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Complex deformation of critical Kahler metrics
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1 Introduction

In [5][6], Calabi introduced the extremal K&hler metricsyioh is the citical point of th&2 norm

of the scalar curvature in the K&hler class. The existendauaiqueness of the extremal Kahler
metrics have been intensively studied during past decefdd&{[/] and reference therein). By
Kodaira-Spencer’'s work [15], every Kahler manifold adniishler metrics under small per-
turbation of the complex structure. A natural question isthir Kahler-Einstein metrics or
extremal Kéhler metrics still exist when the complex stuoes varies. In[[17], Koiso showed
that the Kahler-Einstein metrics can be perturbed undecdineplex deformation of the com-
plex structure when the first Chern class is zero or negatiléhen the first Chern class is
positive, Koiso showed this result if the manifold has notnigial holomorphic vector fields.
In [11][12], Lebrun-Simanca systematically studied théodmation theory of extremal Kéah-
ler metrics and constant scalar curvature metrics and theyegd that on a Kéhler manifold,
the set of Kéhler classes which admits extremal metrics é@nd the constant scalar curva-
ture metrics can be perturbed under some extra restrict®emed on Lebrun-Simanca’s results,
Apostolov-Calderbank-Gauduchon-T. Friedman [1], Re8imanca-Tipler [19][20] further dis-
cussed extremal metrics under the deformation of comptextsires.

The main goal of this paper is to give an alternative prooftmndeformation of constant
scalar curvature metrics, which was discussed by [11] icdse of fixed complex structure, and
later by [1][19] in the case of varying complex structuregrélwe use the method of Pacard-Xu
in [18] in the context of constant mean curvature problentickvis quite different from[11] in
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analysis. We will also discuss the deformation of KéhlereRsolitons.

First we consider the case of fixed complex structure. The wlifficulty of the deformation
problems of the K&hler-Einstein metrics or constant saalarature metrics is that the linearized
equation has nontrivial kernel so that we cannot use theiéihfiinction theorem directly. For
this reason, Koiso in [17] assumed that the manifold has mérivaal holomorphic vector fields,
and Lebrun-Simanca in[11] used the surjective version @frtiplicit function theorem so that
the nondegeneracy of the Futaki invariant must be assuntegisdme difficulty appears in some
other geometrical equations such as the constant meantaneguation. In[18], Pacard-Xu
constructed a new functional to solve the constant mearatuner equation and they removed
the nondegeneracy condition of Ye’s result/in/[24]. We obsé¢hat Pacard-Xu's method can be
applied in our situation and we have the result:

Theorem 1.1. Let (M, wy) be a compact Kéhler manifold with a constant scalar curvatur
metric wy. There existgo > 0 and a smooth function

D (0,&) x (M) = R

such that if € 2#%1(M) has unit norm and satisfie®(t, 3) = 0 for some tc (0, &) then M
admits a constant scalar curvature metric in the Kahler slag, +tf3]. Moreover,

(1) If B € 211 (M) is traceless® has the expansion:
@(t.8) =t | (Mo(RBH)>af +O(t").

(2) If B e #11(M) s traceless andy, is a Kahler-Einstein metric, thes has the expansion:
O(t.B)=t* | (Mg(BiBp)?cf+O(E).

Here the operatoflg is the projection to the space of Killing potentials withpest tow.

Theoreni 111 gives us some information in which directionscaue find the constant scalar
curvature metrics. The functio is constructed by the Futaki invariant, and it is automdica
zero when the Futaki invariant vanishes. Thus, a directliemyoof Theoreni 1.1 is the follow-
ing result, which was proved by Lebrun-Simanca using therdedition theory of the extremal
Kahler metrics and a result of Calabi in [6]:

Corollary 1.2. (Lebrun-Simanca [11]) LetM, ay) be a compact Kahler manifold with a con-
stant scalar curvature metriay. For any B € 7#11(M), there is agy > 0 such that if the Futaki
invariant vanishes on the Kéahler clagsy +tf] for some te (0, &), then M admits a constant
scalar curvature metric ofy +t].

In fact, Theorenh 1]1 gives us more information on the extstenf constant scalar curvature
metrics on the clasigyy + tB]. We expand the functio®(t, 8) with respect td att = 0,

O(t,B)= 3 &y (B +O(" ),
=1
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wherea;() are some functions g8. If we assume some dj(8) vanish, then we can get
“almost constant scalar curvature metrics” in the follogvsense:

Corollary 1.3. Letwy be a constant scalar curvature metric. There are two pasitienstants
¢ and C such that for ang € #+1(M) with

a(B)=a(B)="=am(B)=0,

M admits a Kahler metriey g € [wy+tB] fort € (0, €) satisfying

mel
Is(ea,p) — S(t)llexmy <Ct'7

wheres(t) is the average of the scalar curvature iy, +tf3].

