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DIFFERENCE BODIES IN COMPLEX VECTOR SPACES

JUDIT ABARDIA

Abstract. A complete classification is obtained of continuous, trans-
lation invariant, Minkowski valuations on an m-dimensional complex
vector space which are covariant under the complex special linear group.

1. Introduction

The classification of real- or body-valued valuations satisfying certain nat-
ural properties has attracted a lot of attention in the last years. The first
fundamental classification result dates back to 1957, when Hadwiger clas-
sified the continuous, translation invariant real-valued valuations which are
also invariant under the rotations of the Euclidean space. Since then many
generalizations of this result have been obtained.

We denote by V a real vector space of dimension n and by K(V ) the
space of compact convex bodies in V . An operator Z : K(V ) → (A,+) with
(A,+) an abelian semi-group is called a valuation if it satisfies the following
additivity property

Z(K ∪ L) + Z(K ∩ L) = Z(K) + Z(L),

for all K,L ∈ K(V ) such that K ∪ L ∈ K(V ).
The classical case consists of taking (A,+) as the real numbers with the

usual sum. A particular class of real-valued valuations consists of those
which are continuous – with respect to the Hausdorff topology – and trans-
lation invariant, i.e. Z(K + x) = Z(K) for every x ∈ V . Some of the
most important and recent results on the theory of continuous translation
invariant valuations can be found in [3, 7, 23, 34, 36]. This theory has
been extended to the more general framework of manifolds instead of a real
vector space, see for instance [5, 11]. Apart from the continuity and the
translation invariance of a real-valued valuation, we can impose invariance
under some group acting transitively on the sphere (for instance, the unitary
group). Then, we always get a finite dimensional real vector space (see [6]).
Its dimension, a basis and the arising integral geometry have been studied
intensively. For some references on this direction see [4, 10, 12, 13, 14].

Some other important particular cases of valuations are given, for in-
stance, when considering the vector space of symmetric tensors (see [2, 9, 20,
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2 JUDIT ABARDIA

30, 37] for more information on tensor-valued valuations), or (K(V ),+) with
+ the Minkowski sum between two convex bodies (i.e. K+L = {x+y : x ∈
K, y ∈ L}). Convex body valued valuations with addition the Minkowski
sum are called Minkowski valuations.

In this paper, we are interested in dealing with Minkwoski valuations.
Some results on Minkowksi valuations not described in this paper can be
found, for instance, in [18, 19, 21, 32, 33, 42, 43, 45]. Some papers dealing
with convex geometry, but working in a complex vector space as ambient
space – as we do – instead of a real vector space are [25, 26, 27].

Two fundamental properties of Minkowski valuations are the contravari-
ance and the covariance with respect to the special linear group SL(V,R).
A valuation Z : K(V ) → K(V ∗) is SL(V,R)-contravariant if

Z(gK) = g−∗Z(K), ∀g ∈ SL(V,R),

where V ∗ denotes the dual space of V and g−∗ denotes the inverse of the
dual map of g.

A valuation Z : K(V ) → K(V ) is SL(V,R)-covariant if

Z(gK) = gZ(K), ∀g ∈ SL(V,R).

An example of a continuous, translation invariant Minkowski valuations
which is SL(V,R)-contravariant is the projection body operator. For K ∈
K(V ) the projection body ΠK of K has support function

h(ΠK,u) =
n

2
V (K, . . . ,K, [−u, u]), u ∈ V,

where V (K, . . . ,K, [−u, u]) denotes the mixed volume with (n− 1) copies of
K and one copy of the segment joining u and −u.

The projection body was introduced in the 19th century by Minkowski
and since then it has been widely studied (see, for instance, the books [15,
24, 28, 40, 44]). In the framework of the classification results of Minkowski
valuations, Ludwig proved in [29] that the projection body operator is the
only (up to a positive constant) continuous Minkowski valuation which is
translation invariant and SL(V,R)-contravariant. In [1] a complex version
of this result was shown. The result is as follows

Theorem 1.1 ([1]). Let W be a complex vector space of complex dimension
m ≥ 3. A map Z : K(W ) → K(W ∗) is a continuous, translation invariant
and SL(W,C)-contravariant Minkowski valuation if and only if there exists
a convex body C ⊂ C such that Z = ΠC , where ΠCK ∈ K(W ) is the convex
body with support function

(1) h(ΠCK,w) = V (K[2m− 1], Cw), ∀w ∈ W,

where Cw := {cw | c ∈ C ⊂ C}. Moreover, C is unique up to translations.

For the covariant case, Ludwig proved in [31] that the difference body
is the unique (up to a positive constant) continuous Minkowski valuation
which is translation invariant and SL(V,R)-covariant. In fact, she classified
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the continuous, SL(V,R)-covariant Minkowski valuations (not necessarily
translation invariant). The difference body of a convex body K ∈ K(V ) is
defined by

DK = K + (−K),

where −K denotes the reflection of K at the origin.

