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New examples of K-monotone

weighted Banach couples

Sergey V. Astashkin∗, Lech Maligranda†

and Konstantin E. Tikhomirov∗

Abstract

Some new examples of K-monotone couples of the type (X,X(w)), where X is a symmetric

space on [0, 1] and w is a weight on [0, 1], are presented. Based on the property of the w-

decomposability of a symmetric space we show that, if a weightw changes sufficiently fast, all

symmetric spaces X with non-trivial Boyd indices such that the Banach couple (X,X(w))

is K-monotone belong to the class of ultrasymmetric Orlicz spaces. If, in addition, the

fundamental function of X is t1/p for some p ∈ [1,∞], then X = Lp. At the same time a

Banach couple (X,X(w)) may be K-monotone for some non-trivial w in the case when X

is not ultrasymmetric. In each of the cases where X is a Lorentz, Marcinkiewicz or Orlicz

space we have found conditions which guarantee that (X,X(w)) is K-monotone.

1 Introduction

One of the fundamental problems in interpolation theory is to find a description of all
interpolation spaces between two fixed Banach spaces X0 and X1, which form a Banach
couple X̄ = (X0, X1), i.e., the description of all intermediate Banach spaces X with
respect to X̄ such that every linear operator T : X̄ → X̄ maps X into X boundedly.

An important role in the interpolation theory is played by the K-monotone spaces
between fixed Banach spaces X0 and X1, which are defined as follows: if x ∈ X , y ∈
X0 +X1, and the inequality

K(t, y;X0, X1) ≤ K(t, x;X0, X1) holds for all t > 0,

then y ∈ X and ‖y‖X ≤ C‖x‖X for some constant C ≥ 1 independent of x and y. Here

K(t, x;X0, X1) = inf{‖x0‖X0
+ t‖x1‖X1

: x = x0 + x1, x0 ∈ X0, x1 ∈ X1}

is the classical K-functional of Peetre.
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A couple X̄ = (X0, X1) is called K-monotone (or Calderón-Mityagin couple) if all
interpolation spaces between X0 and X1 are K-monotone.

By a theorem due to Brudny̆ı and Krugljak [9, Theorem 4.4.5] all interpolation spaces
with respect to a K-monotone Banach couple (X0, X1) can be represented in the form
X = (X0, X1)

K
Φ , where Φ is a Banach lattice of measurable functions on (0,∞) and

‖x‖(X0,X1)KΦ
= ‖K(·, x;X0, X1)‖Φ.

Moreover, even if (X0, X1) is not K-monotone, every interpolation space X with respect
to (X0, X1) which happens to be a K-monotone space satisfies X = (X0, X1)

K
Φ for some

suitable Φ, and of course this is only up to equivalence of norms ( Brudny̆ı and Krugljak
[9, Theorem 3.3.20]). Therefore, the problem of finding new examples of K-monotone
couples or K-monotone spaces becomes very important.

Calderón [10] and independently Mitjagin [26] proved that the couple (L1, L∞) is K-
monotone. Several years later Sedaev and Semenov [33] proved that a weighted couple
(L1(w0), L1(w1)) is K-monotone (cf. also Cwikel-Kozlov [13] for another proof) and then
Sedaev [32] generalized this result to the couples of the form (Lp(w0), Lp(w1)) (1 ≤ p ≤
∞). Finally, Sparr [35], [36] showed that (Lp(w0), Lq(w1)) is a K-monotone couple for
0 < p, q ≤ ∞. There are other proofs of Sparr’s result, for example, in papers of Dmitriev
[17], Cwikel [11] and of Arazy-Cwikel [2].

In [15], Cwikel and Nilsson considered the problem of K-monotonicity from a some-
what different point of view. Namely, they studied the problem when a weighted Banach
couple (X(w0), Y (w1)), with X, Y being separable Banach lattices with the Fatou prop-
erty on a measure space (Ω,Σ, µ), is K-monotone for all weights w0, w1 on Ω. They proved
that this can happen if and only if X = Lp(v0) and Y = Lq(v1) for some weights v0, v1
and some numbers 1 ≤ p, q < ∞. In their proof the concept of a decomposable Banach
lattice on a measure space is essentially used. A Banach lattice X is called decomposable
if for any convergent series

∑∞
n=1 fn in X with pairwise disjoint fn (n = 1, 2, . . . ) and any

(formal) series
∑∞

n=1 gn, gn ∈ X , ‖gn‖X ≤ ‖fn‖X (n = 1, 2, . . . ), such that all gn are pair-
wise disjoint, we have

∑∞
n=1 gn ∈ X and ‖∑∞

n=1 gn‖X ≤ C ‖∑∞
n=1 fn‖X with a constant

C independent of fn, gn. This notion or some variants of it were introduced earlier by
Cwikel [12] and Cwikel-Nilsson [14].

Note that the problem of K-monotonicity of weighted couples (X(w0), Y (w1)) can be
reduced to considering couples of the form (X, Y (w)). Therefore, in what follows, we will
examine couples with one weight only. We will say that a weight w is non-trivial if either
w or 1/w is unbounded.

In [37], the concept of w-decomposability of a Banach lattice, which generalizes in a
sense the previous one due to Cwikel, was introduced. A theorem proved in [37] states
that, whenever X is a Banach lattice with the Fatou property, the couple (X,X(w))
is K-monotone if and only if X is w-decomposable (see Theorem 3.1 below in Section
3). Earlier Kalton [18] showed that in the case of symmetric sequence spaces with the
Fatou property the K-monotonicity of a couple (X, Y (w)) for some non-trivial weight
w implies that X = lp and Y = lq for some 1 ≤ p, q ≤ ∞ (note, however, that there
exist examples of shift-invariant sequence spaces X with the Fatou property, such that
(X,X(2−k)) is K-monotone but X is not isomorphic to lp for any 1 ≤ p ≤ ∞ [5], [6]).
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Tikhomirov’s theorem from [37] allows us to examine whether the result of Kalton extends
to symmetric function spaces. We will see that this is not the case and the situation here
will be essentially different.

The paper is organized as follows. After the introduction, in Section 2, some necessary
definitions and notations are collected. In the first part, we recall necessary information
about symmetric spaces on [0, 1] and then, in the second part, regularly varying convex
Orlicz functions on [0,∞) and regularly varying quasi-concave functions on [0, 1] are
discussed.

In Section 3 we consider the notion of a w-decomposable Banach lattice, which plays
a central role in these investigations. Using the Krivine theorem we show that it can be
essentially simplified in the case of symmetric function spaces. Namely, we prove condition
(9) which means that for any w-decomposable symmetric space X there exists p ∈ [1,∞]
(depending on X) such that X has, roughly speaking, both ”restricted lower and upper
p-estimates”. In particular, its fundamental function ϕ satisfies condition (13) for some
p, which means that the function ϕp is ”almost additive” near zero.

Section 4 contains results on the w-decomposability of Lorentz and Marcinkiewicz
spaces on [0, 1]. If ϕ is a concave increasing function on [0, 1] with γϕ > 0 and 1 ≤ p <∞,
then the couple (X,X(w)) with X = Λp,ϕ([0, 1]) and a given non-trivial weight w is K-
monotone if and only if condition (10) holds. This couple is K-monotone for some weight
w if and only if ϕ is equivalent to a regularly varying function at 0 of order p. Moreover,
for any weight w on [0, 1] we can construct a concave function ϕ on [0, 1] such that the
couple (X,X(w)) with X = Λ1,ϕ([0, 1]) is K-monotone and Λ1,ϕ([0, 1]) 6= L1[0, 1].

We obtain analogous results for Marcinkiewicz spaces, as a consequence of a new
duality theorem which is of independent interest. It states that under suitable mild
conditions on a Banach lattice X , the weighted couple (X,X(w)) is K-monotone if and
only if the couple (X ′, X ′(w)) is K-monotone, where X ′ means the Köthe dual to X .

Section 5 deals with conditions of w-decomposability of Orlicz spaces LF [0, 1]. It is
shown, in Theorem 6, that if an Orlicz function F satisfies the ∆2-condition for large
arguments, then LF [0, 1] is w-decomposable if and only if it satisfies some restricted p-
upper and p-lower estimates (see condition (32)). Moreover, it is proved, in Theorem 7,
that if an Orlicz function F is equivalent to an Orlicz function which is regularly varying
at ∞ of order p ∈ [1,∞), then the Orlicz space LF = LF [0, 1] is w-decomposable for some
weight w on [0, 1] and therefore the couple (LF , LF (w)) is K-monotone.

Finally, in Section 6, we prove that if a symmetric space X on [0, 1] with non-trivial
Boyd indices is w-decomposable with respect to a weight changing sufficiently fast, then X
is an ultrasymmetric Orlicz space. The result implies that, for such a weight w, every K-
monotone couple (X,X(w)) withX having the Fatou property must be an ultrasymmetric
Orlicz space. Moreover, if its fundamental function is of the form ϕX(t) = t1/p for some
1 ≤ p ≤ ∞, then X = Lp.

2 Preliminaries

Let us collect necessary information and results, in two parts, on symmetric (rear-
rangement invariant) spaces and regularly varying functions.
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2a. Symmetric spaces. Let (Ω,Σ, µ) be a complete σ-finite measure space and
L0 = L0(Ω) be the space of all classes of µ-measurable real-valued functions defined on Ω.
A Banach spaceX = (X, ‖ · ‖X) is said to be a Banach lattice on Ω ifX is a linear subspace
of L0(Ω) and satisfies the so-called ideal property, which means that if y ∈ X, x ∈ L0 and
|x(t)| ≤ |y(t)| for µ-almost all t ∈ Ω, then x ∈ X and ‖x‖X ≤ ‖y‖X. We also assume that
the support of the space X is Ω (supp X = Ω), that is, there is an element x0 ∈ X such
that x0(t) > 0 µ-a.e. on Ω.

We will say that X has the Fatou property if 0 ≤ xn ↑ x ∈ L0 with xn ∈ X and
supn∈N ‖xn‖X <∞ imply that x ∈ X and ‖xn‖X ↑ ‖x‖X .

