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Abstract. Motivated by the ubiquity of control-affine systems in op-
timal control theory, we investigate the geometry of point-affine control
systems with metric structures in dimensions two and three. We com-
pute local isometric invariants for point-affine distributions of constant
type with metric structures for systems with 2 states and 1 control and
systems with 3 states and 1 control, and use Pontryagin’s Maximum
Principle to find geodesic trajectories for homogeneous examples. Even
in these low dimensions, the behavior of these systems is surprisingly
rich and varied.

1. Introduction

In [1], we investigated the local structure of point-affine distributions. A
rank-s point-affine distribution on an n-dimensional manifold M is a sub-
bundle F of the tangent bundle TM such that, for each x ∈ M , the fiber
Fx = TxM ∩ F is an s-dimensional affine subspace of TxM that contains a
distinguished point. In local coordinates, the points of F are parametrized
by s + 1 pointwise independent smooth vector fields v0(x), v1(x), . . . , vs(x)
for which Fx = v0(x)+span (v1(x), . . . , vs(x)) and v0(x) is the distinguished
point in Fx.

Our interest in point-affine distributions is motivated by a family of ordi-
nary differential equations that occurs in control theory: the control-affine
systems. A control system is a system of underdetermined ODEs

ẋ = f(x, u),

where x ∈ M and u takes values in an s-dimensional manifold U. The
system is control-affine if the right-hand side is affine linear in the control
variables u; i.e., if the system locally has the form

(1.1) ẋ(t) = v0(x) +

s∑
i=1

vi(x)ui(t),
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where the controls u1, . . . , us appear linearly in the right hand side and
v0, . . . , vs are s+1 independent vector fields. Replacing v0, which is called the
drift vector field, with a linear combination of v1, . . . , vs added to v0 would
yield an equivalent system of differential equations. In many instances,
however, there is a distinguished null value for the controls (imagine turning
off all motors), and this null value determines a distinguished drift vector
field. In these instances, we always choose v0 to be the distinguished drift
vector field. Consequently, the null value for the controls will be

u1 = · · · = us = 0.

While the control-affine systems (1.1) may appear to be rather special,
these systems are ubiquitous. In fact, any control system whatsoever be-
comes control-affine after a single prolongation, so these systems actually
encompass all control systems, at the cost of increasing the number of state
variables.

In [1] we studied local diffeomorphism invariants for these point-affine
structures. A local equivalence for two point affine structures is a local
diffeomorphism of M whose derivative maps one distinguished drift vector
field to the other, and maps one affine sub-bundle to the other (see [1] for
precise definitions). With this notion of local equivalence, we were able to
determine local normal forms for rank-1 point-affine structures when the
manifold M had dimension 2 or 3. In some cases the normal forms are
parametrized by arbitrary functions.

The current paper seeks to refine the previous results by adding a metric
structure to the point-affine structure. We do so by introducing a positive
definite quadratic cost functional Q : F → R. In local coordinates, where

w = v0(x) +
s∑
i=1

vi(x)ui ∈ Fx,

we will define
Qx(w) =

∑
gij(x)uiuj ,

where the matrix (gij(x)) is positive definite and the components are smooth
functions of x. This is a natural extension of the well-studied notion of a
sub-Riemannian metric on a linear distribution, which represents a quadratic
cost functional for a driftless system. (See, e.g., [3], [4], [5].)

With the added metric structure, we refine our notion of local point-affine
equivalence to that of a local point-affine isometry. A local point-affine
isometry is a local point-affine equivalence that additionally preserves the
quadratic cost functional.

Let γ(t) = x(t) be a trajectory for (1.1). The added metric structure
allows us to assign the following energy cost functional to γ(t):

(1.2) E(γ) =
1

2

∫
γ
Qx(t)

(
ẋ(t)

)
dt.
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Naturally associated to (1.2) is the optimal control problem of finding tra-
jectories of (1.1) that minimize (1.2). We will use Pontryagin’s maximum
principle to find an ODE system on T ∗M with the property that any mini-
mal cost trajectory for (1.1) must be the projection of some solution for the
ODE system on T ∗M .

We shall use the normal forms from [1] as starting points. In each case we
will add a metric structure to the point-affine structure. Even in these low-
dimensional cases, the analysis can be quite involved. To simplify matters,
we will narrow our focus to homogeneous examples; i.e., examples that admit
a symmetry group which acts transitively on M . Despite the low dimensions
(n = 2 or 3 and s = 1) and the simplifying assumption of homogeneity, we
will see that these structures exhibit surprisingly rich and varied behavior.

2. 2 States, 1 Control

We first examine optimal control for point-affine systems with 2 states
and 1 control. In [1], we found two local normal forms under point-affine
equivalence:

(1) Case 1.1: F = ∂
∂x1

+ span
(
∂
∂x2

)
. The dual coframing

η1 = dx1, η2 = λdx2

to the framing

v1 =
∂

∂x1
, v2 =

1

λ

∂

∂x2

(well-defined up to scaling in v2) had structure equations

dη1 = 0

dη2 ≡ 0 mod η2.

(2) Case 1.2: F = x2
(

∂
∂x1

+ J ∂
∂x2

)
+ span

(
∂
∂x2

)
We found a canonical

coframing (η1, η2) with structure equations

dη1 = η1 ∧ η2

dη2 = T 2
12η

1 ∧ η2.

We chose local coordinates so that η1 = 1
x2
dx1. The first structure

equation then implies that

η2 =
1

x2
(
dx2 − Jdx1

)
for some function J , and

T 2
12 = x2

∂J

∂x2
− J.
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The dual framing is

v1 = x2

(
∂

∂x1
+ J

∂

∂x2

)
, v2 = x2

∂

∂x2
.

Now we add a cost functional in each case and compute homogeneous
examples. The assumption of homogeneity is equivalent to the condition
that all structure functions T ijk appearing in the structure equations for a

canonical coframing are constants. (See [2] for details.)

2.1. Case 1.1. F = ∂
∂x1

+ span
(
∂
∂x2

)
.

The corresponding control system is

ẋ1 = 1

ẋ2 = u.
(2.1)

A cost functional (1.2) for this system may be written as

Q(ẋ) =
1

2
G(x)u2, G(x) > 0.

An adapted framing (v1, v2) on R2 may be defined by choosing v1 to be
the drift vector field v1 = ∂

∂x1
and v2 to be the unit vector

v2 =
1√
G

∂

∂x2

in the linear distribution LF obtained by translating F to the zero section.
This framing is canonically defined up to the sign of v2. The dual coframing
(η1, η2) to this framing is given by

(2.2) η1 = dx1, η2 =
√
Gdx2,

with structure equations

dη1 = 0

dη2 =
Gx1

2G
η1 ∧ η2.

(2.3)

This coframing is canonically defined by the affine distribution and the cost
functional, independent of the choice of local coordinates (x1, x2) on R2.

Local coordinates for which this coframing is described by (2.2) are de-
termined only up to transformations of the form

(2.4) x1 = x̃1 + a, x2 = φ(x̃2).

From (2.3), the structure is homogeneous if and only if
Gx1

2G is equal to a
constant c1. In this case, we have

G(x1, x2) = G0(x
2)e2c1x

1
.

Since this implies that

η2 = ec1x
1√

G0(x2)dx
2,
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we can make a change of variables

x̃1 = x1, x̃2 =

∫ √
G0(x2)dx

2

(note that this transformation is of the form (2.4)) to arrange that

η2 = ec1x̃
1
dx̃2,

which implies that G̃(x̃1, x̃2) = e2c1x̃
1
.

