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UNIFORM FAMILIES OF ERGODIC OPERATOR NETS

MARCO SCHREIBER

Abstract. We study mean ergodicity in amenable operator semigroups and establish the
connection to the convergence of strong and weak ergodic nets. We then use these results in
order to show the convergence of uniform families of ergodic nets as they appear in topological
Wiener-Wintner theorems.

The classical mean ergodic theorem (see [10, Chapter 2.1]) is concerned with the convergence
of the Cesàro means 1

N

∑N−1
n=0 Sn for some power bounded operator S on a Banach space X.

The natural extension of the Cesàro means for representations S of general semigroups is the
notion of an ergodic net as introduced by Eberlein [7] and Sato [18]. In the first part of this
paper we discuss and slightly modify this concept in order to adopt it better for the study
of operator semigroups. Sato showed in [18] that in amenable semigroups there always exist
weak ergodic nets. We extend this result and show that even strong ergodic nets exist. Using
this fact we then state a mean ergodic theorem connecting the convergence of strong and weak
ergodic nets and the existence of a zero element in the closed convex hull of S.

In the second part we develop the right framework for investigating uniform convergence in
topological Wiener-Wintner theorems. Assani [2] and Robinson [16] studied those theorems
and asked when averages of the form 1

N

∑N−1
n=0 λnSn converge uniformly in λ ∈ T for some

operator S on the space of continuous functions. Subsequently, their results have been gen-
eralised in different ways by Walters [19], Santos and Walkden [17] and Lenz [11],[12]. We
propose and study uniform families of ergodic nets as an appropriate concept for treating and
unifying these and other results.

1. Amenable and mean ergodic operator semigroups

We start from a semitopological semigroup G and refer to Berglund et al. [3, Chapter 1.3]
for an introduction to this theory. Let X be a Banach space and denote by L (X) the set
of bounded linear operators on X. We further assume that S = {Sg : g ∈ G} is a bounded
representation of G on X, i.e.,

(i) Sg ∈ L (X) for all g ∈ G and supg∈G ‖Sg‖ < ∞,

(ii) SgSh = Shg for all g, h ∈ G,

(iii) g 7→ Sgx is continuous for all x ∈ X.
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If S is such a bounded representation, then we denote by coS its convex hull and by coS the
closure with respect to the strong operator topology. Notice that S as well as coS and coS
are topological semigroups with respect to the strong and semitopological semigroups with
respect to the weak operator topology.

An invariant mean on the space Cb(G) of bounded continuous functions on G is a linear
functional m ∈ Cb(G)′ satisfying

(1) 〈m,1〉 = 1 and

(2) 〈m,Rgf〉 = 〈m,Lgf〉 = 〈m, f〉 ∀g ∈ G, f ∈ Cb(G), where

Rgf(h) = f(hg) and Lgf(h) = f(gh) for h ∈ G.

The semigroup G is amenable if there exists an invariant mean on Cb(G) (c.f. Berglund et al.
[3, Chapter 2.3] or the survey article of Day [5]).

Notice that if S := {Sg : g ∈ G} is a bounded representation of an amenable semigroup G on
X, then S endowed with the strong as well as the weak operator topology is also amenable.
Indeed, if m̃ ∈ Cb(G)′ is an invariant mean on Cb(G), then m ∈ Cb(S)

′ given by

〈m, f〉 := 〈m̃, f̃〉 (f ∈ Cb(S))

defines an invariant mean on Cb(S), where f̃(g) = f(Sg).

In the following, the space L (X) will be endowed with the strong operator topology unless
stated otherwise.

Definition 1.1. A net (AS
α)α∈A of operators in L (X) is called a strong S-ergodic net if the

following conditions hold.

(1) AS
α ∈ coS for all α ∈ A.

(2) (AS
α) is strongly asymptotically invariant, i.e.,

limα A
S
αx−AS

αSgx = limα A
S
αx− SgA

S
αx = 0 for all x ∈ X and g ∈ G.

The net (AS
α) is called a weak S-ergodic net if (AS

α) is weakly asymptotically invariant, i.e., if
the limit in (2) is taken with respect to the weak topology σ(X,X ′) on X.

We note that our definition of an ergodic net is somewhat different to that of Eberlein [7], Sato
[18] and Krengel [10, Chapter 2.2]. Instead of condition (1) they require only the following
weaker condition.

(1’) AS
αx ∈ coSx for all α ∈ A and x ∈ X.

