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BYPASSES FOR RECTANGULAR DIAGRAMS

IVAN DYNNIKOV AND MAXIM PRASOLOV

Abstract. In the present paper a criteria for a rectangular diagram to admit a simplification
is given in terms of Legendrian knots. It is shown that there are two types of simplifications
which are mutually independent in a sense. A new proof of the monotonic simplification
theorem for the unknot is given. It is shown that a minimal rectangular diagram maximizes
the Thurston–Bennequin number for the corresponding Legendrian links. Jones’ conjecture
about the invariance of the algebraic number of intersections of a minimal braid representing
a fixed link type is proved.
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Introduction

As shown in [8] any rectangular diagram of the unknot admits a monotonic simplification to
the trivial diagram. The starting point for the present work was the question when a rectangular
diagram of an arbitrary link admits a simplification, i.e. decreasing the complexity at least by
one.

By complexity of a rectangular diagram we mean one half of the number of its edges. There
is an analogue of Reidemeister moves, which we call elementary moves, that allow to transform
into each other any two rectangular diagrams representing equivalent links. Some of them
change the complexity of the diagram. Complexity increasing elementary moves are called
stabilizations, their inverses are called destabilizations. By monotonic simplification we mean
a sequence of elementary moves that does not include stabilizations.

Legendrian knots came to interest in the beginning of 1980s due to the development of contact
topology [2]. Each class of topologically equivalent links contains infinitely many Legendrian
classes of Legendrian links. There is an integral invariant of Legendrian isotopy called the
Thurston–Bennequin number, which can be made arbitrarily small for any topological link type.
One defines operations called stabilizations (respectively, destabilizations) also for Legendrian
links. Those operations preserve the topological type of the link and drop (respectively, increase)
the Thurston–Bennequin number by one.

In 2003 W.Menasco drew first author’s attention to a connection between rectangular dia-
grams and Legendrian links. This connection can be described as follows (see [15, 17]).

With any rectangular diagram R one associates naturally a Legendrian link LR whose Leg-
endrian type does not change under complexity preserving elementary moves of the diagram R.
Stabilizations and destabilizations split into two types, those of the first type preserve the Leg-
endrian type of LR, and those of the second one preserve the Legendrian type of LR, where R
stays for the diagram obtained from R by clockwise rotation by π/2 (for the topological type of
the link this corresponds to taking the mirror image). The change of the link LR (respectively,
LR) under second (respectively, first) type (de)stabilization is a Legendrian (de)stabilization.

It turns out that the question about simplifiability of a rectangular diagram can be answered
in a very natural way in terms of the corresponding Legendrian links. Namely, any Legendrian
destabilization LR 7→ L′ can be realized by a monotonic simplification of the diagram R while
keeping unchanged the Legendrian type of the link LR, and the existence of a destabilization
for LR or LR is a criteria for simplifiability of R.

We introduce below a notion of a bypass, which plays a key rôle in the proof of this and
other statements. We define it in the language of rectangular diagrams as well as in that of
Legendrian links. This notion is somehow related, though does not coincide, with an object
called bypass in papers [11, 13].

The idea behind bypass is to represent any Legendrian destabilization as a replacement of an
arc contained in the link by another arc, which is the one that we call bypass. After translating
to the combinatorial language, such a replacement is no longer a destabilization, it does not
even drops the complexity in general, but a rectangular diagram equipped with a bypass can be
transformed by elementary moves so as to preserve the complexity of the diagram and shorten
the bypass. This is the main technical result of this paper.

In order to prove it we use the technique that was developed by J.Birman and W.Menasco in
a series of work where they studied links represented by closed braids [4, 5]. Some important
elements of this technique appeared earlier in paper [2] by D.Bennequin. P.Cromwell in [7]
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noticed that Birman–Menasco’s method can be extended to arc presentations of links, which,
from combinatorial point of view, are just another instance of rectangular diagrams.

The proof of the main result of [8] about monotonic simplification for the unknot was obtained
by further development of this method. That proof can be simplified by using the connection to
Legendrian links that was mentioned above. In this paper we reduce that result to Eliashberg–
Fraser’s theorem [9, 10] on the classification of Legendrian knots having topological type of the
unknot.

The above mentioned simplifiability criteria for rectangular diagrams has a number of corol-
laries that have been conjectured earlier. E.g., we prove below Jones’ conjecture that states
that two braids of minimal braid index whose closures are equivalent oriented links have the
same algebraic number or crossings.

Convention 1. Throughout this paper except Section 5, by a link we mean a link in R3 (i.e.
compact one-dimensional submanifold) equipped with a selective orientation and coloring of
connected components. This means that every component of the link may or may not be
oriented and given a color, which is an integer. In particular, a link may be non-oriented,
and colors may be all zeros, or, on the contrary, a link may be oriented, and all components
numbered by different integers.

When speaking about an isotopy between links we assume that the orientations and the
colors of components are preserved under the isotopy. This additional structure, selective
orientation and coloring, is extended in an obvious way to all link diagrams that we consider
below (rectangular diagrams and front projections), and we don’t mention this explicitly for
the purpose of clarity.

The exception from these rules in Section 5 concerns only orientations as all links there are
assumed to be oriented.

1. Rectangular diagrams

Definition 1. A rectangular diagram of a link is an ordinary planar link diagram consisting of
only vertical and horizontal straight line segments (called edges) no two of which are collinear,
such that at every crossing the vertical edge is an overpass. The endpoints of edges are called
vertices of the diagram. The number of vertical edges of a rectangular diagram R is called the
complexity of R and denoted by c(R).

An example of a rectangular diagram is shown in Fig. 1.

Figure 1. A rectangular diagram of the figure eight knot
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As shown in [7, 8] two rectangular diagrams represent equivalent links if and only if they are
related by a finite sequence of the following elementary moves :

(i) a cyclic permutation of vertical or horizontal edges consists in moving one of the extreme
(upper, lower, left, or right) edges onto the opposite side with simultaneous adjustment
of the two adjacent edges, see Fig. 2;

↔

Figure 2. Cyclic permutation

(ii) a commutation of vertical (respectively, horizontal) edges consists in exchange of the
horizontal (respectively, vertical) positions of two neighboring vertical (respectively,
horizontal) edges provided that the endpoints of those edges projected to the vertical
(respectively, horizontal) axis do not interleave. The edges are regarded neighboring
if there are no vertices of the diagram between the straight lines containing them, see
Fig. 3;

(iii) a stabilization consists in adding two short edges in a small neighborhood of a vertex,
and the inverse operation is called destabilization (Fig. 4).

We will distinguish two types of stabilizations and destabilizations.

↔

↔

↔

↔

Figure 3. Commutations
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↔
↔

↔
↔

Figure 4. Stabilizations and destabilizations

Definition 2. If the two edges emerging from the stabilization point from their common end
downward and leftward or upward and rightward, then the stabilization is of type I, and oth-

↔

↔↔ ↔

type I type II

Figure 5. Types of stabilizations and destabilizations

erwise of type II, see Fig. 5. The type of a destabilization is defined as that of the inverse
stabilization.

By elementary simplification of a rectangular diagram we mean any sequence of elementary
moves in which the last move is a destabilization and all the preceding ones are cyclic permu-
tations and commutations. The type of an elementary simplification is defined by that of the
final destabilization.

The core result of the present paper is formulated in combinatorial terms as follows.

Theorem 1. Let a rectangular diagram R admit k successive elementary type I simplifications
R 7→ R′

1 7→ R′
2 7→ . . . 7→ R′

k, as well as ℓ successive elementary type II simplifications R 7→
R′′

1 7→ . . . 7→ R′′
ℓ .

Then the diagram R′
k admits ℓ successive elementary type II simplifications, and the resulting

diagram can be connected with R′′
ℓ by a sequence of cyclic permutations, commutations, and

type I stabilizations/destabilizations.
Similarly, the diagram R′′

ℓ admits k successive elementary type I simplifications, and the
resulting diagram can be connected with R′

k by a sequence of cyclic permutations, commutations,
and type II stabilizations/destabilizations.

This statement will be proved in Sections 3 and 4.
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2. Legendrian links

2.1. Front projections.

Definition 3. A link L in R3 is called Legendrian if it has a form of a smooth curve everywhere
tangent to the standard contact structure given by the one-form

ω = x dy + dz.

Legendrian links are considered equivalent if they are isotopic within the class of Legendrian
links.

The most convenient way to specify Legendrian links is to draw their projections to the yz-
plane, which are called front projections. A front projections forms a piecewise smooth curve
whose singularities have the form of a cusp and whose tangents are never vertical (see Fig. 6).
A generic front projection uniquely defines the corresponding curve in R3 since the x-coordinate

Figure 6. Front projections of a Legendrian link

can be recovered from the relation x = −dz/dy.
Fig. 7 demonstrates schematically (up to central symmetry) which front projections moves

generate the equivalence of Legendrian links, see [20].

↔

↔

↔ ↔

Figure 7. Front projection moves
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Some front projection moves that preserve the topological type of the link are forbidden
for Legendrian links because they change their Legendrian type. Examples of such moves are
shown in Fig. 8.

↔ ↔

Figure 8. Forbidden front projection moves

A piecewise smooth link consisting of finitely many arcs that are everywhere tangent to
the standard contact structure can be smoothen at the break points so that the combinatoric
structure of the projection to the yz-plane does not change. Therefore, such piecewise smooth
links also uniquely define some Legendrian type, and they themselves can be spoken of as
Legendrian links.

2.2. Presenting by rectangular diagrams. The connection between Legendrian links and
rectangular diagrams is described as follows.

Let R be a rectangular diagram. Rotate it by π/4 counterclockwise, smooth out the corners
pointing up and down and turn into cusps corners pointing to the left and to the right. An
example is shown in Fig. 9.

→

Figure 9. Front projection of a Legendrian link obtained from a rectangular diagram

The Legendrian link defined by the obtained front projection will be denoted by LR.

Theorem 2 ([15, 19]). Any Legendrian link is equivalent to the link LR for some R.
Legendrian links LR and LR′ are Legendrian equivalent if and only if the rectangular dia-

grams R and R′ can be connected by a sequence of elementary moves that does not include
type II stabilizations and destabilizations.

By Legendrian type of a rectangular diagram we mean that of the corresponding Legendrian
link LR. It follows from Theorem 2 that the Legendrian type of a rectangular diagram is its
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equivalence class with respect to cyclic permutations, commutations, and type I stabilizations
and destabilizations.

