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1 Introduction

In [5][6], Calabi introduced the extremal Kähler metrics, which is the citical point of theL2 norm
of the scalar curvature in the Kähler class. The existence and uniqueness of the extremal Kähler
metrics have been intensively studied during past decades(cf. [2][7] and reference therein). By
Kodaira-Spencer’s work [15], every Kähler manifold admitsKähler metrics under small per-
turbation of the complex structure. A natural question is whether Kähler-Einstein metrics or
extremal Kähler metrics still exist when the complex structures varies. In [17], Koiso showed
that the Kähler-Einstein metrics can be perturbed under thecomplex deformation of the com-
plex structure when the first Chern class is zero or negative.When the first Chern class is
positive, Koiso showed this result if the manifold has no nontrivial holomorphic vector fields.
In [11][12], Lebrun-Simanca systematically studied the deformation theory of extremal Käh-
ler metrics and constant scalar curvature metrics and they proved that on a Kähler manifold,
the set of Kähler classes which admits extremal metrics is open and the constant scalar curva-
ture metrics can be perturbed under some extra restrictions. Based on Lebrun-Simanca’s results,
Apostolov-Calderbank-Gauduchon-T. Friedman [1], Rollin-Simanca-Tipler [19][20] further dis-
cussed extremal metrics under the deformation of complex structures.

The main goal of this paper is to give an alternative proof on the deformation of constant
scalar curvature metrics, which was discussed by [11] in thecase of fixed complex structure, and
later by [1][19] in the case of varying complex structures. Here we use the method of Pacard-Xu
in [18] in the context of constant mean curvature problems, which is quite different from [11] in
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analysis. We will also discuss the deformation of Kähler-Ricci solitons.

First we consider the case of fixed complex structure. The main difficulty of the deformation
problems of the Kähler-Einstein metrics or constant scalarcurvature metrics is that the linearized
equation has nontrivial kernel so that we cannot use the implicit function theorem directly. For
this reason, Koiso in [17] assumed that the manifold has no nontrivial holomorphic vector fields,
and Lebrun-Simanca in [11] used the surjective version of the implicit function theorem so that
the nondegeneracy of the Futaki invariant must be assumed. The same difficulty appears in some
other geometrical equations such as the constant mean curvature equation. In [18], Pacard-Xu
constructed a new functional to solve the constant mean curvature equation and they removed
the nondegeneracy condition of Ye’s result in [24]. We observe that Pacard-Xu’s method can be
applied in our situation and we have the result:

Theorem 1.1. Let (M,ωg) be a compact Kähler manifold with a constant scalar curvature
metricωg. There existsε0 > 0 and a smooth function

Φ : (0,ε0)×H
1,1(M)→ R

such that ifβ ∈ H 1,1(M) has unit norm and satisfiesΦ(t,β ) = 0 for some t∈ (0,ε0) then M
admits a constant scalar curvature metric in the Kähler class [ωg+ tβ ]. Moreover,

(1) If β ∈ H 1,1(M) is traceless,Φ has the expansion:

Φ(t,β ) = t2
∫

M
(Πg(Ri j̄β j ī))

2 ωn
g +O(t3).

(2) If β ∈H 1,1(M) is traceless andωg is a Kähler-Einstein metric, thenΦ has the expansion:

Φ(t,β ) = t4
∫

M
(Πg(βi j̄β j ī))

2 ωn
g +O(t5).

Here the operatorΠg is the projection to the space of Killing potentials with respect toωg.

Theorem 1.1 gives us some information in which directions wecan find the constant scalar
curvature metrics. The functionΦ is constructed by the Futaki invariant, and it is automatically
zero when the Futaki invariant vanishes. Thus, a direct corollary of Theorem 1.1 is the follow-
ing result, which was proved by Lebrun-Simanca using the deformation theory of the extremal
Kähler metrics and a result of Calabi in [6]:

Corollary 1.2. (Lebrun-Simanca [11]) Let(M,ωg) be a compact Kähler manifold with a con-
stant scalar curvature metricωg. For anyβ ∈ H 1,1(M), there is aε0 > 0 such that if the Futaki
invariant vanishes on the Kähler class[ωg+ tβ ] for some t∈ (0,ε0), then M admits a constant
scalar curvature metric on[ωg+ tβ ].

In fact, Theorem 1.1 gives us more information on the existence of constant scalar curvature
metrics on the class[ωg+ tβ ]. We expand the functionΦ(t,β ) with respect tot at t = 0,

Φ(t,β ) =
m

∑
j=1

a j(β )t j +O(tm+1),
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wherea j(β ) are some functions ofβ . If we assume some ofa j(β ) vanish, then we can get
“almost constant scalar curvature metrics” in the following sense:

Corollary 1.3. Let ωg be a constant scalar curvature metric. There are two positive constants
ε and C such that for anyβ ∈ H 1,1(M) with

a1(β ) = a2(β ) = · · ·= am(β ) = 0,

M admits a Kähler metricωt,β ∈ [ωg+ tβ ] for t ∈ (0,ε) satisfying

‖s(ωt,β )−s(t)‖Ck(M) ≤Ct
m+1

2 ,

wheres(t) is the average of the scalar curvature in[ωg+ tβ ].

The case of varying complex structures is more difficult. In general the extremal metrics
may not be perturbed when the complex structure varies (cf. [4]). There are several results on
this problem recently. In [1] Apostolov-Calderbank-Gauduchon-T. Friedman showed that the
extremal metrics can be perturbed when the deformation of the complex structure is invariant
under the action of a maximal compact connected subgroupG of the isometry group of the
extremal metrics. Rollin-Simanca-Tipler extend this result in [19] and they allow the group
G extends partially to the complex deformation. Here we combine Rollin-Simanca-Tipler and
Pacard-Xu’s methods to get a similar result as in the case of fixed complex structures.

Before stating the next result, we need to introduce some notations. Let(M,J,g,ωg) be
a compact Kähler manifold with a constant scalar curvature metric (g,ωg) andG the identity
component of the isometry group of(M,g). We assume that a compact connected subgroupG′

of G acts holomorphically on a complex deformation(Jt ,gt ,ωt) and we denote byBG′ the space
of all such complex deformations. LetW2,k

G′ be the space ofG′-invariant functions inW2,k and

H
z′0

g be the space of the space of holomorphic potentials of the elements in the centerz′0 of g′0,
whereg′0 is the ideal of the Killing vector fields with zeroes in the Liealgebra ofG′. With these
notations, we have

Theorem 1.4. Let (M,J,g,ωg) be a compact Kähler manifold with a constant scalar curvature
metricωg and

kerLg∩W2,k
G′ ⊂R⊕H

z′0
g . (1.1)

For any (Jt ,gt ,ωt) ∈ BG′ , there is a constantε0 > 0 and a smooth functionΨ : BG′ → R such
that if

Ψ(Jt ,gt ,ωt) = 0 (1.2)

for some t∈ (0,ε0), then M admits a G′-invariant constant scalar curvature metric in[ωt ] with
respect to Jt . In particular, the conclusion holds if the condition (1.2)is replaced by the vanishing
of the Futaki invariant of[ωt ].