However, the existence of (even strong) ergodic nets in the sense of Definition 1.1 is ensured by
Corollary 1.5. Moreover, both definitions lead to the same convergence results (see Theorem
1.7 below). The reason is that if the limit of AS

αx exists for all x ∈ X and is denoted by Px,
then the operator P satisfies P ∈ coS rather than only Px ∈ coSx for all x ∈ X (see Nagel
[14, Theorem 1.2]).

Here are some typical examples of ergodic nets.
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Examples 1.2. (a) Let S ∈ L (X) with ‖S‖ ≤ 1 and consider the representation S =
{Sn : n ∈ N} of the semigroup (N,+) on X. Then the Cesàro means (AS

N )N∈N given
by

AS

N :=
1

N

N−1∑

n=0

Sn

form a strong S-ergodic net.

(b) In the situation of (a), the Abel means (AS
r )0<r<1 given by

AS

r := (1− r)

∞∑

n=0

rnSn

form a strong S-ergodic net.

(c) Consider the semigroup (R+,+) being represented on X by a bounded C0-semigroup
S = {S(t) : t ∈ R+}. Then (AS

s )s∈R+
given by

AS

s x :=
1

s

∫ s

0
S(t)x dt (x ∈ X)

is a strong S-ergodic net.

(d) Let S = {Sg : g ∈ G} be a bounded representation on X of an abelian semigroup
G. Order the elements of coS by setting U ≤ V if there exists W ∈ coS such that
V = WU . Then (AS

U )U∈coS given by

AS

U := U

is a strong S-ergodic net.

(e) Let H be a locally compact group with Haar measure | · | and let G ⊂ H be a sub-
semigroup. Suppose that there exists a Følner net (Fα)α∈A in G (also called summing
net, see [15, Chapter 4]), i.e., a net of compact sets such that |Fα| > 0 for all α ∈ A
and

lim
α

|Fαg∆Fα|

|Fα|
= lim

α

|gFα∆Fα|

|Fα|
= 0 ∀g ∈ G,

where A∆B = (A \ B) ∪ (B \ A) denotes the symmetric difference of two sets A and
B. Suppose that S := {Sg : g ∈ G} is a bounded representation of G on X. Then
(AS

α)α∈A given by

AS

αx :=
1

|Fα|

∫

Fα

Sgx dg (x ∈ X)

is a strong S-ergodic net.

If G is an amenable group in the situation of Example 1.2 (e), then there always exists a
Følner net (Fα)α∈A in G (see [15, Theorem 4.16]). Hence, in amenable groups there always
exist strong S-ergodic nets for each representation S. In [18, Proposition 1] Sato showed the
existence of weak ergodic nets in amenable operator semigroups. We give a proof adapted to
our situation.

Proposition 1.3. Let G be represented on X by a bounded amenable semigroup S = {Sg :
g ∈ G}. Then there exists a weak S-ergodic net in L (X).
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Proof. Denote by B the closed unit ball of Cb(S)
′ and by exB the set of extremal points

of B. If m ∈ Cb(S)
′ is an invariant mean, then m ∈ B = co exB by the Krein-Milman

theorem, where the closure is taken with respect to the weak∗-topology σ∗. Since exB =
{δSg : g ∈ G}, this implies that there exists a net (

∑Nα

i=1 λi,αδSgi
)α∈A ⊂ co{δSg : g ∈ G} with

σ∗-limα

∑Nα

i=1 λi,αδSgi
= m. Since m is invariant, we obtain

lim
α

Nα∑

i=1

λi,αδSgi
(f −RSgf) = lim

α

Nα∑

i=1

λi,αδSgi
(f − LSgf) = 0 ∀g ∈ G, f ∈ Cb(S).

Define the net (AS
α)α∈A by AS

α :=
∑Nα

i=1 λi,αSgi ∈ coS for α ∈ A. To see that (AS
α)α∈A

is weakly asymptotically invariant, let x ∈ X and x′ ∈ X ′ and define fx,x′ ∈ Cb(S) by
fx,x′(Sg) := 〈Sgx, x

′〉 for g ∈ G. Then for all g ∈ G we have

〈
AS

αx−AS

αSgx, x
′
〉
=

Nα∑

i=1

λi,α

(〈
Sgix, x

′
〉
−

〈
SgiSgx, x

′
〉)

=

Nα∑

i=1

λi,α(fx,x′(Sgi)−RSgfx,x′(Sgi))

=

Nα∑

i=1

λi,αδSgi
(fx,x′ −RSgfx,x′) −→ 0

and 〈
AS

αx− SgA
S

αx, x
′
〉
−→ 0

analogously. Hence (AS
α)α∈A is a weak S-ergodic net. �

It seems to be unknown that the existence of weak ergodic nets actually implies the existence
of strong ergodic nets.