In this paper we study the continuous Minkowksi valuations in a complex
vector spaceW which are translation invariant and SL(W,C)-covariant. Our
main result gives a classification of these valuations.

Theorem 1. Let W be a complex vector space of complex dimension m ≥
3. A map Z : K(W ) → K(W ) is a continuous, translation invariant and
SL(W,C)-covariant Minkowski valuation if and only if there exists a convex
body C ⊂ C such that Z = DC , where DCK ∈ K(W ) is the convex body with
support function

(2) h(DCK, ξ) =

∫

S1

h(αK, ξ)dS(C,α), ∀ξ ∈ W ∗,

where dS(C, ·) denotes the area measure of C, and αK = {αk : k ∈ K ⊂
W} with α ∈ S1 ⊂ C. Moreover, C is unique up to translations.

The hypothesis m ≥ 3 in Theorem 1 cannot be omitted. In Section 4 we
give for m = 2 another family of valuations satisfying all the properties and
we characterize the continuous, translation invariant Minkowski valuations
which are SL(W,C)-covariant and have fixed degree of homogeneity. We
also show that the continuous, translation invariant, SL(W,C)-contravariant
Minkowski valuations with degree of homogeneity 1 are precisely the ones
introduced in [1, Proposition 3.3].

Acknowledgments. I would like to express my gratitude to Andreas Bernig
for all the enlightening conversations during the preparation of this work and
his useful remarks.

2. Background and conventions

We denote by V a real vector space of dimension n and by W a complex
vector space of complex dimension m. The space of compact convex bodies
in V (resp. in W ) is denoted by K(V ) (resp. K(W )). The dual vector space
of V (resp. W ) is denoted by V ∗ (resp. W ∗).

For more information about the notions introduced here we refer to [15,
17, 40].

2.1. Support function. Let K ∈ K(V ). The support function of K is
given by

hK : V ∗ → R,

ξ 7→ sup
x∈K

〈ξ, x〉,

where 〈ξ, x〉 denotes the pairing of ξ ∈ V ∗ and x ∈ V .
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The support function is 1-homogeneous (i.e. hK(tξ) = thK(ξ) for all
t ≥ 0) and subadditive (i.e. hK(ξ + η) ≤ hK(ξ) + hK(η) for all ξ, η ∈ V ∗).
Moreover, if a function on V ∗ is 1-homogeneous and subadditive, then it is
the support function of a unique compact convex set K ∈ K(V ) (cf. [40,
Theorem 1.7.1]). We also write h(K, ξ) for hK(ξ).

The support function is also linear with respect to the Minkowski sum on
K(V ) and has the following important property

(3) h(gK, ξ) = h(K, g∗ξ), ∀ξ ∈ V ∗, g ∈ GL(V,R).

In a complex vector space W this equality holds for g ∈ GL(W,C). In
particular, for α ∈ C and K ∈ K(W ) we can interpret αK = gK with
g = αId ∈ GL(W,C), where Id denotes the identity matrix. Hence, we have

h(αK, ξ) = h(K,α∗ξ),

where α∗ denotes g∗ = αId.
The vector space spanned by all support functions has the following den-

sity property (cf. [40, Lemma 1.7.9]).

Lemma 2.1 ([40]). Every twice-differentiable function on the sphere is the
difference of two support functions.

In particular, the real vector space spanned by the differences of support
functions (restricted to Sn−1) is dense in the space C(Sn−1) of continuous
functions on the sphere (with the maximum norm).

2.2. Surface area measure and Minkowski’s theorem. Let K ∈ K(V ),
V endowed with a scalar product, and ω ⊂ Sn−1 a Borel subset of Sn−1.
The surface area measure of K is given by

S(K,ω) = Voln−1({x ∈ ∂K : an outward unit normal of x is in ω}).

Note that if K ∈ K(V ) is a polytope, then the surface area measure is
a discrete measure: the sum of point masses at the outward unit normal
vectors to the facets of K, with weight the surface area of the corresponding
facet.

Minkowski’s existence theorem gives necessary and sufficient conditions
for a positive measure on Sn−1 to be the surface area measure of some convex
body (cf. [40, Theorem 7.1.2]).

Theorem 2.2 (Minkowski’s existence theorem). Let µ be a positive finite
Borel measure on Sn−1. Then, µ is the surface area measure of some convex
body K ⊂ V with non-empty interior if and only if µ is not concentrated on
any great subsphere of Sn−1 and

(4)

∫

Sn−1

udµ(u) = 0.
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2.3. Translation invariant valuations. Let Val denote the Banach space
of real-valued, translation invariant, continuous valuations on V .