Now consider the problem of computing optimal trajectories for (2.1).
The Hamiltonian for the energy functional (1.2) is

H = p1ẋ
1 + p2ẋ

2 −Q(ẋ)

= p1 + p2u−
1

2
G(x)u2

= p1 + p2u−
1

2
e2c1x

1
u2.

By Pontryagin’s maximum principle, a necessary condition for optimal tra-
jectories is that the control function u(t) is chosen so as to maximize H.

Since u is unrestricted and 1
2e

2c1x1 > 0, maxuH occurs when

0 =
∂H
∂u

= p2 − e2c1x
1
u,

that is, when

(2.5) u = p2e
−2c1x1 .

So along an optimal trajectory, we have

H = p1 + (p2)
2e−2c1x

1 − 1

2
(p2)

2e−2c1x
1

= p1 +
1

2
(p2)

2e−2c1x
1
.

Moreover, H is constant along trajectories, and so we have

(2.6) p1 +
1

2
(p2)

2e−2c1x
1

= k.

Hamilton’s equations

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

take the form

ẋ1 = 1

ẋ2 = u

ṗ1 = c1e
−2c1x1(p2)

2

ṗ2 = 0.

(2.7)

Now, using (2.5), the second equation in (2.7) becomes

ẋ2 = p2e
−2c1x1 ,
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so optimal trajectories are solutions of the system

ẋ1 = 1

ẋ2 = p2e
−2c1x1

ṗ1 = c1(p2)
2e−2c1x

1

ṗ2 = 0.

(2.8)

The fourth equation in (2.8) implies that p2 is constant; say, p2 = c2. Then
optimal trajectories are solutions of the system

ẋ1 = 1

ẋ2 = c2e
−2c1x1 .

(2.9)

This system can be integrated explicitly:

• If c1 = 0, then the solutions are:

x1 = t

x2 = c2t+ c3.
(2.10)

These solutions correspond to the family of curves

x2 = c2x
1 + c3

in the (x1, x2)-plane. Thus, the set of critical curves consists of
all non-vertical straight lines in the (x1, x2) plane, oriented in the
direction of increasing x1. Sample optimal trajectories are shown in
Figure 1.

Figure 1.
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• If c1 6= 0, then the solutions are:

x1 = t

x2 = − 1

2c1
c2e
−2c1t.

(2.11)

These solutions correspond to the family of curves

x2 = − 1

2c1
c2e
−2c1x1

in the (x1, x2)-plane. Thus, the set of critical curves consists of a
family of exponential curves in the (x1, x2) plane, oriented in the
direction of increasing x1. Sample optimal trajectories are shown in
Figure 2.

Figure 2.

2.2. Case 1.2. F = x2
(

∂
∂x1

+ J ∂
∂x2

)
+ span

(
∂
∂x2

)
. Since the canonical

framing for point-affine equivalence in this case had v2 = x2 ∂
∂x2

, we will
write the corresponding control system as

ẋ1 = x2

ẋ2 = x2J + x2u.
(2.12)

Note that our assumption that (2.12) is strictly affine requires that we re-
strict to the open set where x2 6= 0.

A cost functional (1.2) for this system may be written as

Q(ẋ) =
1

2
G(x)u2, G(x) > 0.
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An adapted framing (v1, v2) on R2 may be defined by choosing v1 to be the
drift vector field

v1 = x2

(
∂

∂x2
+ J

∂

∂x2

)
and v2 to be the unit vector

v2 =
x2√
G

∂

∂x2

in LF. This framing is canonically defined up to the sign of v2. The dual
coframing (η1, η2) to this framing is given by

η1 =
1

x2
dx1, η2 =

√
G

x2

(
dx2 − Jdx1

)
,

with structure equations

dη1 =
1√
G
η1 ∧ η2

dη2 =

[
x2
(√

G
)
x1

+ x2J
(√

G
)
x2

+
√
G
(
x2Jx2 − J

)]
η1 ∧ η2.

(2.13)

Again, this coframing is canonically defined, independent of the choice of
local coordinates on R2.

Local coordinates for which η2 = 1
x2
dx1 are determined up to transfor-

mations of the form

(2.14) x1 = φ(x̃1), x2 = x̃2φ′(x̃1).

From (2.13), the structure is homogeneous if and only if G is equal to a
constant g0 > 0, and the function

x2Jx2 − J
is constant, which is the case if and only if

J = x2J1(x
1) + j0

where j0 is constant.
Under a transformation of the form (2.14), we have

η2 =

√
g0

x2

(
dx2 − J(x1, x2)dx1

)
=

√
g0

x̃2φ′(x̃1)

((
φ′(x̃1)dx̃2 + x̃2φ′′(x̃2)dx̃1

)
− J(φ(x̃1), x̃2φ′(x̃1))φ′(x̃1)dx̃1

)
=

√
g0

x̃2

(
dx̃2 −

(
J
(
φ(x̃1), x̃2φ′(x̃1)

)
− x̃2φ

′′(x̃1)

φ′(x̃1)

)
dx̃1

)
.
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Therefore, the function J̃(x̃1, x̃2) corresponding to the new coordinates (x̃1, x̃2)
is defined by the condition that

J̃(x̃1, x̃2) = J
(
φ(x̃1), x̃2φ′(x̃1)

)
− x̃2φ

′′(x̃1)

φ′(x̃1)
.

So in the homogeneous case, where

J = x2J1(x
1) + j0,

we can make such a change of variables to arrange that J̃1(x̃
1) = 0, and

therefore J̃ = j0. Moreover, these coordinates are unique up to an affine
transformation

x1 = ax̃1 + b, x2 = ax̃2.

Now consider the problem of computing optimal trajectories for (2.12).
The Hamiltonian for the energy functional (1.2) is

H = p1ẋ
1 + p2ẋ

2 −Q(ẋ)

= p1x
2 + p2x

2
(
J(x) + u

)
− 1

2
G(x)u2

= p1x
2 + p2x

2
(
j0 + u

)
− 1

2
g0u

2.

Setting ∂H
∂u = 0, as required by Pontryagin’s maximum principle, provides

the necessary condition

(2.15) u =
p2x

2

g0
for an optimal trajectory. So along an optimal trajectory, we have

H = p1x
2 + p2x

2j0 +
1

2g0

(
p2x

2
)2
.

Hamilton’s equations take the form

ẋ1 = x2

ẋ2 = x2j0 +
p2
(
x2
)2

g0
ṗ1 = 0

ṗ2 = −p1 − p2j0 −
(p2)

2x2

g0
.

(2.16)

It is straightforward to show that the three functions

• H = p1x
2 + p2x

2j0 + 1
2g0

(p2x
2)2

• p1
• p1x1 + p2x

2.

are first integrals for this system. This observation alone would in principle
allow us to construct unparametrized solution curves for the system. But in
fact, we can solve this system fully, as follows.
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The third equation in (2.16) implies that p1 is constant; say, p1 = c1.
Now observe that

d

dt

(
p2x

2
)

= p2ẋ
2 + x2ṗ2

= p2x
2

(
j0 +

p2x
2

g0

)
+ x2

(
−c1 − p2j0 −

(p2)
2x2

g0

)
(2.17)

= −c1x2.

If c1 = 0, then (2.17) implies that p2x
2 is equal to a constant k2, and so

ẋ2 = x2
(
j0 +

k2
g0

)
= c2x

2.

There are two subcases, depending on the value of c2.

• If c2 = 0, then
x2 = c3,

and since ẋ1 = x2, we have

x1 = c3t+ c4.

These solutions correspond to the family of curves

x2 = c3

in the (x1, x2)-plane. These curves are all horizontal lines, oriented
in the direction of increasing x1 when x2 > 0 and decreasing x1 when
x2 < 0. Sample optimal trajectories are shown in Figure 3.