Theorem 1.4. Let G be represented on X by a bounded semigroup S = {Sg : g ∈ G}. Then
the following assertions are equivalent.

(1) There exists a weak S-ergodic net.

(2) There exists a strong S-ergodic net.

Proof. (1)⇒(2): Consider the locally convex space E :=
∏

(g,x)∈G×X X ×X endowed with the
product topology, where X ×X carries the product (norm-)topology. Define the linear map

Φ : L (X) → E, Φ(T ) = (TSgx− Tx, SgTx− Tx)(g,x)∈G×X .

By 17.13(iii) in [9] the weak topology σ(E,E′) on the product E coincides with the product
of the weak topologies of the coordinate spaces. Hence, if (AS

α)α∈A is a weak S-ergodic net

on X, then Φ(AS
α) → 0 with respect to the weak topology on E and thus 0 ∈ Φ(coS)

σ(E,E′)
.

Since the weak and strong closure coincide on the convex set Φ(coS), there exists a net
(BS

β )β∈B ⊂ coS with Φ(BS

β ) → 0 in the topology of E. By the definition of this topology
this means ‖BS

βSgx− BS

βx‖ → 0 and ‖SgB
S

βx− BS

βx‖ → 0 for all (g, x) ∈ G ×X and hence
(BS

β )β∈B is a strong S-ergodic net.

(2)⇒(1) is clear. �
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The following corollary is a direct consequence of Proposition 1.3 and Theorem 1.4.

Corollary 1.5. Let G be represented on X by a bounded amenable semigroup S = {Sg : g ∈
G}. Then there exists a strong S-ergodic net.

The question of convergence of ergodic nets leads to the concept of mean ergodicity. We use
the following abstract notion.

Definition 1.6. The semigroup S is called mean ergodic if coS contains a zero element P
(c.f. [3, Chapter 1.1]), called the mean ergodic projection of S.

Notice that for P being a zero element of coS it suffices that PSg = SgP = P for all g ∈ G.

Nagel [14] and Sato [18] studied those semigroups and their results are summarized in Krengel
[10, Chapter 2].

In the next theorem we collect a series of properties equivalent to mean ergodicity. Most
of them can be found in Krengel [10, Chapter 2, Theorem 1.9], but we give a proof for
completeness.

Denote the fixed spaces of S and S
′ by FixS = {x ∈ X : Sgx = x ∀g ∈ G} and FixS′ = {x′ ∈

X ′ : S′
gx

′ = x′ ∀g ∈ G} respectively and the linear span of the set rg(I − S) = {x− Sgx : x ∈
X, g ∈ G} by lin rg(I − S).

Theorem 1.7. Let G be represented on X by a bounded amenable semigroup S = {Sg : g ∈ G}.
Then the following assertions are equivalent.

(1) S is mean ergodic with mean ergodic projection P .

(2) coSx ∩ FixS 6= ∅ for all x ∈ X.

(3) FixS separates FixS′.

(4) X = FixS⊕ lin rg(I − S).

(5) AS
αx has a weak cluster point for some/every weak S-ergodic net (AS

α) and all x ∈ X.

(6) AS
αx converges weakly for some/every weak S-ergodic net (AS

α) and all x ∈ X.

(7) AS
αx converges weakly for some/every strong S-ergodic net (AS

α) and all x ∈ X.

(8) AS
αx converges strongly for some/every strong S-ergodic net (AS

α) and all x ∈ X.

The limit P of the nets (AS
α) in the weak (resp. strong) operator topology is the mean ergodic

projection of S and equals the projection onto FixS along lin rg(I − S).

Proof. (1)⇒(2): Since SgP = P for all g ∈ G, we have Px ∈ coSx ∩ FixS for all x ∈ X.

(2)⇒(3): Let 0 6= x′ ∈ FixS′. Take x ∈ X such that 〈x′, x〉 6= 0. If y ∈ coSx ∩ FixS then we
have 〈x′, y〉 = 〈x′, x〉 6= 0. Hence FixS separates FixS′.