The case of varying complex structures is more difficult. é&meral the extremal metrics
may not be perturbed when the complex structure varies 4f. There are several results on
this problem recently. In_[1] Apostolov-Calderbank-Gadidon-T. Friedman showed that the
extremal metrics can be perturbed when the deformationeotttmplex structure is invariant
under the action of a maximal compact connected subgfawub the isometry group of the
extremal metrics. Rollin-Simanca-Tipler extend this tegu [19] and they allow the group
G extends partially to the complex deformation. Here we comlRollin-Simanca-Tipler and
Pacard-Xu's methods to get a similar result as in the caseed ftomplex structures.

Before stating the next result, we need to introduce somatinas. Let(M,J, g, wy) be
a compact Kahler manifold with a constant scalar curvatuegrim(g, «y) and G the identity
component of the isometry group @1,g). We assume that a compact connected subg@&up
of G acts holomorphically on a complex deformati@h g, «d ) and we denote by the space
of all such complex deformations. Lwé;k be the space dB'-invariant functions inW2* and

%36 be the space of the space of holomorphic potentials of theesiés in the centey; of gj,

wheregy is the ideal of the Killing vector fields with zeroes in the lailgebra ofG’. With these
notations, we have

Theorem 1.4. Let(M,J, g, wy) be a compact Kahler manifold with a constant scalar curvatur
metric wy and

kerLg NW2K € R .25°. (1.1)

For any (%,0:,m) € Ba, there is a constanty > 0 and a smooth functiok : sz — R such
that if

W&o @) =0 (1.2)

for some te (0, &), then M admits a Ginvariant constant scalar curvature metric jot] with

respect tod In particular, the conclusion holds if the conditidn (ILi®)yeplaced by the vanishing
of the Futaki invariant ofc].

The condition[(1.l1) coincides with the non-degeneracy itmmdof the relative Futaki in-
variant, which is introduced by Rollin-Simanca-Tipler [£8]. Here we get the same condition



from a different point of view. We can get a similar result ag@lary[1.3 and a similar expan-
sion of the functior® as in Theorem 111, which are omitted since we will not use thethis
paper.

Finally, we will study the deformation of the Kéhler-Ricdlgon. A Kahler-Ricci soliton is
a Kahler metriawy in the first Chern class satisfying

Ric(cy) — ay = V— 1036,

where0y is a holomorphic potential of a holomorphic vector fi¥d As Kéhler-Einstein met-
rics, the existence and unigueness of Kahler-Ricci solrenimportant and has been studied by
a series of papers [22][23] etc. Since Kahler-Ricci sobtarust be in the first Chern class, there
are no Kahler-Ricci solitons if we deform the Kéhler clas@wdver, inspired by the extremal
Kahler metrics, we can consider whether there is a metrisfgity the equation

S(wy) — 5= Dgbx,

wheres is the average of the scalar curvatgrel'his metric is first introduced by Guan in/[9]
and is called extremal solitons. Using the same idea as JfliA}l we have the result:

Theorem 1.5.Let(M,J, g, wy) be a compact Kéhler manifold with a Kéhler-Ricci solit@y ).

1. If the complex structure is fixed, for afiyc #11(M) there is an extremal soliton in the
Kéahler class/ay +tf3] for small t.

2. For any (.0, ) € B where G is the identity component of the isometry group of
(M, g), M admits a G-invariant extremal soliton {ilax] with respect to 4

Under the assumption of the second part of Thedrein 1.5, dditian [c] is the first Chern
class of(M, J), then[w | admits a Kéhler-Ricci soliton. It is interesting to see vileetTheorem
[L.5 holds for any extremal soliton. There is a technical diffy in the proof and we cannot
overcome it here.

Acknowledgements The author would like to thank Professor F. Pacard and YhiL{f@® kindly
sharing their insights on the deformation theory. The auttmuld also like to thank Professor
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2 Deformation of cscK metrics

In this section, we will use the method of Pacard-X(Lin [18ddve the constant scalar curvature
equation and show that a small perturbation of the Kéhlegsclader some assumptions will
admit a constant scalar curvature metric.



2.1 Fixed complex structure

We follow Lebrun-Simanca’s notations in [11][12]. L@V, J, g, wy) be a compact Kahler man-
ifold of complex dimensiom with a constant scalar curvature mettg. By Matsushima-
Lichnerowicz theorem, the identity componédbf the isometry group ofM, g) is a maximal
compact subgroup of the identity component &M, J) of the automorphism group A(¥, J).
LetWé’k(M) be the reak-th Sobolev space @-invariant real-valued functions W2X(M). By
the Sobolev embedding theorem, the spate(M) is contained irC'(M) if k> n+1. The
space of real-valuedy-harmonic(1, 1) forms onM is denoted by;#’11(M). Since the metrig
is G-invariant, everyg-harmonic formg € s#11(M) is G-invariant. Let%?(M, wy) be the space
of Kahler potentials oty and% be a small neighborhood of the origin WGZ"‘(M). We can
assume thatz ¢ Z(M, w) for smallt wherew = ay+tB. Thus, for any functiorp € % the
metric _

We = wy+tB+vV—-1909,

is G-invariant.