Figure 3.
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• If c2 6= 0, then

(2.18) x2 = c3e
c2t,

and since ẋ1 = x2, we have

(2.19) x1 =
c3
c2
ec2t + c4.

These solutions correspond to the family of curves

x2 = c2(x
1 − c4)

in the (x1, x2)-plane. These curves are all non-vertical, non-horizontal
lines, oriented in the direction of increasing x1 when x2 > 0 and de-
creasing x1 when x2 < 0. Sample optimal trajectories are shown in
Figure 4.

Figure 4.

On the other hand, if c1 6= 0, then

d2

dt2
(p2x

2) = −c1ẋ2

= −c1x2
(
j0 +

p2x
2

g0

)
(2.20)

=
d

dt
(p2x

2)

(
j0 +

p2x
2

g0

)
.

Integrating this equation once gives

(2.21)
d

dt
(p2x

2) = j0(p2x
2) +

(p2x
2)2

2g0
+ c2.

There are three subcases, depending on the value of k = g0(j
2
0g0 − 2c2).
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• If k = 0, then the solution to (2.21) is

p2x
2 = −g0(2 + j0(t+ c3))

t+ c3
,

and from equation (2.17),

x2 = − 1

c1

d

dt
(p2x

2) = − 2g0
c1(t+ c3)2

.

Then since ẋ1 = x2 = − 1
c1

d
dt(p2x

2), we have

x1 = − 1

c1
(p2x

2) + c4

=
g0(2 + j0(t+ c3))

c1(t+ c3)
+ c4.

These solutions correspond to the family of curves

x2 = − 1

2c1g0

(
c1x

1 − (j0g0 + c1c4)
)2

in the (x1, x2)-plane. These curves are all parabolas with vertex
lying on the x1-axis. Since we must have x2 6= 0, the set of critical
curves consists of all branches of parabolas with vertex on the x2-
axis, oriented in the direction of increasing x1 when x2 > 0 and
decreasing x1 when x2 < 0. Sample optimal trajectories are shown
in Figure 5.

Figure 5.

• If k > 0, then the solution to (2.21) is

p2x
2 = −

√
k tanh

(√
k

2g0
(t+ c3)

)
− j0g0,
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and from equation (2.17),

x2 = − 1

c1

d

dt
(p2x

2) =
k

2c1g0
sech2

(√
k

2g0
(t+ c3)

)
.

Then since ẋ1 = x2 = − 1
c1

d
dt(p2x

2), we have

x1 = − 1

c1
(p2x

2) + c4

=
1

c1

(
√
k tanh

(√
k

2g0
(t+ c3)

)
+ j0g0

)
+ c4.

These solutions correspond to the family of curves

x2 = − 1

2c1g0

[(
c1x

1 − (j0g0 + c1c4)
)2 − k]

in the (x1, x2)-plane. These curves are all parabolas opening towards
the x1-axis. Thus the set of critical curves consists of parabolic arcs
opening towards the x1-axis, approaching the axis as t→ ±∞, and
oriented in the direction of increasing x1 when x2 > 0 and decreasing
x1 when x2 < 0. Sample optimal trajectories are shown in Figure 6.

Figure 6.

• If k < 0, then the solution to (2.21) is

p2x
2 =
√
−k tan

(√
−k

2g0
(t+ c3)

)
− j0g0,

and from equation (2.17),

x2 = − 1

c1

d

dt
(p2x

2) =
k

2c1g0
sec2

(√
−k

2g0
(t+ c3)

)
.
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Then since ẋ1 = x2 = − 1
c1

d
dt(p2x

2), we have

x1 = − 1

c1
(p2x

2) + c4

= − 1

c1

(√
−k tan

(√
−k

2g0
(t+ c3)

)
− j0g0

)
+ c4.

These solutions correspond to the family of curves

x2 = − 1

2c1g0

[(
c1x

1 − (j0g0 + c1c4)
)2 − k]

in the (x1, x2)-plane. These curves are all parabolas opening away
from the x1-axis. Thus the set of critical curves consists of parabolic
arcs opening away from the x1-axis, becoming unbounded in finite
time, and oriented in the direction of increasing x1 when x2 > 0 and
decreasing x1 when x2 < 0. Sample optimal trajectories are shown
in Figure 7.

Figure 7.

3. 3 States, 1 Control

In [1], we found three local normal forms under point-affine equivalence:

(1) Case 2.1: F =
(
∂
∂x1

+ x3 ∂
∂x2

+ J ∂
∂x3

)
+span

(
∂
∂x3

)
. The dual cofram-

ing

η1 = dx1,

η2 = dx3 − J dx1 − 1

2
Jx3(dx2 − x3 dx1),

η3 = dx2 − x3 dx1
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to the framing

v1 =
∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3
,

v2 =
∂

∂x3
,

v3 = −[v1, v2] =
∂

∂x2
+

1

2
Jx3

∂

∂x3

(well-defined up to dilation in the (v2, v3)-plane) had structure equa-
tions

dη1 = 0

dη2 ≡ T 2
13η

1 ∧ η3 mod η2

dη3 = η1 ∧ η2 mod η3.

(2) Case 2.2: F =
(
x2 ∂

∂x1
+ x3 ∂

∂x2
+ J

(
x2 ∂

∂x3

))
+span

(
∂
∂x3

)
. We found

a canonical coframing η1, η2, η3 with structure equations

dη1 = η1 ∧ η3

dη2 = T 2
12η

1 ∧ η2 + T 2
13η

1 ∧ η3 + T 2
23η

2 ∧ η3

dη3 = η1 ∧ η2 + T 2
12η

1 ∧ η3.
Based on the first structure equation, we chose partial local coor-
dinates (x1, x2) so that η1 = 1

x2
dx1. The first structure equation

then implies that there exists a third independent local coordinate
function x3 such that

η3 =
1

x2
dx2 − x3

(x2)2
dx1.

The third structure equation then implies that

η2 =
1

x2
dx3 − 1

x2
J dx1 − 1

2

(
Jx3 +

(
x3

x2

)2
)(

dx2 − x3

x2
dx1
)

for some function J . The dual framing to the coframing (η1, η2, η3)
is

v1 = x2
∂

∂x1
+ x3

∂

∂x2
+ J

(
x2

∂

∂x3

)
,

v2 = x2
∂

∂x3
,

v3 = −[v1, v2] = x2
∂

∂x2
+

1

2

(
(x2)2Jx3 + x3

) ∂

∂x3
.

(3) Case 2.3:

F =
(
∂
∂x1

+ J
(
x3 ∂

∂x1
+ ∂

∂x2
+H ∂

∂x3

))
+ span

(
x3 ∂

∂x1
+ ∂

∂x2
+H ∂

∂x3

)
,
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where ∂H
∂x1
6= 0. We found a canonical coframing η1, η2, η3 with

structure equations

dη1 = T 1
13η

1 ∧ η3 − εη2 ∧ η3

dη2 = T 2
12η

1 ∧ η2 + T 2
13η

1 ∧ η3 + T 2
23η

2 ∧ η3

dη3 = η1 ∧ η2 + T 2
12η

1 ∧ η3 + T 3
23η

2 ∧ η3,
where ε = ±1 = sgn(Hx1). Based on the structure equations, we
chose local coordinates so that

η1 = dx1 − x3 dx2

η2 ≡ ε
√
εHx1

(
dx2 − J(dx1 − x3 dx2)

)
mod η3

η3 =
1√
εHx1

(
H dx2 − dx3

)
.

The dual framing is

v1 =
∂

∂x1
+ J

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
v2 =

ε√
εHx1

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v3 = −[v1, v2] ≡ −
√
εHx1

∂

∂x3
mod v2.