(3)⇒(4): Let x′ ∈ X ′ vanish on FixS⊕ lin rg(I − S). Then in particular 〈x′, y〉 = 〈x′, Sgy〉 =〈
S′
gx

′, y
〉

for all y ∈ X and g ∈ G. Hence x′ ∈ FixS′. Since FixS separates FixS′ and x′

vanishes on FixS, this implies x′ = 0. Hence FixS⊕ lin rg(I −S) is dense in X by the Hahn-
Banach theorem and it remains to show that FixS⊕ lin rg(I−S) is closed. Let (AS

α) be a weak
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S-ergodic net and define D := {x ∈ X : σ- limα A
S
αx exists}. Then D = FixS ⊕ lin rg(I − S)

and D is closed since (AS
α) is uniformly bounded.

(4)⇒(6): Let (AS
α) be any weak S-ergodic net. Then AS

αx converges weakly for all x ∈ X.
Indeed, the convergence on FixS is clear and the weak convergence to 0 on lin rg(I−S) follows
from weak asymptotic invariance and linearity of (AS

α). Since {x ∈ X : σ- limαA
S
αx exists} is

closed we obtain weak convergence on all of FixS⊕ lin rg(I − S).

(4)⇒(8): An analogous reasoning as in (4)⇒(6) yields the strong convergence of AS
αx for every

strong S-ergodic net (AS
α) and every x ∈ X.

(5)⇒(1): Let (AS
α) be a weak S-ergodic net and define Px as the weak limit of a convergent

subnet (AS

βx
x) of (AS

αx) for each x ∈ X. Then Px ∈ coSx for all x ∈ X and thus P ∈ coS by
[14, Theorem 1.2]. Furthermore for all x ∈ X and g ∈ G we have Px−PSgx = σ- limβx

AS

βx
x−

AS

βx
Sgx = 0 and Px − SgPx = σ- limβx

AS

βx
x − SgA

S

βx
x = 0 by weak asymptotic invariance.

Hence SgP = PSg = P for all g ∈ G and thus S is mean ergodic.

The remaining implications are trivial. �

The next result can be found in Nagel [14, Satz 1.8] (see also Ghaffari [8, Theorem 1]). We
give a different proof.

Corollary 1.8. Let G be represented on X by a bounded amenable semigroup S = {Sg :
g ∈ G}. If S is relatively compact with respect to the weak operator topology, then S is mean
ergodic.

Proof. Since Sx is relatively weakly compact, we obtain that coSx is weakly compact for
all x ∈ X by the Krein-Šmulian Theorem. Hence, if (AS

α) is a weak S-ergodic net, then
AS

αx has a weak cluster point for each x ∈ X. The mean ergodicity of S then follows from
Theorem 1.7. �

If the Banach space satisfies additional geometric properties, contractivity of the semigroup
implies amenability and mean ergodicity. For uniformly convex spaces with strictly convex
dual unit balls this has been shown by Alaoglu and Birkhoff [1, Theorem 6] using the so-called
minimal method. In [4, Theorem 6’] Day observed that the same method still works if uniform
convexity is replaced by strict convexity.

Corollary 1.9. Let X be a reflexive Banach space such that the unit balls of X and X ′

are strictly convex. If the semigroup G is represented on X by a semigroup of contractions
S = {Sg : g ∈ G}, then S is mean ergodic.

Proof. If S is a contractive semigroup in L (X) and the unit balls of X and of X ′ are strictly
convex, then S is amenable by [6, Corollary 4.14]. Since S is bounded on the reflexive space
X, it follows that S is relatively compact with respect to the weak operator topology. Hence
Corollary 1.8 implies that S is mean ergodic. �

In some situations (see e.g. Assani [2, Theorem 2.10], Walters [19, Theorem 4], Lenz [12,
Theorem 1]) one is interested in convergence of an ergodic net only on some given x ∈ X. The
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following result is a direct consequence of Theorem 1.7 by considering the restriction of S to
the closed invariant subspace Yx := linSx.

Proposition 1.10. Let G be represented on X by a bounded amenable semigroup S = {Sg :
g ∈ G} and let x ∈ X. Then the following assertions are equivalent.

(1) S is mean ergodic on Yx with mean ergodic projection Px.

(2) coSx ∩ FixS 6= ∅.

(3) FixS|Yx separates FixS|′Yx
.

(4) x ∈ FixS⊕ lin rg(I − S).

(5) AS
αx has a weak cluster point for some/every weak S-ergodic net (AS

α).

(6) AS
αx converges weakly for some/every weak S-ergodic net (AS

α).

(7) AS
αx converges weakly for some/every strong S-ergodic net (AS

α).