The condition (1.1) coincides with the non-degeneracy condition of the relative Futaki in-
variant, which is introduced by Rollin-Simanca-Tipler in [19]. Here we get the same condition
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from a different point of view. We can get a similar result as Corollary 1.3 and a similar expan-
sion of the functionΨ as in Theorem 1.1, which are omitted since we will not use themin this
paper.

Finally, we will study the deformation of the Kähler-Ricci soliton. A Kähler-Ricci soliton is
a Kähler metricωg in the first Chern class satisfying

Ric(ωg)−ωg =
√
−1∂ ∂̄ θX,

whereθX is a holomorphic potential of a holomorphic vector fieldX. As Kähler-Einstein met-
rics, the existence and uniqueness of Kähler-Ricci solitonare important and has been studied by
a series of papers [22][23] etc. Since Kähler-Ricci solitons must be in the first Chern class, there
are no Kähler-Ricci solitons if we deform the Kähler class. However, inspired by the extremal
Kähler metrics, we can consider whether there is a metric satisfying the equation

s(ωg)−s= ∆gθX,

wheres is the average of the scalar curvatures. This metric is first introduced by Guan in [9]
and is called extremal solitons. Using the same idea as in [11][12], we have the result:

Theorem 1.5.Let(M,J,g,ωg) be a compact Kähler manifold with a Kähler-Ricci soliton(g,ωg).

1. If the complex structure is fixed, for anyβ ∈ H 1,1(M) there is an extremal soliton in the
Kähler class[ωg+ tβ ] for small t.

2. For any (Jt ,gt ,ωt) ∈ BG where G is the identity component of the isometry group of
(M,g), M admits a G-invariant extremal soliton in[ωt ] with respect to Jt .

Under the assumption of the second part of Theorem 1.5, if in addition [ωt ] is the first Chern
class of(M,Jt), then[ωt ] admits a Kähler-Ricci soliton. It is interesting to see whether Theorem
1.5 holds for any extremal soliton. There is a technical difficulty in the proof and we cannot
overcome it here.

Acknowledgements: The author would like to thank Professor F. Pacard and Y. L. Shi for kindly
sharing their insights on the deformation theory. The author would also like to thank Professor
X. X. Chen and X. H. Zhu for their encouragement and numerous suggestions.

2 Deformation of cscK metrics

In this section, we will use the method of Pacard-Xu in [18] tosolve the constant scalar curvature
equation and show that a small perturbation of the Kähler class under some assumptions will
admit a constant scalar curvature metric.
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2.1 Fixed complex structure

We follow Lebrun-Simanca’s notations in [11][12]. Let(M,J,g,ωg) be a compact Kähler man-
ifold of complex dimensionn with a constant scalar curvature metricωg. By Matsushima-
Lichnerowicz theorem, the identity componentG of the isometry group of(M,g) is a maximal
compact subgroup of the identity component Aut0(M,J) of the automorphism group Aut(M,J).
LetW2,k

G (M) be the realk-th Sobolev space ofG-invariant real-valued functions inW2,k(M). By
the Sobolev embedding theorem, the spaceW2,k(M) is contained inCl (M) if k > n+ l . The
space of real-valuedωg-harmonic(1,1) forms onM is denoted byH 1,1(M). Since the metricg
is G-invariant, everyg-harmonic formβ ∈ H 1,1(M) is G-invariant. LetP(M,ωg) be the space
of Kähler potentials ofωg andU be a small neighborhood of the origin inW2,k

G (M). We can
assume thatU ⊂ P(M,ωt) for smallt whereωt = ωg+ tβ . Thus, for any functionϕ ∈ U the
metric

ωt,ϕ = ωg+ tβ +
√
−1∂ ∂̄ϕ ,

is G-invariant.

Leth(M,J) be the space of holomorphic vector fields on(M,J). By Matsushima-Lichnerowicz
theorem, the Lie algebrah(M,J) can be decomposed as a direct sum

h(M,J) = h0(M,J)⊕a(M,J),

wherea(M,J) consists of the autoparallel holomorphic vector fields of(M,J) andh0(M,J) is
the space of holomorphic vector fields with zeros. Letg the Lie algebra ofG andg0 the ideal of
Killing vector fields with zeros. Any elementξ ∈ g0 corresponds to a holomorphic vector field
X = Jξ +

√
−1ξ , and we define a smooth functionθX satisfying

iXωg =
√
−1∂̄ θX,

∫

M
θX ωn

g = 0.

The functionθX is called holomorphic potential ofX with respect toωg. Sinceg is G-invariant,
θX is a real-valued function. Letz⊂ g denote the center ofg andz0 = z∩g0. Thenz0 corresponds
precisely to the Killing vector fields ing0 whose holomorphic potentials areG-invariant.

Now we choose a basis{ξ1, · · · ,ξd} of z0 such that the functions{θ0,θ1, · · · ,θd}, where
θ0 = 1 andθi is the holomorphic potential of the holomorphic vector fields Xi = Jξi +

√
−1ξi ,

are orthonormal with respect to theL2 inner product induced by the metricg

〈 f ,g〉L2(ωg) =
1
Vg

∫

M
f gωn

g , f ,g∈C∞(M,R),

whereVg =
∫

M ωn
g . Using this product, the spaceW2,k

G has a decomposition

W2,k
G = Hg⊕H

⊥
g,k,

whereHg is spanned by the set{θ0,θ1, · · · ,θd} over R. We define the associate projection
operator

Π̃g : W2,k
G → Hg

f →
d

∑
i=0

〈θi , f 〉L2(ωg)θi ,
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and the operator̃Π⊥
g = I − Π̃g.