A valuation φ ∈ Val is called homogeneous of degree k if φ(tK) = tkφ(K)
for all t ≥ 0; even if φ(−K) = φ(K) for all K; and odd if φ(−K) = −φ(K).
The subspace of even (resp. odd) valuations of degree k is denoted by Val+k
(resp. Val−k ).

Theorem 2.3 (McMullen [35]).

(5) Val =
⊕

k=0,...,n
ε=+,−

Valεk .

In [22] Klain (see also [23]) gives the following description of even trans-
lation invariant valuations. For simplicity, we fix a Euclidean scalar product
on V . Let φ ∈ Val+k and let E be a k-dimensional subspace of V . Klain
proved that φ|E is a multiple of the volume on E, i.e.

φ(K) = Klφ(E)Vol(K), ∀K ∈ K(E).

The function Klφ : Grk(V ) → R, where Grk(V ) the Grassmannian manifold
of all k-dimensional subspaces in V , is called the Klain function of φ.

Theorem 2.4 (Klain’s injectivity theorem [22]). Let φ ∈ Val+k . Then φ is
uniquely determined by its Klain function Klφ ∈ C(Grk V ).

The group GL(V ) acts naturally on Val by

gµ(K) = µ(g−1K), g ∈ GL(V,R), K ∈ K(V ).

A valuation µ ∈ Val is called smooth if the map g 7→ gµ from the Lie
group GL(V,R) to the Banach space Val is smooth. The subspace of smooth
valuations is denoted by Valsm, it is a dense subspace in Val. We will use
that if µ ∈ Valsm,+

k , then the Klain function of µ is a smooth function on
Grk V . See [6, 8, 11] for more information on smooth valuations.

2.4. Valuations and distributions. Let E denote the space of continuous
1-homogeneous functions defined on V ∗. Let K ⊂ V ∗ be a compact convex
body containing the origin in its interior. Let us endow E with the supremum
norm restricted to K in V ∗, i.e. ‖f‖K = sup{|f(ξ)| : ξ ∈ K}. Then, for
every K, L compact convex bodies containing the origin in its interior, the
norms ‖ · ‖K , ‖ · ‖L are equivalent in E and it becomes a Banach space.

Let D denote the space of the functions in E which are smooth on V ∗\{0}.
Goodey and Weil [16] give a representation of a continuous, translation

invariant, real-valued valuation of homogeneity degree one in terms of a
distribution on the sphere Sn−1. We need the following special case.

Theorem 2.5 ([16]). Let φ : K(V ) → R be a continuous, translation in-
variant valuation which is homogeneous of degree 1. Then, there exists a
unique distribution T on D which can be extended to the Banach subspace
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of E generated by the support functions hK for every K ∈ K(V ) in such a
way that

φ(K) = T (hK).

3. Proof of Theorem 1

Lemma 3.1. Let W be a complex vector space of complex dimension m ≥ 3.
Let Z : K(W ) → K(W ) be a continuous, translation invariant, SL(W,C)-
covariant Minkowski valuation with degree of homogeneity k, 1 < k ≤ 2m−1.
Then ZK = {0}, ∀K ∈ K(W ).

Proof. Let Z be a Minkowski valuation of degree k satisfying the hypothesis
of the lemma. Define the operator Z̃ : K(W ) → K(W ) by

Z̃(K) :=

∫

S1

∫

S1

q1Z(q2K)dq1dq2.

It satisfies Z̃(qK) = Z̃(K) and qZ̃(K) = Z̃(K) for all q ∈ S1 and K ∈

K(W ). We say that Z̃ is an S1-bi-invariant valuation.

Z̃ inherits all the desired properties from Z and it turns out to be a con-
tinuous, translation invariant and SL(W,C)-covariant Minkowski valuation
of degree k. In order to prove the lemma, it suffices to show that there can-
not exist a non-trivial S1-bi-invariant valuation satisfying the hypothesis.
We denote again this valuation by Z.

Let g ∈ GL(W,C) and write g = g0tq with g0 ∈ SL(W,C), t ∈ R>0, q ∈ S1.
Using the S1-bi-invariance and the homogeneity of degree k of Z we have

Z(gK) = Z(g0tqK) = tkg0qZ(K) = tk−1gZK,

and it follows that

(6) Z(gK) = |det g|
k−1

m gZK, ∀g ∈ GL(W,C).

We distinguish two cases.
Case k = m+1. Let e1, . . . , em be a complex basis of W and e1, . . . , em its
dual basis. We denote by E the (m+1)-dimensional real subspace generated
by e1, . . . , em, ie1.