2.3. Thurston–Bennequin number. Notice that the vector ez = (0, 0, 1) is nowhere tangent
to the contact structure, therefore, a small enough shift of any Legendrian link L along this
vector produces a link L+ that is disjoint from L. A link obtained by a small shift in the
opposite direction will be denoted by L−.

The Thurston–Bennequin number of a Legendrian link L, denoted by tb(L), is the linking
number lk(L, L+) = lk(L, L−). This definition assumes that the link L is oriented. Reversing
the orientation of all components does not affect tb(L). So, in particular, if L is a knot its
Thurston–Bennequin number does not depend on the orientation.

The Thurston–Bennequin number is a Legendrian isotopy invariant, and it can be computed
from the following simple formula

(1) tb(L) = w(F )−
1

2
c(F ),

where w(F ) is the writhe number and c(F ) is the number of cusps of a front projection F
representing the link L. The rectangular diagram obtained from a rectangular diagram R by a
clockwise π/2-rotation will be denoted by R. For the front projections F and F corresponding
to rectangular diagrams R and R we have w(F ) = −w(F ), whereas the total number of their
cusps is equal to the number of vertices of R. This implies the following relation:

(2) − c(R) = tb(LR) + tb(LR).

From (1) one see that the forbidden moves shown in Fig. 8 change the Thurston–Bennequin
number by one. These moves of front projections of Legendrian links will also be called sta-
bilizations and destabilizations, where the former drop and the latter increase the Thurston–
Bennequin number.

Stabilizations, in contrast with destabilizations, can be applied to any front projection. If
the Legendrian class of a Legendrian link L contains a representative whose front projection
admits a destabilization, then we say that so does the Legendrian link L.

Clearly, type II stabilizations and destabilizations of a rectangular diagram R result in sta-
bilizations and destabilizations, respectively, of the corresponding Legendrian link LR.

As D.Bennequin shows in [2] the value of tb is bounded from above for any topological class
of links. In particular, he shows that the Thurston–Bennequin number of an unknot is always
negative.

Y.Eliashberg and M.Fraser proved a stronger result in [9, 10] a particular case of which can
be formulated as follows.

Theorem 3. Let K be an oriented Legendrian knot in R3 having topological type of the unknot.
Then it is Legendrian equivalent to a knot of the form
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, . . . ,, , . . .

where the number of left and right “zigzags” is uniquely determined by K.

3. Bypasses

For settling the main results of this paper we will need only a combinatorial model of bypasses.
However, for making the definition look less artificial we start by describing the geometrical
object underlying the concept.

3.1. Legendrian description.

Definition 4. Let L be a Legendrian link. An ordered pair (α, β) in which α ⊂ R3 is a
smooth simple Legendrian (i.e. everywhere tangent to the standard contact structure) arc with
endpoints at L, and β ⊂ L is an arc with the same endpoints is called a bypass for L if there
exists a two-dimensional disc D ⊂ R3 satisfying the following:

(A0) D is the image of the semidisc {(x, y) ∈ R2 ; x2 + y2 6 1, x 6 0} under a smooth
embedding into R3;

(A1) the disc boundary ∂D coincides with α ∪ β;
(A2) the intersection D ∩ L coincides with β;
(A3) disc D is tangent to the standard contact structure along α.

Let us discuss in more detail Condition (A3) as it will be crucial for us to replace it by
another condition that can be reformulated in combinatorial terms. Assume that we have a
pair (α, β) and a disc D that satisfy (A0–A2).

Since α and β are Legendrian, the disc D is tangent to the contact structure at the endpoints
∂α = ∂β, but not necessarily along the whole arc α. So, when one proceeds from one endpoint
of α to the other the tangent plane to D makes a half-integer algebraic number of turns around
the tangent vector to α with respect to the standard contact structure. Denote this number
by r. If we have r = 0, then D can be deformed near α so as to satisfy Condition (A3), hence
(α, β) is a bypass.

Denote the link (L \ β) ∪ α by Lβ→α. One can see that the pairs of linking numbers

{lk(Lβ→α, (α ∪ β)+), lk(Lβ→α, (α ∪ β)−)} and {lk(L+
β→α, α ∪ β), lk(L−

β→α, α ∪ β)}

coincide with {[r], [r + 1/2]}, where [x] denotes the integral part of x. If these numbers are
all zero, then the knot α ∪ β shifted in either way is actually unlinked with Lβ→α. So, Condi-
tion (A3) in the definition of bypass can be replaced by either of the following three:

(A3′) Lβ→α is unlinked with (α ∪ β)+ ∪ (α ∪ β)−;
(A3′′) L+

β→α ∪ L−
β→α is unlinked with α ∪ β;

(A3′′′) we have lk(Lβ→α, (α ∪ β)+) = lk(Lβ→α, (α ∪ β)−) = 0.
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Note also that Condition (A0) is then unnecessary.
With Condition (A3) replaced by (A3′), (A3′′) or (A3′′′) it is convenient to use front projec-

tions to check if an arc is a bypass. E.g., it can be seen from Fig. 10 that the dashed line on
the left is not a bypass, and on the right is.

not a bypass

a bypass

Figure 10. Detecting a bypass on a front projection

From Condition (A3′′′) and Bennequin’s theorem on negativity of tb for unknots [2] it follows
that the link Lβ→α is topologically equivalent to L but has larger Thurston–Bennequin number,
namely, we have

tb(Lβ→α) = tb(L)− tb(α ∪ β).

As we will see below (in combinatorial terms) the link Lβ→α can be obtained from L by a
sequence of (− tb(α ∪ β)) destabilizations.

3.2. Description in terms of rectangular diagrams. Now we translate what was just said
to the combinatorial language. For ease of exposition we introduce the following terminology
convention.

Convention 2. Since a rectangular diagram can be recovered from its set of vertices, in what
follows we do not distinguish this set from the diagram itself, and use the same notation for
both. Thus a finite subset of the plane will be considered to be a rectangular diagram if any
vertical or horizontal straight line contains either no or exactly two points from the subset.

Definition 5. By the Thurston–Bennequin number tb(R) of a rectangular diagram R of a knot
we call the Thurston–Bennequin number of the corresponding Legendrian knot:

tb(R) = tb(LR).
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For a rectangular diagram R we denote by Rր a diagram obtained from R by a small positive
shift along the vector (1, 1), where smallness of the shift will be clear from the context. Similarly,
Rւ will denote the result of a small shift in the opposite direction.

If R is a rectangular diagram of a knot, then tb(R) is by definition equal to the linking
number lk(R,Rր) provided that the connected components of the link are oriented coherently
(instead of lk(R,Rր) one can equally well take lk(R,Rւ) or lk(Rւ, Rր)).

Definition 6. By a rectangular path we mean a subset of the plane that can be turned into
a rectangular diagram of a knot by adding exactly one or exactly two points located at one
vertical or horizontal straight line. Additionally, a single point is also regarded as a rectangular
path.

Horizontal and vertical straight line segments connecting two points of a rectangular path are
called edges, and the points themselves vertices of the path. Horizontal and vertical straight
lines that contain exactly one vertex of a rectangular path will be called the ends, and the
corresponding vertices the endpoints. All other vertices of a rectangular path are called internal.

Examples of rectangular paths are shown in Fig. 11, where edges and the ends of the paths
are also depicted for clarity.

Figure 11. Examples of rectangular paths. Solid lines show edges, and dashed
lines the ends of the paths

Convention 3. Whenever we discuss a union of a few rectangular diagrams of links and
rectangular paths we assume that they are in general position, which means that no two edges
are collinear. However, it may be required that the ends of a path coincide with those of the
others.

E.g., having set this convention, the following is true: any two different rectangular paths
with common ends form a rectangular diagram of a knot.

The fact that an edge of a rectangular diagram or a rectangular path is contained in an end
of a rectangular path will be expressed in the opposite (but linguistically more habitual) way
saying that the end lies on the edge. This is also justified by the following construction.

For a finite subset X ⊂ R2, we define X̃ to be the following union of straight line segments
in R3:

X̃ =
⋃

(i,j)∈X

[(2i, 0, 1), (0, 2j,−1)].

X̃ can also be characterized as the union of all straight line segments that have endpoints at
the straight lines ℓ1 = R× {0} × {1} and ℓ2 = {0} × R× {−1} and pierce the plane R2 × {0}
at points from X , see Fig. 12.
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ℓ2

ℓ1

Figure 12. A rectangular path X and its 3d-realization X̃ by a broken line

One can see that if R is a rectangular diagram, then R̃ is a link in R3 isotopic to the one
defined by R. Indeed, the intersection of R with the upper halfspace R2 × [0,+∞) consists
of all PL-arcs of the form [(i, j1, 0), (2i, 0, 1)] ∪ [(2i, 0, 1), (i, j2, 0)] with [(i, j1), (i, j2)] a vertical
edge of R. This family of arcs is isotopic in R2 × [0,+∞) to the union of vertical edges of R,
with the arc endpoints being fixed during the isotopy.

Similarly, the intersection of R̃ with the lower halfspace R2 × (−∞, 0] consists of PL-arcs
isotopic in this halfspace to the union of horizontal edges of R.

If α is a rectangular path whose ends lie at edges of a rectangular diagram R, then α̃ is

a broken line whose endpoints lie at R̃. Moreover, with Convention 3 set the interior of the

PL-arc α̃ will be disjoint from R̃. If two rectangular paths α and β have common ends, then

the broken lines α̃ and β̃ have common endpoints.
We are ready to define our key object.

Definition 7. By a bypass for a rectangular diagram R we call an ordered pair (α, β) of
rectangular paths having common ends such that β is a subset of R, and there exists an
embedded two-dimensional disc D ⊂ R3 satisfying the following:

(B1) the disc boundary ∂D coincides with α̃ ∪ β̃;

(B2) the intersection D ∩ R̃ coincides with β̃;
(B3) in the link defined by the rectangular diagram (R \ β) ∪ α ∪ (α ∪ β)ր ∪ (α ∪ β)ւ, the

components presented by (R \ β) ∪ α are unlinked with the two others.

A bypass (α, β) is called elementary if we have tb(α ∪ β) = −1. The value − tb(α ∪ β) will be
called the weight of the bypass α, and the path β the bypassed path.

In most cases the path β is uniquely determined by α. E.g., this is true if the component

of R̃ that contains the endpoints of α̃ is knotted or linked with the rest of the link. Anyway, if
α is given, then there are at most two options for β. So we will often refer to α as a bypass,
keeping, however, in mind that the choice of β is made if there are two options.