For anyϕ ∈ U , we calculate the expansion of the scalar curvature ofωt,ϕ at (t,ϕ) = (0,0) :

s(ωt,ϕ ) = s(ωg)−
(

∆2
gϕ +Ri j̄ϕ j ī + t∆gtrω β + tRi j̄β j ī

)

+Qg(∇2ϕ , tβ ),

whereQg collects all the higher order terms. Note that trgβ is a constant sinceβ is harmonic.
The linearized operator ofs(ωt,ϕ ) at (t,ϕ) = (0,0) is given by

Lgϕ = ∆2
gϕ +Ri j̄ϕ j ī ,

and for anyf ∈ kerLg we can associate a holomorphic vector fieldXf = J∇ f +
√
−1∇ f which

has nonempty zeros. In general,Lg has nontrivial kernel and it is difficult to solve the constant
scalar curvature equation.

Now we have the following result:

Theorem 2.1. Let (M,ωg) be a compact Kähler manifold with a constant scalar curvature
metricωg. There existsε0 > 0 and a smooth function

Φ : (0,ε0)×H
1,1(M)→ R

such that ifβ ∈ H 1,1(M) has unit norm and satisfiesΦ(t,β ) = 0 for some t∈ (0,ε0) then M
admits a constant scalar curvature metric in the Kähler class [ωg+ tβ ].

Proof. Consider the equation for(ϕ , Ξ̃) ∈ H ⊥
g,k×R

d+1 :

s(ωt,ϕ ) = 〈Ξ̃,Θ̃〉, (2.1)

whereΘ̃ = (θ0,θ1, · · · ,θd) andΞ̃ = (c0,c1, · · · ,cd) ∈ R
d+1 is a vector with

〈Ξ̃,Θ̃〉= c0+
d

∑
i=1

ciθi .

Note that if the equation (2.1) holds, thenc0 is the average of the scalar curvature and it only
depends on the Kähler class[ωt ]. Applying the implicit function theorem, we have

Lemma 2.2. Fix β ∈H 1,1(M). Then there existε0,C> 0 such that for all t∈ (0,ε0) there exists
a unique solution(ϕt,β , Ξ̃t,β ) ∈H ⊥

g,k+4×R
d+1 of the equation (2.1) and satisfying the estimates

‖ϕt,β‖W2,k+4(M) ≤Cε0, ‖Ξ̃t,β‖ ≤Cε0, (2.2)

where‖Ξ̃‖ denotes the standard Euclidean norm ofΞ̃ in R
d+1.

Proof. We consider the operator

Π̃⊥
g s(ωt,ϕ ) : (−ε ,ε)×H

⊥
g,k+4 → R.
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Since the linearized operator at(t,ϕ) = (0,0)

Dϕ Π̃⊥s(ωt,ϕ )|(0,0) : H
⊥

g,k+4 → H
⊥

g,k

ψ → −Lgψ

is invertible, for smallt there is a solutionϕt,β ∈ H ⊥
g,k+4 such thatΠ̃⊥

g s(ωt,ϕt,β ) = 0 and we can

find a vectorΞ̂t,β ∈ R
d+1 such that

s(ωt,ϕt,β ) = 〈Ξ̃t,β ,Θ̃〉. (2.3)

The estimates in (2.2) follows directly from the implicit function theorem.

Now we want to know when the solution(ϕt,β , Ξ̃t,β ) of (2.1) has constant scalar curvature.
It suffices to show that the vectorΞ̃t,β = (c0,c1, · · · ,cd) satisfiesci = 0 for all 1≤ i ≤ d. Given
β ∈ H 1,1(M), the solution(ϕt,β , Ξ̃t,β ) determines a holomorphic vector field

Xt,β =
d

∑
k=1

ck(t)Xk ∈ h0(M,J), (2.4)

whereXk is the holomorphic vector field defined byθk andci(t) are the entries of the vector
Ξ̃t,β = (c0(t),c1(t), · · · ,cd(t)). For simplicity, we writeωt,β = ωt,ϕt,β for short. Now we define
a function on(0,ε0)×H 1,1(M) by

Φ(t,β ) =
∫

M
Xt,β hωt,β ωn

t,β ,

wherehωt,β is determined bys(ωt,β )− c0(t) = ∆ωt,β hωt,β . Note that the functionΦ(t,β ) is ex-
actly the Futaki invariant of(Xt,β , [ωt ]), and it is zero if the Futaki invariant of[ωt ] vanishes.

Let Πg be theL2-projection fromW2,k
G (M) to the subspace which is spanned by the functions

{θ1, · · · ,θd}. We denote byΞt,β = (c1, · · · ,cd) the vector inRd which removesc0 from Ξ̃t,β and
Θ = (θ1, · · · ,θd). With these notations, we have the lemma:

Lemma 2.3. There is aε0 > 0 such that, if t∈ (0,ε0) and if β ∈ H 1,1(M) with unit norm is a
zero of the functionΦ(t,β ) thenωt,β has constant scalar curvature.

Proof. Note that

Φ(t,β ) =
∫

M
θt,β (s(ωt,β )−c0(t))ωn

t,β =

∫

M
θt,β 〈Ξt,β ,Θ〉ωn

t,β , (2.5)

whereθt,β is the holomorphic potential ofXt,β with respect to the metricωt,β under the normal-
ization condition

∫

M
θt,β ωn

t,β = 0. (2.6)
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We claim that there is a constantC independent oft andβ such that

‖θt,β −〈Ξt,β ,Θ〉‖L2(ωg) ≤C t‖Ξt,β‖. (2.7)

In fact, by definition we have

iXt,β ωg =
√
−1∂̄ 〈Ξt,β ,Θ〉, iXt,β ωt,β =

√
−1∂̄ θt,β .

This implies that

√
−1∂̄ (θt,β −〈Ξt,β ,Θ〉) = iXt,β (tβ +

√
−1∂ ∂̄ϕt,β ) =

d

∑
k=1

ck(t)iXk(tβ +
√
−1∂ ∂̄ϕt,β ),

where we used the definition (2.4) ofXt,β . Since by Lemma 2.2‖ϕt,β‖W2,k+4(M) ≤Cε0 for any
t ∈ (0,ε0), we have

∣

∣

∣
∆g(θt,β −〈Ξt,β ,Θ〉)

∣

∣

∣
=

∣

∣

∣∑
k

ck(t) trg

(

∂ (iXk(tβ +
√
−1∂ ∂̄ ϕt,β ))

)
∣

∣

∣

≤ Cε0‖Ξt,β‖,

which implies that
‖θt,β −〈Ξt,β ,Θ〉‖L2(ωg) ≤Cε0‖Ξt,β‖

by the eigenvalue decomposition of∆g and the normalization condition (2.6). Thus, the inequal-
ity (2.7) is proved.