A Banach lattice X is said to be p-convex (1 ≤ p < ∞), respectively q-concave
(1 ≤ q <∞), if there is a constant C > 0 such that

‖(
n
∑

k=1

|xk|p)1/p‖X ≤ C(

n
∑

k=1

‖xk‖pX)1/p,

respectively,

(
n
∑

k=1

‖xk‖qX)1/q ≤ C‖(
n
∑

k=1

|xk|q)1/q‖X ,

for any choice of vectors x1, x2, . . . , xn in X and any n ∈ N. If in the above definitions vec-
tors x1, x2, . . . , xn ∈ X are pairwise disjoint, then X is said to satisfy an upper p-estimate
and lower q-estimate, respectively. Of course, p-convexity implies upper p-estimate and
q-concavity implies lower q-estimate of a Banach lattice X . More properties can be found
in the book [22].

Let w be a weight on (Ω,Σ, µ), i.e., positive finite a.e. function, and let X be a
Banach lattice on (Ω,Σ, µ). Then the weighted space X(w) on (Ω,Σ, µ) is defined by
X(w) = {x ∈ Ω : xw ∈ X} with the norm ‖x‖X(w) = ‖xw‖X . In what follows, we
will always suppose that the weight w is non-trivial, that is, w or 1/w is an unbounded
function on (Ω,Σ, µ).

For two Banach spaces E and F the symbol E
C→֒ F means that the embedding E ⊂ F

is continuous with the norm which is not bigger than C, i.e., ‖x‖F ≤ C‖x‖E for all x ∈ E.

By a symmetric space (symmetric Banach function space), we mean a Banach lattice
X = (X, ‖ · ‖X) on I = [0, 1] with the Lebesgue measure m satisfying the following
additional property: for any two equimeasurable functions x, y ∈ L0(I) (that is, they
have the same distribution functions dx(λ) = dy(λ), where dx(λ) = m({t ∈ I : |x(t)| >
λ}), λ ≥ 0) the condition x ∈ X implies that y ∈ X and ‖x‖X = ‖y‖X. In particular,
‖x‖X = ‖x∗‖X , where x∗(t) = inf{λ > 0: dx(λ) ≤ t}, t ≥ 0.

Recall that a non-negative function ϕ : [0, 1] → [0,∞) is called quasi-concave if it

is non-decreasing on [0, 1] with ϕ(0) = 0 and if ϕ(t)
t

is non-increasing on (0, 1]. The
fundamental function ϕX of a symmetric space X on I is defined by the formula ϕX(t) =
‖χ[0, t]‖X , t ∈ I. It is well known that every fundamental function is quasi-concave on
I. Taking ϕ̃X(t) := infs∈(0,1)(1 + t

s
)ϕX(s) we obtain a concave function ϕ̃X satisfying

ϕX(t) ≤ ϕ̃X(t) ≤ 2ϕX(t) for all t ∈ I. For any quasi-concave function ϕ on I the
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Marcinkiewicz space Mϕ is defined by the norm

‖x‖Mϕ = sup
t∈I,t>0

ϕ(t)x∗∗(t), x∗∗(t) =
1

t

∫ t

0

x∗(s)ds.

This is a symmetric space on I with the fundamental function ϕMϕ(t) = ϕ(t) and X
1→֒

MϕX
. The fundamental function of a symmetric space X = (X, ‖ · ‖X) is not necessarily

concave but we can introduce an equivalent norm onX in such a way that the fundamental
function will be concave (take ‖x‖1X = max(‖x‖X , ‖x‖Mϕ̃X

), x ∈ X).
For any symmetric function space X with a concave fundamental function ϕ = ϕX

there is also the smallest symmetric space with the same fundamental function. This
space is the Lorentz space given by the norm

‖x‖Λϕ =

∫

I

x∗(t)dϕ(t) := ϕ(0+)‖x‖L∞(I) +

∫

I

x∗(t)ϕ′(t)dt.

We have then embeddings ΛϕX

1→֒ X
1→֒ MϕX

. A non-trivial symmetric function space X

on I = [0, 1] is an intermediate space between the spaces L1(I) and L∞(I) and L∞(I)
C1→֒

X
C2→֒ L1(I), where C1 = ϕX(1), C2 = 1/ϕX(1) (see [7], Corollary 6.7 on page 78 or

Theorem 4.1 on page 91 of [21] for a similar result when the underlying measure space is
(0,∞).)

The lower and upper Boyd indices αX resp. βX and the dilation indices γX resp. δX
of a symmetric space X on I = [0, 1] with the fundamental function ϕX = ϕ are defined
as follows:

αX := lim
t→0+

ln ‖σt‖X→X

ln t
, βX := lim

t→∞

ln ‖σt‖X→X

ln t
, σtx(s) = x(s/t)χI(s/t)

and

γX := γϕ = lim
t→0+

ln ϕ̄(t)

ln t
, δX := δϕ = lim

t→∞

ln ϕ̄(t)

ln t
, ϕ̄(t) = sup

s,st∈I

ϕ(st)

ϕ(s)
.

We have the relations 0 ≤ αX ≤ γX ≤ δX ≤ βX ≤ 1 (see [21], pp. 101-102 and [24], p.
28).

A function F : [0,∞) → [0,∞) is called an Orlicz function if it is convex and increasing
with F (0) = 0. For a given Orlicz function F the Orlicz space LF = LF (I) on I = [0, 1]
is defined as

LF (I) = {x ∈ L0(I) : IF (cx) <∞ for some c = c(x) > 0},

where IF (x) :=
∫

I
F (|x(t)|)dt. The Orlicz space LF is a symmetric space on I with the

so-called Luxemburg-Nakano norm defined by

‖x‖LF
= inf {λ > 0 : IF (x/λ) ≤ 1} .

An Orlicz function F satisfies the ∆2-condition for large u if there exist constants
C ≥ 1, u0 ≥ 0 such that F (2u) ≤ CF (u) for all u ≥ u0.

5



The following notation will be used throughout the text: f
C≈ g means that the

functions f and g are equivalent with the constant C > 0, that is, C−1f(t) ≤ g(t) ≤ Cf(t)
for all points t of the whole set on which these functions are defined, or at all points of
some explicitly designated subset of that set. In the case when the constant of equivalence
is not important we will write just f ≈ g. By [r] we will denote the integer part of a real
number r.

More information about Banach lattices and symmetric spaces can be found, for ex-
ample, in [7], [21] and [22]; about Orlicz spaces one can read e.g. in [20] and [25].

2b. Regularly varying convex and concave functions. An Orlicz function F on
[0,∞) is called regularly varying at ∞ of order p (1 ≤ p <∞) if

lim
t→∞

F (tu)

F (t)
= up for all u > 0. (1)

The following result is due to Kalton [18, Lemma 6.1].

Lemma 2.1. Let F be an Orlicz function. The following three conditions are equivalent:

(a) F is equivalent to a regularly varying Orlicz function at ∞ of order p ∈ [1,∞).

(b) There exists a constant C > 0 such that for any u ∈ (0, 1] we can find t0 = t0(u)
with

F (tu)

F (t)

C≈ up for all t ≥ t0.

Although we do not need it here, there is an analogous definition to the one above for
Orlicz functions which are regularly varying of order p at 0 instead of at ∞ (see e.g. [18]).
However, we do need to consider quasi-concave functions which are regularly varying of
order p at 0. Before recalling the definition of these we should point out that it is not quite
analogous to the definitions for regularly varying Orlicz functions, because the power p
which appeared in (1) and in the corresponding definition in [18] will be replaced in (2)
by the power 1/p.

A function ϕ : [0, 1] → [0,∞) which is quasi-concave and satisfies ϕ(0) = 0 is said to
be regularly varying at zero of order p (1 ≤ p ≤ ∞) if

lim
t→0+

ϕ(tu)

ϕ(t)
= u1/p for all u > 0. (2)

Abakumov and Mekler [1, Theorem 5] proved that a quasi-concave function ϕ is equiv-
alent to a quasi-concave regularly varying function at zero of order p ∈ [1,∞] if and only
if

lim sup
t→0+

ϕ(tu)

ϕ(t)
≈ u1/p for all u > 0.

The following lemma is an immediate consequence of this result (see also the proof of
Theorem 5 in [1]).
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Lemma 2.2. A quasi-concave function ϕ on [0, 1] is equivalent to a quasi-concave function
which is regularly varying at zero of order p ∈ [1,∞] if and only if for some C > 0 and
any N ∈ N there exists τ(N) ∈ (0, 1] such that for all 0 < t ≤ τ(N), 0 < tN ≤ 1 we have

ϕ(Nt)

ϕ(t)

C≈ N1/p. (3)

Recall that the fundamental function of an Orlicz space LF on [0, 1] with the Luxemburg-
Nakano norm is ϕLF

(t) = 1
F−1(1/t)

for 0 < t ≤ 1 and ϕLF
(0) = 0, where F−1 is the inverse

of F (see formula (9.23) in [20] on page 79 of the English version or Corollary 5 in [25]
on page 58). The function ϕLF

is quasi-concave but not necessarily concave on [0, 1] (see
[20] or [25]).

The notions of regularly varying Orlicz and quasi-concave functions are closely inter-
related. Using Lemmas 2.1 and 2.2 and routine arguments we establish the following
quantitative result showing a connection between an regularly varying Orlicz function F
and the fundamental function of the corresponding Orlicz space LF .

Proposition 2.3. Suppose that p ∈ [1,∞) and let F be an Orlicz function such that
both F and its complementary function F ∗ satisfy the ∆2-condition for large u. Then the
following conditions are equivalent:

(a) There exists a constant C ′ > 0 such that for any N ∈ N there exists τ(N) ∈ (0, 1]
with

F (u)

F (uN−1/p)

C′

≈ N for all u ≥ F−1(1/τ(N)). (4)

(b) There exists a constant C > 0 such that for any N ∈ N the fundamental function
ϕLF

satisfies condition (3) with the same τ(N).

3 w–decomposable Banach lattices

Later on C will denote a constant whose value may be different in its different appear-
ances.

The following notion was introduced in paper [37] and it will be very important for
us. Let X be a Banach lattice on (Ω,Σ, µ) and w be a weight on Ω. We say that X
is w-decomposable if there exists C > 0 such that for any n ∈ N and for all x1, . . . , xn,
y1, . . . , yn in X satisfying the conditions:

‖xi‖X = ‖yi‖X , i = 1, 2, . . . , n, (5)

and

inf w(supp xi ∪ supp yi) ≥ 2 supw(supp xi+1 ∪ supp yi+1), i = 1, 2, . . . , n− 1, (6)

we have that

‖
n
∑

i=1

xi‖X
C≈ ‖

n
∑

i=1

yi‖X . (7)

7



To clarify the meaning of condition (6), consider the following example: let X be a
Banach lattice of Lebesgue measurable functions on [0, 1] and w(t) = 1/t (0 < t ≤ 1).
Then (6) is equivalent to the following inequality

2 sup(supp xi ∪ supp yi) ≤ inf(supp xi+1 ∪ supp yi+1), i = 1, 2, . . . , n− 1.