One can see that any bypass for a rectangular diagram R can be turned into a bypass for the
Legendrian link LR by using similar procedure to the one that turns a rectangular diagram into
a front projection. Namely, we add the edges of the path (if an endpoint of the path is collinear
with an edge of R but does not belong to it we also connect it with the closest endpoint of

the edge) thus obtaining a projection of a knotted graph isotopic to R̃∪ α̃ (at self-intersections
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vertical edges are always overpasses). Then we rotate the whole picture counterclockwise,
smooth out some corners and turn into cusps the others in accordance with the general rules,
see Fig. 13.

Figure 13. A bypass for a rectangular diagram and the corresponding bypass
on the front projection

One can also show that any bypass for a Legendrian link LR considered up to a Legendrian
isotopy can be obtained in this way. We will not use these facts in the proofs and leave them
as an exercise to the reader.

3.3. Θ-diagrams. Here we draw our attention to the object formed by a rectangular diagram
equipped by a bypass.

Definition 8. By a rectangular Θ-diagram we call a union α∪β∪γ∪δ of three rectangular paths
α, β, γ having common ends and a rectangular diagram δ of a link. The paths are distinguished,
so, formally, a rectangular Θ-diagram is a four-tuple (α, β, γ, δ) in which α, β, γ are rectangular
paths having common ends, and δ is a rectangular diagram. As mentioned above, by default
we assume that all edges of these objects are pairwise non-collinear.

Two rectangular Θ-diagrams are called Legendrian equivalent if one can be obtained from the
other by a finite sequence of permitted moves, which include cyclic permutations, commutations,
type I stabilizations and destabilizations, and end shifts defined below. The corresponding
equivalence class of a rectangular Θ-diagram will be called its Legendrian type.

Cyclic permutations, commutations and (de)stabilizations for rectangular Θ-diagrams are
defined similarly to those for rectangular diagrams of links. We focus only on the differences.

There may be not only an edge but also an end of the paths that constitute a rectangular
Θ-diagram, at the extreme left, right, upper, or lower position. Its translation to the opposite
side is also regarded as a cyclic permutation (see Fig. 14).
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↔

Figure 14. A cyclic permutation involving path ends

↔ ↔

Figure 15. Commutations involving an end

Commutations for edges of a rectangular Θ-diagram are defined in the same way as in the
case of rectangular diagrams of links: one can exchange two neighboring parallel edges, each
may be an edge of α, β, γ, or δ, provided that their pairs of endpoints do not interleave. A
common end of α, β, and γ can also be exchanged with neighboring edges and with the other
end provided that no pair of endpoints at the end to be exchanged interleave with the endpoints
of the edge or a pair of endpoints at the other end, respectively, see Fig. 15.

Type I stabilizations and destabilizations are allowed at any vertex of a rectangular Θ-
diagram, including the endpoints of the paths α, β, and γ.

Finally, we need one more type of moves, which we call an end shift and define as follows. Let
P1, P2, P3 be three endpoints of the rectangular paths α, β, γ (not necessarily in this order) lying
at the same horizontal straight line and listed from left to right. Denote by P ′

i and P ′′
i points

obtained from Pi by a shift by the vector (0, ε) and (0,−ε), respectively, where ε > 0 is a small
real number (it should be smaller than the vertical distance between any two vertices of the
diagram that do no lie at the same horizontal straight line). Any of the following replacements
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will be called an end shift:
P1 7→ {P

′
1, P

′
2},

P1 7→ {P
′′
1 , P

′′
3 },

P2 7→ {P
′
2, P

′
3},

P2 7→ {P
′′
2 , P

′′
1 },

P3 7→ {P
′
3, P

′
1},

P3 7→ {P
′′
3 , P

′′
2 },

provided that it results in a Θ-diagram. Namely, the first and the sixth replacement is allowed
if the vertex P2 is not the only vertex of the corresponding rectangular path, the second and
the third if so is P3, and the fourth and the fifth if so is P1.

Note that, from the combinatorial point of view, there are actually three pairs of coinciding
moves among these six replacements.

A similar operation is defined for three endpoints of the rectangular paths included in a
rectangular Θ-diagram if they lie at the same vertical straight line, see Fig. 16. Namely, one

←
←

←
←

Figure 16. End shift

should take the mirror image of the previous construction in a diagonal direction (any of the
two).

If the vertex to be replaced is an endpoint of the rectangular path α of a rectangular Θ-
diagram α ∪ β ∪ γ ∪ δ, then the rectangular diagram β ∪ γ ∪ δ does not change under the end
shift, and the path α gets longer by one edge one of whose ends shifts along β∪γ to an adjacent
edge. Also one of the paths β or γ transfers one of its vertices to the other.

We intentionally do not define an inverse operation to an end shift because one can come
back by shifting the end backward and then performing a few commutations and a type I
destabilization (see Fig. 17).

Proposition 1. Let α ∪ β ∪ γ ∪ δ and α′ ∪ β ′ ∪ γ′ ∪ δ′ be Legendrian equivalent rectangular
Θ-diagrams such that (α, β) is a bypass for β ∪ γ ∪ δ of weight b. Then: (i) (α′, β ′) is a bypass
for β ′∪γ′∪ δ′ of weight b; (ii) the rectangular diagrams α∪γ ∪ δ and α′∪γ′∪ δ′ are Legendrian
equivalent.
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←

←

←

←

Figure 17. Inverting an end shift

Proof. It is enough to prove the claim in the case when α ∪ β ∪ γ ∪ δ 7→ α′ ∪ β ′ ∪ γ′ ∪ δ′ is a

single permitted move. This reduces to checking that the isotopy classes of α̃∪ β̃∪ γ̃ ∪ δ̃ and D̃,
where D = (α∪β)ր ∪ (α∪β)ւ ∪α∪ γ ∪ δ, and the Legendrian type of α∪ γ ∪ δ are preserved,

which is straightforward. The least obvious here is to see that the isotopy class of the link D̃
does not change under an end shift. This is illustrated in Fig. 18. �

Surely there is a natural correspondence, which we don’t formally use, between Legendrian
types of rectangular Θ-diagrams and Legendrian types of one-dimensional complexes in R3

having form of a few circles and one Θ-component, which is a graph with two vertices connected
by three edges, such that all curves in the complex are Legendrian. For completeness of the
exposition we briefly mention moves of front projections of such complexes that involve a 3-
valent vertex and, together with the moves in Fig. 7, generate the equivalence of Legendrian
graphs that we are interested in. This moves are shown in Fig. 19 (one should also add the
moves symmetric to the shown ones).

Proposition 2. Let R and R′ be rectangular diagrams of the same Legendrian type, and let
α be a rectangular path with ends at edges of the diagram R. Then there exists a rectangular
path α′ with ends at edges of R′ such that the rectangular Θ-diagrams R ∪ α and R′ ∪ α′ are
Legendrian equivalent.

Proof. It suffices to prove the statement in the case when R′ is obtained from R by a single
elementary move preserving the Legendrian type. For a stabilization it is obvious since we can
simply take α′ = α (we assume that the new edges emerged from the stabilization are short
enough).

Let R 7→ R′ be a cyclic permutation. For definiteness we assume that the extreme left edge
is translated to the right. The other cases are similar.

If there are edges of α located on the left of R, then we first move them to the right by using
cyclic permutations, and then perform the desired cyclic permutation on R with no obstacle
regardless whether the translated edge contains an end of α or not.
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α

β

γ

D

α′

β ′

γ′

D′

α′

β ′

γ′

D′

α′

β ′

γ′

D′

Figure 18. In all cases the diagram D′ = (α′ ∪ β ′)ր ∪ (α′ ∪ β ′)ւ ∪α′ ∪ γ′ ∪ δ′ is
equivalent to D = (α ∪ β)ր ∪ (α ∪ β)ւ ∪ α ∪ γ ∪ δ, and α ∪ γ ∪ δ is Legendrian
equivalent to α′ ∪ γ′ ∪ δ′

Figure 19. Moves of a Legendrian graph involving a 3-valent vertex

Let R 7→ R′ be a commutation. Due to the symmetry of our constructions it suffices to
consider a commutation of horizontal edges. Moreover, since we have already proved the state-
ment for cyclic permutations, we may assume that the horizontal projections of the exchanged
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edges do not overlap, and the lower of them has its left endpoint at the very left of the Θ-
diagram R ∪ α, i.e. there are no vertices of R or α on the left of this vertex.

There may be only two obstructions originating from α to perform the desired commutation
on R: (i) the ends of α can lie on the exchanged edges or edges adjacent to them; (ii) there
may be edges of α in the strip between the straight lines containing the exchanged edges.

In the first case one can shift the ends of α to other horizontal edges of R, which is included
in the set of permitted moves. We now draw our attention to the second type of obstacle.

Denote the left of the commuted edges of the diagram R by e and the right one by e′. Denote
by P the right vertex of the edge e. Without the presence of α the desired commutation could
have been made by shifting the edge e upward. The only obstruction to that may be edges of α
that are located over the vertex P but below the level of the edge e′, see Fig. 20 (a).

ℓ

e

e
′

P

YX

(a)

e

e
′

P

YX

(b)

e e
′

P

Y

X

(c)

Figure 20. Commutation in the presence of a rectangular path. There may be
unshown vertical edges of the path α coming out from the boxes X and Y .

Let ℓ be the vertical straight line passing through P . “Break” every obstructing edge of α near
its intersection with the line ℓ. Namely, we apply a permitted stabilization near an endpoint of
the edge and then shift the new short vertical edge toward the line ℓ by using commutations.
We arrange these new short vertical edges on the right of ℓ so that the lower an edge the closer
to ℓ it is positioned, see Fig. 20 (b).

Now we can freely shift all edges located over e but below the level of e′ upward so as to
remove the obstacle to the desired commutation on R, see Fig. 20 (c).

We are left to consider the case when R 7→ R′ is a permitted destabilization. There are
two kinds of such destabilizations, but since they are symmetric to each other it suffices to
consider one of them, when the edges being reduced point from their common vertex upward
and rightward. By using cyclic permutations and shifting the ends of α we can make it so
that the common vertex of the edges being reduced is the leftmost and lowermost vertex of the
diagram R∪ α and the endpoints of α do not lie at the edges being reduced and ones adjacent
to them.
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e

e
′

YX

e

e
′

YX

e

e
′

Y

X

Figure 21. Destabilization in the presence of a rectangular path. There may
be unshown vertical edges of α coming out from the boxes X and Y

The horizontal edge that is going to be reduced will be denoted by e, and the horizontal
edge of R positioned immediately above it by e′. An obstruction to move the edge e upward
so as to make it neighboring to e′ in the diagram R ∪ α can come from edges positioned over
the right endpoint of e but below the level of e′. We proceed exactly the same as in the case of
commutation, see Fig. 21.

