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UNIFORM FAMILIES OF ERGODIC OPERATOR NETS

MARCO SCHREIBER

ABsTRACT. We study mean ergodicity in amenable operator semigroups and establish the
connection to the convergence of strong and weak ergodic nets. We then use these results in
order to show the convergence of uniform families of ergodic nets as they appear in topological
Wiener-Wintner theorems.

The classical mean ergodic theorem (see [10, Chapter 2.1]) is concerned with the convergence
of the Cesaro means % Zg:_ol S™ for some power bounded operator S on a Banach space X.
The natural extension of the Cesaro means for representations S of general semigroups is the
notion of an ergodic net as introduced by Eberlein [7] and Sato [18]. In the first part of this
paper we discuss and slightly modify this concept in order to adopt it better for the study
of operator semigroups. Sato showed in [18] that in amenable semigroups there always exist
weak ergodic nets. We extend this result and show that even strong ergodic nets exist. Using
this fact we then state a mean ergodic theorem connecting the convergence of strong and weak
ergodic nets and the existence of a zero element in the closed convex hull of S.

In the second part we develop the right framework for investigating uniform convergence in
topological Wiener-Wintner theorems. Assani [2] and Robinson [16] studied those theorems
and asked when averages of the form % Zivz_ol A"S™ converge uniformly in A € T for some
operator S on the space of continuous functions. Subsequently, their results have been gen-
eralised in different ways by Walters [19], Santos and Walkden [17] and Lenz [11],[12]. We
propose and study uniform families of ergodic nets as an appropriate concept for treating and

unifying these and other results.

1. AMENABLE AND MEAN ERGODIC OPERATOR SEMIGROUPS

We start from a semitopological semigroup G and refer to Berglund et al. [3, Chapter 1.3]
for an introduction to this theory. Let X be a Banach space and denote by Z(X) the set
of bounded linear operators on X. We further assume that S = {S; : ¢ € G} is a bounded
representation of G on X, i.e.,

(i) Sy € Z(X) for all g € G and supge ||| < oo,
(i) S¢Sk = Spy for all g,h € G,

(ili) g — Syz is continuous for all z € X.
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If S is such a bounded representation, then we denote by coS its convex hull and by €oS the
closure with respect to the strong operator topology. Notice that S as well as coS and ¢oS
are topological semigroups with respect to the strong and semitopological semigroups with
respect to the weak operator topology.

An invariant mean on the space Cyp(G) of bounded continuous functions on G is a linear
functional m € Cy(G)’ satistying

(1) (m,1) =1 and
(2) (m, Ryf) = (m, Ly f) = m, ) ¥g € G, € Cy(G), where
Ryf(h) = f(hg) and Ly f(h) = f(gh) for h € G.

The semigroup G is amenable if there exists an invariant mean on Cy(G) (c.f. Berglund et al.
[3, Chapter 2.3] or the survey article of Day [5]).

Notice that if S := {S; : ¢ € G} is a bounded representation of an amenable semigroup G on
X, then S endowed with the strong as well as the weak operator topology is also amenable.
Indeed, if m € Cy(G)’ is an invariant mean on Cy(G), then m € Cy(S)’ given by

<m7 f> = <ﬁ”L, f> (f S Cb(S))
defines an invariant mean on Cy(S), where f(g) = f(S,).

In the following, the space .Z(X) will be endowed with the strong operator topology unless
stated otherwise.

Definition 1.1. A net (A3),c4 of operators in .Z(X) is called a strong S-ergodic net if the
following conditions hold.

(1) AS € @S for all o € A.
(2) (AS) is strongly asymptotically invariant, i.c.,
lim,, ASz — ASS x = lim, ASz — S;ASz =0 for all z € X and g € G.

The net (AS) is called a weak S-ergodic net if (AS) is weakly asymptotically invariant, i.e., if
the limit in (2) is taken with respect to the weak topology (X, X’) on X.

We note that our definition of an ergodic net is somewhat different to that of Eberlein [7], Sato
[18] and Krengel [10, Chapter 2.2|. Instead of condition (1) they require only the following
weaker condition.

(1) ASz € @Sz for all @ € A and = € X.