Leth(M,J) be the space of holomorphic vector fields(éh, J). By Matsushima-Lichnerowicz
theorem, the Lie algebiiaM,J) can be decomposed as a direct sum

h(Ma‘]) = hO(M>‘]) S a(Ma‘])a
wherea(M,J) consists of the autoparallel holomorphic vector fieldgMfJ) andbho(M,J) is
the space of holomorphic vector fields with zeros. § éte Lie algebra ofs andgg the ideal of

Killing vector fields with zeros. Any elemerdt € go corresponds to a holomorphic vector field
X =J¢& ++v/—1&, and we define a smooth functidlk satisfying

ixay = V=108 [ Bxaf =0

The functioné is called holomorphic potential of with respect taw,. Sinceg is G-invariant,
B is a real-valued function. Lgtc g denote the center gfandzp = 3 N go. Thenzg corresponds
precisely to the Killing vector fields igpg whose holomorphic potentials a@invariant.

Now we choose a basi, -, &q} of 30 such that the function$8y,6y,---,64}, where
6 = 1 and8, is the holomorphic potential of the holomorphic vector feeig = J& + /—1&;,
are orthonormal with respect to thé inner product induced by the metic

1 g
f :—/ fgafl, f,geC®(M,R),
(. Qv =g, ), 1949 F9€C7M.R)

whereVg = [y wj. Using this product, the spa&ftié’k has a decomposition

2k
WG™ = Ay ® Hi,
where J7; is spanned by the sdt6,61,---,64} over R. We define the associate projection

operator

Ag: Wk — 4

d
f o S8, iz 8,
i;' L2(a) 6
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and the operatdrly = | —g.
For any¢ € %, we calculate the expansion of the scalar curvatur@ gfat (t,¢) = (0,0) :

s(ap) = S(oa) — (839 + Ry i+ thqtroB +tRiBy) + Qg(%9,1B),

whereQq collects all the higher order terms. Note thatis a constant sincg is harmonic.
The linearized operator &fw ¢ ) at(t,¢) = (0,0) is given by

Lo$ =250 +Rio;i;

and for anyf € kerlLg we can associate a holomorphic vector figid= JOf + v/—10f which
has nonempty zeros. In general, has nontrivial kernel and it is difficult to solve the congdtan
scalar curvature equation.

Now we have the following result:

Theorem 2.1. Let (M, wy) be a compact Kahler manifold with a constant scalar curvatur
metric wy. There existgp > 0 and a smooth function

®: (0,&) x (M) = R

such that if € 2#%1(M) has unit norm and satisfie®(t, 3) = 0 for some tc (0, &) then M
admits a constant scalar curvature metric in the Kahler slag; +tf].

Proof. Consider the equation fg,=) e Ay % RO+1:

S(are) = (=,0), (2.1)

where® = (60,61, ,6q) and= = (co,C1,-++,Cd) € RI*+1 s a vector with
s d
<E7O> =Co+ Ci9|.
2,

Note that if the equatiori_(2.1) holds, thegis the average of the scalar curvature and it only
depends on the Kahler clagsa]. Applying the implicit function theorem, we have

Lemma 2.2. Fix B € #*(M). Then there existy,C > 0 such that for all t (0, &) there exists
a unique solutior(¢; g, = g) € %ﬁ(ﬂ x R4+1 of the equation{Z]1) and satisfying the estimates

11 8llwzwequy < Ceo,  [|1Z61l < Ceo, (2.2)
where||Z|| denotes the standard Euclidean nornaih R9+2,

Proof. We consider the operator

Mgs(ag): (—€.€) x Hg,a— R



Since the linearized operator @t¢) = (0,0)

D¢ﬁls(al,¢)|(o70):jfg%k+4 — %ﬂng
Y — —Lgy

is invertible, for smalt there is a solutio; g € %”g kiq SUCH thallzlgis(au,w) =0 and we can
find a vector=,; 3 € R41 such that

(@ g,,) = (Ze5,0). (2.3)

The estimates ir_(2.2) follows directly from the implicitfction theorem.

O

Now we want to know when the solutigip, B’—t ) of (2.1) has constant scalar curvature.
It suffices to show that the vectarg B = (Co,C1,--- ,Cq) satisfiesci =0 for all 1 <i < d. Given
B € #*1(M), the solution(¢, g, =; 5) determines a holomorphic vector field

d

Xp=3 Glt)XE bo(M,J), (2.4)
k=1

whereX is the holomorphic vector field defined I8 andci(t) are the entries of the vector
Ztp = (Co(t),Ca(t), - ,cq(t)). For simplicity, we writecy g = a4, , for short. Now we define
a function on(0, &) x s#+1(M) by

q)(t7l3) = /M Xthh[’{B a)[rjﬁv

wherehy, ; is determined bys(a g) — Co(t) = Agy ;hey ;- NOte that the functiord(t, B) is ex-
actly the Futakl invariant ofX; g, [ ]) and it is zero if the Futaki invariant déa] vanishes.