(8) AS
αx converges strongly for some/every strong S-ergodic net (AS

α).

2. Uniform families of ergodic operator nets

We now use the above results on mean ergodic semigroups in order to study the convergence
of uniform families of ergodic nets.

Let I be an index set and suppose that the semigroup G is represented on X by bounded
amenable semigroups Si = {Si,g : g ∈ G} for each i ∈ I. Moreover, we assume that the Si are
uniformly bounded, i.e., supi∈I supg∈G ‖Si,g‖ < ∞.

Definition 2.1. Let A be a directed set and let (ASi
α )α∈A ⊂ L (X) be a net of operators for

each i ∈ I. Then {(ASi
α )α∈A : i ∈ I} is a uniform family of ergodic nets if

(1) ∀α ∈ A,∀ε > 0,∀x1, . . . , xm ∈ X,∃N ∈ N such that for each i ∈ I there exists a
convex combination

∑N
j=1 ci,jSi,gj ∈ coSi satisfying

sup
i∈I

‖ASi
α xk −

∑N
j=1ci,jSi,gjxk‖ < ε ∀k ∈ {1, . . . ,m};

(2) lim
α

sup
i∈I

‖ASi
α x−ASi

α Si,gx‖ = lim
α

sup
i∈I

‖ASi
α x− Si,gA

Si
α x‖ = 0 ∀g ∈ G,x ∈ X.

Notice that if {(ASi
α )α∈A : i ∈ I} is a uniform family of ergodic nets, then each (ASi

α )α∈A is a
strong Si-ergodic net.

Here are some examples of uniform families of ergodic nets.

Proposition 2.2. (a) Let S ∈ L (X) with ‖S‖ ≤ 1. Consider the semigroup (N,+) being
represented on X by the families Sλ = {(λS)n : n ∈ N} for λ ∈ T. Then

{(
1
N

∑N−1
n=0 (λS)

n
)
N∈N

: λ ∈ T

}

is a uniform family of ergodic nets.
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(b) In the situation of (a),
{
((1− r)

∑∞
n=0 r

nλnSn)0<r<1 : λ ∈ T
}

is a uniform family of ergodic nets.

(c) Let K be a compact space and ϕ : K → K a continuous transformation. Let H
be a Hilbert space and S : f 7→ f ◦ ϕ the Koopman operator corresponding to ϕ
on C(K,H), the space of continuous H-valued functions on K. Denote by U(H) the
set of unitary operators on H and by Λ the set of continuous maps γ : K → U(H).
Consider the semigroup (N,+) and its representations on C(K,H) given by the families
Sγ = {(γS)n : n ∈ N} for γ ∈ Λ, where (γS)f(x) = γ(x)Sf(x) for x ∈ K and
f ∈ C(K,H). Then

{(
1
N

∑N−1
n=0 (γS)

n
)
N∈N

: γ ∈ Λ
}

is a uniform family of ergodic nets.

(d) Let (S(t))t∈R+
be a bounded C0-semigroup on X. Consider the semigroup (R+,+) being

represented on X by the families Sr = {e2πirtS(t) : t ∈ R+} for r ∈ B, where B ⊂ R

is bounded. Then {(
1
s

∫ s

0 e2πirtS(t) dt
)
s∈R+

: r ∈ B
}

is a uniform family of ergodic nets.

(e) Let S = {Sg : g ∈ G} be a bounded representation on X of an abelian semigroup
G. Order the elements of coS by setting U ≤ V if there exists W ∈ coS such that

V = WU . Denote by Ĝ the character semigroup of G, i.e., the set of continuous
multiplicative maps G → T, and consider the representations Sχ = {χ(g)Sg : g ∈ G}

of G on X for χ ∈ Ĝ. Then
{(∑N

i=1 ciχ(gi)Sgi

)
∑N

i=1 ciSgi
∈coS

: χ ∈ Ĝ

}

is a uniform family of ergodic nets.

(f) Let H be a locally compact group with Haar measure | · | and let G ⊂ H be a sub-
semigroup. Suppose that there exists a Følner net (Fα)α∈A in G. Suppose that S :=
{Sg : g ∈ G} is a bounded representation of G on X. Consider the representations

Sχ = {χ(g)Sg : g ∈ G} of G on X for χ ∈ Λ, where Λ ⊂ Ĥ is uniformly equicontinu-
ous on compact sets. Then

{(
1

|Fα|

∫
Fα

χ(g)Sg dg
)
α∈A

: χ ∈ Λ
}

is a uniform family of ergodic nets.