Let g ∈ GL(W,C) be defined by gej = λjej with λ1, . . . , λm ∈ R>0. Note
that g fixes E. Let D = λ2

1

∏m
j=2 λj be the determinant of the restriction

of g to E (considered as an element of GL(E,R)). Let j ∈ {2, . . . ,m} and
ξ = ej or ξ = iej . Using (6) we get

h(ZgK, ξ) = h(ZK, g∗ξ)|det g| = h(ZK, ξ)λj |det g|.

On the other hand, by Klain’s result, the restriction of h(Z(·), ξ) to E is a
multiple of the (m+ 1)-dimensional volume. Thus, for every K ∈ K(E)

h(ZgK, ξ) = Vol(gK)Kl(E) = DVol(K)Kl(E) = Dh(ZK, ξ).
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Consequently,

h(ZK, ξ)λ1

m
∏

j=2

λj = h(ZK, ξ)λj

m
∏

j=2

λj, ∀λ1, . . . , λm,

which implies

h(ZK, ej) = h(ZK, iej) = 0, ∀j 6= 1, K ∈ K(E).

Hence, the support function h := hZK vanishes on all lines R · ej , R · iej , j =
2, . . . ,m. Since ZK = −ZK, this implies that ZK is a two-dimensional
convex body contained in the space generated by {e1, ie1}.

Let now g ∈ GL(W,C) be defined by ge1 = αe1, α = x + iy ∈ C,
gej = λjej , λj ∈ R>0, j = {2, . . . ,m}. The determinant D of the restriction
of g to E is

D = (x2 + y2)λ2 . . . λm,

and

|det g| = |α|λ2 . . . λm =
√

x2 + y2λ2 . . . λm.

Choosing α with |α| = 1 we get, for every K ∈ K(E)

h(Z(gK), e1) = |det g|h(ZK,αe1) = λ2 . . . λmh(ZK,αe1),

h(Z(gK), e1) = Dh(ZK, e1) = λ2 . . . λmh(ZK, e1).

Thus,

(7) h(ZK, e1) = h(ZK,αe1), ∀α ∈ S1, K ∈ K(E),

and ZK is a disc of radius r(K) contained in the complex line generated by
e1.

Let K0 ⊂ E be the parallelotope [0, e1] + [0, ie1] + [0, e2] + · · · + [0, em]
which we denote by [e1, ie1, e2, . . . , em], and let K = [w1, iw1, w2 . . . , wm] be
a parallelotope with w1 = αe1, α ∈ S1. We claim that

(8) h(ZK, e1) = c|det(w1, . . . , wm)|,

where c = h(ZK0, e
1). Indeed, using the continuity of both sides of (8) it

is enough to prove it when w1, . . . , wm are linearly independent over C. In
this case, we can define g ∈ GL(W,C) by gej = wj, j = 1, . . . ,m, and from
(6) and (7) we have

h(ZK, e1) = h(Z(gK0), e
1) = |det g|h(ZK0, g

∗e1) = c|det(w1, . . . , wm)|.

Let us fix a Hermitian scalar product on W such that e1, . . . , em consti-
tutes an orthonormal basis.

Let W0 be the (m− 1)-dimensional complex subspace of W generated by
{e2, . . . , em}. Now, let us define a valuation φ : K(W0) → R by

φ(K ′) = h(Z[e1, ie1,K
′], e1),

where [e1, ie1,K
′] denotes the product of the parallelotope [e1, ie1] and K ′ ⊂

W0. Note that both convex sets lie in orthogonal spaces.
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Define H ⊂ SU(W ) as the stabilizer of SU(W ) at e1. We have H ∼=
SU(W0) ∼= SU(m − 1). If m ≥ 3, then H acts transitively on the unit
sphere of W0.

By (8), φ is SU(W0)-invariant. Alesker established in [6, Proposition 2.6]
that if G is a compact subgroup of the orthogonal group acting transitively
on the unit sphere of a vector space, then each G-invariant translation in-
variant continuous valuation is smooth. Thus, φ is a smooth valuation. In
particular, the Klain function of φ is a smooth function.

Let us consider the smooth curve γ : R → K(W0) given by

γ(t) = [cos te2 + sin tie3, e3, . . . , em].

For these convex sets,

φ(γ(t)) = h(Z[e1, ie1, cos te2 + sin tie3, e3, . . . , em], e1)

= c|det(e1, cos te2 + sin tie3, e3, . . . , em)| = c|cos t|,

which is smooth only if c = 0.
Hence, we get h(ZK, e1) = 0 and from (7) we have h(ZK,αe1) = 0 for all

K ∈ K(E) and α ∈ S1. Thus, r(K) = 0 (the radius of ZK) and by Klain’s
injectivity theorem we have Z ≡ {0}.
Case 1 < k ≤ m or m + 1 < k ≤ 2m − 1. The proof of this case is
completely analogous to the proof of the contravariant case in [1, Lemma
3.2] and we do not reproduce it here. The main idea of the proof was to
use the same matrices g ∈ GL(W,C) defined in the previous case. Using (6)
and the fact that the power of |det g| is not an integer one obtains that Z

must be the trivial valuation. �

Remark 3.2. If Z : K(W ) → K(W ) is a continuous, translation invariant,
SL(W,C)-covariant Minkowski valuation of degree 2m (resp. 0), then the
support function of the image is a multiple – depending on the direction –
of the volume (resp. the Euler characteristic) and it can be proved as before
that it must be the trivial valuation.