However, the existence of (even strong) ergodic nets in the sense of Definition 1.1 is ensured by
Corollary 1.5. Moreover, both definitions lead to the same convergence results (see Theorem
1.7 below). The reason is that if the limit of ASz exists for all # € X and is denoted by Pu,
then the operator P satisfies P € €oS rather than only Pz € coSx for all z € X (see Nagel
[14, Theorem 1.2]).

Here are some typical examples of ergodic nets.
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Examples 1.2. (a) Let S € Z(X) with ||S|| < 1 and consider the representation S =
{S™ : n € N} of the semigroup (N, +) on X. Then the Cesaro means (A%;)yen given

by
1 N—-1
S . - n
A=5D.8
n=0
form a strong S-ergodic net.

(b) In the situation of (a), the Abel means (A3)g<,<1 given by
AS.=(1-7r) ZT"S"
n=0

form a strong S-ergodic net.

(c) Consider the semigroup (R, +) being represented on X by a bounded Cp-semigroup
S={S(t):t € Ry}. Then (AS)scr, given by

Afx::l/ St)zdt (re X)
s Jo

is a strong S-ergodic net.

(d) Let S = {S; : ¢ € G} be a bounded representation on X of an abelian semigroup
G. Order the elements of coS by setting U < V if there exists W € coS such that
V =WU. Then (Ag)UECOs given by

Ay =U
is a strong S-ergodic net.

(e) Let H be a locally compact group with Haar measure | - | and let G C H be a sub-
semigroup. Suppose that there exists a Folner net (Fy)aca in G (also called summing
net, see [15, Chapter 4]), i.e., a net of compact sets such that |F,| > 0 for all a« € A

and

lim 7|FagAFa| = lim 7|9FQAFO‘|
@ | Fal @ | Fal
where AAB = (A\ B) U (B \ A) denotes the symmetric difference of two sets A and
B. Suppose that S := {S; : g € G} is a bounded representation of G' on X. Then

(A%)aca given by

=0 Vgea,

1

ASy = —
“ Rl IR,

Sgxdg (x € X)

is a strong S-ergodic net.

If G is an amenable group in the situation of Example 1.2 (e), then there always exists a
Folner net (Fy)aeca in G (see [15, Theorem 4.16]). Hence, in amenable groups there always
exist strong S-ergodic nets for each representation S. In [18, Proposition 1] Sato showed the
existence of weak ergodic nets in amenable operator semigroups. We give a proof adapted to
our situation.

Proposition 1.3. Let G be represented on X by a bounded amenable semigroup S = {S, :
g € G}. Then there exists a weak S-ergodic net in £ (X).



4 MARCO SCHREIBER

Proof. Denote by B the closed unit ball of Cy(S)" and by ex B the set of extremal points
of B. If m € Cy(S)’ is an invariant mean, then m € B = cex B by the Krein-Milman
theorem, where the closure is taken with respect to the weak*-topology ¢*. Since ex B =

{0s, : g € G}, this implies that there exists a net (S Ne Ai,a0s,, Jaca C co{ds, : g € G} with
o*-lim, Zivz‘*l )\i,aésgi = m. Since m is invariant, we obtain

Na Nao
nglz Xiads, (f — Rs,f) = nglz Nias, (f = Ls,f) =0 Vg€ G, feCyS).
=1

i=1

Define the net (A43),e4 by A5 := SN NS, € coS for a € A. To see that (AS),en
is weakly asymptotically invariant, let € X and 2’ € X’ and define f,,» € Cy(S) by
J2.2/(Sg) := (Sgx, ) for g € G. Then for all g € G we have

Nao
<A§a: — AESga:,a:'> = Z Nija (<Sgia:,a:’> — <Sgngx,x/>)
i=1
Na
= Z Aia(fa,ar(Sg;) — Rngﬂc,w’(Sgi))
i=1

Nao
= Z )\i,a(SSgi (fx,x’ - Rngx,x’) — 0

i=1
and
<A§x ~ S, A%z, ')y — 0
analogously. Hence (AS),e4 is a weak S-ergodic net. O

It seems to be unknown that the existence of weak ergodic nets actually implies the existence
of strong ergodic nets.

Theorem 1.4. Let G be represented on X by a bounded semigroup S = {Sy : g € G}. Then
the following assertions are equivalent.

(1) There exists a weak S-ergodic net.

(2) There exists a strong S-ergodic net.