Let Mg be theL?-projection fromWG (M) to the subspace which is spanned by ttje functions
{61,---,6q}. We denote by g = (c1,--- ,Cq) the vector inRY which removes, from = and
© = (64, --,64). With these notations, we have the lemma:

Lemma 2.3. There is agy > 0 such that, if t (0,&) and if 8 € s#11(M) with unit norm is a
zero of the functio®(t, B) thenay g has constant scalar curvature.

Proof. Note that

(t.B) = [ @p(slaag) — o)y = [ Bp(Eps.0) . (2.5)

whereg, g is the holomorphic potential of g with respect to the metriay g under the normal-
ization condition

/M 6.l =0, 2.6)



We claim that there is a constabtindependent of and such that
165 — (Zt8: O llL2(ey) <C =l (2.7)
In fact, by definition we have
sy = V=10(Z15.0), ix,0p5=v-1064.

This implies that
V=10(85— (514,0)) = ix,(tB+V=1009p) = zck x(tB+ V=104, ),

where we used the definition (2.4) Xf g. Since by Lemma 2|2 g|lwax4m) < Céo for any
t € (0,&), we have

B4(8p = Ep 0| = |3 alt)ng(0lx (1B +v=1004p))|
< CellZpll,

which implies that
16,5 — (Zt.5:O)lL2(wy) < C0l|=t gl

by the eigenvalue decomposition&y and the normalization condition (2.6). Thus, the inequal-
ity @.7) is proved.

Since{6p,---, 64} is an orthonormal basis ofg, we have

ZplP= | Ep 0P <C [ (Eip0Rdl. 28)

where we used the fact thi [|z«:4m) < C& whent small by Lemma 2]2. The assumption
®(t, B) = 0 together with[(2.8) and (2.7) implies that

| (Es.0)-85) Ep.0)
CeollZepll- 1zt O 2(aay)

Céo /M (Zip ©)2 5.

Thus, if& is small enough we havg g = 0. The lemma is proved.

/M <Et,B7e>2w(rjp

IN

IN

O

Thus, the first part of Theoreim 1.1 and Corollary 1.2 followedily from Lemma2.3.
U



Observe that we can expand the functib(t, 3) with respect td att =0:
®(t, B) = a1 (B)t + aa(B)t* + ag(B)t>+ - + am(B)t™ + O(t™Y),

wherea; (B) are the coefficients df. We want to ask what kinds of Kahler metric exists if we
only assume the first several termsagff3) vanish.

Corollary 2.4. Letay be a constant scalar curvature metric. There are two coristayC > 0
such that for any harmonic forfd € #+1(M) with unit norm and

a(B) =a(B) =--- =am(B) =0, (2.9)
M admits a Kahler metrieg g € [a +tf] fort € (0, &) satisfying

mi1

[[s(ar,g) —Co(t)llcxmy <Ct 2. (2.10)

Proof. We follow the notations in Lemnia 2.3. By the assumpt[on](29¥re are two constants
€,C > 0 such that for any € (0, &9) we have

|®(t,B)] < Ct™. (2.11)
By equality [2.5) and(2]7) we have
01.8)- [ (Ep02als| < CUZpl(Ep Oy
< Ct/M <Et,p,@>2“%rj/3

where we used_(2.8) in the last inequality. Thus, there isrstemtey > 0 such that for any
t € (0,&) we have

| Gip@2aly <C-0(,p) <C-t™?

and hence .

> (t)?= /M (Ztp,©)? wf <C /M (21,0 af) <Ct™, (2.12)

m+l
2

This implies that for eachwhent is small,|c; (t)| < Ct
have

. Sincew g is a solution of[(Z11), we

d

The corollary is proved.



Now we want to compute the coefficientstah the expansion of the functioi. Let wy, be
a constant scalar curvature metricrand(¢; g,=; g) the solution of[(2.1). Since the operator

. 1 1
Lg: HAgkia = Hgk

is self-adjoint and invertible, we denote iy = IL,* the inverse operator dfgy. Without loss
of generality, we can assume thfais traceless with respect to the mefgicOtherwise, we can
consider the metri¢l+t - trg3) wy which still has constant scalar curvature. L%@ll ) be
the space of traceless harmoific1) form with respect to the metrig on M. Computlng the
first derivative ofS(t) .= s(w g) — (iw, ©) with respect td, we have

Lemma 2.5. For B € %‘5(1’1), we have the following:

(£'(0,6) = —fg(RB;),
$'(0) = —Ggfy(RiB;),
(

/ — l 3. )
0) - \Tg/M RifBleg

Co
where we write f(t) = 2 for simplicity.