Now we add a cost functional in each case and compute homogeneous
examples. The assumption of homogeneity is equivalent to the condition
that all structure functions T ijk appearing in the structure equations for a

canonical coframing are constants. (See [2] for details.)

3.1. Case 2.1. F =
(
∂
∂x1

+ x3 ∂
∂x2

+ J ∂
∂x3

)
+ span

(
∂
∂x3

)
.

The corresponding control system is

ẋ1 = 1

ẋ2 = x3

ẋ3 = J + u.

(3.1)

A cost functional (1.2) for this system may be written as

Q(ẋ) =
1

2
G(x)u2, G(x) > 0.

An adapted framing (v1, v2, v3) on R3 may be defined by choosing v1 to
be the drift vector field

v1 =
∂

∂x1
+ x3

∂

∂x2
+ J

∂

∂x3
,

v2 to be the unit vector

v2 =
1√
G

∂

∂x3
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in LF, and
v3 = −[v1, v2].

This framing is canonically defined up to the signs of v2 and v3. The dual
coframing (η1, η2, η3) to this framing is given by

η1 = dx1,

η2 ≡
√
G(dx3 − J dx1) mod η3,(3.2)

η3 =
√
G(dx2 − x3 dx1).

This coframing is canonically defined, independent of the choice of local
coordinates on R3.

Local coordinates for which the coframing takes the form (3.2) are deter-
mined up to transformations of the form

x1 = x̃1 + a

x2 = φ(x̃1, x̃2)(3.3)

x3 = φx̃1(x̃1, x̃2) + x̃3φx̃2(x̃1, x̃2)

with φx̃2 6= 0. Under such a transformation we have√
G̃(x̃1, x̃2, x̃3) =

√
G(x1, x2, x3)φx̃2(3.4)

J̃(x̃1, x̃2, x̃3) =
1

φx̃2

(
J(x1, x2, x3)− φx̃2x̃2(x̃3)2 − 2φx̃1x̃2 x̃

3 − φx̃1x̃1
)
,(3.5)

with x1, x2, x3 as in (3.3).
Now suppose that the structure is homogeneous. First consider the struc-

ture equation for dη3. A computation shows that

dη3 ≡ Gx3

2G3/2
η2 ∧ η3 mod η1.

Therefore,
Gx3

2G3/2 must be equal to a constant −c1. (The minus sign is in-

cluded for convenience in what follows.) The remaining analysis varies con-
siderably depending on whether c1 is zero or nonzero.

3.1.1. Case 2.1.1: c1 = 0. If c1 = 0, then Gx3 = 0, and so

G(x1, x2, x3) = G0(x
1, x2).

According to (3.4), by a local change of coordinates of the form (3.3) with
φ a solution of the PDE

φx̃2(x̃1, x̃2) =
1

G0(x̃1, φ(x̃1, x̃2))
,

we can arrange that G̃0(x̃
1, x̃2) = 1. This condition is preserved by trans-

formations of the form (3.3) with

(3.6) φ(x̃1, x̃2) = x̃2 + φ0(x̃
1).
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With the assumption that G(x1, x2, x3) = 1, the equation for dη3 reduces
to

dη3 = η1 ∧ η2 + Jx3η
1 ∧ η3.

Therefore, Jx3 must be equal to a constant c3, and so

J(x1, x2, x3) = c3x
3 + J0(x

1, x2).

Now the equation for dη2 becomes

dη2 = (J0)x2 η
1 ∧ η3.

Therefore, (J0)x2 must be equal to a constant c2, and so

J0(x
1, x2) = c2x

2 + J1(x
1).

With φ as in (3.6) and

J(x1, x2, x3) = c2x
2 + c3x

3 + J1(x
1),

equation (3.5) reduces to

J̃1(x̃
1) = J1(x̃

1 + a)−
(
φ′′0(x̃1)− c3φ′0(x̃1)− c2φ0(x̃1)

)
.

Therefore, we can choose local coordinates to arrange that J̃1(x̃
1) = 0.

To summarize, we have constructed local coordinates for which

G(x1, x2, x3) = 1, J(x1, x2, x3) = c2x
2 + c3x

3.

These coordinates are determined up to transformations of the form

x1 = x̃1 + a, x2 = x̃2 + φ0(x̃
1), x3 = x̃3 + φ′0(x̃

1),

where φ0(x̃
1) is a solution of the ODE

φ′′0(x̃1)− c3φ′0(x̃1)− c2φ0(x̃1) = 0.

Now consider the problem of computing optimal trajectories for (3.1).
The Hamiltonian for the energy functional (1.2) is

H = p1ẋ
1 + p2ẋ

2 + p3ẋ
3 −Q(ẋ)

= p1 + p2x
3 + p3(J + u)− 1

2
G(x)u2

= p1 + p2x
3 + p3(c2x

2 + c3x
3 + u)− 1

2
u2.

Setting ∂H
∂u = 0, as required by Pontryagin’s maximum principle, provides

the necessary condition

(3.7) u = p3

for an optimal trajectory. So along an optimal trajectory, we have

H = p1 + p2x
3 + p3(c2x

2 + c3x
3) +

1

2
(p3)

2.
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Hamilton’s equations take the form

ẋ1 = 1

ẋ2 = x3

ẋ3 = c2x
2 + c3x

3 + p3

ṗ1 = 0

ṗ2 = −c2p3
ṗ3 = −p2 − c3p3.

(3.8)

The last two equations in (3.8) can be written as

p̈2 + c3ṗ2 − c2p2 = 0,

and the function p3 = − 1
c2
ṗ2 satisfies this same ODE. Then the equations

for ẋ2, ẋ3 can be written as

ẍ2 − c3ẋ2 − c2x2 = p3(t),

where p3(t) is an arbitrary solution of the ODE

p̈3 + c3ṗ3 − c2p3 = 0.

Therefore, x2(t) is an arbitrary solution of the 4th-order ODE(
d2

dt2
+ c3

d

dt
− c2

)(
d2

dt2
− c3

d

dt
− c2

)
x2(t) = 0,

and for any such x2(t), we have

x1(t) = t+ t0, x3(t) = ẋ2(t).

A sample optimal trajectory is shown in Figure 8.

Figure 8.
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3.1.2. Case 2.1.2: c1 6= 0. If c1 6= 0, then

G(x1, x2, x3) =
1

(c1x3 +G0(x1, x2))
2 .

According to (3.4), by a local change of coordinates of the form (3.3) with
φ a solution of the PDE

φx1(x̃1, x̃2) =
1

c1
G0

(
x̃1, φ(x̃1, x̃2)

)
,

we can arrange that G̃0(x̃
1, x̃2) = 0. This condition is preserved by trans-

formations of the form (3.3) with

(3.9) φ(x̃1, x̃2) = φ0(x̃
2).

With the assumption that G(x1, x2, x3) = 1
(c1x3)2

, the equation for dη3

reduces to

dη3 = η1 ∧ η2 − (2J − x3Jx3)

x3
η1 ∧ η3 − c1η2 ∧ η3.

Therefore,
(2J−x3Jx3 )

x3
must be equal to a constant c3, and so

J(x1, x2, x3) = c3x
3 + J0(x

1, x2)(x3)2.

Now the equation for dη2 becomes

dη2 = −x3(J0)x1 η1 ∧ η3.
The quantity −x3(J0)x1 can only be constant if (J0)x1 = 0; therefore, we
must have

J0(x
1, x2) = J1(x

2).

With φ as in (3.9) and

J(x1, x2, x3) = c3x
3 + J1(x

2)(x3)2,

equation (3.5) reduces to

J̃1(x̃
2) = J1(φ0(x̃

2))φ′0(x̃
2)− φ′′0(x̃2)

φ′0(x̃
2)
.