After that we shift the edge e upward close to e′, then freely shift the vertical edge we want
to reduce to the right, and perform the desired destabilization. �

3.4. The Key Lemma and its corollaries. By a connected component of a rectangular
diagram R of a link we mean any subset K ⊂ R that forms a rectangular diagram of a knot.

Key Lemma. Let R be a rectangular diagram of a link, and (α, β) be a bypass whose weight
is smaller than the number of vertical edges of the component of R that contains the ends of α.

Then there exists a rectangular diagram R′ that is Legendrian equivalent to (R \ β) ∪ α and
can be obtained from R by b successive type II elementary simplifications, where b is the weight
of the bypass (α, β).

The proof of this statement will occupy the whole next section. Here we deduce basic
corollaries from it.

Theorem 4. Let rectangular diagrams R1 and R2 be Legendrian equivalent, and R1 admit a
type II elementary simplification R1 7→ R′

1. Then the diagram R2 admits a type II elementary
simplification R2 7→ R′

2 such that the diagram R′
2 is Legendrian equivalent to R′

1.

Proof. Since commutations and cyclic permutations preserve the Legendrian type of a rectan-
gular diagram it suffices to consider the case when R1 7→ R′

1 is a type II destabilization. In
this case, as one can see in Fig. 22, there exists an elementary bypass α1 for R1 that consists of
just one vertex, and R′

1 is obtained from R1 by replacing the corresponding bypassed path β1

(consisting of three vertices) by α1.
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R1

β1

α1

R′
1

(α1 ∪ β1)
ւ

(α1 ∪ β1)
ր

Figure 22. An elementary bypass consisting of one vertex

If follows from Proposition 2 that there exists a rectangular path α2 such that the rectangular
Θ-diagrams R1 ∪ α1 and R2 ∪ α2 are Legendrian equivalent. According to Proposition 1 this
means, in particular, that α2 is an elementary bypass for R2. Let β2 be the corresponding
bypassed path. Then the diagram (R2 \β2)∪α2 is Legendrian equivalent to (R1 \β1)∪α1 = R′

1.
Since the bypass α2 is elementary, it satisfies the hypothesis of the Key Lemma whose appli-

cation completes the proof. �

Corollary 1. Let R be a rectangular diagram of a link such that the corresponding Legendrian
link LR (respectively, LR) admits a destabilization LR 7→ L′ (respectively, LR 7→ L′). Then the
diagram R admits a type II (respectively, type I) elementary simplification R 7→ R′ such that
links L′ and LR′ (respectively, L′ and LR′) are Legendrian equivalent.

Proof. This immediately follows from Theorems 2 and 4. �

We also get the main result of [8]:

Corollary 2 (Monotonic simplification theorem for the unknot). Any nontrivial rectangular
diagram of the unknot admits successive elementary simplifications arriving at the trivial dia-
gram.

Proof. Nontriviality of the diagram R means that is complexity exceeds 2. Together with (2) it
implies that at least one of the Legendrian knots LR and LR has Thurston–Bennequin number
smaller than (−1). It now follows from Eliashberg–Fraser’s theorem [9, 10] that this Legendrian
knot admits a destabilization. Therefore, R admits an elementary simplification. An obvious
induction on the complexity of the diagram R completes the proof. �

The statement announced in the Introduction is one more corollary of Theorem 4.

Proof of Theorem 1. The diagrams R and R′
k are Legendrian equivalent by hypothesis. By

applying Theorem 4 successively ℓ times we prove the existence of a sequence of elementary
simplifications R′

k 7→ R′′′
1 7→ R′′′

2 7→ . . . 7→ R′′′
ℓ in which the diagram R′′′

i is Legendrian equivalent
to R′′

i for all i = 1, . . . , ℓ, which is a reformulation of the conclusion of the theorem.
The second claim is symmetric to the first one. �

Now we establish more general connections between bypasses and simplifications.

Theorem 5. Let R be a rectangular diagram of a link, K ⊂ R be one of its connected compo-
nents, and L be some Legendrian type. The following conditions are equivalent:

(C1) The diagram R admits b > 0 successive type II elementary simplifications on a compo-
nent K that arrive at a diagram having Legendrian type L;

(C2) There exists a bypass α of weight b for the diagram R with ends at edges of the compo-
nent K, and the replacement of the bypassed path by the bypass results in a diagram of
Legendrian type L.
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Proof. (C2) ⇒ (C1) Apply a type I stabilization to the diagram R at the component K suffi-
ciently many times so as to make the number of vertical edges of K larger than b. Denote the
obtained rectangular diagram by Ř.

According to the Key Lemma there exists a sequence of elementary simplifications Ř 7→
Ř1 7→ Ř2 7→ . . . 7→ Řb such that the last diagram in it is Legendrian equivalent to (Ř \ β) ∪ α,
which, in turn, is Legendrian equivalent to (R \ β) ∪ α, where β is the bypassed path.

By applying Theorem 4 successively b times we prove that there exists a sequence of ele-
mentary simplifications R 7→ R1 7→ R2 7→ . . . 7→ Rb in which every diagram Ri is Legendrian
equivalent to the corresponding diagram Ři.

(C1)⇒ (C2) We make use of the following two lemmas, which will be also used in the sequel.

Lemma 1. Let R0 7→ R1 7→ . . . 7→ Rm be an arbitrary sequence of elementary moves that
contains k stabilizations and ℓ destabilizations. The there exists another sequence of elementary
moves R0 7→ R′

1 7→ . . . 7→ R′
n = Rm, in which the first k moves are stabilizations, the last ℓ

moves are destabilization and all the others do not include stabilizations and destabilizations.
Moreover, the number of stabilizations and destabilizations of each type in this sequence is the
same as that in the original one.

Proof. This statement is proved by induction on the tuple (k, ℓ, p, s), where k is the number of
stabilizations, ℓ is the number of destabilizations, (p+1) is the number of the first stabilization
(if there is no such we set p = 0), and (m− s) is the number of the last destabilization (if there
is no such we set s = 0). Tuples (k, ℓ, p, s) are ordered lexicographically.

The induction base k = ℓ = 0 is obvious. For induction step, it suffices to prove our statement
in the case m = 2. Indeed, if the first move is a stabilization, then by removing it we obtain a
sequence with a smaller k and the same ℓ, the validity of the statement for which implies that
for the original sequence. Similarly, if the last move is a destabilization, then by removing it
we obtain a sequence with the same k but smaller ℓ. If none of these takes place but k > 0,
then we apply the statement to the subsequence consisting of the pth and the (p+ 1)st moves
and obtain a sequence with the same k, ℓ but smaller p. Finally, if k = 0 and ℓ > 0, we apply
similarly the statement to the subsequence consisting of the (m−s)th and (m−s+1)st moves.

So it remains to prove the statement for sequences consisting of two operations in the following
two cases: (1) the second operation is a stabilization and the first one is not a stabilization;
(2) the first operation is a destabilization and the second one is not a destabilization. These
cases are obtained from each other by reversing the sequence, so it suffices to consider just one
of them. Fig. 23 shows how to move a stabilization to the beginning of the sequence if it is
preceded by a cyclic permutation, commutation or destabilization in situations where it is not
just a question of changing the order of moves. The other cases are similar and are left to the
reader. �

Lemma 2. Let R 7→ R′ be a stabilization, and P be any vertex of the same component of R
on which this stabilization occur. Then there is a stabilization R 7→ R′′ of the same type as
R 7→ R′ in a small neighborhood of P such that the diagrams R′ and R′′ can be connected by a
sequence of commutations and cyclic permutations.

Proof. It is enough to consider the case when the vertex P is connected by an edge to the
one in whose neighborhood occurs the stabilization R 7→ R′. Let e be this edge. As a result
of the stabilization R 7→ R′ two short edges appear. The one that is orthogonal to e can be
shifted toward P by using commutations and at most one cyclic permutation. For such obtained
diagram R′′ the move R 7→ R′′ will be a stabilization, see Fig. 24. �
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Figure 23. Moving a stabilization to the beginning of the sequence

Now we resume the proof of Theorem 5. Let R = R0 7→ R1 7→ . . . 7→ Rb be a sequence
of elementary simplifications that satisfies Condition (C1). It follows from Lemma 1 that
Rb can be obtained from R by a sequence of elementary moves in which the last b moves are
destabilizations and all the previous ones are cyclic permutations and commutations. Moreover,
according to Lemma 2 we may assume that all b destabilizations occur in a small neighborhood
of the same vertex P of the diagram Rb.

Therefore, we can find a sequence of complexity preserving elementary moves from the dia-
gram R to some diagram R′ such that Rb can be obtained from R′ by a sequence of b type II
destabilizations that occur in a small neighborhood of a vertex P of the diagram Rb. One can
see that the vertex P is then a bypass of weight b, and transition from R′ to Rb is a replace-
ment of the bypassed path by P , see Fig. 25. It now follows from Propositions 2 and 1 that
there exists a bypass of weight b for R, and placing it instead of the bypassed path results in a
diagram that is Legendrian equivalent to Rb. �

Remark 1. It follows from Theorem 5 that the restriction on the weight of the bypass in the
hypothesis of the Key Lemma is actually unnecessary, the weight of a bypass is always smaller
than the number of vertical edges of the component to whose edges the ends of the bypass are
attached.

Remark 2. Theorem 5 can be strengthen by allowing simplifications on different components
and by introducing an appropriate notion of independent bypasses. Namely, bypasses are
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Figure 24. Moving the stabilization scene to a neighborhood of another vertex

β

α = P

Figure 25. A bypass α of weight b = 3

independent if the corresponding discs mentioned in the bypass definition are disjoint. If there
is a collection of independent bypasses, then each of them independently provides for as many
successive elementary simplifications on the component it is attached to as is its weight. The
proof of this statement encounters no new difficulties compared to the one of Theorem 5, but
in order to keep exposition clearer we prefer to restrict ourselves to the case of a single bypass.

Theorem 6. Let L1 and L2 be two Legendrian types of Legendrian links whose topological
types are mirror images of each other. Then there exists a rectangular diagram R such that the
Legendrian links LR and LR have Legendrian types L1 and L2, respectively.