In other words, there are some intervals [ai, bi] ⊂ [0, 1] (depending on xi, yi) such that
2bi ≤ ai+1 (i = 1, 2, . . . , n− 1), supp xi ⊂ [ai, bi] and supp yi ⊂ [ai, bi] (i = 1, 2, . . . , n).

It is not hard to see that 1/t-decomposability is equivalent to 1/tq-decomposability
and, more generally, w-decomposability and wq-decomposability are equivalent for any
weight w and any q > 0 (see [38], Corollary 2.2 on page 61).

It turns out that the w-decomposability of a Banach lattice X guarantees the K–
monotonicity of the weighted couple (X,X(w)). More precisely, Tikhomirov in [37] ob-
tained the following generalization of Kalton’s results from [18].

Theorem 3.1. Suppose X is a Banach lattice on a σ–finite measure space (Ω,Σ, µ) with
supp X = Ω which has the Fatou property and w is a (non-trivial) weight on Ω. Then the
Banach couple (X,X(w)) is K–monotone if and only if X is w-decomposable.

In the case of symmetric spaces on [0, 1] the notion of w-decomposability can be
clarified by using the well–known Krivine theorem.

Proposition 3.2. Let w be a weight on [0, 1]. A symmetric space X on [0, 1] is w-
decomposable if and only if there exist C > 0 and 1 ≤ p ≤ ∞ such that for any n ∈ N

and for all x1, x2, . . . , xn ∈ X satisfying the conditions

inf w(supp xi) ≥ 2 supw(supp xi+1), 1 ≤ i ≤ n− 1, (8)

we have that
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

X

C≈
(

n
∑

i=1

‖xi‖pX

)1/p

, (9)

where, as usual, in the case p = ∞ the right hand side should be replaced by max1≤i≤n ‖xi‖X .

Proof. By Krivine’s theorem (see [22, Theorem 2.b.6] or [31]), there exists p ∈ [1/βX , 1/αX]
such that for everym ∈ N there are pairwise disjoint equimeasurable functions y1, y2, . . . , ym
∈ X, ‖yk‖X = 1 (k = 1, 2, . . . , m), such that for any αk ∈ R (k = 1, 2, . . . , m) we have

1

2
‖(αk)‖p ≤

∥

∥

∥

m
∑

k=1

αkyk

∥

∥

∥

X
≤ 2‖(αk)‖p. (10)

Obviously, the support of each function yk has measure not greater than 1/m.
Suppose that a symmetric space X is w-decomposable and that, for some n ∈ N,

functions x1, . . . , xn in X satisfy condition (8). Without loss of generality we may assume
that xi 6= 0 for each i = 1, 2, . . . , n. We choose m ∈ N sufficiently large so that the support
of each xi has measure greater than 1/m (and so of course we also have m ≥ n). For this
choice of m we consider the disjoint measurable functions y1, y2, . . . , ym, ‖yk‖X = 1 (k =
1, 2, . . . , m), obtained as it is described in the previous paragraph. In fact, we will only

8



need the first n of these functions, and we will only need special case of (10) for sequences
(αk) which satisfy αk = 0 for k > n. We may assume without loss of generality, that the
support of yi is contained in the support of xi for each i = 1, 2, . . . , n. (If not, since X is
symmetric, we can simply replace each yi by an equimeasurable function which has this
property and the above mentioned special case of (10) will remain valid.) Thus condition
(8) implies that condition (6) is satisfied and therefore, applying w-decomposability (see
(7)) and then the special case of (10), we obtain that

∥

∥

∥

n
∑

i=1

αi
xi

‖xi‖X

∥

∥

∥

X
≈
∥

∥

∥

n
∑

i=1

αiyi

∥

∥

∥

X
≈ ‖(αk)ni=1‖p

for all choices of real numbers αi. In particular, when αi = ‖xi‖X we obtain (9). Since
the reverse implication is obvious, the proof is complete.

For a given weight w consider the sets

Mk := {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)}, k ∈ Z.

Let (wr)
∞
r=1 be the non-increasing rearrangement of the sequence (m(Mk))

+∞
k=−∞. Since the

weight w is non-trivial it follows that wr > 0 for all r = 1, 2, . . . .
For some fixed n ∈ N, let x1, x2, . . . , xn be functions in X . Suppose first that these n

functions satisfy condition (8). Then it is easy to see that

card{i : Mk ∩ supp xi 6= ∅} ≤ 1 for each k ∈ Z.

Alternatively, more or less conversely, suppose that the functions xi satisfy

card{k : Mk ∩ supp xi 6= ∅} ≤ 1 for each i ∈ {1, 2, . . . , n},

i.e., for each i, there exists a unique ki ∈ Z for which supp xi ⊂ Mki . Furthermore,
suppose k1 < k2 < . . . < kn. While this is not sufficient to imply that the collection of
functions x1, x2, . . . , xn satisfies condition (8), it does imply that (after relabelling) the
collection of functions x1, x3, x5, . . . satisfies (8) and so does the collection x2, x4, . . . .

By {M r}∞r=1 we will denote any rearrangement of the sets Mk (k = 0,±1,±2, . . .) such
that m(M r) = wr, r = 1, 2, . . .. Thus, by Proposition 3.2, we obtain the following result.

Theorem 3.3. Suppose w is a non-trivial weight on [0, 1]. A symmetric space X on [0, 1]
is w-decomposable if and only if there exist C > 0 and 1 ≤ p ≤ ∞ such that for any n ∈ N

and for all x1, x2, . . . , xn ∈ X satisfying the condition

supp xi ⊂M i, 1 ≤ i ≤ n, (11)

we have (9).

Next, we will need some corollaries of Theorem 3.3. Firstly, using the symmetry of
the norm in X , we get

9



Corollary 3.4. Let w be a non-trivial weight on [0, 1]. A symmetric space X on [0, 1] is
w-decomposable if and only if there exist C > 0 and 1 ≤ p ≤ ∞ such that for any n ∈ N

and for all pairwise disjoint x1, x2, . . . , xn ∈ X satisfying the condition

m(supp xi) ≤ wi, 1 ≤ i ≤ n, (12)

we have (9).

Corollary 3.5. A symmetric space X on [0, 1] is w-decomposable for some non-trivial
weight w on [0, 1] if and only if there exist C > 0, 1 ≤ p ≤ ∞, and a sequence of disjoint
intervals {∆k}∞k=1 from [0, 1] such that for any n ∈ N and for all x1, x2, . . . , xn ∈ X
satisfying the condition supp xi ⊂ ∆i (1 ≤ i ≤ n) we have (9).

Corollary 3.6. Let w be a non-trivial weight on [0, 1] and let the sequence (wr)
∞
r=1 be

as above. Suppose that X is a w-decomposable symmetric space X on [0, 1] with the
fundamental function ϕ. Then there exist some C > 0 and p ∈ [1,∞] such that, for every
sequence of reals (τr)

∞
r=1 satisfying 0 < τr ≤ wr (r ∈ N), we have

ϕ
(

∞
∑

r=1

τr
) C≈

( ∞
∑

r=1

ϕp(τr)

)1/p

(13)

with the natural modification for p = ∞.

Corollary 3.7. Let w be a non-trivial weight on [0, 1] such that a symmetric space X on
[0, 1] is w-decomposable. Then there exist C > 0 and 1 ≤ p ≤ ∞ such that condition (3)
is fulfilled with τ(N) = wN (N ∈ N). In particular, the fundamental function ϕ of X is
equivalent to a regularly varying function at zero of order p and αX = γϕ = δϕ = βX = 1/p.

Proof. First we note that condition (3) is an immediate consequence of (13). Moreover,
it is well known that the assertion of Krivine’s theorem holds for both p = 1/αX and
p = 1/βX (see [22, p. 141], [31] and [3]). Therefore, coincidence of the Boyd indices
and dilation indices follows from an inspection of the proof of Proposition 3.2 and the
inequalities αX ≤ γϕ ≤ δϕ ≤ βX (cf. [21, p. 102] and [24, p. 28]).

Let us show that, conversely, (13) can be derived from (3) with τ(N) = wN for a large
class of weights w.

Theorem 3.8. Let w be a weight on [0, 1] such that qwr+1 ≤ wr (r = 1, 2, . . . ) for some
q > 1 and let ϕ be a quasi–concave function on [0, 1]. Suppose there exist C > 0 and
1 ≤ p ≤ ∞ such that ϕ satisfies (3) with τ(N) = wN (N = 1, 2, . . . ). Then, for any
sequence of reals (τr)

∞
r=1 such that 0 < τr ≤ wr (r = 1, 2, . . . ), estimate (13) holds.

Proof. We present the proof for 1 ≤ p < ∞ since the case p = ∞ needs only minor
changes.

Firstly, it is easy to see that condition (3) can be extended as follows: we can find a
(possibly different) constant C > 0 such that for every real z ≥ 1 and τ(z) := τ([z]) we
have

ϕ(zt)

ϕ(t)

C≈ z1/p if 0 < t ≤ τ(z). (14)

10



Let us show that for every m ∈ N there is a constant C(m) > 0 such that for all even
N ∈ N satisfying the inequality Nm ≤ qN/2 and all z ∈ [1, N ] we have

ϕ(zmt)

ϕ(t)

C(m)≈ zm/p if 0 < t ≤ τ(N). (15)

In fact, by the assumption, τ(N/2) ≥ qN/2τ(N), whence

zkt ≤ zmt ≤ Nmτ(N) ≤ qN/2τ(N) ≤ τ(N/2) ≤ 1 (k = 0, 1, . . . , m)

provided that t ≤ τ(N). Therefore, using the quasi–concavity of ϕ and equivalence (14)
for max(1, z/2) we obtain that

ϕ(zkt)

ϕ(zk−1t)
≈ ϕ(max(1, z/2)zk−1t)

ϕ(zk−1t)
≈ z1/p if 0 < t ≤ τ(N),

with a constant of equivalence depending on p. Multiplying these relations for all k =
1, 2, . . . , m, we come to (15).

Next, let

ϕ0(s) = lim sup
t→0+

ϕ(ts)

ϕ(t)
for s > 0.