Therefore, we can choose local coordinates to arrange that J̃1(x̃
2) = 0.

To summarize, we have constructed local coordinates for which

G(x1, x2, x3) =
1

(c1x3)2
, J(x1, x2, x3) = c3x

3.

These coordinates are determined up to transformations of the form

x1 = x̃1 + a, x2 = bx̃2 + c, x3 = bx̃3 + c.
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Now consider the problem of computing optimal trajectories for (3.1).
The Hamiltonian for the energy functional (1.2) is

H = p1ẋ
1 + p2ẋ

2 + p3ẋ
3 −Q(ẋ)

= p1 + p2x
3 + p3(J + u)− 1

2
G(x)u2

= p1 + p2x
3 + p3(c3x

3 + u)− 1

2(c1x3)2
u2.

Setting ∂H
∂u = 0, as required by Pontryagin’s maximum principle, provides

the necessary condition

(3.10) u = (c1x
3)2p3

for an optimal trajectory. So along an optimal trajectory, we have

H = p1 + p2x
3 + c3p3x

3 +
1

2
(c1x

3p3)
2.

Hamilton’s equations take the form

ẋ1 = 1

ẋ2 = x3

ẋ3 = c3x
3 + (c1x

3)2p3

ṗ1 = 0

ṗ2 = 0

ṗ3 = −p2 − c3p3 − (c1p3)
2x3.

(3.11)

The equation for ṗ2 in (3.11) implies that p2(t) is equal to a constant c2.
Then (3.11) implies that

˙(p3x3) = −c2x3(3.12)

ẋ3 = c3x
3 + c1x

3(p3x
3).

These equations can be solved as follows:

• If c2 = 0, then the function p3x
3 is constant, and so the equation for

ẋ3 becomes
ẋ3 = c̃x3

for some constant c̃. If c̃ = 0, then the solution trajectories are given
by

x1(t) = t+ t0, x2(t) = at+ b, x3(t) = a

for some constants a, b. Sample optimal trajectories are shown in
Figure 9.

If c̃ 6= 0, then the solution trajectories are given by

x1(t) = t+ t0, x2(t) =
a

c̃
ec̃t + b, x3(t) = aec̃t

for some constants a, b. Sample optimal trajectories are shown in
Figure 10.
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Figure 9.

Figure 10.

• If c2 6= 0, then (3.12) can be written as the 2nd-order ODE for the
function z(t) = p3(t)x

3(t):

z̈ = (c3 + c21z)ż.
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Integrating once yields

ż =
1

2
(c1z)

2 + c3z + c4

for some constant c4. Depending on the values of the constants, the
solution z(t) has one of the following forms:

(1) z(t) = a tan(bt+ c) + d, c23 − 2c1c4 < 0;

(2) z(t) = a tanh(bt+ c) + d, c23 − 2c1c4 > 0;

(3) z(t) =
1

at+ b
+ c, c23 − 2c1c4 = 0.

Then we have

x3 = − 1

c2
ż = ẋ2,

and so the corresponding solution trajectories are given (with slightly
modified constants) by:

(1)


x1(t) = t+ t0

x2(t) = a tan(bt+ c) + d,

x3(t) = ab sec2(bt+ c);

(2)


x1(t) = t+ t0

x2(t) = a tanh(bt+ c) + d,

x3(t) = ab sech2(bt+ c);

(3)



x1(t) = t+ t0

x2(t) =
1

at+ b
+ c,

x3(t) = − a

(at+ b)2
.

Sample optimal trajectories for the first two cases are shown in Figure 11.

3.2. Case 2.2. F =
(
x2 ∂

∂x1
+ x3 ∂

∂x2
+ J

(
x2 ∂

∂x3

))
+ span

(
∂
∂x3

)
.

The corresponding control system is

ẋ1 = x2

ẋ2 = x3

ẋ3 = x2(J + u).

(3.13)

A cost functional (1.2) for this system may be written as

Q(ẋ) =
1

2
G(x)u2, G(x) > 0.
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Figure 11.

An adapted framing (v1, v2, v3) on R3 may be defined by choosing v1 to be
the drift vector field

v1 = x2
∂

∂x1
+ x3

∂

∂x2
+ J

(
x2

∂

∂x3

)
,

v2 to be the unit vector

v2 =
1√
G

(
x2

∂

∂x3

)
in LF, and

v3 = −[v1, v2].

This framing is canonically defined up to the signs of v2 and v3. The dual
coframing (η1, η2, η3) to this framing is given by

η1 =
1

x2
dx1,

η2 ≡
√
G

x2
(dx3 − J dx1) mod η3,(3.14)

η3 =
√
G

(
1

x2
dx2 − x3

(x2)2
dx1
)
.

This coframing is canonically defined, independent of the choice of local
coordinates on R3.

Local coordinates for which the coframing takes the form (3.14) are de-
termined up to transformations of the form

x1 = φ(x̃1)

x2 = φ′(x̃1)x̃2(3.15)

x3 = φ′(x̃1)x̃3 + φ′′(x̃1)(x̃2)2
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with φ′(x̃1) 6= 0. Under such a transformation we have

G̃(x̃1, x̃2, x̃3) = G(x1, x2, x3)(3.16)

J̃(x̃1, x̃2, x̃3) = J(x1, x2, x3)− 1

φ′(x̃1)

(
φ′′′(x̃1)(x̃2)2 + 3φ′′(x̃1)x̃3

)
,(3.17)

with x1, x2, x3 as in (3.15).
Now suppose that the structure is homogeneous. The structure equation

for dη1 is

dη1 =
1√
G
η1 ∧ η3.

Therefore, G(x1, x2, x3) must be equal to a constant g. Now the equation
for dη3 becomes

dη3 = η1 ∧ η2 +

(
x2Jx3 − 3

x3

x2

)
η1 ∧ η3.

Therefore, the quantity
(
x2Jx3 − 3x

3

x2

)
must be equal to a constant a, and

so

J(x1, x2, x3) =
3

2

(
x3

x2

)2

+ a
x3

x2
+ J0(x

1, x2).

Now the equation for dη2 reduces to

dη2 =

(
x2(J0)x2 − 2J0 − a

x3

x2

)
η1 ∧ η3 − 1

√
g
η2 ∧ η3.

The quantity
(
x2(J0)x2 − 2J0 − ax

3

x2

)
can only be constant if a = 0; there-

fore, we must have a = 0 and

x2(J0)x2 − 2J0 = −2c1

for some constant c1. Therefore,

J0(x
1, x2) = c1 + J1(x

1)(x2)2,

and

J(x1, x2, x3) =
3

2

(
x3

x2

)2

+ c1 + J1(x
1)(x2)2.

With φ as in (3.15) and J as above, equation (3.17) reduces to

J̃1(x̃
1) = (φ′(x̃1)2J1(φ(x̃1))− φ′′′(x̃1)

φ′(x̃1)
+

3

2

φ′′(x̃1)

(φ′(x̃1))2
.

Therefore, we can choose local coordinates to arrange that J̃1(x̃
1) = 0. This

condition is preserved by transformations of the form (3.15) with

φ′′′(x̃1)

φ′(x̃1)
− 3

2

φ′′(x̃1)

(φ′(x̃1))2
= 0.
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This implies that φ is a linear fractional transformation; i.e.,

φ(x̃1) =
ax̃1 + b

cx̃1 + d
.

To summarize, we have constructed local coordinates for which

G(x1, x2, x3) = g, J(x1, x2, x3) =
3

2

(
x3

x2

)2

+ c1.

These coordinates are determined up to transformations of the form

x1 =
ax̃1 + b

cx̃1 + d
, x2 =

ad− bc
(cx̃1 + d)2

x̃2, x3 =
ad− bc

(cx̃1 + d)2
x̃3−2c(ad− bc)

(cx̃1 + d)3
x̃2.