- at
Proof. SinceS(t) =0 fort € (0, &), we have

0=S(t) = —A%'(t) - Rj{t)dji(t) — Rj(B— (Z{ 5(1),0). (2.13)

Projecting to the spac&y whent = 0 we have

0="g(S(1))(0) = ~Ag(RBji) — (=1 5(0),6),
which implies that N 5 N
(=15(0),0) = —Ng(RB;)-
On the other hand, we proje€t(2113) to the sp&‘&%{ and we have
0="f1g(S(1)(0) = —Lg¢'(0) — Mg (RB;7).
This together withp’(0) € gy, , implies that
$'(0) = —Gqgflg (RiBj)-
Now we calculatey(t). Note thatcy(t) only depends on the Kéhler class; +tf3], we compute
it using the metriay = wy +1t. Since%cq”‘ = tre,, B wf =0, we haveV) = 0 and

Vg/ 0t towg V/R”ﬁJI

The lemma is proved.
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Corollary 2.6. If B € 7;"'(M), then the functior can be expanded as

@(t.8) =t | (Mg(RBH)?+O(t"). 2.14)

Proof. Sinceg g(0) = 0 and= 3(0) = 0, we haved'(0) = 0. Direct calculation shows

@'(0) = [ 26/5(0)(Z; 5(0).0) . (2.15)

Taking the derivative with respect tpwe have

— d d _
V=1065(0) = (ix, @5 +ixs6lp) |, = 3 Oy = V=13 (028

which implies that
d
0) = z ¢ (0)6 = <E{’B(O),@>. (2.16)
K=1

This together with the equality (2.115) and Lemimd 2.5 impiied

(0 =2 [ (E500.0) =2 (My(RiB)"

The corollary is proved.
]

If wyis a Kéahler-Einstein metric, the first term of the right haiesof (2.14) automatically
vanishes. In this case, it is not difficult to expad, 3) for more terms.

Lemma 2.7. If B € 2"*(M) and satisfies RB;7= 0, then we have
(i{fﬁ(o)7é> = ﬁg(ZRijiBjEBkﬁ7
//(0) = Ggﬁgl(ZRij—BjEBki_),
/! 1 n
(0 = v /M 2R BB wy-
Proof. Following the proof of LemmBA2l5 we have
S't) = (Bi+¢) e i+ B+ 695 — A"
+(4)i 05— R (0@ + 2R (B + 029 )+ (89"); 1By
+R BB+ 0°Did)i+ RiBa(B + 0°Did) i — ({5, 0).
Thus, projecting tozg and%}k we have
= Mg(S'(1))(0) = Mg(2R B;iBe) — (éﬁp(o)’é%
= Mg (S'(t)(0) = ~Lgo" + Mg (2R jBjicBa)-

11



Moreover, we calculatefj(0) as in the proof of Lemma 2.5

1 p n 1 S
:\TQ/M R(oy+1tB) t_owg—vg/M 2R BB o

The lemma is proved.

Corollary 2.8. If wy is a Kahler-Einstein metric anfl € %’61’1(M), then we have

o(t.8)=t* | (My(RiBih)> e +0(t").
Proof. By Lemmd2.5, we have

(£15(0),0) = ¢/(0) = c5(0) =0,
Thus, the equality (2.16) implies th@tB(O) = 0 and by direct calculation we have

/// _ 3/ _tB (0), >+9t/,B( )<:t”[3( 0), >) (;)g 0.

On the other hand, by Lemrha 2.7 we have

_ d _ ., d
V=1085(0) = ixy, )@ = kz o}/ (0)ix, iy = \/_10( S dk'(O)ek), (2.17)
' =1

k=1

which implies that
{'5(0) = (={5(0),0). (2.18)
Thus, by tedious calculation we have

)=6 [ 65(0)(=05(0,0) f =24 | (MRl

The corollary is proved.

2.2 Varying complex structures

In this section, we will consider the deformation of conststalar curvature metrics when the
complex structure varies. LéM,J, g, wy) be a compact Kéhler manifoldM, J) with a Kahler
metricg and the associate Kahler fora. Let J; be a smooth family of complex structures with
Jo =J. By Kodaira’s theorem iri [16] there exists a smooth famil\Kéhler metricg; with go=g
which is compatible with the complex structudefor smallt. Let wax be the associate Kéhler
form of g; with respect to the complex structude The triple (J, g, ) is called a complex
deformation of(J,g, wy). Given a complex deformatiof, g, w), we want to know whether
there exists a constant scalar curvature metric in the K&kdss([a], %) if we assume thady

12



is a constant scalar curvature metric(d, J).

Sincegis a constant scalar curvature metric, the identity compbBef the isometry group
of (M, g) is a maximal compact subgroup of AM,g) by Lichnerowicz-Matsushima theorem.
In general the action of the group may not extend tgM, J;). We follow the idea of Rollin-
Simanca-Tipler in[[19] to assume that a compact connectbdreup G’ of G can extend to
(M, J) andG' acts holomorphically on the complex deformatidn g;, «t). We denote byZx
the space of complex deformatiof, g, wx) which allow the holomorphic action &&'. We
denote bwvé;k(M) the subspace @ -invariant functions inw2(M) and% a neighborhood of

the origin inWZ;k(M). For any¢ € %, we compute the expansion of the scalar curvature of the

metrica ¢ = @ ++v/—146¢ at(t,¢) = (0,0) :
Lemma 2.9. Suppose thad wy /dt = ;. We have
(. p) = S(ct) — Lo —t (Aqlray(n + S(9)) + R (1 + S(9)) 7+ trg(Slog detg) ) +Q,

where Q collects all the higher order terms and the operat® @ven by S %dq’(O)d f.