Proof. Let R1 and R2 be rectangular diagrams whose corresponding Legendrian links LR1
and

LR2
have types L1 and L2, respectively. Then the topological link types defined by them are the

same, and the diagrams can be obtained from each other by a sequence of elementary moves.
By Lemma 1 we may assume that the sequence starts from stabilizations, then only commu-

tations and cyclic permutations occur for a while, and destabilizations occur at the end of the
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sequence. Lemma 2 implies that, moreover, we can make it so that stabilizations of different
types occur far from each other, i.e. in small neighborhoods of different vertices. In this case
they commute, and we may assume without loss of generality that first all type I stabilizations
occur, and then follow all type II ones. Since type I stabilizations do not affect the Legendrian
type of LR1

we may simply assume that they are not present in the sequence.
Similarly, we may assume without loss of generality that our sequence of elementary moves

does not include type II destabilizations.
Starting from the diagram R1 and having made all (type II) stabilizations we get a dia-

gram R′ that can be turned into R1 by type II elementary simplifications, and into R2 by
type I elementary simplifications. It now follows from Theorem 1 that a rectangular diagram R
exists that can be obtained from R2 by type II elementary simplifications and is Legendrian
equivalent to R1. The diagram R is a sought for one. �

Theorem 6 and relation (2) imply a positive answer to Question 1 by J.Green from [16]:

Corollary 3. If R is the simplest rectangular diagram representing a given link type, then LR

has the largest Thurston–Bennequin number among all Legendrian links of the same topological
type.

4. Proof of the Key Lemma

The plan of the proof is as follows.

• With the rectangular diagram R and the rectangular paths α and β we associate geo-

metrical objects R̂, α̂, β̂ in R3 that are called arc presentations.

• We span the trivial knot α̂ ∪ β by a disc D that obey certain restrictions. By using the
“open book” foliation we introduce a special combinatorial structure on the disc.

• Then we apply induction. For the induction step we modify R̂ ∪ D in a certain way
so that the disc D gets simpler. As a result, type II destabilizations may occur on the
path β, type I stabilizations on α, and commutations as well as cyclic permutations
may occur everywhere in the Θ-diagram R ∪ α.
• Rearranging saddles is an operation that shortens α or β in some cases, and in others
leads to a situation in which smoothing out a wrinkle inside the disc D is possible.
• Smoothing out a wrinkle simplifies the disc D. If the wrinkle is at the boundary, then
α or β shortens.
• If further simplification of D is impossible, then D has a standard form, and the tran-
sition from R to (R \β)∪α is a type II elementary simplification. This is the induction
base.

4.1. Arc presentations. We fix the standard cylindrical coordinate system (ρ, θ, z) in R3

whose axis will be denoted by ℓ and called the binding line. The half-planes of the form
{θ = const} will be called pages. A page {θ = θ0} will be denoted by Pθ0 .

Definition 9. By an arc presentation of a topological link type L we call a link L ∈ L composed
of a finite number of smooth simple arcs with endpoints at ℓ, each arc lying in a separate page
and having its interior disjoint from the binding line. Intersection points L∩ℓ are called vertices
of the arc-presentation L.

As noticed in [8] arc presentations viewed combinatorially are the same thing as rectangular
diagrams. More precisely, to any arc presentation L there corresponds a rectangular diagram R
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whose vertices are those points (θ0, z0) ∈ R2, θ0 ∈ [0, 2π) for which the link L has an arc in the
page Pθ0 with an endpoint at z = z0, see Fig. 26.
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Figure 26. An arc presentation and the corresponding rectangular diagram

The inverse construction, an arc presentation from a rectangular diagram, is obvious with
just one remark: the rectangular diagram should be contained in the strip [0, 2π) × R, which
impose no restriction on the combinatorics of R, and is assumed by default in the sequel. The
arc presentation corresponding to a rectangular diagram R will be denoted by R̂.

For a rectangular path γ, the associated book-like path γ̂ is defined similarly provided that the
ends of γ are horizontal. Namely, to any vertical edge [(θ0, z1), (θ0, z2)] of γ there corresponds
an arc of γ̂ in the page Pθ0 with endpoints at z = z1 and z = z2, see Fig. 27. Only such

1
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3

1

2

3

Figure 27. Book-like path and the corresponding rectangular path

rectangular paths are considered in the sequel. By the length of such a path γ we call the
number of vertical edges in γ, which coincides with the number of pages occupied by γ̂.

Note that the geometric realization X̂ of a rectangular diagram or path X has an inessential

difference from the one denoted by X̃ in Subsection 3.2. To obtain X̂ from X̃ one only needs
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to designate ℓ2 to be the binding line, smoothen the arcs, and rotate them around the binding
line keeping preserved their cyclic order.

By the hypothesis of the Key Lemma there is a bypass α of weight b for the rectangular
diagram R, and, moreover, the component of R containing ∂α has complexity larger than b.
Nothing is assumed on the position of the ends of the bypass, but by using the end shift move
we can place the ends to any edges of the same components. So, without loss of generality we
may assume that the following condition is satisfied.

Convention 4. Throughout the rest of the section it is assumed that the ends of the bypass α
lie on horizontal edges of the diagram R, and the length of β equals exactly b.

4.2. Suitable disc D. Now we proceed with constructing an embedded cooriented two-dimensional
disc D →֒ R3 satisfying the following conditions:

(D1) the boundary ∂D coincides with α̂ ∪ β, and the interior of D is disjoint from R̂ ∪ α̂;
(D2) D is the image of a (a + b)-gon under a regular smooth map that takes the vertices of

the polygon to the vertices of the knot α̂ ∪ β, where a is the length of α;
(D3) the interior of D intersects the binding line ℓ transversely finitely many times;
(D4) D is orthogonal to ℓ at points from ∂D ∩ ℓ and, moreover, for any of the common

endpoints of α̂ and β̂ the arc of R̂ \ β coming from this endpoint lies outside of the
θ-interval occupied by D ∩ U , where U is a small neighborhood of the endpoint (see
Fig. 28);

∂D

∂D

̂R \ β

ℓ

correct

D
∂D

̂R \ β

∂D

ℓ

D

incorrect

Figure 28. Relative position of a suitable disc and the link at the endpoints

of α̂ and β̂

(D5) the foliation with singularities F defined on D \ ℓ by the restriction of the form dθ has
only simple saddle singularities inside D;

(D6) at points from D ∩ ℓ the coorientation of D coincides with the orientation of ℓ;
(D7) there is exactly one positive (respectively, negative) half-saddle (see definition below) of

the foliation F at every arc of the form α ∩ Pt (respectively, β ∩ Pt);
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(D8) all saddles and half-saddles of the foliation F lie in different pages.

Most of these conditions are quite common for the technique we are going to explore, see [4,
5, 7, 8], and we discuss them only briefly. The new observation here is the consistency of
Condition (D7) with the others, which holds when constructing the disc D as well as during
its subsequent simplification.

A disc D satisfying (D1–D8) will be called suitable. Now we proceed with its construction.
Recall that, by the bypass definition, in the link defined by the diagram (R \ β) ∪ α ∪ (α ∪

β)ր∪(α∪β)ւ, the components represented by (α∪β)ր∪(α∪β)ւ are unknotted and unlinked
with the rest of the link, and their linking number is equal to −b. Here Xր stays for the result
of shifting a set X by the vector (ε, ε), and Xւ for that of shifting by the vector (−ε,−ε) with
small enough ε > 0.

We also introduce notationXտ and Xց for the results of shifting ofX by (−ε, ε) and (ε,−ε),

respectively, notation X ↔ for Xր ∪Xւ, and X
↔

for Xց ∪Xտ.

We claim that the two components presented by α↔∪ β
↔

in the link (R \ β) ∪ α ∪ α↔∪ β
↔

are unlinked with the rest of the link and with each other.
Indeed α↔∪ β

↔
is obtained from α↔∪ β ↔ by b forbidden commutations of vertical edges

originating from edges of β, each increases the linking number by one, see Fig. 29.

Figure 29. A “forbidden commutation” increases the linking number by one

These moves occur far from vertices of the diagram (R \ β) ∪ α, therefore, the altered com-
ponents remain unlinked with (R \ β) ∪ α.

Now we proceed from rectangular diagrams to arc presentations. The path α̂ր is obtained
from α̂ by a small rotation around the binding line ℓ in positive direction and a small upward
shift, see Fig. 30.

ℓ

α̂

̂
αր

Figure 30. Paths α̂ and α̂ր
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Similarly, տ, ւ, and ց will denote a negative rotation combined with an upward shift, a
negative rotation combined with a downward shift, and a positive rotation combined with a
negative shift, respectively.

Denote by S a narrow band that spans the link α̂↔∪ β̂
↔

whose core line coincides with the

trivial knot α̂ ∪ β. The band S is composed of strips each of which binds to the binding line
at the ends and is twisted a half turn as shown in Fig. 31.

ℓ ℓ

Figure 31. Strips forming the band S

The boundary of S forms a two-component trivial link that is also unlinked with (R̂ \ β)∪ α̂,

and the core α̂ ∪ β of S is spanned by an embedded disc whose interior is disjoint from R̂. In
other words, topologically we have the picture shown in Fig. 32.

Lα̂

̂β

S

Figure 32. The band S viewed topologically

It means that we can find a spanning disc for the unknot α̂ ∪ β such that the interior of D be

still disjoint from R̂, and D be orthogonal to S at the boundary. Additionally, we can ensure

that the discD and the curve R̂ \ β approach each of the endpoints of α̂ from opposite sides of S,
and also that the general position requirements (D2) and (D3) are fulfilled. Conditions (D1)
and (D4) are satisfied by construction.

Now we consider the foliation F defined by the closed 1-form dθ on D. This foliation is not
defined at intersection points of D with ℓ and has singularities at the tangency points of D
with pages Pt. By general position argument we may assume that all singularities are of Morse
type.

Since D is orthogonal to S along ∂D, there are singularities of F at ∂D. Namely, since each
of the strips making up the band S and resting on ℓ is twisted a half turn, there is a half-saddle
at each corresponding segment of the boundary, see Fig. 33.
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Figure 33. Half-saddle

With every saddle or half-saddle we associate a sign “+” or “−” depending on whether θ
increases or decreases in the direction of the coorientation of D at the (half-)saddle.

Intersection points of D with the binding line will be called vertices of D, and we will
distinguish boundary and internal vertices in accordance with the position of the vertex. To
each vertex we also assign “+” or “−” indicating whether or not the coorientation of D at the
vertex coincide with the orientation of ℓ.