Now consider the problem of computing optimal trajectories for (3.13).
The Hamiltonian for the energy functional (1.2) is

H = p1ẋ
1 + p2ẋ

2 + p3ẋ
3 −Q(ẋ)

= p1x
2 + p2x

3 + p3x
2(J + u)− 1

2
G(x)u2

= p1x
2 + p2x

3 + p3x
2

(
3

2

(
x3

x2

)2

+ c1 + u

)
− 1

2
gu2.

Setting ∂H
∂u = 0, as required by Pontryagin’s maximum principle, provides

the necessary condition

(3.18) u =
p3x

2

g

for an optimal trajectory. So along an optimal trajectory, we have

H = p1x
2 + p2x

3 + p3x
2

(
3

2

(
x3

x2

)2

+ c1

)
+

1

2g
(p3x

2)2.

Hamilton’s equations take the form

ẋ1 = x2

ẋ2 = x3

ẋ3 =
3

2

(x3)2

x2
+ c1x

2 +
1

g
p3(x

2)2

ṗ1 = 0

ṗ2 = −p1 +
3

2

p3(x
3)2

(x2)2
− c1p3 −

1

g
(p3)

2x2

ṗ3 = −p2 − 3
p3x

3

x2
.

(3.19)

The system (3.19) has three independent first integrals in addition to the
Hamiltonian H (which is automatically a first integral): it is straightforward
to show, using (3.19), that the functions

(1) I1 = p1;
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(2) I2 = p1x
1 + p2x

2 + p3x
3;

(3) I3 = p1(x
1)2 + 2p2x

1x2 + 2p3x
1x3 + 2p3(x

2)2.

are each constant on any solution curve. We can use these conserved quanti-
ties to reduce the system (3.19), as follows: on any solution curve of (3.19),
we have

I1 = k1, I2 = k2, I3 = k3
for some constants k1, k2, k3. These equations can be solved for p1, p2, p3 to
obtain:

p1 = k1

p2 = k1

(
−x

1

x2
− (x1)2x3

2(x2)3

)
+ k2

(
1

x2
+
x1x3

(x2)3

)
+ k3

(
− x3

2(x2)3

)
p3 = k1

(
(x1)2

2(x2)2

)
+ k2

(
− x1

(x2)2

)
+ k3

(
1

2(x2)2

)
.

These equations can be substituted into (3.19) to obtain a closed, first-
order ODE system for the functions x1, x2, x3, depending on the parameters
k1, k2, k3; moreover, making the same substitution in the Hamiltonian H
yields a conserved quantity for this system. (The precise expressions for
the system and the conserved quantity are complicated and unenlightening,
so we will not write them out explicitly here.) The resulting ODE sys-
tems cannot be solved analytically, but numerical integration yields sample
trajectories as shown in Figure 12.

Figure 12.

3.3. Case 2.3. F =
(
∂
∂x1

+ J
(
x3 ∂

∂x1
+ ∂

∂x2
+H ∂

∂x3

))
+span

(
x3 ∂

∂x1
+ ∂

∂x2
+H ∂

∂x3

)
.
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The corresponding control system is

ẋ1 = 1 + x3(J + u)

ẋ2 = J + u

ẋ3 = H(J + u).

(3.20)

A cost functional (1.2) for this system may be written as

Q(ẋ) =
1

2
G(x)u2, G(x) > 0.

An adapted framing (v1, v2, v3) on R3 may be defined by choosing v1 to be
the drift vector field

v1 =
∂

∂x1
+ J

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

v2 to be the unit vector

v2 =
1√
G

(
x3

∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
in LF, and

v3 = −[v1, v2].

This framing is canonically defined up to the signs of v2 and v3. The dual
coframing (η1, η2, η3) to this framing is given by

η1 = dx1 − x3 dx2,

η2 ≡
√
G
(
dx2 − J(dx1 − x3 dx2)

)
mod η3,(3.21)

η3 =

√
G

Hx1

(
H dx2 − dx3

)
.

This coframing is canonically defined, independent of the choice of local
coordinates on R3.

Finding local coordinate transformations which preserve the expressions
(3.21) is considerably more complicated than in the previous cases and will
require some care. Let (x1, x2, x3) and (x̃1, x̃2, x̃3) be two local coordi-
nates systems with respect to which the coframing (η1, η2, η3) takes the
form (3.21). Then we must have

(3.22) η1 = dx1 − x3 dx2 = dx̃1 − x̃3 dx̃2.
Taking the exterior derivative of (3.22) yields

(3.23) dη1 = dx2 ∧ dx3 = dx̃2 ∧ dx̃3.
In particular,

span(dx2, dx3) = span(dx̃2, dx̃3).

Therefore we must have

(3.24) x2 = φ̄(x̃2, x̃3), x3 = ψ̄(x̃2, x̃3)
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for some functions φ̄(x̃2, x̃3), ψ̄(x̃2, x̃3). Equation (3.23) then implies that
the functions φ̄, ψ̄ satisfy the PDE

(3.25) φ̄x̃2ψ̄x̃3 − φ̄x̃3ψ̄x̃2 = 1.

Unfortunately, equation (3.25) cannot be solved explicitly in terms of arbi-
trary functions of x̃2, x̃3. However, it can be solved implicitly with a slightly
different setup. Instead of (3.24), suppose that we define our coordinate
transformation by

(3.26) x̃2 = φ(x2, x̃3), x3 = ψ(x2, x̃3)

Then equation (3.23) is equivalent to the condition

φx2 = ψx̃3 .

(In addition, both terms in this equation must be nonzero.) This is equiva-
lent to the condition that there exists a function Φ(x2, x̃3) such that

φ(x2, x̃3) = Φx̃3 , ψ(x2, x̃3) = Φx2 .

Then equation (3.22) implies that

x1 = x̃1 + Φ(x2, x̃3)− x̃3Φx̃3(x2, x̃3).

Thus, the local coordinate transformations which preserve the expression
for η1 in (3.21) are defined implicitly by

x1 = x̃1 + Φ(x2, x̃3)− x̃3Φx̃3(x2, x̃3)

x̃2 = Φx̃3(x2, x̃3)(3.27)

x3 = Φx2(x2, x̃3),

where Φ(x2, x̃3) is an arbitrary smooth function of two variables with Φx2x̃3 6=
0.

Next we will compute how the function H(x1, x2, x3) transforms under
a coordinate transformation of the form (3.27). (When we consider the
implications of homogeneity, it will turn out that G and J can be expressed
in terms of H and its derivatives; thus there is no need to explicitly compute
the effects of the transformation (3.27) on G and J .) Consider the expression
for η3 in (3.21). We must have

(3.28) η3 =

√
G(x)

Hx1(x)

(
H(x) dx2 − dx3

)
=

√
G̃(x̃)

H̃x̃1(x̃)

(
H̃(x̃) dx̃2 − dx̃3

)
.

From (3.27), we have

dx̃2 = Φx2x̃3 dx
2 + Φx̃3x̃3 dx̃

3

dx3 = Φx2x2 dx
2 + Φx2x̃3 dx̃

3.
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Substituting these expressions into (3.28) yields

(3.29)

√
G(x)

Hx1(x)

(
(H(x)− Φx2x2) dx2 − Φx2x̃3 dx̃

3
)

=√
G̃(x̃)

H̃x̃1(x̃)

(
H̃(x̃)Φx2x̃3 dx

2 + (H̃(x̃)Φx̃3x̃3 − 1) dx̃3
)
.