Proof. (1)=(2): Consider the locally convex space E := [], ;)eaxx X x X endowed with the
product topology, where X x X carries the product (norm-)topology. Define the linear map

¢ LX) = E, OT)=(TSx—Tx,STr —Tx)yeaxx-

By 17.13(iii) in [9] the weak topology o(F, E’) on the product E coincides with the product
of the weak topologies of the coordinate spaces. Hence, if (A3),c4 is a weak S-ergodic net

on X, then ®(AS) — 0 with respect to the weak topology on E and thus 0 € @(@S)J(E’E ),

Since the weak and strong closure coincide on the convex set ®(c6S), there exists a net
(BS)BGB C ©oS with <I>(B§) — 0 in the topology of E. By the definition of this topology

this means ||B§Sg:17 - BEJEH — 0 and ||Sng:E - BEJEH — 0 for all (g,) € G x X and hence
(Bg)geg is a strong S-ergodic net.

(2)=(1) is clear. O
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The following corollary is a direct consequence of Proposition 1.3 and Theorem 1.4.
Corollary 1.5. Let G be represented on X by a bounded amenable semigroup S = {Sg : g €
G}. Then there exists a strong S-ergodic net.

The question of convergence of ergodic nets leads to the concept of mean ergodicity. We use
the following abstract notion.

Definition 1.6. The semigroup S is called mean ergodic if €6S contains a zero element P
(c.f. [3, Chapter 1.1]), called the mean ergodic projection of S.

Notice that for P being a zero element of €68 it suffices that PS, = S,P = P for all g € G.
Nagel [14] and Sato [18] studied those semigroups and their results are summarized in Krengel
[10, Chapter 2].

In the next theorem we collect a series of properties equivalent to mean ergodicity. Most
of them can be found in Krengel [10, Chapter 2, Theorem 1.9], but we give a proof for
completeness.

Denote the fixed spaces of S and S’ by FixS = {x € X : Sy = 2 Vg € G} and FixS’' = {2/ €
X' Six" = 2’ Vg € G} respectively and the linear span of the set rg(/ —S) = {z — Syz : x €
X,g € G} by linrg(I — S).

Theorem 1.7. Let G be represented on X by a bounded amenable semigroup S = {Sy : g € G}.
Then the following assertions are equivalent.

(1) S is mean ergodic with mean ergodic projection P.
(2) coSz NFixS # 0 for all z € X.
(3) Fix S separates Fix S'.
(4) X =FixS @ linrg(I — S).
(5) ASx has a weak cluster point for some/every weak S-ergodic net (AS) and all x € X.
(6) ASx converges weakly for some/every weak S-ergodic net (AS) and all x € X.
(7) ASz converges weakly for some/every strong S-ergodic net (AS) and all x € X.
(8) ASz converges strongly for some/every strong S-ergodic net (AS) and all z € X.
The limit P of the nets (AS) in the weak (resp. strong) operator topology is the mean ergodic
projection of S and equals the projection onto Fix S along linrg(I — S).
Proof. (1)=(2): Since SyP = P for all g € G, we have Pz € t6Sz N Fix S for all z € X.

(2)=(3): Let 0 # 2’ € FixS’. Take x € X such that (2/,x) # 0. If y € @6Sz N Fix S then we
have (2/,y) = (2/,z) # 0. Hence Fix S separates Fix S’.

(3)=(4): Let 2’ € X’ vanish on FixS @ linrg(/ — S). Then in particular (z/,y) = (', Syy) =
<S;a:’,y> for all y € X and g € G. Hence 2’/ € FixS'. Since Fix S separates FixS’ and 2’
vanishes on Fix S, this implies 2’ = 0. Hence FixS @ linrg(I — S) is dense in X by the Hahn-
Banach theorem and it remains to show that Fix S@linrg(I —S) is closed. Let (AS) be a weak



6 MARCO SCHREIBER

S-ergodic net and define D := {x € X : 0-lim, ASz exists}. Then D = FixS @ linrg(l — S)
and D is closed since (AS) is uniformly bounded.

(4)=(6): Let (AS) be any weak S-ergodic net. Then ASz converges weakly for all z € X.
Indeed, the convergence on Fix S is clear and the weak convergence to 0 on linrg(I —S) follows
from weak asymptotic invariance and linearity of (AS). Since {x € X : o-lim, ASx exists} is
closed we obtain weak convergence on all of Fix S @ linrg(I — S).