Clearly, condition (14) implies ϕ0(s) ≈ s1/p(s > 0). On the other hand, in view of Boyd’s
result [8] (see also [24, Theorem 2.2]) ϕ0(s) ≥ sγϕ if 0 < s ≤ 1 and ϕ0(s) ≥ sδϕ if s > 1.
Since γϕ ≤ δϕ it follows that γϕ = δϕ = 1

p
> 0. Therefore, there exist A > 0 and κ > 0

such that

sup
0<s≤1

ϕ(st)

ϕ(s)
≤ Atκ for all 0 ≤ t ≤ 1. (16)

Let us prove that (13) is a consequence of (15) and (16). Take a natural number
m0 ≥ 2 such that κm0 > 1 and consider an arbitrary sequence (τr)

∞
r=1 satisfying τr ≤

wr, r = 1, 2, . . . . Since the non-increasing rearrangement (τ ∗r )
∞
r=1 of this sequence also

satisfies τ ∗r ≤ wr for r = 1, 2, . . . we can assume without loss of generality that the
sequence (τr)

∞
r=1 is itself non-increasing. Further, set I = {r ∈ N : τr r

m0 ≥ τ1}, J = N\ I.
Clearly, 1 ∈ I. By (16) and the choice of m0,

ϕ
(

∑

r∈J
τr

)

≤ ϕ
(

∞
∑

r=2

τ1
rm0

)

≤ A
(

∞
∑

r=2

r−m0

)κ

ϕ(τ1) ≤ C1ϕ(τ1).

Analogously,

∑

r∈J
ϕp(τr) ≤

∞
∑

r=2

ϕp(τ1/r
m0) ≤ Ap

∞
∑

r=2

r−p κm0ϕp(τ1) ≤ C2 ϕ
p(τ1).

Thus, it is sufficient to prove equivalence (13) for (τr)r∈I .
If card I < ∞ then there is nothing to prove. So, assume that card I = ∞. Choose

a positive integer i0 ∈ I, i0 ≥ 2 such that for N = 2 [i0/2] we have Nm0 ≤ qN/2. Denote
δr = (τr/τi0)

1/m0 for r ∈ I∩{1, 2, . . . , i0}. Then, by the definition of I, δr ≤ (τ1/τi0)
1/m0 ≤

11



i0 ≤ 2N . Applying (15) in the case m = m0, z = max(1, δr/2) for all r ∈ I, r ≤ i0, we get

ϕ(τr)

ϕ(τi0)
=
ϕ(δm0

r τi0)

ϕ(τi0)
≈ δm0/p

r =

(

τr
τi0

)1/p

,

with a constant of equivalence depending on m0 and p. The last formula implies that
∑

r∈I∩{1,2,...,i0}
ϕp(τr) ≈

ϕp(τi0)

τi0

∑

r∈I∩{1,2,...,i0}
τr.

On the other hand, setting δ :=
(

∑

r∈I∩{1,2,...,i0} τr/τi0

)1/(m0+1)

we get

δ ≤
(

∑

r∈I∩{1,2,...,i0}
τ1/τi0

)1/(m0+1)

≤ i0.

Therefore, again by (15), we obtain

ϕp(τi0)

τi0

∑

r∈I∩{1,2,...,i0}
τr = δm0+1ϕp(τi0) ≈ ϕp(δm0+1τi0) = ϕp

(

∑

r∈I∩{1,2,...,i0}
τr

)

,

with a constant depending on m0 and p. Combining the above formulas and noting that
i0 can be arbitrarily large, we conclude that equivalence (13) holds and the proof is
complete.

Theorem 3.8 allows us to construct non-trivial quasi–concave functions satisfying con-
dition (13), for a large class of weights. For example, let w(t) = 1/t (0 < t ≤ 1). In
this case wr = 2−r, r = 1, 2, . . . Define ϕ(t) = t log e

t
(0 < t ≤ 1). Obviously, ϕ is

quasi–concave. Elementary calculations show that (3) is fulfilled for ϕ with p = 1 and
τ(N) = wN = 2−N (N = 1, 2, . . . ). Thus, by Theorem 3.8, ϕ satisfies (13).

4 w–decomposable Lorentz and Marcinkiewicz spaces

For 1 ≤ p < ∞ and any increasing concave function ϕ, ϕ(0) = 0, the Lorentz space
Λp,ϕ consists of all classes of measurable functions x on [0, 1] such that

‖x‖Λp,ϕ =

(
∫ 1

0

[x∗(t)ϕ(t)]p
dt

t

)1/p

<∞.

The space Λp,ϕ was investigated by Sharpley [34] and Raynaud [30], who proved that if
0 < γϕ ≤ δϕ < 1, then Λp,ϕ is a symmetric space on [0, 1] with an equivalent norm

‖x‖⋆Λp,ϕ
=

(
∫ 1

0

[x∗∗(t)ϕ(t)]p
dt

t

)1/p

,

where x∗∗(t) = 1
t

∫ t

0
x∗(s) ds (cf. [34], Lemma 3.1). Moreover, if γϕ > 0, then applying

Corollary 3 on page 57 of [21] to the function ψ = ϕp (1 ≤ p <∞) (see also [24, Theorem
6.4(a)]), we obtain that there exists a constant K = K(p) ≥ 1 such that

K−1ϕp(t) ≤
∫ t

0

ϕp(s)

s
ds ≤ Kϕp(t) (0 < t ≤ 1). (17)

12



Therefore, the fundamental function ϕΛp,ϕ(t) is equivalent to ϕ(t). Inequalities (17) imply
also that, if γϕ > 0, then the space Λ1,ϕ coincides with the Lorentz space Λϕ with the
norm

‖x‖Λϕ :=

∫ 1

0

x∗(t)dϕ(t).

Recall also that the Köthe dual of the Lorentz space Λϕ is isometric to the Marcinkiewicz
space Mϕ̃ with ϕ̃(t) = t

ϕ(t)
and its norm is

‖x‖Mϕ̃
= sup

0<t≤1
ϕ̃(t)x∗∗(t) = sup

0<t≤1

1

ϕ(t)

∫ t

0

x∗(s)ds

(cf. [21], Theorem 5.2 on page 112).

We will prove that condition (13) is necessary and sufficient for Lorentz and Marcin-
kiewicz spaces to be w-decomposable. We start by proving a specific geometric property
of Lorentz spaces.

Proposition 4.1. Let ϕ be an increasing non-negative concave function on [0, 1] such
that γϕ > 0, and let 1 ≤ p < ∞. Then for arbitrary b > 1 there exists a constant
C = C(b, ϕ, p) > 0 with the following property: for any two-sided non-decreasing sequence
(aj)

+∞
j=−∞ of reals from [0, 1] such that the function x =

∑+∞
j=−∞ b−jχ(aj−1,aj ] belongs to

Λp,ϕ, we have

‖x‖pΛp,ϕ

C≈
+∞
∑

j=−∞
b−pjϕp(aj − aj−1). (18)

Proof. Since γϕ > 0, there exist κ > 0 and A > 0 such that inequality (16) holds. Choose
a constant C1 = C1(ϕ) > 1 satisfying the inequality

(C1 + 1)κ

A
≥ 2K2, (19)

where K is the constant from (17), and denote by I the set of all indices j ∈ Z such that
aj − aj−1 ≥ C1 aj−1. We prove the following equivalences:

∫ aj

aj−1

ϕp(t)

t
dt ≈ ϕp(aj − aj−1), j ∈ I (20)

and, if b > C1 + 1,

‖x‖pΛp,ϕ
≈
∑

j∈I
b−pj

∫ aj

aj−1

ϕp(t)

t
dt, (21)

+∞
∑

j=−∞
b−pjϕp(aj − aj−1) ≈

∑

j∈I
b−pjϕp(aj − aj−1), (22)

with constants which depend only on b, ϕ and p.
At first, if j ∈ I then, by (16) and (19),

ϕ(aj) ≥ ϕ((C1 + 1)aj−1) ≥
(C1 + 1)κ

A
ϕ(aj−1) ≥ 2K2 ϕ(aj−1).

13



Combining this with (17) and the inequality

ϕ(aj) ≤ ϕ(aj − aj−1) + ϕ(aj−1) ≤ 2ϕ(aj − aj−1), (23)

we obtain
1

2K
ϕp(aj − aj−1) ≤

1

2K
ϕp(aj) ≤

1

2K
[2ϕp(aj)− (2K2)p ϕp(aj−1)]

≤ 1

2K
[2ϕp(aj)− 2K2 ϕp(aj−1)] =

ϕp(aj)

K
−K ϕp(aj−1)

≤
∫ aj

0

ϕp(t)

t
dt−

∫ aj−1

0

ϕp(t)

t
dt =

∫ aj

aj−1

ϕp(t)

t
dt

≤
∫ aj

0

ϕp(t)

t
dt ≤ Kϕp(aj) ≤ 2pKϕp(aj − aj−1),

which implies (20).
Now, assuming b > C1 + 1, we show that the set I is unbounded from below. In fact,

otherwise there is j0 ∈ Z such that aj − aj−1 < C1aj−1 for all j ≤ j0. Then, we have
aj0 ≤ (C1 + 1)j0−j aj (j ≤ j0) and by (17) and the concavity of ϕ,

‖x‖pΛp,ϕ
≥ sup

j≤j0
b−pj

∫ aj

0

ϕp(t)

t
dt ≥ 1

K
sup
j≤j0

b−pjϕp(aj)

≥ 1

K
sup
j≤j0

(C1 + 1)p(j−j0)

bpj
ϕp(aj0) = ∞.

Therefore, for a given i /∈ I we can find k = max{j < i : j ∈ I}. Further, from the
definition of I it follows that ai < (C1 + 1)i−k ak. Since ϕ is concave and 2ak−1 ≤ ak, we
get

∫ ai

ai−1

ϕp(t)

t
dt ≤

∫ (C1+1)i−kak

ak

ϕp(t)

t
dt

≤ ϕp−1((C1 + 1)i−kak)

∫ (C1+1)i−kak

ak

ϕ(t)

t
dt

≤ 2p−1(C1 + 1)(p−1)(i−k) ϕp−1(
ak
2
)

∫ (C1+1)i−kak

ak

ϕ(t)

t
dt

≤ 2p−1(C1 + 1)p(i−k) ϕp−1(
ak
2
) ak

ϕ(ak)

ak

≤ 2p(C1 + 1)p(i−k)ϕp−1(
ak
2
)

∫ ak

ak/2

ϕ(t)

t
dt

≤ 2p(C1 + 1)p(i−k)
∫ ak

ak/2

ϕp(t)

t
dt

≤ 2p(C1 + 1)p(i−k)
∫ ak

ak−1

ϕp(t)

t
dt

and so

b−pi
∫ ai

ai−1

ϕp(t)

t
dt ≤ 2p

(C1 + 1

b

)p(i−k)
b−pk

∫ ak

ak−1

ϕp(t)

t
dt.