Proof. For any smooth functiori, we define the operator
7} = 1.,
S(f) = =v/=1aa(f) = Fd3df,

where we used the equality—ldtd_t = %d\ld. Note that

0 _
56 = M+S(0), Dpang(¥) = V=13 y.

The derivatives of the scalar curvature are given by

%S(‘*LI@) = —(Uir+$,iﬁ¢))RjT—gij_ﬁ,ijﬂOgdetg)—Attfm,¢(’7+5(¢))
Dys(arig)(@) = —Rjpi—O0P.

Thus, the lemma follows directly.
O

As in Sectiori 2, we defing(resp. g') the Lie algebra oG(resp.G'), andgg (resp. gp) the
ideal of Killing vector fields with zeros iy (resp. g’). The center ofyo(resp. gp) is denoted
by so(resp. 35). Each element ofo(resp. 3p) is of the formJOf for a G(resp. G')-invariant,

real-valued functiorf. Let ,%@96 (resp.jfg%) the space of holomorphic potentials of the Killing
vector fields ingj (resp. 3,) and it is easy to see that the spagg® is identified to theG'-

invariant holomorphic potentials o%@%. Using theL? inner product induced by, the space
Wé;"(M) has the orthogonal decomposition

2.k
W5 (M) = %@%lk

13



whereJ7Zg = R@%36 and we assumgz is spanned by an orthonormal ba$8y, 61, --- , 64}
where 6o = 1 with respect to the induced® norm of the metriay. Let g andly be thel -
orthogonal projection ontgz and%”g}k respectively. With these notations, we have the result:

Theorem 2.10. Let g be a constant scalar curvature metric on M with
kerLg "W2* € R& 74°, (2.19)

For any (&,0:, @) € e, there is a constangy > 0 and a smooth functiok : Zz — R such
that if W(J, g, ax) = 0 for some te (0, &), then M admits a Ginvariant constant scalar curva-
ture metric in[w] with respect to

Proof. First, we want to find the solutiofyp, =) e C%”g}kﬂ x R4 of the equation

S(a ) = (2,09), (2.20)

where® = (60,61, ,64). As in the proof of Lemm&2]2, we can use the implicit function
theorem and Lemnia 2.9 to show that

Lemma 2.11. Suppose that the condition (2119) holds. For ddyg:, w) € A, there exist
C, & > 0 such that for all te (0, &) there is a solutior(¢y, =) € ,%%},(M x RY4+1 which satisfies
the equation[(2.20) and )

bt lwzkeam) < Céo,  ||=t]| < Ceo. (2.21)

Proof. The linearization of the operat6iys(a ) : (—€,€) x Hqf 4 — Rat(t.9) = (0,0) is
given by k
- | ,
Dy Mys(ag)l00) (W) = —Lo : Hp a — WG

which is invertible from%’j(i4 to %@Lk if and only if the condition[(Z.19) holds. Thus, the lemma
follows directly from the implicit function theorem.
O

Let &(1 <i < d) be the Killing vector fields ino with the holomorphic potentialé (1 <
i <d). Since(3, 0, @) € g, the vector fieldx! := 3 & + /—1& are holomorphic oriM, J)
and the holomorphic potential o€ with respect tow ¢4, is given by a real-valued functiof
satisfying

i g, = V10,6, 6t 'y, = 0. (2.22)
M

For the vectoE; = (co(t),cy(t), -+ ,cq(t)) € R41 obtained in LemmBAZ.11, we define the holo-
morphic vector field

o

X = G(t)X' € ho(M, &)

14



Let 6 be the holomorphic potential ¢ with respect taw ¢, and
O:(elv"'79d)7 Et:(C]_(t),"',Cd(t)),

whereg; (t) are the entries of;.

Lemma 2.12. If (&,0:, @) € B satisfies

[% —Jollcrm) < Céo, te€(0,€0), (2.23)
then there is a constant;C> 0 such that for all te (0, &) we have

16 = (Zt,©) [ L2(cy) < Ca&oll=tl]- (2.24)

Proof. Define the vector fieltk = T2, c(t)X € ho(M,J) wherecy(t) is given by LemmaZ.11.
By definition, we have

Iz 0y = V=10(5,0),  ixtg = V148,

whered denotes the operator dM,J). We want to compute the difference of the two functions
6 and(=,0) :

VEI10((2.0) - 8) = iguy—ix@e+V-1(d-0)a
d _
= ) &t)(ixwy—ixwe)+v-1a—-0)&.  (2.25)
K=1
Note that the estimatiuy — & ¢, [[wakr2ow) < Céo obtained in Lemma 2.11 implies

Hf9<ikag—ix;a%>Hco = liaxext) @y +iax (@ — g,) +ixt 0 (@ — g, llco
< Cé, (2.26)

where we used the estimates

10X — X llco = 118 (% — Jo)ék||co < Ceo, t € (0,&).