Since the disc boundary twists a half turn between any two boundary vertices, one can see
that all boundary vertices will have the same sign. We choose the coorientation of D so as to
make them all positive. This ensures fulfilling of condition (D6).

Moreover, it can be seen from the construction above that condition (D7) is then automati-
cally satisfied.

Validity of condition (D8) is achieved by a small perturbation of the discD. It remains to take
care of condition (D5), which means the absence of pole type singularities of the foliation F .
This is done in a standard way.

Namely, we remove the closure of the union of all closed leaves of the foliation F from D.
As a result holes appear in D around each of which the foliation looks as shown in Fig. 34.

The boundary of each hole consists of a separatrix forming a loop. It is contained by whole
in a single page, and bounds a disc in it. By gluing up the hole by this disc and deforming the
surface slightly we get rid of the singularity. The only type of singularity that the foliation F
can have inside D after that is a simple saddle.

Every regular leave of the foliation F has the form of an arc joining two vertices of opposite
sign. There are four (respectively, three) separatrices attached to every saddle (respectively,
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Figure 34. Foliation F around a hole

half-saddle), and the other ends of them approach vertices. So, the whole discD with foliation F
can be cut along regular leaves into tiles where the foliation looks as shown in Fig. 35.

α̂ ̂β

Figure 35. The foliation F is composed of such patterns

The union of all separatrices of F cuts the disc D into parts that we call cells of F . Each cell
is filled by regular leaves and has two vertices of opposite signs and two (half-)saddles whose
signs may be arbitrary, at the boundary, see Fig. 36.

Figure 36. A cell of F

4.3. The induction. Thus, we have a tuple of objects (R, α, β,D) in which α is a bypass
of weight b and length a with ends at horizontal edges of a rectangular diagram R, β is the

bypassed path of length b, and D is a suitable disc for (R̂, α̂). We aim at showing that one
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can apply b successive elementary simplifications to R so as to obtain a diagram Legendrian
equivalent to (R\β)∪α. We do it by induction in (a+b, c, d), where c is the number of internal
vertices of D, and d is the number of internal saddles that do not lie at bridges.

By a bridge we call an arc in D connecting two boundary vertices that is composed of two
separatrices, see Fig. 37.

∂D

∂D

Figure 37. A bridge

The induction base corresponds to a = b = 1, c = 1. For the induction step, in all other cases,
we modify the tuple (R, α, β,D) into another tuple (R′, α′, β ′, D′) with the same properties (for
which the lengths of α′ and β ′, the number of internal vertices of D′, and the number of saddles
located outside bridges are denoted by a′, b′, c′, and d′, respectively) so that one of the following
cases occur:

(E1) R 7→ R′ is a type II elementary simplification, the transformation (R \ β) ∪ α 7→
(R′ \ β ′) ∪ α′ preserves the Legendrian type of the diagram, and we have a′ = a,
b′ = b− 1;

(E2) R′ is obtained from R by commutations and cyclic permutations, (R \ β) ∪ α 7→ (R′ \
β ′) ∪ α′ is a type I elementary simplification, and we have a′ = a− 1, b′ = b;

(E3) R′ ∪ α′ is obtained from R ∪ α by commutations and cyclic permutations, and we have
a′ = a, b′ = b and either c′ = c− 2 or c′ = c, d′ = d− 1.

Whether one of these modifications can be made is determined solely from the existence of
certain patterns in the foliation F , where the signs of vertices and saddles are also taken into
account. Why this is so and how R, β, α are changed is discussed in subsequent subsections.
Here we only describe how the foliation F changes and show that at least one of the patterns
of F that enables the induction step is always present.

By the star of a vertex of D (internal or boundary one) we call the union of all regular leaves
approaching this vertex. The valence of a vertex is the number of separatrices in its star.

Rearranging of saddles, which may be ordinary, i.e. internal, saddles or half-saddles at the
boundary ∂D, is possible once two saddles of the same sign appear close to each other. The
change of the foliation F is shown in Fig. 38, 39, 40.

If the two saddles being rearranged are negative half-saddles, then case (E1) occurs, if they
are positive half-saddles, then so does case (E2). If at least one of the saddles being rearranged
is an internal one, then the diagram R ∪ α undergoes commutations and cyclic permutations,
and the numbers a, b, c do not change.

Smoothing out a wrinkle is possible once an internal 2-valent vertex appear, and one of the
following two conditions hold:
(i) the 2-valent vertex is connected by a regular leaf with another internal vertex (Fig. 41), then
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Figure 38. Rearranging of internal saddles

α̂ α̂ ̂β ̂β

Figure 39. Rearranging an internal saddle and a half-saddle

α̂

̂β

α̂

̂β

Figure 40. Rearranging two half-saddles

case (E3) takes place;
(ii) the star of the 2-valent vertex contains exactly one half-saddle (Fig. 42), then we have
case (E1) for a negative half-saddle and case (E2) for a positive one.

Figure 41. Smoothing out a wrinkle inside D
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α̂

̂β

α̂

̂β

Figure 42. Smoothing out a wrinkle at the boundary of D

Now we show that the inequality a + b > 2 implies that at least one of the variants (E1),
(E2), or (E3) of the induction step is applicable.

If there are no bridges in D we set D0 = D. Otherwise, among the parts into which the
bridges cut the disc D there are at least two discs whose boundary contains just one bridge.
Such discs will be called terminal. Let us mark all endpoints of bridges and those of α̂. The
boundary of at least one terminal disc will contain no more than three marked vertices at the
boundary. We take this disc as D0 and consider the restriction of F to D0.

Let Vk be the number of internal vertices of D0 of valence k, and Bk the number of k-valent
vertices at the boundary ∂D0 (the valence is determined with respect to D0). By construction,
the vertices and half-saddles at ∂D0 follow in the alternate order (the saddle at the bridge that
cuts out D0 from D is regarded as a half-saddle forD0). Therefore, there are

∑
k Bk half-saddles

at ∂D0, and the number of saddles inside D0 equals
∑

k Vk − 1, by the Euler characteristics
argument. Notice also that there are no vertices of valence < 2 at the boundary as well as
inside the disc D0.

Now we count the number of separatrices in two ways, at the vertices and at the saddles.
There are three separatrices coming out from every half-saddle, and four from every internal
one. Therefore,

3
∑

k

Bk + 4
(∑

k

Vk − 1
)
=

∑

k

kBk +
∑

k

kVk.

Rearranging the summands gives

(3) B2 + 2V2 + V3 = 4 +
∑

k>3

(k − 3)Bk +
∑

k>4

(k − 4)Vk > 4.

If we have V2 > 0, then there is a two-valent vertex inside D0. If at least one of the other
vertices in its star is an internal one, we can smooth out a wrinkle inside D. If both other
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vertices in the star lie at ∂D, then D0 is the whole star. Then if we have D0 6= D, then a
wrinkle at the boundary of D can be smoothed out. Finally, if we have D0 = D, then the
case a = b = c = 1 occurs, which is the induction base.

Now let V2 = 0, V3 > 0 hold, i.e. assume that there is a three-valent vertex P inside D0. Its
star contains two saddles of the same sign, to which a rearranging of saddles is applicable. If
both saddles lie at ∂D the rearranging results in reducing one boundary vertex. Otherwise the
numbers a, b, and c are preserved, but P turns into a two-valent vertex.

In the latter case, both vertices in the star of P distinct from P may lie at the boundary ∂D.
This means that the rearranging results in appearing a new bridge, and we have d′ = d − 1.
Otherwise, we can smooth out a wrinkle inside D.

If V2 = V3 = 0 hold, then (3) implies B2 > 4. There are at most three marked vertices at
the boundary of D0, hence at least one of two-valent boundary vertices is not marked. Such

a vertex is is internal for either α̂ or β̂. Rearranging of the saddles in its star results in the
reduction of this vertex.

Now we describe in detail the manipulations that allow for the induction step in all the cases
mentioned above.

4.4. Rearranging of saddles. This trick is applicable whenever there is a cell ∆ in D with
two saddles of the same sign at the boundary. Let S1 and S2 be those saddles, and Pθ1 , Pθ2 be
the pages containing them, with 0 < θ1 < θ2 < 2π and the disc ∆ lying in the sector θ1 6 θ 6 θ2
(we can always achieve this by rotating the whole construction around the binding line, as the
result of which the diagram R ∪ α may undergo only a few cyclic permutations), see Fig. 43.

S1

S2

ℓ

Pθ1

Pθ2

∆
S1

S2

ℓ

∆

Pθ1

Pθ2

K1

K2

Figure 43. Pulling saddles of the same sign toward each other
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Denote this sector by K. The disc ∆ cuts it into two parts, which we denote by K1 and K2.
The coincidence of signs of the saddles S1 and S2 means that the separatrices coming out from
them and not lying at the boundary of ∆ lie in K at different sides of ∆. By choosing a proper
numeration of K1 and K2 we may ensure that the separatrices coming out from Si lie at the
boundary of Ki, i = 1, 2, which is assumed in the sequel.

If there are arcs of R̂ ∪ α̂ or saddles of F inside K1, then by rotating the arcs around ℓ
in the positive direction and deforming the disc D one can push all them out of K into the
region θ2 < θ < θ2 + ε with small enough ε > 0. Similarly, arcs and saddles that got inside K2

can be pushed into the sector θ1 − ε < θ < θ1 by a negative rotation and a deformation of the
disc D. As a result, the corresponding Θ-diagram R ∪ α may undergo only commutations of
vertical edges, whereas the combinatorial structure of the foliation F stays unchanged.

In this way we remove all possible obstructions to pulling the saddles S1 and S2 toward each
other. If both saddles are internal, then one can collapse the cell ∆ completely by deforming
the disc D, thus producing a “monkey saddle”, which can be resolved into a pair of simple
saddles in three different ways. Fig. 44 shows subsequent sections of the altered part of the
disc D by pages from the sector K, for all three cases.

S1 S2

Figure 44. Three ways to resolve a “monkey saddle”

If exactly one of the saddles S1, S2 is a half-saddle, S2, say, then only two of the three
resolutions of the “monkey saddle” are left, see Fig. 45.

If both S1 and S2 are half-saddles, then after the procedure described above of pushing arcs

and saddles off the sector K, only two arcs from α̂ ∪ β remain in K, which contain the half-
saddles S1 and S2. The vertical edges of the Θ-diagram R ∪ α corresponding to these arcs
become neighboring, so, after a few commutations one can apply a destabilization, see Fig. 46.