Proof. (a) Property (1) of Definition 2.1 is clear. To see (2), let x ∈ X and k ∈ N. Then

sup
λ∈T

∥∥∥∥∥
1

N

N−1∑

n=0

(λS)nx− (λS)n+kx

∥∥∥∥∥ ≤ sup
λ∈T

1

N

k−1∑

n=0

‖(λS)nx‖+
1

N

N−1+k∑

n=N

‖(λS)nx‖

≤
2k

N
‖x‖ −−−−→

N→∞
0.
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(b) (1): Let 0 < r < 1 and ε > 0. Choose N ∈ N such that rN < ε
2 . Then for all λ ∈ T we

have

‖(1− r)
∞∑

n=0

rnλnSn −
(1− r)

(1− rN )

N−1∑

n=0

rnλnSn‖

≤

∥∥∥∥∥(1− r)

∞∑

n=0

rnλnSn − (1− r)

N−1∑

n=0

rnλnSn

∥∥∥∥∥+
∥∥∥∥∥(1− r)

N−1∑

n=0

rnλnSn −
(1− r)

(1− rN)

N−1∑

n=0

rnλnSn

∥∥∥∥∥

≤ (1− r)

∞∑

n=N

rn + (1− r)

∣∣∣∣1−
1

(1− rN)

∣∣∣∣
N−1∑

n=0

rn

≤ rN + rN < ε.

(2): Let x ∈ X and k ∈ N. Define for each λ ∈ T the sequence x(λ) by x
(λ)
n :=

(λS)nx−(λS)n+kx for n ∈ N. Then it follows from (a) that supλ ‖
1
N

∑N−1
n=0 x

(λ)
n ‖ −→ 0.

It is well known that Cesàro convergence implies the convergence of the Abel means to
the same limit (see [13, Proposition 2.3]). One checks that if the Cesàro convergence
is uniform in λ ∈ T, then the convergence of the Abel means is also uniform. Hence
we obtain limr↑1 supλ∈T ‖(1− r)

∑∞
n=0 r

nx
(λ)
n ‖ = 0.

(c) (1) is clear. To see (2) let f ∈ C(K,H) and k ∈ N. Then

‖(γS)f‖ = sup
x∈K

‖γ(x)f(ϕ(x))‖H = sup
x∈K

‖f(ϕ(x))‖H ≤ ‖f‖,

since γ(x) is unitary for all x ∈ K. Hence

sup
γ∈Λ

∥∥∥∥∥
1

N

N−1∑

n=0

(γS)nf − (γS)n+kf

∥∥∥∥∥ ≤ sup
γ∈Λ

1

N

k−1∑

n=0

‖(γS)nf‖+
1

N

N−1+k∑

n=N

‖(γS)nf‖

≤
2k

N
‖f‖ −−−−→

N→∞
0.

(d) This is a special case of (f) for the Følner net ([0, s])s>0 in R+ and the set Λ := {χr :

R+ → T : r ∈ B}, where χr(t) = e2πirt for t ∈ R+. Notice that Λ ⊂ R̂ is uniformly
equicontinuous on compact sets since B is bounded.

(e) (1) is clear. To see (2) let x ∈ X, g ∈ G and ε > 0. Choose N ∈ N such that
2M2‖x‖

N
< ε, where M = supg∈G ‖Sg‖. Then for all V = W 1

N

∑N−1
n=0 Sn

g ≥ 1
N

∑N−1
n=0 Sn

g ,
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where W =
∑k−1

i=0 ciSgi ∈ coS, we have

sup
χ∈Ĝ

∥∥∥∥∥

k−1∑

i=0

N−1∑

n=0

1

N
ciχ(gig

n)Sgignx−
k−1∑

i=0

N−1∑

n=0

1

N
ciχ(gig

n)Sgignχ(g)Sgx

∥∥∥∥∥

≤ sup
χ∈Ĝ

∥∥∥∥∥

k−1∑

i=0

ciχ(gi)Sgi

∥∥∥∥∥ ·

∥∥∥∥∥
1

N

N−1∑

n=0

(χ(g)Sg)
n(x− χ(g)Sgx)

∥∥∥∥∥

≤ sup
χ∈Ĝ

M
1

N
‖x− (χ(g)Sg)

Nx‖ ≤ M
1

N
2M‖x‖ < ε.