Proof of Theorem 1. We assume first that DC is defined as in (2) and we
prove that it satisfies all the stated properties.

The function on the right hand side of (2) is a support function since
h(αK, ·) is a support function for every α and dS(C, ·) is a positive measure.
Hence DCK is a convex body on W for every C ∈ K(C).

In order to show that DC is a Minkowski valuation we use the additivity
of the support function in its first argument. Let K,L ∈ K(W ) with K∪L ∈
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K(W ). Then, K ∪L+K ∩L = K+L (cf. [40, Lemma 3.1.1]) and it follows

h(DC(K ∪ L) + DC(K ∩ L), ξ) = h(DC(K ∪ L), ξ) + h(DC(K ∩ L), ξ)

=

∫

S1

h(K ∪ L+K ∩ L,α∗ξ)dS(C,α)

=

∫

S1

h(K + L,α∗ξ)dS(C,α)

= h(DC K, ξ) + h(DC L, ξ),

which implies the valuation property of DC .
The continuity of DC follows from the continuity of the support function.
To prove that DC is translation invariant we use the only if part of The-

orem 2.2. Indeed, for u ∈ W it follows

h(DC(K + u), ξ) = h(DCK, ξ) +

∫

S1

〈αu, ξ〉dS(C,α)

= h(DCK, ξ) +

〈

u

∫

S1

αdS(C,α), ξ

〉

= h(DCK, ξ).

Finally, the SL(W,C)-covariance is obtained from (3). For each g ∈
SL(W,C) we have

h(DC(gK), ξ) =

∫

S1

h(αgK, ξ)dS(C,α) =

∫

S1

h(αK, g∗ξ)dS(C,α)

= h(DCK, g∗ξ) = h(gDCK, ξ).

It follows that DC(gK) = gDCK, hence DC has all the required properties.
Let us now show the uniqueness of C up to translations. As the area

measure S(C, ·) is invariant under translations, we can assume that the
Steiner point of C is the origin. (Recall that the Steiner point of a convex
body K ∈ K(V ) is defined by, see [40, p. 42]

s(K) =
1

Vol(Bn)

∫

Sn−1

h(K,u)udu,

where Bn denotes the unit ball in V .)
Let C1, C2 be convex bodies in C with s(C1) = s(C2) = 0 and DC1

= DC2
,

i.e.

h(DC1
K, ξ) = h(DC2

K, ξ), ∀K ∈ K(W ), ξ ∈ W ∗.

Fix ξ ∈ W ∗ and u ∈ W such that ξ(u) = 1. Consider C1u ⊂ W and
C2u ⊂ W . For these convex sets and i, j ∈ {1, 2} we have

h(DCi
(Cju), ξ) =

∫

S1

h(αCju, ξ)dS(Ci, α) =

∫

S1

h(Cj , α)dS(Ci, α)

=

∫

S1

h(Cj , α)dS(Ci, α) = V2(Ci, Cj),
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where V2 denotes the mixed volume in C. Hence, we have V2(C1, C1) =
V2(C2, C2) = V2(C1, C2).

In particular, either C1 and C2 both have empty interior or both have
non-empty interior.

Assume that C1 and C2 have non-empty interior. The Minkowski inequal-
ity in dimension 2 states that (see [40, Theorem 6.2.1])

V2(C1, C2)
2 ≥ V2(C1, C1)V2(C2, C2),

with equality if and only if C1 and C2 are homothetic. Thus, we can write
C1 = rC2 + z with r ∈ R>0, z ∈ C. But, from V (C1, C1) = V (C2, C2) we
get r = 1 and from s(C1) = s(C2), we get z = 0. That is, C1 = C2.

Assume now that C1, C2 have empty interior. Then, C1 = [−z1, z1] and
C2 = [−z2, z2] with C1, C2 ∈ C. In this case, the area measure of C1 is given
by

S([−z1, z1], ·) = δiz1(·) + δ−iz1(·),

and

h(DC1
K, ξ) = h(K, iz1ξ) + h(K,−iz1ξ).