Since{θ0, · · · ,θd} is an orthonormal basis ofHg, we have

‖Ξt,β‖2 =

∫

M
〈Ξt,β ,Θ〉2 ωn

g ≤C
∫

M
〈Ξt,β ,Θ〉2 ωn

t,β , (2.8)

where we used the fact that‖ϕ‖W2,k+4(M) ≤ Cε0 whent small by Lemma 2.2. The assumption
Φ(t,β ) = 0 together with (2.8) and (2.7) implies that

∫

M
〈Ξt,β ,Θ〉2 ωn

t,β =

∫

M

(

〈Ξt,β ,Θ〉−θt,β

)

〈Ξt,β ,Θ〉ωn
t,β

≤ C ε0 ‖Ξt,β‖ · ‖〈Ξt,β ,Θ〉‖L2(ωg)

≤ Cε0

∫

M
〈Ξt,β ,Θ〉2 ωn

t,β .

Thus, ifε0 is small enough we haveΞt,β = 0. The lemma is proved.

Thus, the first part of Theorem 1.1 and Corollary 1.2 follow directly from Lemma 2.3.
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Observe that we can expand the functionΦ(t,β ) with respect tot at t = 0 :

Φ(t,β ) = a1(β )t +a2(β )t2+a3(β )t3+ ·+am(β )tm+O(tm+1),

wherea j(β ) are the coefficients oft j . We want to ask what kinds of Kähler metric exists if we
only assume the first several terms ofai(β ) vanish.

Corollary 2.4. Let ωg be a constant scalar curvature metric. There are two constants ε ,C > 0
such that for any harmonic formβ ∈ H 1,1(M) with unit norm and

a1(β ) = a2(β ) = · · ·= am(β ) = 0, (2.9)

M admits a Kähler metricωt,β ∈ [ωt + tβ ] for t ∈ (0,ε0) satisfying

‖s(ωt,β )−c0(t)‖Ck(M) ≤Ct
m+1

2 . (2.10)

Proof. We follow the notations in Lemma 2.3. By the assumption (2.9), there are two constants
ε0,C > 0 such that for anyt ∈ (0,ε0) we have

|Φ(t,β )| ≤Ctm+1. (2.11)

By equality (2.5) and (2.7) we have

∣

∣

∣
Φ(t,β )−

∫

M
〈Ξt,β ,Θ〉2 ωn

t,β

∣

∣

∣
≤ Ct‖Ξt,β‖ · ‖〈Ξt,β ,Θ〉‖L2(ωg)

≤ Ct
∫

M
〈Ξt,β ,Θ〉2 ωn

t,β

where we used (2.8) in the last inequality. Thus, there is a constantε0 > 0 such that for any
t ∈ (0,ε0) we have

∫

M
〈Ξt,β ,Θ〉2 ωn

t,β ≤C ·Φ(t,β )≤C · tm+1

and hence
d

∑
i=1

ci(t)
2 =

∫

M
〈Ξt,β ,Θ〉2 ωn

g ≤C
∫

M
〈Ξt,β ,Θ〉2 ωn

t,β ≤Ctm+1. (2.12)

This implies that for eachi whent is small,|ci(t)| ≤Ct
m+1

2 . Sinceωt,β is a solution of (2.1), we
have

‖s(ωt,β )−c0(t)‖Ck(M) = ‖
d

∑
i=1

ci(t)θi‖Ck(M) ≤Ct
m+1

2 .

The corollary is proved.
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Now we want to compute the coefficients oft in the expansion of the functionΦ. Let ωg be
a constant scalar curvature metric onM and(ϕt,β , Ξ̃t,β ) the solution of (2.1). Since the operator

Lg : H
⊥

g,k+4 → H
⊥

g,k

is self-adjoint and invertible, we denote byGg = L
−1
g the inverse operator ofLg. Without loss

of generality, we can assume thatβ is traceless with respect to the metricg. Otherwise, we can
consider the metric(1+ t · trgβ )ωg which still has constant scalar curvature. LetH

1,1
0 (M) be

the space of traceless harmonic(1,1) form with respect to the metricg on M. Computing the
first derivative ofS(t) := s(ωt,β )−〈Ξ̃t,β ,Θ̃〉 with respect tot, we have

Lemma 2.5. For β ∈ H
(1,1)

0 , we have the following:

〈Ξ̃′(0),Θ̃〉 = −Π̃g(Ri j̄β j ī),

ϕ ′(0) = −GgΠ̃⊥
g (Ri j̄β j ī),

c′0(0) =
1
Vg

∫

M
Ri j̄β j ī ωn

g ,

where we write f′(t) = ∂ f
∂ t for simplicity.

Proof. SinceS(t) = 0 for t ∈ (0,ε0), we have

0= S′(t) =−∆2
t ϕ ′(t)−Ri j̄(t)ϕ ′

j ī(t)−Ri j̄(t)β j ī −〈Ξ̃′
t,β (t),Θ̃〉. (2.13)

Projecting to the spaceHg whent = 0 we have

0= Π̃g(S
′(t))(0) =−Π̃g(Ri j̄β j ī)−〈Ξ̃′

t,β (0),Θ̃〉,

which implies that
〈Ξ̃′

t,β (0),Θ̃〉=−Π̃g(Ri j̄β j ī).

On the other hand, we project (2.13) to the spaceH ⊥
g,k and we have

0= Π̃⊥
g (S

′(t))(0) =−Lgϕ ′(0)− Π̃⊥
g (Ri j̄β j ī).

This together withϕ ′(0) ∈ H ⊥
g,k+4 implies that

ϕ ′(0) =−GgΠ̃⊥
g (Ri j̄β j ī).

Now we calculatec′0(t). Note thatc0(t) only depends on the Kähler class[ωg+ tβ ], we compute

it using the metricωt = ωg+ tβ . Since ∂
∂ t ωn

t

∣

∣

∣

t=0
= trωgβ ωn

g = 0, we haveV ′
t = 0 and

c′0(0) =
1
Vg

∫

M

∂
∂ t

s(ωt)
∣

∣

∣

t=0
ωn

g =
1
Vg

∫

M
Ri j̄β j ī ωn

g .

The lemma is proved.
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Corollary 2.6. If β ∈ H
1,1

0 (M), then the functionΦ can be expanded as

Φ(t,β ) = t2
∫

M
(Πg(Ri j̄β j ī))

2+O(t3). (2.14)

Proof. Sinceθt,β (0) = 0 andΞt,β (0) = 0, we haveΦ′(0) = 0. Direct calculation shows

Φ′′(0) =
∫

M
2θ ′

t,β (0)〈Ξ′
t,β (0),Θ〉ωn

g . (2.15)

Taking the derivative with respect tot, we have

√
−1∂̄ θ ′

t,β (0) =
(

iX′
t,β

ωt,β + iXt,β ω ′
t,β

)
∣

∣

∣

t=0
=

d

∑
k=1

c′k(0) iXkωg =
√
−1

d

∑
k=1

c′k(0)∂̄ θk,

which implies that

θ ′
t,β (0) =

d

∑
k=1

c′k(0)θk = 〈Ξ′
t,β (0),Θ〉. (2.16)

This together with the equality (2.15) and Lemma 2.5 impliesthat

Φ′′(0) = 2
∫

M
(〈Ξ′

t,β (0),Θ〉)2 ωn
g = 2

∫

M
(Πg(Ri j̄β j ī))

2.