Now we estimateés. Note that we have
d
Awt,q&a =V _1dt(ixtm7¢t) =v-1 Z Ck(t)at(ixtm@t)
K=1

and||a ¢, — Wyllcz« < Cg if we choosek sufficiently large in LemmB 2,11, there is a constant
C > O independent df such that

18 llcz(m, ) < ClIZl- (2.27)

Therefore, we have
— l _
00— 9)8] = 5|0(% — Jo)d@| <Ceo- |Zll, e (0.50), (2.28)
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where we used the equalit;,/f = %(d f—v—13df) and the inequality((2.27). Combining the
estimates[(2.29)(2.26) arid (2128), we have

Dg((=0,0) - )| <Ceo- 1=l

This together the eigenvalue decomposition and the nazatain condition[(Z2.22) give§ (2.24).
The lemma is proved.
]

Now we define the functiol : s — R by

Vo) = [ g aly = [ B(s(ag) —colt) ol

whereco(t) is the average of(w ¢, ) andh g, is given bys(a g, ) — Co(t) = Agy 4 kg As in
Sectiorl 2, we have the following result whose proof is orditte

Lemma 2.13. There existgy > 0 such that if the complex deformati¢d, g:, ) € A satisfies
W(&,0:, m) =0for some te (0, &), thenw ¢, is a constant scalar curvature metric with respect
to the complex structurg.J

Theoreni 2,10 then follows from the above results.

3 Deformation of Kahler-Ricci solitons

Let (M,J) be a compact Kéhler manifold with a Kéhler Ricci solitggs with respect to the
holomorphic vector fielX :

Ric(axs) — ks = v~ 109 x

where6y is the holomorphic potential of with respect tawcs. We would like to ask whether
we can perturb the Kahler Ricci soliton under complex defdiom of the complex structure.
Inspired by the discussion before, for any Kahler clgagwe consider the metrio, € [y
satisfying the equation of extremal solitons

S(wy) — 5= Dy Ox (wy). (3.1)
By the dd-Lemma, we can easily check that

Lemma 3.1. If wy € 27c, (M) satisfies the equatiof.1]) with respect to a holomorphic vector
field X, thenwy is a Kahler-Ricci soliton with respect to.X

By the equation(3]1), ify] admits an extremal solitomy and the Futaki invariant vanishes
on [ay], thenwy must be a constant scalar curvature metric. In fact,

(X [e]) = [ Bx(9)8eB(9) f = O

implies thatfx (¢) is a constant.
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Theorem 3.2.1f cy be a K&hler Ricci soliton with respect to X on Men for anyg € s#11(M)
there is an extremal soliton in the Kahler clgss) +tg3] for small t.

Proof. We follow Lebrun-Simanca’s arguments in [11][12]. lggbe a K&hler-Ricci soliton. By
Theorem A in the appendix df [22] the identity componé&nf the isometry group ofM, g) is

a maX|maI compact subgroup of the automorphism grougMutAs in previous sections, we
IetW k be the reak-th Sobolev space dB-invariant real-valued functions W2K. Let g the
Lie algebra ofG and3 C g denote the center gf. We denote byyg the ideal of Killing vector
fields with zeros angp = 3N go. By Lemma A.2 in the appendix of [22], each elemeng®is
of the formJOf, wheref is aG-invariant real-valued function satisfying the equation

Zy(f) = fdZ wd2 = 0.

We choose a basi&, - -, &4} of 30 such that the functional§fy, 6, - - - , 84} where6y = 1 and
6 (1 <i <d) is the holomorphic potential of the holomorphic vector feell = J& + /—1¢;
are orthonormal with respect to thé inner product

(F,0)12(, / fgeh o), f,geC”(M,R),

whereVy is the volume of(M,g). Using this product, the spadb/é’k has a decomposition
= %@%ﬂ k» Where 7 is spanned by the s€tfy, 61, .64} over R. We define the

associate project operaty andM, and we can assume thét = X which defines the Kahler-
Ricci soliton .

Now we consider the equation fgre % :

S(t,¢) == Mg Ny Gy(s(ary) —s(t) =

whereGy is the Green operator with respect to the meitig. If % is small enoughS(t, ¢) =
if and only if a ¢ is an extremal soliton. We calculate the variatiorsgf ¢ ) at (t,¢) = (0 O)

DyS(t,0)l00) (W) = —TMg(DpMy)l0.0)Cg(S(ay) —8) +MgDy(Gy(s(ars) —9))l00):
(3.2)

Sinceg is a Kéhler Ricci soliton, we havBg(s(wy) —s) = 6. Note that
d
My 6x = _Zj(f}up’ ) 12(ca ) B0
1=
whereg, 4 is an orthonormal basis of/y. Now we choose the functions

B0 <i<d

607 :17 9, =T 7 1_ =4,
’ AT YT
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wheref; 4 are defined by the equalitigga ¢ = v—106 4 such tha{6oy, - , 644} forms an
orthonormal basis af#y, which is the space defined similar £&; using the metriav,. Thus,
we have

—MNy(DgMg)l00)Cy(s(ay) —s) = —Mg(DyMy)l(0.0)6x
Bx
- (X D
ol > s T DoPasleo
= —ngLD¢91,¢ |(0,0).