(f) (1): Let α ∈ A, ε > 0 and x1, . . . , xm ∈ X. Since Fα is compact and Λ is uniformly
equicontinuous on Fα the family {g 7→ χ(g)Sgxk : χ ∈ Λ} is also uniformly equicon-
tinuous on Fα for each k ∈ {1, . . . ,m}. Hence for each k ∈ {1, . . . ,m} we can choose
an open neighbourhood Uk of the unity of H satisfying

g, h ∈ G, h−1g ∈ Uk ⇒ sup
χ∈Λ

‖χ(g)Sgxk − χ(h)Sgxk‖ < ε.

Then U :=
⋂m

k=1 Uk is still an open neighbourhood of unity. Since Fα is compact
there exists g1, . . . , gN ∈ Fα such that Fα ⊂

⋃N
n=1 gnU . Defining V1 := g1U ∩ Fα and

Vn := (gnU ∩ Fα) \ Vn−1 for n = 2, . . . , N we obtain a disjoint union Fα =
⋃N

n=1 Vn.
Hence for all χ ∈ Λ and k ∈ {1, . . . ,m} we have

∥∥∥∥
1

|Fα|

∫

Fα

χ(g)Sgxkdg−
N∑

n=1

|Vn|

|Fα|
χ(gn)Sgnxk

∥∥∥∥∥

≤
1

|Fα|

N∑

n=1

∫

Vn

‖χ(g)Sgxk − χ(gn)Sgnxk‖︸ ︷︷ ︸
<ε

dg

<
1

|Fα|

N∑

n=1

|Vn|ε = ε.

(2): If x ∈ X and h ∈ G, then we have

sup
χ∈Λ

∥∥∥∥
1

|Fα|

∫

Fα

χ(g)Sgx− χ(gh)Sghx dg

∥∥∥∥ ≤ sup
χ∈Λ

1

|Fα|

∫

Fα△Fαh

‖χ(g)Sgx‖

≤
|Fα△Fαh|

|Fα|
sup
g∈G

‖Sg‖‖x‖ −→ 0

and

sup
χ∈Λ

∥∥∥∥
1

|Fα|

∫

Fα

χ(g)Sgx− χ(hg)Shgx dg

∥∥∥∥ −→ 0

analogously.

�

Now, let {(ASi
α )α∈A : i ∈ I} be a uniform family of ergodic nets. If x ∈ X and Si is mean

ergodic on linSix for each i ∈ I, then it follows from Proposition 1.10 that ‖ASi
α x−Pix‖ → 0
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for all i ∈ I, where Pi denotes the mean ergodic projection of Si|linSix
. The question arises,

when this convergence is uniform in i ∈ I. The following elementary example shows that in
general we cannot expect uniform convergence.

Example 2.3. Let X = C and let S = IC ∈ L(C) be the identity operator on C. Consider the
semigroup (N,+) being represented on C by the families Sλ = {λnIC : n ∈ N} for λ ∈ T. Then
for each λ ∈ T the Cesàro means 1

N

∑N−1
n=0 λn converge, but the convergence is not uniform in

λ ∈ T.

However, the following theorem gives a sufficient condition for the convergence to be uni-
form.

Lemma 2.4. If {(ASi
α )α∈A : i ∈ I} is a uniform family of ergodic nets, then

lim
α

sup
i∈I

‖ASi
α x−ASi

α ASi

β x‖ = 0 ∀β ∈ A, x ∈ X.

Proof. Let β ∈ A, ε > 0 and x ∈ X. Since {(ASi
α )α∈A : i ∈ I} is a uniform family of ergodic

nets, there exists N ∈ N and for each i ∈ I a convex combination
∑N

j=1 ci,jSi,gj ∈ coSi such
that supi∈I ‖A

Si

β x −
∑N

j=1 ci,jSi,gjx‖ < ε/M , where M = supi∈I supg∈G ‖Si,g‖. Now, choose
α0 ∈ A such that for all α > α0

sup
i∈I

‖ASi
α x−ASi

α Si,gjx‖ < ε ∀j = 1, . . . , N.

Then for all α > α0 and i ∈ I we obtain

‖ASi
α x−ASi

α ASi

β x‖ ≤ ‖ASi
α x−ASi

α

∑N
j=1 ci,jSi,gjx‖+ ‖ASi

α

∑N
j=1 ci,jSi,gjx−ASi

α ASi

β x‖

≤
∑N

j=1 ci,j‖A
Si
α x−ASi

α Si,gjx‖+M‖
∑N

j=1 ci,jSi,gjx−ASi

β x‖

< 2ε.