The corollary is proved.

If ωg is a Kähler-Einstein metric, the first term of the right hand side of (2.14) automatically
vanishes. In this case, it is not difficult to expandΦ(t,β ) for more terms.

Lemma 2.7. If β ∈ H
1,1

0 (M) and satisfies Ri j̄β j ī = 0, then we have

〈Ξ̃′′
t,β (0),Θ̃〉 = Π̃g(2Ri j̄β j k̄βkī),

ϕ ′′(0) = GgΠ̃⊥
g (2Ri j̄β j k̄βkī),

c′′0(0) =
1
Vg

∫

M
2Ri j̄β j k̄βkī ωn

g .

Proof. Following the proof of Lemma 2.5 we have

S′′(t) = (βi j̄ +ϕ ′
i j̄)(∆tϕ ′) j ī +∆t((βi j̄ +ϕ ′

i j̄)ϕ
′
j ī)−∆2

t ϕ ′′

+(∆tϕ ′)i j̄ϕ ′
j ī −Ri j̄(t)ϕ ′′

j ī +2Ri j̄ϕ ′
j k̄(β +∇2ϕ ′)kī +(∆ϕ ′)i j̄β j ī

+Ri j̄β j k̄(β +∇2Dtϕ)kī +Ri j̄βkī(β +∇2Dtϕ) j k̄−〈Ξ̃′′
t,β ,Θ̃〉.

Thus, projecting toHg andH ⊥
g,k we have

0 = Π̃g(S
′′(t))(0) = Π̃g(2Ri j̄β j k̄βkī)−〈Ξ̃′′

t,β (0),Θ̃〉,
0 = Π̃⊥

g (S
′′(t))(0) =−Lgϕ ′′+ Π̃⊥

g (2Ri j̄β j k̄βkī).

11



Moreover, we calculatec′′0(0) as in the proof of Lemma 2.5

c′′0(0) =
1
Vg

∫

M
R(ωg+ tβ )′′

∣

∣

∣

t=0
ωn

g =
1
Vg

∫

M
2Ri j̄β j k̄βkī ωn

g .

The lemma is proved.

Corollary 2.8. If ωg is a Kähler-Einstein metric andβ ∈ H
1,1

0 (M), then we have

Φ(t,β ) = t4
∫

M
(Πg(Ri j̄β j k̄βkī))

2 ωn
g +O(t5).

Proof. By Lemma 2.5, we have

〈Ξ̃′
t,β (0),Θ̃〉= ϕ ′(0) = c′0(0) = 0.

Thus, the equality (2.16) implies thatθ ′
t,β (0) = 0 and by direct calculation we have

Φ′′′
t (0) = 3

∫

M

(

θ ′′
t,β (0)〈Ξ′

t,β (0),Θ〉+θ ′
t,β (0)〈Ξ′′

t,β (0),Θ〉
)

ωn
g = 0.

On the other hand, by Lemma 2.7 we have

√
−1∂̄ θ ′′

t,β (0) = iX′′
t,β (0)

ωg =
d

∑
k=1

c′′k(0)iXkωg =
√
−1∂̄

( d

∑
k=1

c′′k(0)θk

)

, (2.17)

which implies that
θ ′′

t,β (0) = 〈Ξ′′
t,β (0),Θ〉. (2.18)

Thus, by tedious calculation we have

Φ(4)
t (0) = 6

∫

M
θ ′′

t,β (0)〈Ξ′′
t,β (0),Θ〉 ωn

g = 24
∫

M
(Πg(Ri j̄β j k̄βkī))

2 ωn
g .

The corollary is proved.

2.2 Varying complex structures

In this section, we will consider the deformation of constant scalar curvature metrics when the
complex structure varies. Let(M,J,g,ωg) be a compact Kähler manifold(M,J) with a Kähler
metricg and the associate Kähler formωg. Let Jt be a smooth family of complex structures with
J0 = J. By Kodaira’s theorem in [16] there exists a smooth family ofKähler metricgt with g0 = g
which is compatible with the complex structureJt for small t. Let ωt be the associate Kähler
form of gt with respect to the complex structureJt . The triple(Jt ,gt ,ωt) is called a complex
deformation of(J,g,ωg). Given a complex deformation(Jt ,gt ,ωt), we want to know whether
there exists a constant scalar curvature metric in the Kähler class([ωt ],Jt) if we assume thatωg

12



is a constant scalar curvature metric on(M,J).

Sinceg is a constant scalar curvature metric, the identity component G of the isometry group
of (M,g) is a maximal compact subgroup of Aut(M,g) by Lichnerowicz-Matsushima theorem.
In general the action of the groupG may not extend to(M,Jt). We follow the idea of Rollin-
Simanca-Tipler in [19] to assume that a compact connected subgroupG′ of G can extend to
(M,Jt) andG′ acts holomorphically on the complex deformation(Jt ,gt ,ωt). We denote byBG′

the space of complex deformations(Jt ,gt ,ωt) which allow the holomorphic action ofG′. We
denote byW2,k

G′ (M) the subspace ofG′-invariant functions inW2,k(M) andU a neighborhood of

the origin inW2,k
G′ (M). For anyϕ ∈ U , we compute the expansion of the scalar curvature of the

metricωt,ϕ = ωt +
√
−1∂t ∂̄tϕ at (t,ϕ) = (0,0) :

Lemma 2.9. Suppose that∂ωt/∂ t = ηt . We have

s(ωt,ϕ ) = s(ωg)−Lgϕ − t
(

∆gtrωg(η +S(ϕ))+Ri j̄(η +S(ϕ)) j ī + trg(Slogdetg)
)

+Q,

where Q collects all the higher order terms and the operator Sis given by S= 1
2dJ′t (0)d f .

Proof. For any smooth functionf , we define the operator

St( f ) :=
∂
∂ t

√
−1∂t ∂̄t( f ) =

1
2

dJ′t d f,

where we used the equality
√
−1∂t ∂̄t =

1
2dJtd. Note that

∂
∂ t

ωt,ϕ = ηt +St(ϕ), Dϕ ωt,ϕ(ψ) =
√
−1∂t ∂̄tψ .