(4)=(8): An analogous reasoning as in (4)=>(6) yields the strong convergence of ASx for every
strong S-ergodic net (AS) and every z € X.

(5)=(1): Let (AS) be a weak S-ergodic net and define Px as the weak limit of a convergent
subnet (Agxx) of (ASz) for each x € X. Then Px € Sz for all z € X and thus P € ©S by

[14, Theorem 1.2|. Furthermore for all € X and g € G we have Px— PS,x = o-limg, A§z$_
Agx59$ = 0 and Pz — SyPx = o-limg, A%xa: — SQA%x:E = 0 by weak asymptotic invariance.
Hence SyP = PS, = P for all g € G and thus S is mean ergodic.

The remaining implications are trivial. O

The next result can be found in Nagel [14, Satz 1.8] (see also Ghaffari [8, Theorem 1]). We
give a different proof.

Corollary 1.8. Let G be represented on X by a bounded amenable semigroup S = {S; :
g € G}. If S is relatively compact with respect to the weak operator topology, then S is mean
ergodic.

Proof. Since Sz is relatively weakly compact, we obtain that coSx is weakly compact for
all x € X by the Krein-Smulian Theorem. Hence, if (Ag) is a weak S-ergodic net, then
ASz has a weak cluster point for each z € X. The mean ergodicity of S then follows from
Theorem 1.7. U

If the Banach space satisfies additional geometric properties, contractivity of the semigroup
implies amenability and mean ergodicity. For uniformly convex spaces with strictly convex
dual unit balls this has been shown by Alaoglu and Birkhoff [1, Theorem 6] using the so-called
minimal method. In [4, Theorem 6’| Day observed that the same method still works if uniform
convexity is replaced by strict convexity.

Corollary 1.9. Let X be a reflevive Banach space such that the unit balls of X and X'
are strictly convex. If the semigroup G is represented on X by a semigroup of contractions
S={S,:9 € G}, then S is mean ergodic.

Proof. If S is a contractive semigroup in .Z(X) and the unit balls of X and of X’ are strictly
convex, then S is amenable by [6, Corollary 4.14]. Since S is bounded on the reflexive space
X, it follows that S is relatively compact with respect to the weak operator topology. Hence
Corollary 1.8 implies that S is mean ergodic. O

In some situations (see e.g. Assani |2, Theorem 2.10|, Walters |19, Theorem 4|, Lenz |12,
Theorem 1]) one is interested in convergence of an ergodic net only on some given = € X. The
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following result is a direct consequence of Theorem 1.7 by considering the restriction of S to
the closed invariant subspace Y, := linSz.

Proposition 1.10. Let G be represented on X by a bounded amenable semigroup S = {5, :
g € G} and let x € X. Then the following assertions are equivalent.

(1) S is mean ergodic on Y, with mean ergodic projection P,.

(2) c6Sx N Fix S # ().

(3) Fix S|y, separates Fix Sy, .

(4) € FixS @ linrg(I — S).

(5) ASx has a weak cluster point for some/every weak S-ergodic net (A3).
(6) ASx converges weakly for some/every weak S-ergodic net (AS).

(7) ASx converges weakly for some/every strong S-ergodic net (AS).

(8) ASx converges strongly for some/every strong S-ergodic net (AS).

2. UNIFORM FAMILIES OF ERGODIC OPERATOR NETS
We now use the above results on mean ergodic semigroups in order to study the convergence
of uniform families of ergodic nets.

Let I be an index set and suppose that the semigroup G is represented on X by bounded
amenable semigroups S; = {S; ; : g € G} for each i € I. Moreover, we assume that the S; are
uniformly bounded, i.e., sup;c; supyeq || 41l < oo

Definition 2.1. Let A be a directed set and let (AS)),c4 C Z(X) be a net of operators for
each i € I. Then {(ASi)qenq : i € I} is a uniform family of ergodic nets if

(1) Va € A, Ve > 0,V21,...,2, € X,IN € N such that for each i € I there exists a
convex combination Z;VZI ¢i jSig; € coS; satisfying

su? | ASig;, — Z;yzlci,jSngka <e Vke{l,...,m};
ic

(2) limsup ||ASiz — ASiS; x| = limsup |ASiz — S; ,ASiz|| =0 Vge G,z € X.
@ el @ el

Notice that if {(AS")4e : i € I} is a uniform family of ergodic nets, then each (AS!),c4 is a
strong S;-ergodic net.
Here are some examples of uniform families of ergodic nets.