14



Since b > C1 + 1 we obtain (21).
In a similar way, applying (23) for j = k, we get

b−piϕp(ai − ai−1) ≤ b−pi(C1 + 1)p(i−k)ϕp(ak)

≤ 2p
(

C1 + 1

b

)p(i−k)
b−pkϕp(ak − ak−1),

which implies (22).
Relations (20)–(22) imply (18), so we proved the statement for b > C1 +1. To extend

this result to all b > 1 it suffices to prove the following: whenever (18) holds for some b > 1
and arbitrary non-decreasing sequence (aj)

∞
j=−∞ with a constant C, it is automatically

fulfilled for b1/2 with a constant not exceeding 2pbpC. Indeed, if

y =

+∞
∑

j=−∞
b−j/2χ(aj−1,aj ] and z =

+∞
∑

j=−∞
b−jχ(a2j−2,a2j ],

then

‖y‖pΛp,ϕ
=

+∞
∑

j=−∞
b−pj/2

∫ aj

aj−1

ϕp(t)
dt

t

=
+∞
∑

j=−∞
b−p(2j−1)/2

∫ a2j−1

a2j−2

ϕp(t)
dt

t
+

+∞
∑

j=−∞
b−pj

∫ a2j

a2j−1

ϕp(t)
dt

t

bp/2≈
+∞
∑

j=−∞
b−pj

∫ a2j

a2j−2

ϕp(t)
dt

t
= ‖z‖pΛp,ϕ

.

On the other hand,

b−pjϕp(a2j − a2j−2)
2pbp/2≈ b−pjϕp(a2j − a2j−1) + b−p(2j−1)/2ϕp(a2j−1 − a2j−2),

so we get an analog of (18) for y and b1/2 and the proof is complete.

Remark 4.2. For the space Λ1,ϕ = Λϕ the result can be proved also by using the following
well-known formula (cf. formula 5.1 in [21] on page 108)

‖x‖Λϕ =

+∞
∑

j=−∞
(b−j − b−j−1)ϕ(aj).

Let, as above, for a given weight w,Mk = {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)} (k ∈ Z) and
(wr)

∞
r=1 be the non-increasing rearrangement of the sequence (m(Mk))

+∞
k=−∞.

Theorem 4.3. Let ϕ be an increasing concave function on [0, 1] such that γϕ > 0, 1 ≤ p <
∞ and let w be a weight on [0, 1]. Then the Lorentz space X := Λp,ϕ is w-decomposable
if and only if ϕ satisfies condition (13).
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Proof. If X = Λp,ϕ is w-decomposable then, by Corollary 3.6, the relation (13) holds for
the fundamental function ϕX . Since, as it was mentioned above, ϕ ≈ ϕX , then (13) is
fulfilled for ϕ as well.

Conversely, suppose that ϕ satisfies (13). Let n ∈ N and x1, x2, . . . , xn be non-negative
functions from X satisfying (12). Evidently, there exist x′1, x

′
2, . . . , x

′
n ∈ X taking their

values from the set {2−k}∞k=−∞ ∪ {0} and such that xi(t)
2≈ x′i(t) (0 < t ≤ 1). Clearly,

m(supp x′i) = m(supp xi) ≤ wi (1 ≤ i ≤ n) and

m
{

t :

n
∑

i=1

x′i(t) = 2−k
}

=

n
∑

i=1

m{t : x′i(t) = 2−k}

for all integer k. Therefore, applying (13), we get that

n
∑

i=1

ϕp(m{t : x′i(t) = 2−k}) ≈ ϕp(m{t :
n
∑

i=1

x′i(t) = 2−k}) (k ∈ Z). (24)

On the other hand, Proposition 4.1 yields

‖x′i‖pX ≈
+∞
∑

k=−∞
2−pkϕp(m{t : x′i(t) = 2−k}) (1 ≤ i ≤ n) (25)

and

‖
n
∑

i=1

x′i‖pX ≈
+∞
∑

k=−∞
2−pkϕp(m{t :

n
∑

i=1

x′i(t) = 2−k}) (26)

with a constant which depends only on ϕ and p. Combining relations (25) and (26) with
(24), we obtain (9) for x′i and so for xi. The proof is complete.

In particular, from the above theorem and a remark after Theorem 3.8 it follows that
the Lorentz space Λϕ generated by the function ϕ(t) = t log e

t
is 1/t-decomposable and

therefore the Banach couple (Λ(ϕ),Λ(ϕ)(1
t
)) is K-monotone.

Theorem 4.4. Suppose that ϕ is an increasing concave function on [0, 1] such that γϕ > 0
and 1 ≤ p <∞. The following conditions are equivalent:

(a) there exists a weight w on [0, 1] such that the Lorentz space Λp,ϕ is w-decomposable;
(b) ϕ is equivalent to a regularly varying function at zero of order p.

Proof. First, if X := Λp,ϕ is w-decomposable for some weight w on [0, 1], then, by Corol-
lary 3.7, as in the proof of the previous theorem, we conclude that ϕ is equivalent to a
regularly varying function at zero of order p.

Conversely, suppose that ϕ is equivalent to a function that varies regularly at zero with
order p, that is, ϕ satisfies (3) for some τ(N) (N = 1, 2, . . . ). Consider a family (MN )

∞
N=1

of pairwise disjoint measurable subsets of [0, 1] such that m(M2) = min(τ(2), 1/4),

m(MN ) = min(τ(N),
m(MN−1)

2
), N > 2,

and let M1 := [0, 1] \ ⋃∞
N=2MN . Set w(t) := 2N for all t ∈ MN and N ∈ N. Clearly,

m(MN+1) ≤ m(MN )/2 (N ∈ N). Therefore, by Theorem 3.8, ϕ satisfies (13) for any
sequence (τN)

∞
N=1 majorized by the sequence (m(MN ))

∞
N=1. To complete the proof it

remains to apply Theorem 4.3.
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It is obvious that Lp-spaces (1 ≤ p ≤ ∞) are w-decomposable for every weight w.
On the other hand, we show that for an arbitrary weight w there exist w-decomposable
Lorentz spaces Λϕ different from L1.

Theorem 4.5. Let w be an arbitrary weight on [0, 1]. Then there exists an increasing
concave function ϕ such that the space Λϕ is w-decomposable and Λϕ 6= L1.

Proof. As above, Mk = {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)} for k ∈ Z and (wr)
∞
r=1 is the

non-increasing rearrangement of the sequence (m(Mk))
+∞
k=−∞. Define

G(α) :=
∞
∑

r=1

min{α,wr}, α ≥ 0.

Then G(1) = 1, G(0) = 0 and G is increasing and continuous at zero.
Let (tk)

∞
k=0 be a sequence from (0, 1] such that t0 = 1, 0 < tk < tk−1/3 for k ≥ 1 and

G(tk+1) ≤ 2−k tk, k = 0, 1, . . . . (27)

Then we set ϕ′
k(t) = maxi=0,1,...,k{2iχ[0,ti](t)}, k = 0, 1, . . . and ϕ′(t) = limk→∞ ϕ′

k(t) (0 <
t ≤ 1). It is easy to see that ϕ′

k and ϕ′ are non-increasing functions on(0, 1]. Moreover,
since

tkϕ
′(tk) = tk 2

k ≤ 2

3
tk−1 2

k−1 =
2

3
tk−1ϕ

′(tk−1)

it follows that
∫ 1

0

ϕ′(t)dt ≤
∞
∑

k=0

ϕ′(tk)tk ≤
∞
∑

k=0

(

2

3

)k

<∞.

Therefore, the function ϕ(t) :=
∫ t

0
ϕ′(s) ds is well-defined, increasing and concave on (0, 1].

We shall prove that the Lorentz space Λϕ is w-decomposable.
In view of Theorem 4.3, it suffices to show that for some constant C ≥ 1 and for any

sequence of reals (dr)
∞
r=1 such that 0 < dr ≤ wr (r = 1, 2, . . . ) we have

ϕ

( ∞
∑

r=1

dr

)

≤
∞
∑

r=1

ϕ(dr) ≤ Cϕ

( ∞
∑

r=1

dr

)

.

Note that the left hand side of this inequality is an immediate consequence of the concavity
of ϕ. Further, since ϕk(t) :=

∫ t

0
ϕ′
k(s) ds ↑ ϕ(t), then limk→∞

∑∞
r=1 ϕk(dr) =

∑∞
r=1 ϕ(dr).

Therefore, it is enough to prove that

∑∞
r=1 ϕk(dr)

ϕk (
∑∞

r=1 dr)
≤ 3, k ≥ 0. (28)

Noting that
∑∞

r=1 dr ≤ t0 = 1, we set

k0 := max
{

k = 0, 1, 2, · · · :
∞
∑

r=1

dr ≤ tk

}

.
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From the definition of ϕk it follows that

ϕk

( ∞
∑

r=1

dr

)

= 2k
∞
∑

r=1

dr =
∞
∑

r=1

ϕk(dr) if 0 ≤ k ≤ k0. (29)

Since tk0+1 <
∞
∑

r=1

dr ≤ tk0 , then, again by the definition of ϕk,

∞
∑

r=1

ϕk0+1(dr) ≤ 2k0+1
∞
∑

r=1

dr ≤ 2ϕk0+1

( ∞
∑

r=1

dr

)

. (30)

Let k > k0 be arbitrary. The inequality
∞
∑

r=1

dr > tk implies that

ϕk

( ∞
∑

r=1

dr

)

> ϕk(tk) = 2ktk. (31)

Moreover, since

ϕk+1(dr) =

{

2k+1dr = 2ϕk(dr), if dr ≤ tk+1,

2ktk+1 + ϕk(dr), if dr > tk+1,

we obtain

∞
∑

r=1

ϕk+1(dr)−
∞
∑

r=1

ϕk(dr) =

∞
∑

r=1

min(2ktk+1, 2
kdr) ≤ 2kG(tk+1).