Moreover, since the sings of the half-saddles S1 and S2 coincide, they both lie either in α̂ or

in β̂. It can be checked directly that in the former case, α undergoes a type I destabilization,
and in the latter case, β undergoes a type II destabilization. Fig. 47 shows how the sequence
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S1

α̂

S2

α̂

Figure 45. Two resolutions of a “monkey saddle at the boundary

α̂

S1

S2

ℓ

Pθ1

Pθ2

∆

α̂′

ℓ

Figure 46. Pulling half-saddles to each other and a destabilization

of sections of D by pages from the sector K changes. The original sequence is shown in the
upper row, and the sequence after rearranging of saddles in the lower one.

In each case of rearranging of saddles one can directly check that the saddle signs are pre-
served, and that the the foliation F changes as shown in Fig. 38, 39, 40.
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α̂

S1

α̂

S2

Figure 47. The change of the sections under rearranging of two boundary saddles

4.5. Smoothing out a wrinkle. Let P0 be an internal two-valent vertex of D. For now we
do not wonder if the two other vertices in its star, P1 and P2, say, are internal or boundary
ones. The star of P0 consists of two cells that will be denoted by ∆1, ∆2 in accordance with
the positions of vertices P1 and P2. Let the z-coordinates of P0, P1, and P2 be z0, z1, and z2,
respectively. Without loss of generality we may assume that these points follow on the binding
line in this order: z1 < z0 < z2. Indeed, if z0 does not lie between z1 and z2, we can add
the∞ point to R3 (and to the binding line), thus obtaining a three-sphere, and then remove an

arbitrary point from the interval between z1 and z2 disjoint from D∪ R̂. For the corresponding

Θ-diagram R̂∪ α̂ this operation leads to a cyclic permutation of horizontal edges and, possibly,
the ends of the path α.

If we have z2 < z0 < z1, we can simply exchange notation for P1 and P2.
Also without loss of generality we may assume that the cell ∆1 is contained in the half-

space θ ∈ [0, π], and the cell ∆2 in the half-space θ ∈ [π, 2π]. Indeed, this always can be
achieved by applying a mapping of the form (ρ, θ, z) 7→ (ρ, f(θ), z), where f is an appropriate
degree 1 diffeomorphism of the circle into itself. Such a mapping is isotopic to identity. The
corresponding diagram R ∪ α may undergo only cyclic permutations of vertical edges.

The position of the cells ∆1, ∆2 in the three-space is shown in Fig. 48. Each of ∆1, ∆2 cuts
off a three-dimensional half-ball from the corresponding half-space. We denote those half-balls
by K1 and K2, respectively.

By deforming the disc D and rotating arcs from R̂ ∪ α̂ around the binding line we can push
all saddles of F and arcs of R̂ ∪ α̂ out of K1 and K2. This will result only in commutations
and cyclic permutations of vertical edges of the corresponding diagram R ∪ α. The following
rectangles will become clear of vertices of the diagram:

[0, π]× [z1, z0] and [π, 2π]× [z0, z2].

Now there are no topological obstruction to moving all vertices of the disc D, of the link R̂,
and of the path α̂ from the interval (z1, z0) to the interval (z2, z2 + ε), and from the inter-
val (z0, z2) to the interval (z1 − ε, z1), with small enough ε, see Fig. 49. In each of the two
portions of shifted vertices their relative order at the binding line is preserved.
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∆1

∆2

ℓ

Figure 48. Position of a wrinkle in the three-space

∆2

∆1

z2

z0

z1

0 π 2π θ

∅

∅

Figure 49. Changing vertex positions during smoothing out a wrinkle

Notice that no section of the form Pt∩(D∪R̂) contains more than one arc coming out from a

single vertex of the disc D or the link R̂. In the present construction this is important to know
for vertices P0, P1, and P2 as otherwise there could be an obstruction to the vertex exchange
described above. The absence of pairs of arcs with a common end in pages Pt is ensured by
conditions (D3) and (D4) from the definition of a suitable disc.

Now there are no vertices of the discD and the link R̂ between P1 and P2 except the vertex P0.
Further actions depend on the position of the pattern ∆1 ∪ ∆2 with respect to the boundary
of D.
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If one of the vertices P1 or P2 is internal, then two vertices can be reduced by a deformation
of the disc, see Fig. 50, where it is assumed that P1 is an internal vertex.

P1

P0

P2

Figure 50. Removing a wrinkle

In this procedure the boundary of D is untouched, so, the disc remains suitable.
Now let both vertices P1 and P2 lie at the boundary of D. We did not need in subsection 4.3

to smooth out a wrinkle in the case when the star ∆1 ∪ ∆2 of the vertex P0 was bounded by
two bridges. We excluded this situation by choosing D0 among terminal discs.

Thus, if we have P1, P2 ∈ ∂D, then at least one of the two arcs with endpoints P1, P2 that

bound ∆1 ∪ ∆2 is contained in α̂ ∪ β. First we consider the case when there is just one such
arc and it is contained in α̂, which means that it contains a positive half-saddle, see Fig. 51.

α̂

̂α ∪ β

̂α ∪ β

Figure 51. Relative position of a wrinkle and arcs of α̂ ∪ β

In this case smoothing out a wrinkle is as follows. First we remove the interior of ∆1∪∆2 with
the part of the boundary contained in α̂. Then we collapse the segment [P1, P2] of the binding
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line to a point, and the disc that is cut off the page P0 by the separatrices lying at ∂(∆1 ∪∆2)
to a straight line segment, see Fig. 52.

P0

P0

P1

P2

Figure 52. Collapsing a disc in the page P0

In the corresponding rectangular diagram this results in collapsing of the vertical edge π ×
[z1, z2], which is included in α, see Fig. 53. There are no other vertices of R ∪ α in the
strip R × [z1, z2], hence this transformation can be decomposed into a few commutations and

a destabilization. One can see from the relative position of the arcs of α̂ ∪ β attached to the
vertices P1, P2, that the destabilization is of type I.

θ

z

z1

z2

π

Figure 53. Change of the rectangular diagram α ∪ β under smoothing out a
wrinkle at the boundary

However, here one may expect an obstacle. Namely, the procedure described above will not
give a tuple (R′, α′, β ′, D′) with the required properties if π × [z1, z2] is the only edge of α.
Suppose this situation do occur. Then the diagram α ∪ β still admits a type I destabilization
that results in a diagram of the unknot of complexity equal to its Thurston–Bennequin number.
Due to relation (2) this contradicts Bennequin’s theorem on the negativity of this number for
any unknot.

Thus, at least one of the vertices P1, P2 is not an endpoint of α̂, hence nothing obstructs to
smoothing out the wrinkle.

If there is exactly on arc of α̂ ∪ β at the boundary of the disc ∆1 ∪ ∆2 and it is contained

in β̂, then a similar procedure allows to simplify the path β. The length of β, which is at the
same time the weight of the bypass α, decreases by one.

Finally, the boundary of the disc ∆1 ∪ ∆2 may coincide with α̂ ∪ β. This means that each

of the paths α̂ and β̂ consists of a single arc, and the disc ∆1 ∪ ∆2 coincides with D. This
situation is discussed below.
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4.6. The induction base. We keep settings from the previous section. As a result of the
manipulations described there we come to the situation when α and β each have exactly one
edge that are π× [z1, z2] and 0× [z1, z2], respectively, and the ends of the path R\β are located
inside the straight line segments [0, π]× z2 and [π, 2π]× z1, see Fig. 54.

α̂

̂R \ β

̂R \ β

̂β

Figure 54. Relative position of the wrinkle and the arcs of R̂ ∪ α̂ for a disc
simplified as much as possible

0 π

z1

z2

z

θ

β α

R \ β

R \ β

Figure 55. Simplification of R ∪ α corresponding to a bypass of weight 1 and length 1

In addition, there are no vertices of R ∪ α inside the strip R× [z1, z2], see Fig. 55. Clearly,
one can apply a type II simplification to R so as to get a diagram that can also be obtained by
a type I simplification from (R \β)∪α, which means it is Legendrian equivalent to (R \β)∪α.

The Key Lemma is proved.



42 IVAN DYNNIKOV AND MAXIM PRASOLOV

5. Applications to braids and transversal links

5.1. Birman–Menasco classes. According to a well-known theorem by J.Alexander [1] any
oriented link can be presented in the form of a closed braid, an example is shown in Fig. 56.
Another well-known theorem, due to Markov [14, 3], claims that the closures of two braids are

Figure 56. Closure of the braid (σ−1
2 σ1)

2

equivalent as oriented links if and only if they can be obtained from each other by transfor-
mations that are now called Markov moves. These moves include conjugation in the standard
group sense, stabilizations and destabilization (see Fig. 57), which are described in algebraic
terms as follows.

β β

β β

Figure 57. Stabilization applied to a braid β

We denote the n-strand braid group by Bn, and the standard Artin generators by σ1, . . . , σn−1.
The embedding ιn : Bn → Bn+1 is defined by adding a free (n + 1)th strand and is written
tautologically in terms of generators: σi 7→ σi, i = 1, . . . , n− 1.

In this notations a stabilization of a braid β ∈ Bn is defined as the transition

β 7→ ιn(β)σ
±1
n .

The stabilization is said to be positive or negative depending on the power of the generator σn

being used. A destabilization (positive or negative, respectively) is defined as the inverse
operation.

A “monotonic simplification theorem” is proved in [5] that states that every braid whose
closure is an unknot can be transformed into the trivial braid on one strand by using moves
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that include conjugations, destabilizations, and exchange moves introduced by J.Birman and
W.Menasco, which are defined algebraically as follows:

β1σnβ2σ
−1
n 7→ β1σ

−1
n β2σn, where β1, β2 ∈ ιn(Bn),

see Fig. 58. The inverse transformation is obviously decomposed into conjugations and another

β1 β2β1 β2

Figure 58. Exchange move

exchange move.

Definition 10. By the Birman–Menasco class of a braid β ∈ Bn we call the set of all braids β
′ ∈

Bn that can be obtained from β by a sequence of conjugations and exchange moves. This class
will be denoted by [β]BM, whereas the set of all Birman–Menasco classes in Bn will be denoted
by BMn.

We say that a class B ∈ BMn admits a positive (respectively, negative) destabilization B 7→ B′

if there is a positive (respectively, negative) destabilization β 7→ β ′ with β ∈ B and β ′ ∈
B′. In this case we also say that B is obtained from B′ by a positive (respectively, negative)
destabilization.

Theorem 7. Let Birman–Menasco classes B1 and B2 define equivalent oriented links. Then
there exists a Birman–Menasco class B that can be obtained from B1 by a sequence of positive
stabilizations and destabilizations, and from B2 by that of negative ones.