Proposition 2.2. (a) Let S € L(X) with ||S|| < 1. Consider the semigroup (N,+) being
represented on X by the families Sy = {(A\S)" : n € N} for A € T. Then

{FZZosr) _xeT)

1 a uniform family of ergodic nets.
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In the situation of (a),
{(@=r) >0 r™ XS g oyeq s A E T}

1s a uniform family of ergodic nets.

Let K be a compact space and ¢ : K — K a continuous transformation. Let H
be a Hilbert space and S : f +— f o @ the Koopman operator corresponding to ¢
on C(K,H), the space of continuous H-valued functions on K. Denote by U(H) the
set of unitary operators on H and by A the set of continuous maps v : K — U(H).
Consider the semigroup (N, +) and its representations on C(K, H) given by the families
S, = {(yS)" : n € N} for v € A, where (vS)f(z) = v(x)Sf(x) for x € K and
feC(K,H). Then

N-— n .
{GFEZesr) vea}
s a uniform family of ergodic nets.
Let (S(t))er,. be a bounded Cy-semigroup on X . Consider the semigroup (R, +) being

represented on X by the families S, = {e*™"S(t) : t € R, } for r € B, where B C R
s bounded. Then

{(% IN et S () dt)seﬁh S B}
1s a uniform family of ergodic nets.
Let S = {S; : g € G} be a bounded representation on X of an abelian semigroup
G. Order the elements of coS by setting U < V if there exists W € coS such that

V = WU. Denote by G the character semigroup of G, i.e., the set of continuous
multiplicative maps G — T, and consider the representations Sy = {x(g9)Sq : g € G}

of G on X for x € G. Then

N ~
1 ¢cix(9:)S, > xed
{(Zl_l ZX(gZ) gi f\;l ¢;Sq;€c0S X }
1 a uniform family of ergodic nets.
Let H be a locally compact group with Haar measure | - | and let G C H be a sub-

semigroup. Suppose that there exists a Folner net (Fy)aca in G. Suppose that S :=
{Sq : g € G} is a bounded representation of G on X. Consider the representations

Sy ={x(9)Sy : g€ G} of G on X for x € A, where A C H is uniformly equicontinu-
ous on compact sets. Then

{<ﬁ Jr, x(9)S, d9>aeA tX € A}

s a uniform family of ergodic nets.

(a) Property (1) of Definition 2.1 is clear. To see (2), let x € X and k € N. Then
N-1

1 n n
~ D> (AS) "z — (AS)" e

n=0

k—1 N—-1+k

1 n 1 n
Siugr)ﬁ > lI(AS) + > I(AS) |
€ n=0 n=N

sup
AeT

< 2 el —— 0
_Nx Nooo
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(b) (1): Let 0 <7 < 1 and € > 0. Choose N € N such that 7" < 5. Then for all A € T we

have
e (1 . T) N—-1

(1 —=7)> rmAns™ — o > rmansn
n=0 n=0

[e%e) N—-1
(I—r) ZT"A"S" —(1-=7) Z r"A\"S™|| 4
n=0 n=0

N-1 (1—7’) N-—1
(1 — T) Z Tn)\nSn — m Z Tn)\nsn
n=0 n=0
00 1 N-1
<(1-— " 1-— 1 "
<@A-7r)> "4+ (1-r) T r
n=N n=0
<V 4N <¢

(2): Let x € X and k € N. Define for each A € T the sequence z ) by 2 =

(AS)"z—(AS)" "z for n € N. Then it follows from (a) that sup, ||+ SV 2 H — 0.
It is well known that Cesaro convergence implies the convergence of the Abel means to
the same limit (see |13, Proposition 2.3|). One checks that if the Cesaro convergence
is uniform in A € T, then the convergence of the Abel means is also uniform. Hence

we obtain lim,4y supyer |[(1 —7) D07, g | =o.