Equating the ratios of the coefficients of dx2 and dx̃3 on both sides of (3.29)
yields

(H(x)− Φx2x2)

−Φx2x̃3
=

H̃(x̃)Φx2x̃3

(H̃(x̃)Φx̃3x̃3 − 1)
,

which implies that

(3.30) H(x1, x2, x3) =
((Φx2x̃3)2 − Φx2x2Φx̃3x̃3)H̃(x̃1, x̃2, x̃3) + Φx2x2

1− Φx̃3x̃3H̃(x̃1, x̃2, x̃3)
.

Now suppose that the structure is homogeneous. Unlike in the previous
cases, the assumption of homogeneity will imply some relations among the
constants appearing in the structure equations. Our frame adaptation

v3 = −[v1, v2]

implies that the structure equations have the form

dη1 = T 1
13η

1 ∧ η3 + T 1
23η

2 ∧ η3

dη2 = T 2
13η

1 ∧ η3 + T 2
23η

2 ∧ η3(3.31)

dη3 = η1 ∧ η2 + T 3
13η

1 ∧ η3 + T 3
23η

2 ∧ η3.

In the homogeneous case, the functions T ijk are all constant, and differenti-

ating equations (3.31) implies that

0 = d(dη1) = (T 1
23T

3
13 − T 1

13T
3
23) η

1 ∧ η2 ∧ η3

0 = d(dη2) = (T 2
23T

3
13 − T 2

13T
3
23) η

1 ∧ η2 ∧ η3

0 = d(dη3) = −(T 1
13 + T 2

23) η
1 ∧ η2 ∧ η3.

Therefore, the vectors

(3.32) [T 1
13 T 1

23], [T 2
13 T 2

23], [T 3
13 T 3

23]

are all scalar multiples of each other (unless T 3
13 = T 3

23 = 0), and moreover,

T 2
23 = −T 1

13.

In most of the computations that follow, these relations will be self-evident;
however, at one point they will have implications for the function H.

The structure equation for dη1 is

dη1 = −JHx1√
G

η1 ∧ η3 − Hx1

G
η2 ∧ η3.
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Therefore, we must have

J =
c1√
c2Hx1

, G =
1

c2
Hx1

for some constants c1, c2 with c2 6= 0, and then the equation for dη1 becomes

dη1 = −c1 η1 ∧ η3 − c2 η2 ∧ η3.

Remark 3.1. Since G > 0, c2 must have the same sign as Hx1 . For sim-
plicity, we will assume that both are positive; the analysis when both are
negative would be similar.

Now the equation for dη3 reduces to

dη3 = η1 ∧ η2

− 1

2
√
c2

(
(Hx1x2 + x3Hx1x1 +HHx1x3 − 2Hx1Hx3)

(Hx1)3/2

)(
c1 η

1 ∧ η3 + c2 η
2 ∧ η3

)
.

Therefore,

(3.33)
(Hx1x2 + x3Hx1x1 +HHx1x3 − 2Hx1Hx3)

(Hx1)3/2
= −2c3

for some constant c3. Substituting the derivative of (3.33) with respect to
x1 into the equation for dη2 yields

dη2 =

(
3

4

(
Hx1x1

Hx1

)2

− 1

2

Hx1x1x1

Hx1
+
c21
c2

)
η1 ∧ η3 + c1 η

2 ∧ η3.

Observe that:

• The coefficient of η2 ∧ η3 in dη2 is equal to minus the coefficient of
η1 ∧ η3 in dη1, as we previously observed that it must be.
• If c3 6= 0, then the ratio of the η1 ∧ η3 and η2 ∧ η3 coefficients in dη2

must be equal to c1
c2

(which is the ratio of these coefficients in dη1),

and hence the η1 ∧ η3 coefficient in dη2 must be equal to
c21
c2

.

Therefore, if c3 6= 0, then H satisfies the PDE

(3.34)
3

4

(
Hx1x1

Hx1

)2

− 1

2

Hx1x1x1

Hx1
= 0.

The solutions of (3.34) are precisely the linear fractional transformations in
the x1 variable, and so we must have

(3.35) H(x1, x2, x3) =
F1(x

2, x3)x1 + F0(x
2, x3)

G1(x2, x3)x1 +G0(x2, x3)

for some functions F0(x
2, x3), F1(x

2, x3), G0(x
2, x3), G1(x

2, x3).

Remark 3.2. If c3 = 0, then the vectors [T 1
13 T 1

23], [T 2
13 T 2

23] are no
longer required to be linearly independent, and so the Schwarzian derivative
of H with respect to x1 appearing in equation (3.34) is only required to
be constant, but not necessarily equal to zero. This assumption leads to a
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significantly more complicated process for normalizing the function H via an
appropriate choice of local coordinates, and we will not pursue the analysis
in this case here.

Now we compute how the function (3.35) transforms under a local coor-
dinate transformation of the form (3.27).

Lemma 3.3. There exists a local coordinate transformation of the form
(3.27) such that H̃(x̃1, x̃2, x̃3) is linear in x̃1; i.e.,

(3.36) H̃(x̃1, x̃2, x̃3) = F̃1(x̃
2, x̃3)x̃1 + F̃0(x̃

2, x̃3),

with F̃1 6= 0.

Proof. Equation (3.30) can be written as

(3.37) H̃(x̃1, x̃2, x̃3) =
H(x1, x2, x3)− Φx2x2

Φx̃3x̃3H(x1, x2, x3) + ((Φx2x̃3)2 − Φx2x2Φx̃3x̃3)
.

Substituting (3.35) into this equation yields

F̃1x̃
1 + F̃0

G̃1x̃1 + G̃0

=

(
F1x1+F0
G1x1+G0

)
− Φx2x2

Φx̃3x̃3

(
F1x1+F0
G1x1+G0

)
+ ((Φx2x̃3)2 − Φx2x2Φx̃3x̃3)

=

(
F1x

1 + F0

)
− Φx2x2

(
G1x

1 +G0

)
Φx̃3x̃3 (F1x1 + F0) + ((Φx2x̃3)2 − Φx2x2Φx̃3x̃3) (G1x1 +G0)

=
[F1 − Φx2x2G1]x

1 + [F0 − Φx2x2G0]

[Φx̃3x̃3F1 + ((Φx2x̃3)2 − Φx2x2Φx̃3x̃3)G1]x1 + [Φx̃3x̃3F0 + ((Φx2x̃3)2 − Φx2x2Φx̃3x̃3)G0]

The coefficients of x̃1 on the left-hand side of this equation are the same as
the coefficients of x1 on the right-hand side, so the condition that G̃1 = 0 is
equivalent to

0 = Φx̃3x̃3(x2, x̃3)F1(x
2, x3)

+
(
(Φx2x̃3(x2, x̃3))2 − Φx2x2(x2, x̃3)Φx̃3x̃3(x2, x̃3)

)
G1(x

2, x3)

= Φx̃3x̃3(x2, x̃3)F1(x
2,Φx2(x2, x̃3))

+
(
(Φx2x̃3(x2, x̃3))2 − Φx2x2(x2, x̃3)Φx̃3x̃3(x2, x̃3)

)
G1(x

2,Φx2(x2, x̃3)).

Any solution Φ(x2, x̃3) of this equation will induce a local coordinate trans-

formation for which H̃(x̃1, x̃2, x̃3) has the form (3.36), as desired. The con-

dition F̃1 6= 0 follows from the requirement that Hx1 6= 0. (In fact, our

assumption that Hx1 > 0 implies that F̃1 > 0.)
�

Local coordinates for which H has the form (3.36) are determined up to
transformations of the form (3.27) with

Φx̃3x̃3 = 0;
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i.e.,

(3.38) Φ(x2, x̃3) = Φ1(x
2)x̃3 + Φ0(x

2).