Hence, for any k > k0, by (31) and (27), we obtain

∑∞
r=1 ϕk+1(dr)

ϕk+1 (
∑∞

r=1 dr)
≤

∑∞
r=1 ϕk(dr)

ϕk (
∑∞

r=1 dr)
+

∑∞
r=1 ϕk+1(dr)−

∑∞
r=1 ϕk(dr)

ϕk (
∑∞

r=1 dr)

≤
∑∞

r=1 ϕk(dr)

ϕk (
∑∞

r=1 dr)
+
G(tk+1)

tk
≤
∑∞

r=1 ϕk(dr)

ϕk (
∑∞

r=1 dr)
+ 2−k.

Applying the last estimate together with (29) and (30), we obtain (28). It is easy to see
that ϕ(t) is not equivalent to t, and therefore Λϕ 6= L1. The proof is complete.

Remark 4.6. Theorem 4.5 can be easily extended to the spaces Λp,ψ with p ∈ (1,∞).
Indeed, let w be an arbitrary weight on [0, 1] and ϕ be the function from the proof of
Theorem 4.5. Set ψ := ϕ1/p. Clearly, ψ is an increasing concave function not equivalent
to the function t1/p. Therefore, Λp,ψ 6= Lp. Since relation (13) is fulfilled for ψ as well,
then, by Theorem 4.3, the space Λp,ψ is w-decomposable.

Our next goal is to prove analogous results for Marcinkiewicz spaces Mϕ. To make use
of the duality of Lorentz and Marcinkiewicz spaces we will need the following statement
which is of interest in its own right.
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Theorem 4.7. Let X be a Banach lattice on a σ-finite measure space (Ω,Σ, µ) with
suppX = Ω which has the Fatou property and w be a non-trivial weight on Ω. Then the
couple (X,X(w)) is K-monotone if and only if (X ′, X ′(w)) is K-monotone, where X ′ is
the Köthe dual of X.

The proof follows from Theorem 3.1 proved in [37] and the following result.

Theorem 4.8. Let X be a Banach lattice on a σ-finite measure space (Ω,Σ, µ) with
suppX = Ω which has the Fatou property and w be a non-trivial weight on Ω. Then X is
w-decomposable if and only if its Köthe dual X ′ is w-decomposable.

Proof. Suppose that X is w-decomposable. Let n ∈ N and the functions x′1, x
′
2, . . . , x

′
n,

y′1, y
′
2, . . . , y

′
n ∈ X ′ satisfy (5) (with the norm from X ′) and (6). Take a function x ∈ X,

‖x‖X = 1, such that supp x ⊂
n
⋃

i=1

supp x′i and

‖
n
∑

i=1

x′i‖X′ ≤ 2

∫

Ω

|
n
∑

i=1

x′i(t)x(t)| dµ.

Now, consider yi ∈ X such that supp yi ⊂ supp y′i, ‖yi‖X = ‖xχsupp x′i
‖X and

‖y′i‖X′ ≤ 2

‖yi‖X

∫

Ω

|y′i(t)yi(t)| dµ, 1 ≤ i ≤ n.

Then, according to the hypothesis,

‖
n
∑

i=1

yi‖X ≤ C‖
n
∑

i=1

xχsupp x′i
‖X = C,

and, therefore,

‖
n
∑

i=1

y′i‖X′ ≥ 1

C

∫

Ω

|
n
∑

i=1

yi(t)
n
∑

j=1

y′j(t)| dµ =
1

C

n
∑

i=1

∫

Ω

|y′i(t)yi(t)| dµ

≥ 1

2C

n
∑

i=1

‖y′i‖X′‖yi‖X =
1

2C

n
∑

i=1

‖x′i‖X′‖xχsupp x′i
‖X

≥ 1

2C

n
∑

i=1

∫

Ω

|x′i(t)x(t)χsupp x′i
(t)| dµ ≥ 1

4C
‖

n
∑

i=1

x′i‖X′.

Certainly, the same argument can be applied to get the opposite estimate. The proof is
complete.

Since M ′
ϕ = Λϕ̃ (cf. [21], p. 117) and δϕ + γϕ̃ = 1 for any increasing concave function

ϕ on [0, 1] (cf. [21], Theorem 4.12 on page 107 or [24], p. 28), then by Theorems 4.3, 4.4
and 4.8 we immediately obtain the following statements.
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Corollary 4.9. Let ϕ be an increasing concave function on [0, 1] such that δϕ < 1 and let
w be a weight on [0, 1]. Then the Marcinkiewicz space Mϕ is w-decomposable if and only
if ϕ̃(t) = t/ϕ(t) satisfies (13) with p = 1.

Corollary 4.10. If ϕ is an increasing concave function on [0, 1] such that δϕ < 1, then
the space Mϕ is w-decomposable for some weight w on [0, 1] if and only if ϕ is equivalent
to a regularly varying function at zero of order ∞.

In the paper [18], Kalton proved that if X and Y are symmetric sequence spaces with
the Fatou property such that the couple (X, Y (w)) is K-monotone for some non-trivial
weight w, then X = lp and Y = lq with 1 ≤ p, q ≤ ∞. The results in this section and
Theorem 3.1 show that in the case of symmetric function spaces on [0, 1] the situation
is completely different. The following theorems present new examples of K-monotone
Banach couples of weighted Lorentz and Marcinkiewicz function spaces. The first theorem
follows from Theorem 3.1, Theorem 4.4, Theorem 4.5 and Remark 2 and the second one
from Theorem 3.1, Theorem 4.8 on the duality and Corollary 4.10.

Theorem 4.11. If ϕ is an increasing concave function on [0, 1] such that γϕ > 0 and
1 ≤ p <∞, then the weighted couple (Λp,ϕ,Λp,ϕ(w)) is K-monotone for some (non-trivial)
weight w on [0, 1] if and only if ϕ is equivalent to a regularly varying function at zero of
order p. On the other hand, for arbitrary weight w on [0, 1] and 1 ≤ p <∞ there exists an
increasing concave function ϕ on [0, 1] such that the couple (Λp,ϕ,Λp,ϕ(w)) is K-monotone
and Λp,ϕ 6= Lp.

Theorem 4.12. If ϕ is an increasing concave function on [0, 1] such that δϕ < 1, then
the weighted couple (Mϕ,Mϕ(w)) is K-monotone for some (non-trivial) weight w on [0, 1]
if and only if ϕ is equivalent to a regularly varying function at zero of order ∞.

5 w–decomposable Orlicz spaces

As we have seen in the previous section, in order to check the property of w-decomposa-
bility for Lorentz spaces, it is enough to consider only characteristic functions (Theorem
4.3). In this section we will prove that in the case of Orlicz spaces it is sufficient to
examine scalar multiples of characteristic functions.

As above, for a weight w on [0, 1] let Mk := {t ∈ [0, 1] : w(t) ∈ [2k, 2k+1)} (k ∈
Z), (wr)

∞
r=1 be the non-increasing rearrangement of the sequence (m(Mk))

+∞
k=−∞ and {M̄r}∞r=1

denote any rearrangement of the sets Mk such that m(M̄r) = wr, r = 1, 2, . . .

Theorem 5.1. Let an Orlicz function F satisfy the ∆2-condition for large u and let w
be a weight on [0, 1]. Then, the Orlicz space LF = LF [0, 1] is w-decomposable if and only
if there exists p ∈ [1,∞) such that for any n ∈ N, all measurable sets Ak ⊂Mk and reals
ck (1 ≤ k ≤ n) we have

‖
n
∑

k=1

ckχAk
‖pLF

≈
n
∑

k=1

‖ckχAk
‖pLF

(32)

with a constant independent of ck, Ak (1 ≤ k ≤ n) and n ∈ N. If, in addition, the com-
plementary function F ∗ satisfies the ∆2-condition for large u, then the w-decomposability
of LF implies that F is equivalent to a regularly varying Orlicz function at ∞ of order p.
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Proof. Suppose, first, that LF is w-decomposable. By Proposition 3.2, there is p ∈ [1,∞]
such that (9) holds for X = LF , which implies (32). Since F satisfies the ∆2-condition
for large u > 0, then αX > 0. Therefore, by Corollary 3.7, p <∞.

Conversely, let n ∈ N and yk ∈ LF , supp yk ⊂ M̄k, 1 ≤ k ≤ n. We may (and will)
assume that yk are positive bounded functions and

n
∑

k=1

‖yk‖pLF
= 1. (33)

Taking into account Theorem 3.3, we need to show that

‖
n
∑

k=1

yk‖pLF
≈ 1, (34)

with a constant independent from n and yk. For each 1 ≤ k ≤ n we set

ck =
‖yk‖LF

2ϕLF
(m(supp yk))

and

ỹk(t) :=

{

yk(t), if yk(t) ≥ ck,

0, if yk(t) < ck.

Applying (32) to the functions ckχsuppyk and taking into account the definition of ck and
(33) we get

‖
n
∑

k=1

ckχsuppyk‖pLF
≤ C1

n
∑

k=1

cpkϕLF
(m(suppyk))

p

= C1

n
∑

k=1

2−p ‖yk‖pLF
= 2−pC1.

Up to equivalence of norms the Orlicz space LF = LF [0, 1] depends only on the behaviour
of F for large enough u > 0. Therefore, we may assume that F (2u) ≤ C2F (u) for all
u > 0. Then, from the last inequality it follows that

n
∑

k=1

m(suppyk)F (ck) ≤ C3, (35)

where C3 is a constant independent of n and yk. Moreover, from the definition of ck and
ỹk we have

‖ỹk‖LF
≤ ‖yk‖LF

and ‖ỹk‖LF
≥ ‖yk‖LF

− ‖ckχsupp yk‖LF
=

1

2
‖yk‖LF

. (36)

Next, let us show that there is rk ∈ [ck, supt ỹk(t)] such that

F (rk) = F

(

rk
‖ỹk‖LF

)
∫ 1

0

F (ỹk(t))dt. (37)
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In fact, consider the function

Hk(t) :=
F (ỹk(t))

F
(

ỹk(t)
‖ỹk(t)‖LF

) , t ∈ supp ỹk.

From the equality
∫ 1

0
F ( ỹk(t)

‖ỹk(t)‖LF

)dt = 1 it follows that

inf
t∈supp ỹk

Hk(t) ≤
∫ 1

0

F [ỹk(t)]dt ≤ sup
t∈supp ỹk

Hk(t).