By the definition of8 4, we have
|xD¢ cq¢ ’(070) = —10_D¢ é17¢,
which implies thatX (/) = Dy él,zb l(0,0)(¢). Combining the above equalities, we have

— My (DgMp)li0,0)Cy(S(y) — ) = —MgX(y). (3.3)

Now we calculate the second term of the right hand side o) (B& Ay = Gy (s(wr¢) —9),
we have

ApAp =S(trp) —
Differentiating this equation with respect ¢oat (t, ¢ ) = (0,0), we have
~UnjBx ji+BgDypAg00) = —LGY — Rijji-
Combining this with[(3.2) we have

MyDy(Gy(s(wrp) —9)l0o) = —TMgGg <ASW+ Riyi— Wifex,ji_)- (3.4)
Combining the equalitie$ (3.2)-(3.4), we have
DyS(t,9)l00) (W) = —My (Gg(Asw +Rijyii— Wb« ji) +X(¢’))
= Ny (Bgy+y+X(¥))

where we used the assumption tgas a Kahler-Ricci soliton. Note that by Lemma 2.2[in[[22]
the functiony satisfies\gy + ¢ + X(¢) = 0 if and only if I'ij = 0 Thus, the operator

DpS(t. $)l(00) : Hgis2 = Hgk

is invertible and by the implicit function theorem there is@ution ¢; € C%”g}kﬂ satisfies the
equationS(t, ¢;) = 0 whent is small. The theorem is proved.

O
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Remark 3.3. It is interesting to ask whether Theorém]3.2 holds for anyeexal soliton g. To
prove this, it suffices to show that any functiprwith

Wit Ox iUk =0
must satisfy the equatiaf;= 0.

In fact, if gis an extremal soliton, we have

Go(Agy + R — Wb i) + X(W) = GolBgW+Rjji— B+ Lg(Xy))
= Gg(AZW+ R+ sith + 6 i)
= ((»Ulj it ex _'-I-’|kk)

where we used the equality

ngxw) = (@) (6w ) = 60+ GOW)
= Gyt 6 (Ui —Riw)
= |JW|1+9|_'-I-’|kk+S,I_WI'

Here we used the extremal soliton equation in the last gguali

Next, we use the similar method in Sectidn 2 to consider the wdnen the complex structure
varies . Let(g, wy) is a Kéhler-Ricci soliton oriM, J) and (%, ¢, «t) a complex deformation of
(J,0,ay). We assumel, g, wt) € B whereG is the identity component of the isometry group
of (M,g) and % denotes all thes invariant complex deformation dfJ,g, wy). With these
notations, we have the result:

Theorem 3.4.Let(M,J, g, wy) be a compact Kéhler manifold with a Kéhler-Ricci solit@n ).
For any (%,qt, @) € %s, M admits a G-invariant extremal soliton iat] with respect to Jfor
smallt

Proof. The proof is more or less the same as in Thedrem 3.2, and wesketgh it here. For
any (&, a, w) € e, we consider the equation

St,¢) :==MgM§Gy(s(awr ) —s(t)) =0, (3.5)

where Gy and My are the operators with respect to the mettig = @ + v—1da¢. Let
{&,---,&} be a basis ofo. Since (&, o, w) € Bg, the vector fields{X}, -, X}} where
X,t th. v/—1&; are holomorphic vector fields aiM, ) and form a basis dfo(M, J). Let
9‘(1 <i <d) be the holomorphic potentials of with respect ta ¢ and we assume that the
set{8},6%,--- 8} where8} = 1 are orthonormal and spans the spat. Differentiating the
equation[(3.6) with respect b, we have

DyS(t,0)l00) (W) = —TMg(DpMy)l0.0)Cg(S(wy) —8) +MgDy(Gy(s(ars) —9))l00):
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SinceDyw ¢ |(0,0)(Y) = \/—105(,0 and D¢Xt|(oﬁo) = 0, we still get the equality (313). By the
same calculation as in TheorémI3.2, we have the operator

DySit. #)li00) (W) = —Ng (Ao +w+X(¥))

which is invertible from#y, , to ;. The theorem is proved.

Here we give an easy example on the existence of extremudrssli

Example 3.5. Let 1: M — M be the blowup of M= CP? at a point p. TheM has no Kahler-
Einstein metrics but admits a Kahler-Ricci solitorginc; (M). Thus,M admits extremal solitons
in the Kéhler clas2mc; (M) —t[E] for t € (0,£) where E= i 1(p) is the exceptional divisor
ande > 0is small.
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