(c) (1) is clear. To see (2) let f € C(K,H) and k € N. Then

1(¥S) SNl = sup [[v(x) f(e(@)lla = sup [[f (@)l < ],
zeK zeK

since y(x) is unitary for all x € K. Hence

1 N—-1 k—1 1 N—1+k
sup || = > (vS)"f — (vS)" <sup—Z|| ()" fl+ 5 D 16S) Sl
yEA n—0 n=N
< —
=N Hf” ot 0

(d) This is a special case of (f) for the Folner net ([0, s])s>0 in R4 and the set A := {x, :
Ry — T :r € B}, where x,(t) = > for t € R;. Notice that A C R is uniformly
equicontinuous on compact sets since B is bounded.

(e) (1) is clear. To see (2) let z € X, g € G and ¢ > 0. Choose N € N such that
202 ”x” < g, where M = sup e [|Sy|- Then for all V = Wi ZN 15" > 4 ZN 15"
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where W = ¢ o ¢Sy, € coS, we have

k—1 N— k—1 N—
1
sup Z Z N X(9ig")Sgignx — Z Z N X(9:9")Sgign X (9)Sgx
XEG =0 n=0 =0 n=
k—1 1 —1
< Sup ZCZX gz i N Z X(g)sgx)
xEG n—0
< sup M~z - (x(9)Sg) || < M~2M o] < e.
e N N

(f) (1): Let « € A, ¢ > 0 and z1,...,x, € X. Since F, is compact and A is uniformly

equicontinuous on F, the family {g — x(g9)Sqzr : x € A} is also umformly equicon-
tinuous on F, for each k € {1,...,m}. Hence for each k € {1,...,m} we can choose
an open neighbourhood Uy, of the unity of H satisfying

g, heG, hlgel, = sup|x(9)S,zr — x(h)S,xx| < e
XEA
Then U := (L, Uy is still an open neighbourhood of unity. Since F, is compact
there exists ¢g1,...,g9n8 € F, such that F,, C Uivzl gnU. Defining Vi := ¢1U N F, and
Vi :i= (gnU N Fy) \ V-1 for n = 2,..., N we obtain a disjoint union F, = Uivzl V.
Hence for all x € A and k € {1,...,m} we have

9)Sgxrdg— Z‘ Val X(gn)Sg, Tk

H ‘Fa’ Fa

|F|Z | 6@y~ X(00)Sy, 1] do

<&
|FQ]VE

(2): If z € X and h € G, then we have

sup || [ x(9)Sgz — x(gh)Sgnx dgH < sup —— [x(g9)Sg|l
ver | 1 Fal Jr, ved | Fal Jr nmn
|FWAFLA)
< ool gup 15, o] — 0
| a| geG
and
1
sup —/ X(Q)Sg:ﬂ—x(hg)Shg:EdgH —0
XEA |Fa| a
analogously.

O

Now, let {(AS JacA : i € I} be a uniform family of ergodic nets. If z € X and S; is mean
ergodic on 1linS;x for each i € I, then it follows from Proposition 1.10 that |ASiz — Pz| — 0
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for all ¢ € I, where P; denotes the mean ergodic projection of Si|ESi .- The question arises,
when this convergence is uniform in ¢ € I. The following elementary example shows that in
general we cannot expect uniform convergence.

Example 2.3. Let X = C and let S = I¢ € L(C) be the identity operator on C. Consider the
semigroup (N, +) being represented on C by the families Sy = {\"Ic : n € N} for A € T. Then
for each A € T the Cesaro means % Zivz_ol A" converge, but the convergence is not uniform in

AeT.

However, the following theorem gives a sufficient condition for the convergence to be uni-
form.