Thus, since inf
t∈supp ỹk

ỹk(t) ≥ ck, by the continuity of F , equality (37) holds for some rk

from the interval [ck, supt ỹk(t)].
Next, define dk ∈ [0, 1] (k = 1, 2, . . . , n) as follows:

dk =

{

ϕ−1
LF

(

‖ỹk‖LF

rk

)

, if ‖ỹk‖LF
≤ rkϕLF

(m(supp yk)),

m(supp yk), if ‖ỹk‖LF
> rkϕLF

(m(supp yk)).

Clearly, by the definition of dk,

rkϕLF
(dk) ≤ ‖ỹk‖LF

. (38)

On the other hand, since rk ≥ ck, we obtain

rkϕLF
(dk) ≥

1

2
‖ỹk‖LF

, (39)

whence dk ≥ ϕ−1
LF

(‖ỹk‖LF
/(2rk)). Hence, taking into account that F satisfies the ∆2-

condition with constant C2 for all u > 0, the formula ϕLF
(t) = 1/F−1(1/t) (see formula

(9.23) in [20] on page 79 of the English version or Corollary 5 in [25] on page 58) and
(37), we have

dkF (rk) ≥
F (rk)

F
(

2rk
‖ỹk‖LF

) ≥ 1

C2

F (rk)

M
(

rk
‖ỹk‖LF

) =
1

C2

1
∫

0

F [ỹk(t)] dt. (40)

Conversely, from the equality 1/dk = F (1/ϕLF
(dk)), (38) and (37) it follows that

dkF (rk) =
F (rk)

F ( 1
ϕLF

(dk)
)
≤ F (rk)

F
(

rk
‖ỹk‖LF

) =

1
∫

0

F [ỹk(t)] dt. (41)

Now, by the definition of dk, we have dk ≤ m(supp yk). Therefore, we can define the
scalar multiples of characteristic functions fk(t) := rkχBk

(t), where Bk ⊂ supp yk and
m(Bk) = dk. According to (38), (39) and (36), we have

1

4
‖yk‖LF

≤ ‖fk‖LF
≤ ‖yk‖LF

, k = 1, 2, . . . , n.
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Therefore, in view of (32) and (33), we obtain

‖
n
∑

k=1

fk‖pLF
≈

n
∑

k=1

‖fk‖pLF
≈

n
∑

k=1

‖yk‖pLF
= 1,

with constants which depend only on p. Hence, taking into account that F satisfies the
∆2-condition, we conclude that (34) will be proved once we show that

‖
n
∑

k=1

yk‖LF
≈ ‖

n
∑

k=1

fk‖LF

with constants independent of n and yk. Since the functions fk (respectively, yk) are
pairwise disjoint, in view of estimate (41), we find that

∫ 1

0

F [
n
∑

k=1

fk(t)] dt =
n
∑

k=1

dkF (rk) ≤
n
∑

k=1

∫ 1

0

F (ỹk(t)) dt

≤
∫ 1

0

F [

n
∑

k=1

yk(t)] dt.

Conversely, by (40) and (35), we get

∫ 1

0

F [

n
∑

k=1

yk(t)] dt ≤
n
∑

k=1

∫ 1

0

F [ỹk(t)] dt+

n
∑

k=1

m(supp yk)F (ck)

≤ C2

∫ 1

0

F [

n
∑

k=1

fk(t)] dt+ C3,

and we come to the desired result.

In order to obtain the second assertion of the theorem it is sufficient to apply Corollary
3.6, Lemmas 2.1 and 2.2, Proposition 2.3 and the elementary observation that condition
(a) in that proposition implies the equivalence of F to an Orlicz function which is regularly
varying at ∞ of order p.

Remark 5.2. Arguing in the same way as in the proof of Theorem 5.1 we may obtain
the following result: Let an Orlicz function F satisfy the ∆2-condition for large u and
1 < p, q < ∞. The Orlicz space LF [0, 1] satisfies the upper p-estimate, respectively the
lower q-estimate, if and only if there exsists a constant C > 0 such that for any n ∈ N,
all pairwise disjoint measurable sets Ak and reals ck we have

‖
n
∑

k=1

ckχAk
‖LF

≤ C(
n
∑

k=1

‖ckχAk
‖pLF

)1/p,

respectively,

(
n
∑

k=1

‖ckχAk
‖qLF

)1/q ≤ C‖
n
∑

k=1

ckχAk
‖LF

.
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However, an inspection of the proof of results from [19] (pages 120-121 and 124) shows
that the first of these inequalities is equivalent to either of the following conditions: the
Orlicz space LF [0, 1] is p-convex or LF [0, 1] satisfies the upper p-estimate or there exists
an Orlicz function F1 equivalent to F for large arguments such that F1(u

1/p) is a convex
function on [0,∞). At the same time, the second of them is equivalent to either of the
following conditions: the Orlicz space LF [0, 1] is q-concave or LF [0, 1] satisfies the lower
q-estimate or there exists an Orlicz function F1 equivalent to F for large arguments such
that F1(u

1/q) is a concave function on [0,∞).

The following result is analogous to Theorem 4.4 for Lorentz spaces.

Theorem 5.3. Let F be an Orlicz function equivalent to an Orlicz function which is
regularly varying at ∞ of order p ∈ [1,∞). Then there is a weight w on [0, 1] such
that the Orlicz space LF is w-decomposable and, consequently, the couple (LF , LF (w)) is
K-monotone.

Proof. By Corollary 3.5, it is sufficient to find a sequence of pairwise disjoint intervals
{∆k}∞k=1 from [0, 1] such that for any n ∈ N and x1, x2, . . . , xn ∈ X satisfying the condition
supp xi ⊂ ∆i (1 ≤ i ≤ n), relation (9) holds.

First, since F is equivalent to a regularly varying Orlicz function at ∞ of order p, then
Lemma 1 and a simple compactness argument (see also [18, Lemma 6.1]) show that there
exists a constant C1 > 1 such that for every k ∈ N there is vk > 0 such that for all v ≥ vk
and u ∈ [k−2/8, 1] we have that

F (uv)
C1≈ upF (v). (42)

Let v > 0, ε > 0 be arbitrary and ∆ be an interval from [0, 1] such that m(∆) ≤
ε/F (v). Moreover, suppose that z ∈ LF , z ≥ 0 and supp z ⊂ ∆. Then

∫

{t∈∆: z(t)≤v}
F [z(t)] dt ≤ F (v)m(∆) ≤ ε.

Let {∆k}∞k=1 be a sequence of disjoint intervals from [0, 1] such that

m(∆k) ≤ 2−k−1(F (vk))
−1 (k = 1, 2, . . . ).

Then, as it was noted above, for every z ∈ LF such that z ≥ 0 and supp z ⊂ ∆k, we have
∫

{t∈∆k : z(t)≤vk}
F [z(t)] dt ≤ 2−k−1 (k = 1, 2, . . . ). (43)

Suppose that {xk}∞k=1 is an arbitrary sequence from LF such that xk ≥ 0 and supp xk ⊂ ∆k

(k = 1, 2, . . . ). To prove (9) we assume that

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

LF

= 1,

or, equivalently,
n
∑

i=1

∫

∆i

F [xi(t)] dt = 1. (44)
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If λi := ‖xi‖LF
(i = 1, 2, . . . ), then 0 ≤ λi ≤ 1 and

∫

∆i

F
[xi(t)

λi

]

dt = 1 (i = 1, 2, . . . ). (45)

Denote I1 := {i = 1, 2, . . . , n : λi ≤ i−2/8}, I2 := {1, 2, . . . , n} \ I1. Then
∑

i∈I1

λpi ≤
1

8

∑

i∈I1

i−2p ≤ 1

4
. (46)

Now, let i ∈ I2, i.e., λi ≥ i−2/8. Then, if xi(t) ≥ λivi, from (42) it follows that

C−1
1 λpiF

[xi(t)

λi

]

≤ F [xi(t)] ≤ C1λ
p
iF
[xi(t)

λi

]

. (47)

Moreover, by (43) and (45), we have

∫

{t∈∆i: xi(t)>λivi}
F
[xi(t)

λi

]

dt = 1−
∫

{t∈∆i:xi(t)≤λivi}
F
[xi(t)

λi

]

dt

≥ 1− 2−i−1 ≥ 3

4
,

whence, taking into account the left hand side of (47), we obtain

∫

∆i

F [xi(t)] dt ≥ C−1
1 λpi

∫

{t∈∆i:xi(t)>λivi}
F
[xi(t)

λi

]

dt ≥ 3

4
C−1

1 λpi , i ∈ I2.

Combining this with (44) and (46), we get

n
∑

i=1

λpi =
∑

i∈I1

λpi +
∑

i∈I2

λpi ≤
1

4
+

4

3
C1

n
∑

i=1

∫

∆i

F [xi(t)] dt ≤ 2C1,

and the first inequality in (9) is proved.
On the other hand, using the right hand side of (47) and (45), we infer that

∑

i∈I2

∫

{t∈∆i: xi(t)>λivi}
F [xi(t)] dt ≤ C1

∑

i∈I2

λpi

∫

{t∈∆i:xi(t)>λivi}
F
[xi(t)

λi

]

dt

≤ C1

n
∑

i=1

λpi .

(48)

At the same time, by (43) and the convexity of F , we obtain

∑

i∈I2

∫

{t∈∆i:xi(t)≤λivi}
F [xi(t)] dt ≤

∑

i∈I2

λi

∫

{t∈∆i:xi(t)≤λivi}
F
[xi(t)

λi

]

dt

≤
∞
∑

i=1

2−i−1 =
1

2
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and, by (45) and the definition of I1,

∑

i∈I1

∫

∆i

F [xi(t)] dt ≤
∑

i∈I1

λi

∫

∆i

F
[xi(t)

λi

]

dt ≤ 1

4
.

Hence, taking into account (44), we get

∑

i∈I2

∫

{t∈∆i:xi(t)>λivi}
F [xi(t)] dt = 1−

∑

i∈I2

∫

{t∈∆i:xi(t)≤λivi}
F [xi(t)] dt

−
∑

i∈I1

∫

∆i

F [xi(t)] dt ≥
1

4
.

From this and (48) it follows that
∑n

i=1 λ
p
i ≥ 1/(4C1), and so the proof of (9) is complete.

6 Ultrasymmetric Orlicz spaces and w–decomposa-

bility

In the previous sections we have examined the problem of the K-monotonicity of
weighted couples generated by Lorentz, Marcinkiewicz and Orlicz spaces. We have seen
that the central role in the question is played by the notion of w-decomposibility. It turns
out that studying the last property in a natural way leads to the so-called ultrasymmetric
Orlicz spaces.