The derivatives of the scalar curvature are given by

∂
∂ t

s(ωt,I ,ϕ ) = −(ηi j̄ +St,i j̄(ϕ))Rj ī −gi j̄St,i j̄ (logdetg)−∆ttrωt,ϕ (η +St(ϕ))

Dϕs(ωt,I ,ϕ )(ψ) = −Ri j̄ψ j ī −∆2
t ψ .

Thus, the lemma follows directly.

As in Section 2, we defineg(resp.g′) the Lie algebra ofG(resp.G′), andg0 (resp.g′0) the
ideal of Killing vector fields with zeros ing (resp. g′). The center ofg0(resp. g′0) is denoted
by z0(resp. z′0). Each element ofz0(resp. z′0) is of the formJ∇ f for a G(resp. G′)-invariant,

real-valued functionf . Let H
g′0

g (resp.H
z′0

g ) the space of holomorphic potentials of the Killing

vector fields ing′0 (resp. z′0) and it is easy to see that the spaceH
z′0

g is identified to theG′-

invariant holomorphic potentials ofH
g′0

g . Using theL2 inner product induced byg, the space
W2,k

G′ (M) has the orthogonal decomposition

W2,k
G′ (M) = Hg⊕H

⊥
g,k

13



whereHg = R⊕H
z′0

g and we assumeHg is spanned by an orthonormal basis{θ0,θ1, · · · ,θd}
whereθ0 = 1 with respect to the inducedL2 norm of the metricg. Let Π̃g andΠ̃⊥

g be theL2-
orthogonal projection ontoHg andH ⊥

g,k respectively. With these notations, we have the result:

Theorem 2.10.Let g be a constant scalar curvature metric on M with

kerLg∩W2,k
G′ ⊂R⊕H

z′0
g . (2.19)

For any (Jt ,gt ,ωt) ∈ BG′ , there is a constantε0 > 0 and a smooth functionΨ : BG′ → R such
that if Ψ(Jt ,gt ,ωt) = 0 for some t∈ (0,ε0), then M admits a G′-invariant constant scalar curva-
ture metric in[ωt ] with respect to Jt .

Proof. First, we want to find the solution(ϕ , Ξ̃) ∈ H ⊥
g,k+4×R

d+1 of the equation

s(ωt,ϕ ) = 〈Ξ̃,Θ̃〉, (2.20)

whereΘ̃ = (θ0,θ1, · · · ,θd). As in the proof of Lemma 2.2, we can use the implicit function
theorem and Lemma 2.9 to show that

Lemma 2.11. Suppose that the condition (2.19) holds. For any(Jt ,gt ,ωt) ∈ BG′, there exist
C,ε0 > 0 such that for all t∈ (0,ε0) there is a solution(ϕt , Ξ̃t) ∈ H ⊥

g,k+4×R
d+1 which satisfies

the equation (2.20) and
‖ϕt‖W2,k+4(M) ≤Cε0, ‖Ξ̃t‖ ≤Cε0. (2.21)

Proof. The linearization of the operator̃Π⊥
g s(ωt,ϕ ) : (−ε ,ε)×H ⊥

g,k+4 → R at (t,ϕ) = (0,0) is
given by

Dϕ Π̃⊥
g s(ωt,ϕ )|(0,0)(ψ) =−Lgψ : H

⊥
g,k+4 →W2,k

G′ ,

which is invertible fromH ⊥
k+4 to H ⊥

g,k if and only if the condition (2.19) holds. Thus, the lemma
follows directly from the implicit function theorem.

Let ξi(1≤ i ≤ d) be the Killing vector fields inz0 with the holomorphic potentialsθi(1 ≤
i ≤ d). Since(Jt ,gt ,ωt) ∈ BG′ , the vector fieldsXt

i := Jtξi +
√
−1ξi are holomorphic on(M,Jt)

and the holomorphic potential ofXt
i with respect toωt,ϕt is given by a real-valued functionθ t

i
satisfying

iXt
i
ωt,ϕt =

√
−1∂̄tθ t

i ,
∫

M
θ t

i ωn
t,ϕt

= 0. (2.22)

For the vector̃Ξt = (c0(t),c1(t), · · · ,cd(t)) ∈R
d+1 obtained in Lemma 2.11, we define the holo-

morphic vector field

Xt =
d

∑
i=1

ci(t)X
t
i ∈ h0(M,Jt).
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Let θt be the holomorphic potential ofXt with respect toωt,ϕt and

Θ = (θ1, · · · ,θd), Ξt = (c1(t), · · · ,cd(t)),

whereci(t) are the entries of̃Ξt .

Lemma 2.12. If (Jt ,gt ,ωt) ∈ BG′ satisfies

‖Jt −J0‖C1(M) ≤Cε0, t ∈ (0,ε0), (2.23)

then there is a constant C1 > 0 such that for all t∈ (0,ε0) we have

‖θt −〈Ξt,Θ〉‖L2(ωg) ≤C1ε0‖Ξt‖. (2.24)

Proof. Define the vector field̂Xt =∑d
k=1 ck(t)Xi ∈ h0(M,J) whereck(t) is given by Lemma 2.11.

By definition, we have

iX̂t
ωg =

√
−1∂̄ 〈Ξt ,Θ〉, iXt ωt,ϕt =

√
−1∂̄tθt ,

where∂̄ denotes the operator on(M,J). We want to compute the difference of the two functions
θt and〈Ξt ,Θ〉 :

√
−1∂̄ (〈Ξt ,Θ〉−θt) = iX̂t

ωg− iXt ωt,ϕt +
√
−1(∂̄t − ∂̄)θt

=
d

∑
k=1

ck(t)(iXkωg− iXt
k
ωt,ϕt )+

√
−1(∂̄t − ∂̄ )θt . (2.25)

Note that the estimate‖ωg−ωt,ϕt‖W2,k+2(M) ≤Cε0 obtained in Lemma 2.11 implies

‖∂
(

iXkωg− iXt
k
ωt

)

‖C0 = ‖i∂ (Xk−Xt
k)

ωg+ i∂Xt
k
(ωg−ωt,ϕt )+ iXt

k
∂ (ωg−ωt,ϕt )‖C0

≤ Cε0, (2.26)

where we used the estimates

‖∂ (Xt
k−Xk)‖C0 = ‖∂ (Jt −J0)ξk‖C0 ≤Cε0, t ∈ (0,ε0).