�

Theorem 2.5. Let I be a compact set and let G be represented on X by the uniformly bounded
families Si = {Si,g : g ∈ G} for all i ∈ I. Let {(ASi

α )α∈A : i ∈ I} be a uniform family of ergodic
nets. Take x ∈ X and assume that

(a) Si is mean ergodic on linSix with mean ergodic projection Pi for all i ∈ I,

(b) I → R+, i 7→ ‖ASi
α x− Pix‖ is continuous for all α ∈ A.

Then

lim
α

sup
i∈I

‖ASi
α x− Pix‖ = 0.

Proof. It follows from Proposition 1.10 and the hypotheses that the function fα : I → R+

defined by fα(i) = ‖ASi
α x−Pix‖ is continuous for each α ∈ A and limα fα(i) = 0 for all i ∈ I.

By compactness and continuity we obtain a net (iα)α∈A ⊂ I with supi∈I fα(i) = fα(iα) for
all α ∈ A. To show that limα supi∈I fα(i) = 0 it thus suffices to show that every subnet of
(fα(iα)) has a subnet converging to 0. Let (fαk

(iαk
)) be a subnet of (fα(iα)) and let ε > 0.

Since I is compact, we can choose a subnet of (iαk
), also denoted by (iαk

), such that iαk
→ i0

for some i0 ∈ I. Since fα converges pointwise to 0, we can take β ∈ A such that fβ(i0) < ε/M ,
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where M = supi∈I supg∈G ‖Si,g‖. By continuity of fβ there exists k1 such that for all k > k1
we have fβ(iαk

)− fβ(i0) < ε/M . By Lemma 2.4 there exists k2 > k1 such that for all k > k2

fαk
(iαk

) ≤ ‖A
Siαk
αk

x−A
Siαk
αk

A
Siαk

β x‖+ ‖A
Siαk
αk

A
Siαk

β x−A
Siαk
αk

Piαk
x‖

≤ ε+M‖A
Siαk

β x− Piαk
x‖

≤ ε+M(fβ(iαk
)− fβ(i0)) +Mfβ(i0)

≤ 3ε.

Hence limα supi∈I fα(i) = 0. �

We now apply the above theory to operator semigroups on the space C(K) of complex valued
continuous functions on a compact metric space K.

Corollary 2.6. Let ϕ : K → K be a continuous map, S : f 7→ f ◦ ϕ the corresponding Koop-
man operator on C(K), and assume that there exists a unique ϕ-invariant Borel probability
measure µ on K. If f ∈ C(K) satisfies Pλf = 0 for all λ ∈ T, where Pλ denotes the mean
ergodic projection of {(λS)n : n ∈ N} on L2(K,µ), then

(1) lim
N→∞

sup
λ∈T

∥∥∥ 1
|FN |

∑
n∈FN

λnSnf
∥∥∥
∞

= 0 for each Følner sequence (FN )N∈N in N,

(2) lim
r↑1

sup
λ∈T

‖(1− r)
∑∞

n=0 r
nλnSnf‖∞ = 0.

Proof. Under the hypotheses it follows from Robinson [16, Theorem 1.1] and Proposition 1.10
that the semigroups Sλ = {(λS)n : n ∈ N} are mean ergodic on linSλf for each λ ∈ T. Let
now (FN )N∈N be a Følner sequence in N and consider the uniform family of ergodic nets

{(
1

|FN |

∑
n∈FN

λnSn
)
N∈N

: λ ∈ T

}

(c.f. Proposition 2.2 (f)). If Pλf = 0 for all λ ∈ T, then also condition (b) in Theorem
2.5 is satisfied since the map λ 7→ 1

|FN |

∑
n∈FN

λnSnf is continuous for each N ∈ N. Hence

limN→∞ supλ∈T ‖
1

|FN |

∑
n∈FN

λnSnf‖∞ = 0 by Theorem 2.5. The same reasoning applied to
the uniform family of ergodic nets

{
((1− r)

∑∞
n=0 r

nλnSn)0<r<1 : λ ∈ T
}

yields the second assertion. �

Remark 2.7. In [2, Theorem 2.10] Assani proved the first assertion of Corollary 2.6 for the
Følner sequence FN = {0, . . . , N − 1} in N. Generalisations of this result can be found in
Walters [19, Theorem 5], Santos and Walkden [17, Prop. 4.3] and Lenz [12, Theorem 2]. We
will systematically study and unify these cases in a subsequent paper.

Acknowledgement. The author is grateful to Rainer Nagel for his support, valuable discus-
sions and comments.
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