With Φ as above, the local coordinate transformation (3.27) reduces to

x1 = x̃1 + Φ0(x
2)

x̃2 = Φ1(x
2)(3.39)

x3 = Φ′0(x
2) + Φ′1(x

2)x̃3.

With the assumption that H has the form

H(x1, x2, x3) = F1(x
2, x3)x1 + F0(x

2, x3),

differentiating equation (3.33) with respect to x1 yields

−(F1)x3√
F1

= 0.

Therefore,
F1(x

2, x3) = F1(x
2).

Now equation (3.30) reduces to

F1(x
2)x1+F0(x

2, x3) =
(
Φ′1(x

2)
)2 (

F̃1(x̃
2)x̃1 + F̃0(x̃

2, x̃3)
)

+Φ′′0(x2)+Φ′′1(x2)x̃3,

which, taking (3.39) into account, becomes

(3.40) F1(x
2)x̃1 +

(
F1(x

2)Φ0(x
2) + F0(x

2,Φ′0(x
2) + Φ′1(x

2)x̃3)
)

=(
Φ′1(x

2)
)2
F̃1(Φ1(x

2))x̃1

+
((

Φ′1(x
2)
)2
F̃0(Φ1(x

2), x̃3) + Φ′′0(x2) + Φ′′1(x2)x̃3
)
.

Equating the coefficients of x̃1 on both sides yields

F1(x
2) =

(
Φ′1(x

2)
)2
F̃1(Φ1(x

2)).

Thus any solution Φ1(x
2) of the equation

Φ′1(x
2) =

√
F1(x2)

will induce a local coordinate transformation for which

F̃ (x̃2) = 1.

Local coordinates for which F1(x
2) = 1 are determined up to transforma-

tions of the form (3.39) with

Φ′1(x
2) = 1;

i.e.,
Φ(x2, x̃3) = x2x̃3 + ax̃3 + Φ0(x

2)
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for some constant a. With Φ as above, the local coordinate transformation
(3.27) reduces to

x1 = x̃1 + Φ0(x
2)

x̃2 = x2 + a(3.41)

x3 = x̃3 + Φ′0(x
2).

Now equation (3.33) takes the form

(F0)x3 = c3.

Therefore,
F0(x

2, x3) = c3x
3 + F2(x

2).

Now equation (3.40) reduces to

Φ0(x
2) + c3Φ

′
0(x

2) + F2(x
2) = F̃2(x

2 + a) + Φ′′0(x2).

Thus any solution Φ0(x
2) of the equation

Φ0(x
2) + c3Φ

′
0(x

2)− Φ′′0(x2) = −F2(x
2)

will induce a local coordinate transformation for which

F̃2(x̃
2) = 0.

Local coordinates for which F2(x
2) = 0 are determined up to transforma-

tions of the form (3.41) with

Φ0(x
2) + c3Φ

′
0(x

2)− Φ′′0(x2) = 0;

i.e.,

Φ0(x
2) = b1e

r1x2 + b2e
r2x2 ,

where b1, b2 are constants and

(3.42) r1 =
c3 +

√
c23 + 4

2
, r2 =

c3 −
√
c23 + 4

2
.

To summarize, we have constructed local coordinates for which

G(x1, x2, x3) =
1

c2
, J(x1, x2, x3) =

c1√
c2
, H(x1, x2, x3) = x1 + c3x

3.

These coordinates are determined up to transformations of the form

x1 = x̃1 + b1e
r1x2 + b2e

r2x2

x̃2 = x2 + a

x3 = x̃3 + b1r1e
r1x2 + b2r2e

r2x2 .
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Now consider the problem of computing optimal trajectories for (3.20).
The Hamiltonian for the energy functional (1.2) is

H = p1ẋ
1 + p2ẋ

2 + p3ẋ
3 −Q(ẋ)

= p1
(
1 + x3(J + u)

)
+ p2(J + u) + p3H(J + u)− 1

2
G(x)u2

= p1

(
1 + x3

(
c1√
c2

+ u

))
+ p2

(
c1√
c2

+ u

)
+ p3

(
x1 + c3x

3
)( c1√

c2
+ u

)
− 1

2c2
u2.

Setting ∂H
∂u = 0, as required by Pontryagin’s maximum principle, provides

the necessary condition

(3.43) u = c2(p1x
3 + p2 + p3x

1 + c3p3x
3)

for an optimal trajectory. So along an optimal trajectory, we have

H = p1 + p3x
1 +

c1√
c2

(
p1x

3 + p2 + c3p3x
3
)

+ (p1x
3 + p2 + c3p3x

3)
(
c2(p1x

3 + p2 + p3x
1 + c3p3x

3)
)
.

Hamilton’s equations take the form

ẋ1 = 1 + x3
(
c1√
c2

+ c2(p1x
3 + p2 + p3x

1 + c3p3x
3)

)
ẋ2 =

c1√
c2

+ c2(p1x
3 + p2 + p3x

1 + c3p3x
3)

ẋ3 = (x1 + c3x
3)

(
c1√
c2

+ c2(p1x
3 + p2 + p3x

1 + c3p3x
3)

)
ṗ1 = −p3

(
c1√
c2

+ c2(p1x
3 + p2 + p3x

1 + c3p3x
3)

)
ṗ2 = 0

ṗ3 = −

(
(p1 + c3p3)

(
c1√
c2

+ c2(p1x
3 + p2 + p3x

1 + c3p3x
3)

)

+
(
(p1 + c3p3)x

3 + p2
)

(c2p1 + c2c3p3)

)
.

(3.44)

The system (3.44) has three independent first integrals in addition to the
Hamiltonian H (which is automatically a first integral): it is straightforward
to show, using (3.44), that the functions

(1) I1 = (p1 + r1p3)e
r1x2 ;

(2) I2 = (p1 + r2p3)e
r2x2 ;

(3) I3 = p2,

where r1, r2 are as in (3.42), are each constant on any solution curve. We
can use these conserved quantities to reduce the system (3.44), as follows:
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on any solution curve of (3.44), we have

I1 = k1, I2 = k2, I3 = k3

for some constants k1, k2, k3. These equations can be solved for p1, p2, p3 to
obtain:

p1 =
1√
c23 + 4

(
k1r2e

−r1x2 − k2r1e−r2x
2
)

p2 = k3

p3 =
1√
c23 + 4

(
−k1e−r1x

2
+ k2e

−r2x2
)
.

These equations can be substituted into (3.44) to obtain a closed, first-
order ODE system for the functions x1, x2, x3, depending on the parameters
k1, k2, k3; moreover, making the same substitution in the Hamiltonian H
yields a conserved quantity for this system. (The precise expressions for
the system and the conserved quantity are complicated and unenlightening,
so we will not write them out explicitly here.) The resulting ODE sys-
tems cannot be solved analytically, but numerical integration yields sample
trajectories (with c3 > 0 and c3 < 0) as shown in Figure 13.

Figure 13.

4. Conclusion

What is perhaps most interesting about these results is how the behavior
of control-affine systems in low dimensions varies from that of control-linear
(i.e., driftless) systems. As we observed in [1], functional invariants appear in
much lower dimension for affine distributions (beginning with n = 2, s = 1)
than for linear distributions, where there are no functional invariants in
dimensions below n = 5, s = 2.

With the addition of a quadratic cost functional, we see a similar phe-
nomenon: for linear distributions with a quadratic cost functional, there are
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no functional invariants for any n when s = 1, since local coordinates can
always be chosen so that a unit vector field for the cost functional is repre-
sented by the vector field ∂

∂x1
. But for affine distributions with s = 1, there

are numerous functional invariants, and even the homogeneous examples
exhibit a wide variety of behavior for the optimal trajectories.
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