Now we estimateθt . Note that we have

∆ωt,ϕt
θt =

√
−1∂t(iXt ωt,ϕt ) =

√
−1

d

∑
k=1

ck(t)∂t(iXt ωt,ϕt )

and‖ωt,ϕt −ωg‖C2,α ≤Cε0 if we choosek sufficiently large in Lemma 2.11, there is a constant
C> 0 independent oft such that

‖θt‖C2(M,ωg) ≤C‖Ξt‖. (2.27)

Therefore, we have
∣

∣

∣
∂ (∂̄t −∂ )θt

∣

∣

∣
=

1
2

∣

∣

∣
∂ (Jt −J0)dθt

∣

∣

∣
≤Cε0 · ‖Ξt‖, t ∈ (0,ε0), (2.28)
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where we used the equalitȳ∂t f = 1
2(d f −

√
−1Jtd f) and the inequality (2.27). Combining the

estimates (2.25)(2.26) and (2.28), we have
∣

∣

∣
∆g(〈Ξt ,Θ〉−θt)

∣

∣

∣
≤Cε0 · ‖Ξt‖.

This together the eigenvalue decomposition and the normalization condition (2.22) gives (2.24).
The lemma is proved.

Now we define the functionΨ : BG → R by

Ψ(Jt ,gt ,ωt) =
∫

M
Xtht,ϕt ωn

t,ϕt
=

∫

M
θt(s(ωt,ϕ )−c0(t))ωn

t,ϕt
,

wherec0(t) is the average ofs(ωt,ϕt ) andht,ϕt is given bys(ωt,ϕt )− c0(t) = ∆ωt,ϕt
ht,ϕt . As in

Section 2, we have the following result whose proof is omitted.

Lemma 2.13. There existsε0 > 0 such that if the complex deformation(Jt ,gt ,ωt)∈BG satisfies
Ψ(Jt ,gt ,ωt) = 0 for some t∈ (0,ε0), thenωt,ϕt is a constant scalar curvature metric with respect
to the complex structure Jt .

Theorem 2.10 then follows from the above results.

3 Deformation of Kähler-Ricci solitons

Let (M,J) be a compact Kähler manifold with a Kähler Ricci solitongKS with respect to the
holomorphic vector fieldX :

Ric(ωKS)−ωKS=
√
−1∂ ∂̄ θX

whereθX is the holomorphic potential ofX with respect toωKS. We would like to ask whether
we can perturb the Kähler Ricci soliton under complex deformation of the complex structure.
Inspired by the discussion before, for any Kähler class[ωg]we consider the metricωϕ ∈ [ωg]
satisfying the equation of extremal solitons

s(ωϕ )−s= ∆ϕθX(ωϕ ). (3.1)

By the∂ ∂̄ -Lemma, we can easily check that

Lemma 3.1. If ωg ∈ 2πc1(M) satisfies the equation(3.1) with respect to a holomorphic vector
field X, thenωg is a Kähler-Ricci soliton with respect to X.

By the equation (3.1), if[ωg] admits an extremal solitonωϕ and the Futaki invariant vanishes
on [ωg], thenωϕ must be a constant scalar curvature metric. In fact,

f (X, [ω0]) =

∫

M
θX(ϕ)∆ϕθX(ϕ)ωn

ϕ = 0

implies thatθX(ϕ) is a constant.
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Theorem 3.2. If ωg be a Kähler Ricci soliton with respect to X on M, then for anyβ ∈H 1,1(M)
there is an extremal soliton in the Kähler class[ω0+ tβ ] for small t.

Proof. We follow Lebrun-Simanca’s arguments in [11][12]. Letg be a Kähler-Ricci soliton. By
Theorem A in the appendix of [22] the identity componentG of the isometry group of(M,g) is
a maximal compact subgroup of the automorphism group Aut(M). As in previous sections, we
let W2,k

G be the realk-th Sobolev space ofG-invariant real-valued functions inW2,k. Let g the
Lie algebra ofG andz ⊂ g denote the center ofg. We denote byg0 the ideal of Killing vector
fields with zeros andz0 = z∩g0. By Lemma A.2 in the appendix of [22], each element ofz0 is
of the formJ∇ f , where f is aG-invariant real-valued function satisfying the equation

Lg( f ) = fī j̄dzī ⊗dzj̄ = 0.

We choose a basis{ξ1, · · · ,ξd} of z0 such that the functionals{θ0,θ1, · · · ,θd} whereθ0 = 1 and
θi(1 ≤ i ≤ d) is the holomorphic potential of the holomorphic vector fields Xi = Jξi +

√
−1ξi

are orthonormal with respect to theL2 inner product

〈 f ,g〉L2(ωg) =
1
Vg

∫

M
f geθX ωn

g , f ,g∈C∞(M,R),

whereVg is the volume of(M,g). Using this product, the spaceW2,k
G has a decomposition

W2,k
G = Hg ⊕H ⊥

g,k, whereHg is spanned by the set{θ0,θ1, · · · ,θd} over R. We define the

associate project operatorΠg andΠ⊥
g , and we can assume thatX1 = X which defines the Kähler-

Ricci solitonωg.

Now we consider the equation forϕ ∈ U :

S(t,ϕ) := Π⊥
g Π⊥

ϕ Gϕ(s(ωt,ϕ )−s(t)) = 0,

whereGϕ is the Green operator with respect to the metricωt,ϕ . If U is small enough,S(t,ϕ) = 0
if and only if ωt,ϕ is an extremal soliton. We calculate the variation ofS(t,ϕ) at (t,ϕ) = (0,0) :

DϕS(t,ϕ)|(0,0)(ψ) = −Π⊥
g (Dϕ Πϕ)|(0,0)Gg(s(ωg)−s)+Π⊥

g Dϕ(Gϕ(s(ωt,ϕ )−s))|(0,0).
(3.2)

Sinceg is a Kähler Ricci soliton, we haveGg(s(ωg)−s) = θX. Note that

ΠϕθX =
d

∑
i=0

〈θi,ϕ ,θX〉L2(ωt,ϕ )θi,ϕ ,

whereθi,ϕ is an orthonormal basis ofHg. Now we choose the functions

θ0,ϕ = 1, θi,ϕ =
θ̃i,ϕ

‖θ̃i,ϕ‖L2(ωϕ )

, 1≤ i ≤ d,
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whereθ̃i,ϕ are defined by the equalitiesiXi ωt,ϕ =
√
−1∂̄ θ̃i,ϕ such that{θ0,ϕ , · · · ,θd,ϕ} forms an

orthonormal basis ofHϕ , which is the space defined similar toHg using the metricωϕ . Thus,
we have

−Π⊥
g (DϕΠϕ)|(0,0)Gg(s(ωg)−s) = −Π⊥

g (Dϕ Πϕ)|(0,0)θX

= −〈 θX

‖θX‖L2
,θX〉L2(ωg)Π

⊥
g

1
‖θX‖L2

Dϕ θ̃1,ϕ |(0,0)

= −Π⊥
g Dϕ θ̃1,ϕ |(0,0).