Then, for every K = [−zu, zu], z ∈ C, we have

h(DC1
K, ξ) = h(K, iz1ξ) + h(K,−iz1ξ) = 2|Re(iz1ξ(zu))| = 2|Re(iz1z)|,

and similarly

h(DC1
K, ξ) = h(DC2

K, ξ) = 2|Re(iz2z)|.

It follows that z1 = z2, and C1 = C2.

Conversely, let us suppose that Z is a translation invariant continuous
Minkowski valuations which is SL(W,C)-covariant. We want to show that
there exists some compact convex C ⊂ C with Z = DC and s(C) = 0.

First, we prove that Z must be homogeneous of degree one. McMullen’s
decomposition (5) applied to Z gives the decomposition

h(ZK, ·) =
2m
∑

k=0

fk(K, ·),

with fk(K, ·) a 1-homogeneous function. In general, fk is not subadditive
as was recently proved in [38]. For the minimal index k0 and the maximal
index k1 with fk 6= 0, it was proved in [41] that fk0 and fk1 are support
functions.

By Lemma 3.1 and Remark 3.2 there is no non-trivial, continuous, trans-
lation invariant and SL(W,C)-covariant Minkowski valuation Z of degree
k 6= 1, if dimW ≥ 3. We thus get k0 = k1 = 1, and Z is of degree 1.

For every ξ ∈ W ∗, h(Z·, ξ) is a real-valued valuation, which is also contin-
uous, translation invariant and homogeneous of degree 1. Thus, by Theorem
2.5, there exists a distribution Tξ defined on W ∗ such that

h(ZK, ξ) = Tξ(hK).
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In order to derive the result for the 1-homogeneous case, we divide the
proof in several steps. The first step is to show that, in our case, the dis-
tribution Tξ can be interpreted as a distribution on S1. Then, using the
SL(W,C)-covariance, we show that this distribution on S1 is independent of
ξ. The fourth step is to prove that this distribution is given by a measure
defined on S1. In the last two steps we find that this measure must be
positive and the surface area measure of a convex set in C.

Step 1: Let ξ0 ∈ W ∗. We claim that there exists a distribution T on
S1 satisfying (mξ0)∗T = Tξ0 , where mξ0 : S1 → W ∗, mξ0(α) = α∗ξ0, and
(mξ0)∗T (f) := T (f ◦mξ0) for every f ∈ D, i.e. a continuous, 1-homogeneous
function on W ∗, smooth on W ∗ \ {0}.

Let E ⊂ W ∗ be the 1-dimensional complex subspace spanned by ξ0. Let
f be a function defined on W ∗ such that f |E ≡ 0.

Let us suppose first that f is the support function of K ∈ K(W ). Then,
the condition f |E = hK |E ≡ 0 implies that the convex body K lies in the
complex subspace F = ker ξ0 ⊂ W . Let gλ ∈ GL(W,C) with g∗λξ0 = ξ0 and
gλ(v) = λv, λ ∈ R>0, for every v ∈ F . As gλ has real entries and det gλ > 0,
there exist t > 0 and g0 ∈ SL(W,C) (with real entries) such that gλ = tg0.
From the 1-homogeneity and the SL(W,C)-covariance of Z, it easily follows
that

Z(gλK) = gλZK.

From the properties of Z and the above equality, we get

h(ZK, ξ0) = h(ZK, g∗λξ0) = h(Z(gλK), ξ0) = h(Z(λK), ξ0) = λh(ZK, ξ0).

As the above equation holds for every λ ∈ R>0, it follows that Tξ0(hK) =
h(ZK, ξ0) = 0.

Let now f = hK−hL withK,L ∈ K(W ) and f |E ≡ 0, that is, h(K,α∗ξ0) =
h(L,α∗ξ0) for every α ∈ S1. Let gλ ∈ GL(W,C) be as above. Then,
h(gλK,α∗ξ0) = h(gλL,α

∗ξ0) for all λ > 0. Thus,

lim
λ→0

gλK = lim
λ→0

gλL,

and from the continuity of Z we get on one hand

lim
λ→0

Z(gλK) = lim
λ→0

Z(gλL).

On the other hand, we have for every λ ∈ R>0,

h(ZK, ξ0)− h(ZL, ξ0) = h(Z(gλK), ξ0)− h(Z(gλL), ξ0).

Taking limits on both sides we get h(ZK, ξ0) = h(ZL, ξ0) and Tξ0(f) = 0.
As every function f ∈ D can be written as the difference of two support

functions, that is, f = hK − hL for some K,L ∈ K(W ) (cf. Lemma 2.1), we
get Tξ0(f) = 0 for every f ∈ D.

Thus, we get that the value of Tξ0(f) only depends on f |E. We define the
distribution T on S1 by T (g) := Tξ0(g̃), where g̃ denotes an extension on D
of g (satisfying g̃(α∗ξ0) = g(α) and hence, T is well-defined). By definition
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of mξ0 we have T (f ◦mξ0) = Tξ0(f) since f is an extension of f ◦mξ0 , and
the claim follows.

