)=K(\tilde{p}, s)$ implies that $K\left(\tilde{p}, \frac{1-u}{2}\right)=K\left(\tilde{p}, \frac{1+u}{2}\right)$.
 ${ }^{3}$ This map is unambiguously defined because $K_{0}=L$ on the overlap $\widetilde{X} \times I \times\{0\}$. Continuity follows from the gluing lemma because \widetilde{X} is a closed subset of in M_{f}.