By the definition ofθ̃1,ϕ , we have

iXDϕωt,ϕ |(0,0) =
√
−1∂̄Dϕ θ̃1,ϕ ,

which implies thatX(ψ) = Dϕ θ̃1,ϕ |(0,0)(ψ). Combining the above equalities, we have

−Π⊥
g (DϕΠϕ)|(0,0)Gg(s(ωg)−s) =−Π⊥

g X(ψ). (3.3)

Now we calculate the second term of the right hand side of (3.2). Let Aϕ = Gϕ(s(ωt,ϕ )−s),
we have

∆ϕAϕ = s(ωt,ϕ )−s.

Differentiating this equation with respect toϕ at (t,ϕ) = (0,0), we have

−ψi j̄θX, j ī +∆gDϕAϕ |(0,0) =−∆2
gψ −Ri j̄ψ j ī .

Combining this with (3.2) we have

Π⊥
g Dϕ(Gϕ(s(ωt,ϕ )−s))|(0,0) = −Π⊥

g Gg

(

∆2
gψ +Ri j̄ψ j ī −ψi j̄θX, j ī

)

. (3.4)

Combining the equalities (3.2)-(3.4), we have

DϕS(t,ϕ)|(0,0)(ψ) = −Π⊥
g

(

Gg(∆2
gψ +Ri j̄ψ j ī −ψi j̄θX, j ī)+X(ψ)

)

= −Π⊥
g

(

∆gψ +ψ +X(ψ)
)

where we used the assumption thatg is a Kähler-Ricci soliton. Note that by Lemma 2.2 in [22]
the functionψ satisfies∆gψ +ψ +X(ψ) = 0 if and only if Π⊥

g ψ = 0 Thus, the operator

DϕS(t,ϕ)|(0,0) : H
⊥

g,k+2 → H
⊥

g,k

is invertible and by the implicit function theorem there is asolution ϕt ∈ H ⊥
g,k+2 satisfies the

equationS(t,ϕt) = 0 whent is small. The theorem is proved.
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Remark 3.3. It is interesting to ask whether Theorem 3.2 holds for any extremal soliton g. To
prove this, it suffices to show that any functionψ with

ψi j j̄ ī +θX,īψikk̄ = 0

must satisfy the equationψī j̄ = 0.

In fact, if g is an extremal soliton, we have

Gg(∆2
gψ +Ri j̄ψ j ī −ψi j̄θX, j ī)+X(ψ) = Gg(∆2

gψ +Ri j̄ψ j ī −θi j̄ψ j ī +∆g(Xψ))

= Gg(∆2
gψ +Ri j̄ψ j ī +s,īψi +θX,īψikk̄)

= Gg(ψi j j̄ ī +θX,īψikk̄),

where we used the equality

∆g(Xψ) =
1
2

(

(θīψi) j j̄ +(θīψi) j̄ j

)

= θī j ψi j̄ +θī(∆ψ)i

= θī j ψi j̄ +θī(ψikk̄−Ri j̄ψ j)

= θī j ψi j̄ +θīψikk̄+s,īψi .

Here we used the extremal soliton equation in the last equality.

Next, we use the similar method in Section 2 to consider the case when the complex structure
varies . Let(g,ωg) is a Kähler-Ricci soliton on(M,J) and(Jt ,gt ,ωt) a complex deformation of
(J,g,ωg). We assume(Jt ,gt ,ωt) ∈BG whereG is the identity component of the isometry group
of (M,g) and BG denotes all theG invariant complex deformation of(J,g,ωg). With these
notations, we have the result:

Theorem 3.4.Let(M,J,g,ωg) be a compact Kähler manifold with a Kähler-Ricci soliton(g,ωg).
For any(Jt ,gt ,ωt) ∈ BG, M admits a G-invariant extremal soliton in[ωt ] with respect to Jt for
small t.

Proof. The proof is more or less the same as in Theorem 3.2, and we onlysketch it here. For
any(Jt ,gt ,ωt) ∈ BG, we consider the equation

S(t,ϕ) := Π⊥
g Π⊥

ϕ Gϕ(s(ωt,ϕ )−s(t)) = 0, (3.5)

whereGϕ and Π⊥
ϕ are the operators with respect to the metricωt,ϕ = ωt +

√
−1∂t ∂̄tϕ . Let

{ξ1, · · · ,ξd} be a basis ofz0. Since (Jt ,gt ,ωt) ∈ BG, the vector fields{Xt
1, · · · ,Xt

d} where
Xt

i = Jtξi +
√
−1ξi are holomorphic vector fields on(M,Jt) and form a basis ofh0(M,Jt). Let

θ̃ t
i (1≤ i ≤ d) be the holomorphic potentials ofXt

i with respect toωt,ϕ and we assume that the
set{θ̃ t

0, θ̃ t
1, · · · , θ̃ t

d} whereθ̃ t
0 = 1 are orthonormal and spans the spaceHϕ . Differentiating the

equation (3.5) with respect toϕ , we have

DϕS(t,ϕ)|(0,0)(ψ) = −Π⊥
g (Dϕ Πϕ)|(0,0)Gg(s(ωg)−s)+Π⊥

g Dϕ(Gϕ(s(ωt,ϕ )−s))|(0,0).
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SinceDϕ ωt,ϕ |(0,0)(ψ) =
√
−1∂ ∂̄ψ andDϕXt|(0,0) = 0, we still get the equality (3.3). By the

same calculation as in Theorem 3.2, we have the operator

DϕS(t,ϕ)|(0,0)(ψ) =−Π⊥
g

(

∆gψ +ψ +X(ψ)
)

which is invertible fromH ⊥
g,k+2 to H ⊥

g,k. The theorem is proved.

Here we give an easy example on the existence of extremal solitons.

Example 3.5. Let π : M̂ → M be the blowup of M= CP
2 at a point p. ThenM̂ has no Kähler-

Einstein metrics but admits a Kähler-Ricci soliton in2πc1(M̂). Thus,M̂ admits extremal solitons
in the Kähler class2πc1(M̂)− t[E] for t ∈ (0,ε) where E= π−1(p) is the exceptional divisor
andε > 0 is small.
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