Lemma 2.4. If {(AS)),ecq :i € I} is a uniform family of ergodic nets, then

lim sup || ASiz — AEZA%xH =0 Ve AzxreX.
@ el

Proof. Let B € A, e >0and x € X. Since {(AS/)4e4 : i € I} is a uniform family of ergodic
nets, there exists NV € N and for each 7 € I a convex combination Z;VZI ¢ijSig ; € COo S, such
i N _

that sup;cy HA; T — i CijSigx|| < e/M, where M = sup;c;supgeq [|Si gl Now, choose
ag € A such that for all a > ag

sup ||ASiz — Angi’gij <e Vj=1,...,N.

el
Then for all o > o and i € I we obtain

) .S, ) ) N ) N i AS:
|AZie — AS A x| < ||ASia — AT 3050 ¢ijSigll + | AN 2055 cijSigy — AS A

N . ) N Si
< Zj:l cijl| A5z — Aglsivgjx” + M| Zj:l Ci,jSig; T — Ag z||
< 2e.
O

Theorem 2.5. Let I be a compact set and let G be represented on X by the uniformly bounded
families S; = {S; 4 : g € G} for alli € 1. Let {(AS")qea : i € I} be a uniform family of ergodic
nets. Take x € X and assume that

(a) S; is mean ergodic on linS;x with mean ergodic projection P; for alli € I,
(b) I — Ry, i |ASiz — Pix| is continuous for all a € A.

Then
limsup ||ASiz — Px|| = 0.
@ el

Proof. It follows from Proposition 1.10 and the hypotheses that the function f, : I — R4
defined by f,(i) = ||ASiz — P,z|| is continuous for each o € A and lim,, f,(i) = 0 for all i € I.
By compactness and continuity we obtain a net (iq)aca C I with sup;c; fa(i) = fa(ia) for
all o € A. To show that lim, sup;c; fo(?) = 0 it thus suffices to show that every subnet of
(falia)) has a subnet converging to 0. Let (fq, (ia,)) be a subnet of (f4(iq)) and let € > 0.
Since [ is compact, we can choose a subnet of (i, ), also denoted by (i4, ), such that i,, — io
for some ig € I. Since f, converges pointwise to 0, we can take 5 € A such that fg(ip) < e/M,
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where M = sup;¢;sup,eq ||Sig|l- By continuity of fg there exists k1 such that for all k > k;
we have fg(ia,) — fs(io) < e/M. By Lemma 2.4 there exists ko > ki such that for all k > ks

Sia Sia, Sig Sia Sia Siq
fak(iak)SHAQkkx_AakkA ka"i'HAakkA kx_AakkPi
B B

. Tl
ST
<e+ M[A; ™z - B, =
< e+ M(fgliay) — fa(io)) + M fp(io)
< 3e.
Hence lim,, sup;c; fo(i) = 0. O

We now apply the above theory to operator semigroups on the space C'(K) of complex valued
continuous functions on a compact metric space K.

Corollary 2.6. Let ¢ : K — K be a continuous map, S : f +— f o the corresponding Koop-
man operator on C(K), and assume that there exists a unique p-invariant Borel probability
measure p on K. If f € C(K) satisfies Pxf = 0 for all A\ € T, where Py denotes the mean
ergodic projection of {(AS)™ : n € N} on L*(K,p), then

1) 1i | ngn
(1) Jim Sup I 2nery A"S"S

‘ =0 for each Folner sequence (Fn)nen in N,
[e.9]

(2) limsup||(1 — ) 350, NS £, = 0.
™1 \eT

Proof. Under the hypotheses it follows from Robinson [16, Theorem_ 1.1] and Proposition 1.10
that the semigroups Sy = {(AS)" : n € N} are mean ergodic on linS) f for each A € T. Let
now (Fy)nen be a Folner sequence in N and consider the uniform family of ergodic nets

U Soer 87) A €T

(c.f. Proposition 2.2 (f)). If P\f = 0 for all A\ € T, then also condition (b) in Theorem

2.5 is satisfied since the map A\ — \F—IN\ ZnEFN A"S™f is continuous for each N € N. Hence
lmpy 00 SUPyeT H|F—1N\ Y nery A'S" flloo = 0 by Theorem 2.5. The same reasoning applied to

the uniform family of ergodic nets

{((1=7) 0" A"S™) g pcy 1 AE T}
yields the second assertion. O

Remark 2.7. In [2, Theorem 2.10] Assani proved the first assertion of Corollary 2.6 for the
Folner sequence Fy = {0,..., N — 1} in N. Generalisations of this result can be found in
Walters [19, Theorem 5|, Santos and Walkden [17, Prop. 4.3] and Lenz [12, Theorem 2|. We
will systematically study and unify these cases in a subsequent paper.

Acknowledgement. The author is grateful to Rainer Nagel for his support, valuable discus-
sions and comments.
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