Recall that a symmetric space X on [0, 1] is ultrasymmetric if X is an interpolation
space between the Lorentz space ΛϕX

and the Marcinkiewicz space MϕX
. These spaces

were studied by Pustylnik [27], who proved that they embrace all possible generalizations
of Lorentz-Zygmund spaces and have a simple analytical description. Moreover, one could
substitute ultrasymmetric spaces into almost all results concerning classical spaces such
as Lorentz-Zygmund spaces, and so they are very useful in many applications (see, for
example, Pustylnik [28] and [29]).

Pustylnik asked about a description of ultrasymmetric Orlicz spaces (see [27], p. 172).
In the case of reflexive Orlicz spaces this problem was solved in [4]: such a space is
ultrasymmetric if and only if it coincides (up to equivalence of norms) with a Lorentz
space Λp,ϕ for some 1 < p <∞ and some increasing concave function ϕ on [0, 1].

As it was said above, the class of w–decomposable symmetric spaces is closely related
to the class of ultrasymmetric Orlicz spaces. Our next theorem shows that in the case
when a weight w changes sufficiently fast any w–decomposable symmetric space with
non-trivial Boyd indices is an ultrasymmetric Orlicz space.

Again, as above, for a weight w defined on [0, 1], let Mk := {t ∈ [0, 1] : w(t) ∈
[2k, 2k+1)} (k ∈ Z) and (wk)

∞
k=1 be the non-increasing rearrangement of the sequence

(m(Mk))
+∞
k=−∞

Theorem 6.1. Let X be a symmetric space on [0, 1] with non-trivial Boyd indices and w
be a weight on [0, 1] satisfying the condition:

there are k0 ∈ N and c0 > 0 such that wk2
k ≥ c0 for k ≥ k0. (49)

26



(a) If X is w–decomposable, then X is an ultrasymmetric Orlicz space.

(b) If X has the Fatou property and (X,X(w)) is a K-monotone couple, then X is an
ultrasymmetric Orlicz space.

Proof. (a) Firstly, taking into account the boundedness of the dilation operator and The-
orem 3.3, a symmetric space X is w–decomposable if and only if it is v–decomposable,
where v(u) = w(cu) for some c > 0. Therefore, we may assume that c0 = 1. Denote
Ik := [2−k, 2−k+1), χ̄Ik := χIk/ϕ(2

−k) (k = 1, 2, . . . ), where ϕ is the fundamental function
of X. From (49) it follows that m(suppχ̄Ik) ≤ wk for all k ≥ k0. Applying Corollary 3.4
to scalar multiples of χ̄Ik (k ≥ k0), we get that (χ̄Ik)

∞
k=k0

spans lp for some p ∈ [1,∞)
(p 6= ∞ because the Boyd indices of X are non-trivial). Obviously, replacing (χ̄Ik)

∞
k=k0

with (χ̄Ik)
∞
k=1 does not change this property, so for all ak ∈ R (k = 1, 2, . . . )

∥

∥

∥

∞
∑

k=1

akχ̄Ik

∥

∥

∥

X
≈ ‖(ak)‖lp.

Then, taking into account [4, Proposition 2], we get

X = (L1, L∞)Klp((ϕ(2−k)2−k)∞k=1
).

By Corollary 3.7, δϕ = βX < 1. Therefore, limt→∞ ‖σt‖X→X/t = 0, and we can apply [21,
Theorem II.6.6, p. 137] in the case when A is the identity operator, to obtain

‖x‖X ≈ ‖(ϕ(2−k) x∗∗(2−k))∞k=1‖lp ≈ ‖(ϕ(2−k) x∗(2−k))∞k=1‖lp

≈
(
∫ 1

0

[x∗(t)ϕ(t)]p
dt

t

)1/p

,

and we conclude that
X = Λp,ϕ. (50)

Next, denote

F (u) =

∫ u

0

F̃ (t)

t
dt, where F̃ (t) =

{

t
ϕ−1(1)

if 0 ≤ t ≤ 1,
1

ϕ−1( 1
t
)

if t ≥ 1.

Since F̃ (t)/t is increasing on (0,∞), then F (u) is a convex function and for u > 0 we
have that

F̃ (u/2) ≤
∫ u

u/2

F̃ (t)

t
dt ≤ F (u) ≤ F̃ (u).

Moreover, by Corollary 3.7, we have that γϕ = αX > 0, which implies that F̃ satisfies the
∆2–condition for all u > 0. Therefore, for all u > 0

F (u) ≥ F̃ (u/2) ≥ cF̃ (u),

that is, the functions F and F̃ are equivalent on (0,∞).
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Now, we recall the following definition due to Kalton [18] (see also [4], where the
notion is used): For an Orlicz function F and 1 ≤ p < ∞, define the function Ψ∞

F,p(u, C)
for 0 < u ≤ 1, C > 1 to be the supremum (possibly ∞) of all N such that there exist
1 ≤ a1 < a2 < . . . < aN ,

ak
ak−1

≥ 2 for k = 2, . . . , N such that for all k either Fak(u) ≥ Cup

or up ≥ CFak(u), where Fa(u) :=
F (au)
F (a)

for a, u > 0.

To complete the proof it suffices to verify that for some C0 > 0, C1 > 0 and r > 0 we
have that

Ψ∞
F,p(u, C0) ≤ C1u

−r for all u ∈ (0, 1].

Indeed, once it is done, we can apply Theorem 1 from [4] to conclude that the Orlicz
space LF is ultrasymmetric and that it coincides with a Lorentz space Λp,ψ generated by
some increasing concave function ψ. Since the fundamental function of LF is equivalent
to ϕ, then LF = Λp,ϕ, and, in view of (50), the proof is complete.

Since the functions F and F̃ are equivalent, then, by [4, Lemma 1], it is sufficient to
prove the inequality for F̃ , i.e., to prove that for some C0 > 0, C1 > 0 and r > 0 we have

Ψ∞
F̃ ,p

(u, C0) ≤ C1u
−r for all u ∈ (0, 1]. (51)

In view of w-decomposability, Corollary 3.7, Lemma 2.2 and the inequality wk ≥ 2−k,
there is a constant C > 0 such that for any l = 1, 2, . . .

ϕ(lt)

ϕ(t)

C≈ l1/p if 0 < t ≤ 2−l.

Since 0 < αX ≤ βX < 1 it follows that 0 < γϕ ≤ δϕ < 1. Therefore, from the definition of
F̃ it follows that both F̃ and its complementary function satisfy the ∆2-condition. Hence,
by Proposition 2.3 and by the definition of F̃ once more, we obtain that there exists a
constant C1 > 0 such that, for any l ∈ N and for all x ≥ F̃−1(2l), we have

1

C1l
≤ F̃ (xl−1/p)

F̃ (x)
≤ C1

l
.

By standard arguments, there are constants C2 > 0 and C3 > 0 such that

C−1
2 up ≤ F̃ (ua)

F̃ (a)
≤ C2u

p, (52)

for all 0 < u ≤ 1 and any a satisfying F̃ (a) ≥ C32
u−p

.
Suppose that 1 ≤ a1 < a2 < . . . < aN ,

ak
ak−1

≥ 2 for k = 2, . . . , N such that for all k

either
F̃ (uak)

F̃ (ak)
≥ 2C2u

p or
F̃ (uak)

F̃ (ak)
≤ 1

2C2

up.

Then, by (52), we have that F̃ (aN ) ≤ C32
u−p

, which implies F̃ (a12
N−1) ≤ C32

u−p
. Hence,

N ≤ C4u
−p, that is, Ψ∞

F̃ ,p
(u, 2C2) ≤ C4u

−p (0 < u ≤ 1), and (51) is proved.

(b) This part follows immediately from (a) and Theorem 3.1.
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Using equality (50) from the proof of Theorem 6.1, we obtain the following corollary.

Corollary 6.2. Let X be a symmetric space on [0, 1] and w be a weight on [0, 1] satisfying
the condition (49). Assume that either X is w–decomposable or X has the Fatou property
and (X,X(w)) is K-monotone couple. If ϕX(t) = t1/p for some 1 < p <∞, then X = Lp.

Remark 6.3. Using Krivine’s theorem and the arguments from the beginning of the proof
of Theorem 6.1, the last assertion can be proved for p = 1 and p = ∞ as well.

Remark 6.4. It is well known that there is a regularly varying at ∞ Orlicz function
F such that the corresponding Orlicz space LF is not ultrasymmetric (see [18]). Thus,
Theorems 4.4 and 5.3 show that condition (49) on the weight w from Theorem 6.1 and
Corollary 6.2 is essential.

Remark 6.5. Conversely, if LF is an ultrasymmetric reflexive Orlicz space on [0, 1], then
there is a weight w on [0, 1] such that LF is w-decomposable and, equivalently, the Banach
couple (LF , LF (w)) is K-monotone. In fact, in that case F is regularly varying at ∞ of
order p ∈ (1,∞) (cf. [4]) and we can apply Theorem 5.3.

Examples. Theorem 5.3 guarantees that a weighted couple of Orlicz spaces (LF , LF (w))
on [0, 1] is K-monotone for some weight w on [0, 1] if F is equivalent to an Orlicz function
which is regularly varying at ∞ of order p ∈ [1,∞). We present some examples of such
Orlicz functions below.

1. The function F (u) = up(1 + | ln u|) for p ≥ (3 +
√
5)/2 is an Orlicz function on

(0,∞) which is regularly varying at ∞ of order p (cf. [24, Example 4]).

2. The function F (u) = up[1 + c sin(p ln u)] for 0 < c < 1/
√
2 and p ≥ (1−

√
2c√

1−2c2
)−1

is an Orlicz function on (0,∞) which is not regularly varying but it is equivalent to up

and 1
4
up ≤ F (u) ≤ 2up for all u > 0 (cf. [24, Example 10] and [25], Example 5 on p. 93

with c = 1/
√
5 and p ≥ 6).

3. Let an Orlicz function F be equivalent for large u to the function

F̃ (u) = up(ln u)q1(ln ln u)q2 . . . (ln . . . ln u)qn,

where p ∈ (1,∞) and q1, . . . , qn are arbitrary real numbers. It is easy to see that F is
equivalent to a regularly varying function at ∞ of order p (in fact, the corresponding
Orlicz space LF is even ultrasymmetric [4]).

4. Some more examples of Orlicz functions that are equivalent to some regularly
varying functions at ∞ of order p are given by Kalton [18].
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