The same is true with Birman–Menasco classes replaced by braid conjugacy classes.

Before proceeding with the proof we recall the connection between rectangular diagrams and
braids.

Throughout this section we deal only with oriented rectangular diagrams of links. This
means that all their edges are oriented in a consistent way, namely so as to have an oriented
link diagram. It is convenient to specify the orientation by coloring vertices in black and white
so that vertical edges be directed from a black vertex to a white one, and horizontal ones vice
versa. Rectangular diagrams with such coloring are also called grid diagrams in the literature.

In the case of oriented rectangular diagrams, one naturally distinguish four rather than two
types of stabilizations and destabilizations, which we will call oriented types. Namely, each of

the types I and II is subdivided into two types:
−→
I ,
←−
I and

−→
II ,
←−
II , respectively, where the arrow

indicates the direction of the short horizontal edge that emerge from the stabilization. All four
types are demonstrated in Fig. 59 in terms of colored vertices.

With every oriented rectangular diagram R we associate a braid βR by the following rule
(see. [7, 8, 17]). Let all vertices of R be contained in the domain [0, 1]× R. Replace each hori-
zontal edge [x1, x2]×y0 directed from right to left by the pair of straight line segments [0, x1]×y0
and [x2, 1]×y0. At every crossing of vertical and horizontal segments the former are considered
overpasses. Now we slant vertical edges slightly and smooth out corners so as to obtain a braid
diagram of βR, see Fig. 60.

Proposition 3. Any braid can presented in the form βR for an appropriate rectangular dia-
gram R.
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type
−→
I type

←−
I type

−→
II type

←−
II

Figure 59. Oriented types of (de)stabilizations

Figure 60. The braid associated with a rectangular diagram

For any rectangular diagram R, the corresponding oriented link is equivalent to the closure
of the braid βR.

Let R and R′ be oriented rectangular diagrams. Then the Birman–Menasco classes of the
braids βR and βR′ coincide if and only if the diagrams R and R′ can be obtained from each
other by a sequence of elementary moves not including stabilizations and destabilizations of

types
←−
I and

←−
II .

For a proof see [8, 17].

One can see that a
←−
I -stabilization of a diagram R causes a positive stabilization of the

class [βR]BM, and a
←−
II -stabilization causes a negative one. Since

−→
I - and

−→
II -stabilizations pre-

serve the class [βR]BM, we see that diagrams obtained from an oriented rectangular diagram R
by stabilizations of different oriented types cannot be obtained from each other by cyclic per-
mutations and commutations.

Proof of Theorem 7. Let R1 and R2 be oriented rectangular diagrams such that we have βR1
∈

B1 and βR2
∈ B2. By construction the closures of the braids β1, β2 are equivalent, hence, by

Proposition 3, the diagrams R1 and R2 define equivalent oriented links.
By Theorem 6 there exists a diagram R that is Legendrian equivalent to R1 and such that

R is Legendrian equivalent to R2. The class [βR]BM is then a sought-for one.
Indeed, the diagram R can be obtained from R1 by a sequence of cyclic permutations, com-

mutations and type I stabilizations and destabilizations. Among these moves only type
←−
I

stabilizations and destabilization affect the Birman–Menasco class of the corresponding braid,
causing positive stabilizations and destabilizations of the latter.

In the case of R2 the argument is the same with changing the type of stabilizations and
destabilizations from I to II for rectangular diagrams and from positive to negative for the
corresponding braids.

The second statement of the theorem, which concerns braid conjugacy classes, follows from
the first one and an observation of J.Birman and N.Wrinkle [6] that any exchange move can
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be decomposed into a sequence consisting of conjugations, one stabilization, and one destabi-
lization, where the stabilization and destabilization are of the same sign fixed in advance. For
positive stabilization and destabilization this decomposition looks as follows:

(4)

β1σnβ2σ
−1
n

conjugation ↓
σnβ1σnβ2σ

−2
n β1σ

−1
n β2σn

stabilization ↓ ↑ conjugation
σnβ1σnβ2σ

−2
n σn+1 σ−2

n β2σnβ1σn

conjugation ↓ ↑ destabilization
σ−2
n σ−1

n+1β2σ
−2
n σn+1σnβ1σnσn+1σ

2
n = σ−2

n β2σnβ1σnσn+1

A similar decomposition using negative stabilization and destabilization is obtained by invert-
ing σn, σn+1, and the order of the moves. �

5.2. Jones’ conjecture. For every n > 2 we denote by exp the homomorphism from Bn to Z

defined by exp(σ1) = 1. In other words, exp(β) is the algebraic number of crossings of a braid
diagram representing β. The following statement is a generalization of Jones’ conjecture [12].

Theorem 8. Let braids β1 ∈ Bm and β2 ∈ Bn close up to equivalent oriented links, with β1

having minimal possible number of strands for this link type. Then we have

| exp(β2)− exp(β1)| 6 n−m.

In particular, if n = m, then we have exp(β1) = exp(β2).

Proof. By Theorem 7 there exists a natural p and a braid β ∈ Bp such that the classes [β]BM

and [β1]BM can be connected by a sequence of positive stabilizations and destabilizations, and
the classes [β]BM and [β2]BM by that of negative ones.

The difference between the algebraic number of crossings and the number of strands is pre-
served under positive (de)stabilizations, hence we have

exp(β1)−m = exp(β)− p.

Similarly, the sum of the algebraic number of crossings and the number of strands is preserved
under negative (de)stabilizations, which implies

exp(β2) + n = exp(β) + p.

Therefore, we have

p =
1

2
(m+ n + exp(β2)− exp(β1)).

From p > m we get

exp(β2)− exp(β1) > m− n.

Similarly, by choosing a braid β so that the class [β]BM be connected by a sequence of negative
stabilizations and destabilizations with [β1]BM, and by that of positive ones with [β2]BM, we get

exp(β2)− exp(β1) 6 n−m.

�

It is observed in [21] that the generalized Jones’ conjecture that we have just proved is
equivalent to the following statement.
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Theorem 9. Let planar diagrams D1 and D2 represent equivalent oriented links and have m
and n Seifert circles, respectively, where m is the smallest possible number of Seifert circles for
diagrams representing the same link type. Then we have

|w(D2)− w(D1)| 6 n−m,

where w(D) stays for the writhe of D.

5.3. Transversal links.

Definition 11. By a transversal link one call an oriented link such that the restriction of the
standard contact form ω = x dy + dz takes positive values at all non-zero tangent vectors to
the link that agree with the orientation.

Two transversal links are said to be transversally equivalent if they are isotopic within the
class of transversal links.

With every braid β ∈ Bn one associates canonically a transversal link defined up to transver-
sal equivalence as follows. The closure L of the braid β can be positioned in the space so that it
intersects each page Pt (see notation in Subsection 4.1) transversely n times, and, moreover, the
angular coordinate θ is locally increasing on L in the direction defined by the link orientation.
For small enough ε > 0 the 1-form ϕ∗

εω is a small disturbation of ρ dθ = x dy−y dx, where ϕε is
the diffeomorphism defined by (x, y, z) 7→ (2x, y, εz − xy), hence the link ϕε(L) is transversal.
The transversal link constructed in this way will denoted by Tβ.

Theorem 10. Any transversal link is transversally equivalent to a link of the form Tβ.
For two braids β1 and β2 the links Tβ1

and Tβ2
are transversally equivalent if and only if the

braids β1 and β2 can be obtained from each other by a sequence of conjugations and positive
stabilizations and destabilizations.

The first part of this theorem is due to D.Bennequin [2]. The second was proved by S.Orevkov
jointly with V.Shevchishin [18] and, independently, by N.Wrinkle [22].

The self-linking number sl(L) of a transversal link L is defined as the difference exp(β)− n,
where β ∈ Bn is an arbitrary braid for which L is transversally equivalent to Tβ. As one sees
from Theorem 10 self-linking number is well defined because it does not change under positive
stabilizations.

For a braid β we denote by [β]t the set of all braids β ′ for which the links Tβ′ and Tβ are
transversally equivalent. We call [β]t the transversal class of the braid β. As follows from (4),
every Birman–Menasco class is a subset of a transversal class.

In the language of transversal links Theorem 7 means that, for any two braids β1, β2 that close
up to equivalent oriented links, there is a braid β such that we have [β]t = [β1]t, [β

−1]t = [β−1
2 ]t.

Theorem 11. Let Birman–Menasco classes B1, B2 be contained in the same transversal class,
and let B1 admit a negative destabilization B1 7→ B

′
1. Then B2 also admits a negative destabi-

lization B2 7→ B
′
2 with B′

1 and B′
2 being contained in the same transversal class.

Proof. Let R2 and R′
1 be oriented rectangular diagrams such that βR2

∈ B2, βR′

1
∈ B′

1. Then

one can proceed from R2 to R′
1 by elementary moves including exactly one

←−
II -destabilization,

and not including
←−
II -stabilizations.

From Lemmas 1 and 2 we conclude that one can proceed from R2 to R′
1 by a sequence

of elementary moves in which all
−→
II -stabilizations go first, and all

−→
II -destabilizations go last.
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Since type
−→
II stabilizations and destabilizations don’t affect the corresponding braid, we may

assume without loss of generality that they are not present in the sequence.

By applying Lemmas 1 and 2 again we can move the single
←−
II -destabilization to the very

end of the sequence. The obtained sequence of elementary moves with the last destabilization
removed will contain only type I stabilizations and destabilizations. Let R be the diagram this
sequence arrive at. By construction it is Legendrian equivalent to R2, and R 7→ R′

1 is a type
←−
II destabilization.
It follows from Theorem 4 that the diagram R2 admits a type

←−
II simplification R2 7→ R′

2

with the diagrams R′
2 and R′

1 being Legendrian equivalent. One can see that this implies
[βR′

2
]t = [βR′

1
]t, and that [R2]BM 7→ [R′

2]BM is a negative destabilization. �

Finally, we notice that Theorem 8 gives a positive answer to Question 2 of [16]:

Corollary 4. Let a braid β have the smallest possible number of strands among all braids
closing up to a given oriented link type. Then the transversal link Tβ has the largest possible
self-linking number among all transversal links having the same topological type.

Proof. Let β ∈ Bm, and let β ′ ∈ Bn be any other braid closing up to the same oriented link
type. By Theorem 10 we have

sl(Tβ′) = exp(β ′)− n 6 exp(β)−m = sl(Tβ).

�
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