Step 2: Let g ∈ SL(W,C) and ξ ∈ W ∗. The distribution Tξ satisfies
Tg∗ξ = (g∗)∗Tξ, where (g∗)∗Tξ(f) = Tξ(f ◦ g∗) for every f ∈ D.

We first prove the equality for a support function hK , K ∈ K(W ). Us-
ing property (3) of support functions, and that Z is an SL(W,C)-covariant
valuation, we get

(g∗)∗Tξ(hK) = Tξ(hK ◦ g∗) = Tξ(hgK)

= h(Z(gK), ξ) = h(ZK, g∗ξ) = Tg∗ξ(hK).

The general case follows by linearity and Lemma 2.1.

Step 3: The distribution T on S1 given in Step 1 satisfies (mξ)∗T = Tξ,
for every ξ ∈ W ∗.

Let ξ0 ∈ W ∗ as in Step 1 and ξ ∈ W ∗. There exists g ∈ SL(W,C) such
that g∗ξ0 = ξ. Using Steps 2 and 1, it follows that

Tξ = Tg∗ξ0 = (g∗)∗Tξ0 = (g∗)∗(mξ0)∗T = (g∗ ◦mξ0)∗T = (mξ)∗T.

Step 4: The distribution T defined in Step 1 is given by a signed measure
µ. That is,

(mξ)∗T (f) =

∫

S1

f(α∗ξ)dµ(α).

Schneider obtained in [39] a classification of continuous, Minkowski valu-
ations Φ on a 2-dimensional vector space V which satisfy Φb = bΦ for every
b in SO(V,R) or b a translation in V . The general expression for such a Φ is

h(Φ(K), α) =

∫ 2π

0

h(K − s(K), u(α + β))dν(β) + 〈u(α), s(K)〉,

where s(K) denotes the Steiner point of K, u(α) = cos(α)e1 + sin(α)e2

with {e1, e2} a given basis on V ∗, and 〈 , 〉 the pairing of V with its dual
space. The signed measure ν is unique up to a linear measure l defined by
ω 7→

∫

ω
〈u(α), a〉dα with a ∈ V a constant vector.

Schneider’s proof can be easily adapted to our situation. Indeed, let
ξ ∈ W ∗, {e1, . . . , em} a basis of W ∗ with e1 = ξ and {e1, . . . , em} the basis
of W dual to {e1, . . . , em}. Define E as the 1-dimensional complex space
in W spanned by e1. We can identify E∗ with spanC(ξ) ⊂ W ∗, and write
α ∈ E∗ as a multiple of ξ, which we denote again by α.

Let φ : E → E be the restriction of Z to E, i.e. h(φ(K), α) = h(ZK,αξ)
with K ∈ K(E).

The operator φ inherits the properties of Z, that is, it is a continuous,
translation invariant Minkowski valuation which is covariant with respect
to SL(E,C) ∼= S1. Now, φ satisfies all the hypothesis of Schneider’s result
except the covariance with respect to translations (i.e. Φ(K+t) = Φ(K)+t),
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which is replaced by the invariance (i.e. φ(K + t) = φ(K)). However, the
first step in Schneider’s proof is to construct a translation invariant valuation
from the translation covariant one via Φ − s (where s denotes the Steiner
point), and the same argument can be used in our situation.

Step 5: The measure µ is positive.
By assumption, the function F (ξ) = h(ZK, ξ) must be convex. Thus, the

second differential of F at each ξ must be a positive semi-definite bilinear
form (cf. [40, p. 108 and Theorem 1.5.10]). Note that, by the representation
of h(ZK, ξ) obtained in the previous step, if h(K, ·) is a smooth function,
then h(ZK, ·) is also smooth.

For simplicity, we fix a scalar product on W . Fix ξ ∈ W and let S1 ·ξ ⊂ W

be a circle contained in the complex line spanned by ξ. Let ǫ > 0 and B̊ the
open 2m-dimensional ball in W . We have that S1 · ξ× ǫB̊ is a neighborhood
of S1 · ξ in W . Geometrically, it can be interpreted as the open tube of
radius ǫ along S1 · ξ.

Let f : S1 → R>0 be a positive smooth function. Attach to each point
pθ := eiθξ ∈ S1 · ξ a spherical cap of a (2m− 2)-dimensional sphere Sθ with
radius f(θ), center on the segment [0, pθ] and tangent plane at pθ orthogonal
to {ξ, iξ}.

For ǫ small enough the intersection between S1 · ξ × ǫB̊ and the set de-
scribed in the previous paragraph is a smooth hypersurface. Denote it by
Kǫ.

The principal curvatures of Kǫ at pθ are f−1(θ) > 0 (the inverse of the
radius of the attached (2m− 2)-dimensional sphere at pθ) with multiplicity
2m − 2, and 1, corresponding to the principal direction ieiθξ, tangent to
S1 · ξ at pθ. Since the function f is smooth, strictly positive, and defines
the hypersurface in a neighborhood of S1 · ξ, all principal curvatures at any
point of Kǫ are strictly positive, provided ǫ is small enough.

SetK := convKǫ, where convKǫ denotes the convex hull ofKǫ, the closure
of Kǫ, at W . As Kǫ is a convex hypersurface, we have ∂K ∩ (S1 · ξ × ǫB) =
Kǫ ∩ (S1 · ξ× ǫB), and K is smooth in a neighborhood of S1 · ξ. The second
differential of h(ZK, ·) at ξ must be positive semi-definite (cf. [40, Theorem
1.5.10]), that is,

(d2h(ZK, ξ))(a, a) =

∫

S1

(d2h(αK, ξ))(a, a)dµ(α) ≥ 0, ∀a ∈ W.

The eigenvalues of the second differential of the support function of a
convex body K ⊂ W in a direction ξ ∈ W are the radii of curvature of K at
the corresponding supporting point with eigenvector the principal directions
at this supporting point (cf. [40, Corollary 2.5.2]). By the construction of
K, the support point of αK in direction ξ is p−θ, with e−iθ = α.

Take a = b = u with u a principal direction of K at p0 = ξ different
from iξ. Then, u is also a principal direction of K at every point pθ, with
principal radius of curvature f(eiθ), the radius of the attached sphere at pθ.
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Hence,

(d2h(αK, ξ))(u, u) = f(α).

Therefore, for every strictly positive smooth function on S1 we get
∫

S1

f(α)dµ(α) ≥ 0,

and from the density of smooth positive functions on the space of continuous
positive functions, we get that the measure µ is positive.

Step 6: The measure µ is the surface area measure for some convex body
in C.

Using the translation invariance of Z, we have that µ satisfies condition
(4) of Minkowski’s existence theorem (see Theorem 2.2).

If µ is not concentrated on two antipodal points of S1, then from Theo-
rem 2.2 we get the existence of a 2-dimensional convex body C ⊂ C with
dS(C, ·) = µ(·).

Otherwise, if µ is concentrated on two antipodals points ±α of S1, then
µ coincides with the surface area of a centered interval with normal vector
given by the direction α. Thus, µ is the surface area of a (1-dimensional)
convex body. �

4. The case dimW = 2

In order to have a complete classification of continuous, translation invari-
ant, SL(W,C)-covariant or SL(W,C)-contravariant Minkowski valuations
with a fixed homogeneity degree, it just remains to study the case of SL(W,C)-
covariant valuations of degree 3 and SL(W,C)-contravariant valuations of
degree 1 in a complex 2-dimensional space W .

Fix a basis of W and consider the determinant map

(9)
det : W ×W −→ C

(u, v) 7→ det(u, v).

This map induces an identification Φ between W and its dual space W ∗,
which satisfies Φ(gu) = (det g)g−∗Φ(u), for every g ∈ GL(W,C), u ∈ W .

Then, every SL(W,C)-contravariant (resp. covariant) Minkowksi valua-
tion Z of degree k is in correspondence with an SL(W,C)-covariant (resp.
contravariant) Minkowski valuation Φ−1 ◦ Z (resp. Φ ◦ Z) also of degree k.
Thus, the following classification results follow directly from Theorem 1.1
and Theorem 1.

Proposition 4.1. Let dimCW = 2 and Z : K(W ) → K(W ∗) a continu-
ous, translation invariant and SL(W,C)-contravariant Minkowski valuation
of degree k. If k 6= 1, 3, then Z ≡ {0}. If k = 3, then Z is of the form (1).
If k = 1, then there exists a convex body C ⊂ C such that

h(ZK,w) =

∫

S1

h(det(K,w), α)dS(C,α), K ∈ K(W ), w ∈ W,
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where det(K,w) := {det(k,w) | k ∈ K}. Moreover, C is unique up to trans-
lations.

Proposition 4.2. Let dimCW = 2 and Z : K(W ) → K(W ) a continuous,
translation invariant and SL(W,C)-covariant Minkowski valuation of degree
k. If k 6= 1, 3, then Z ≡ {0}. If k = 1, then Z is of the form (2). If k = 3,
then there exists a convex body C ⊂ C such that

h(ZK, ξ) = V (K,K,K,C · w),

where w ∈ W is the corresponding vector to ξ given by the identification
Φ−1 between W ∗ and W determined by (9). Moreover, C is unique up to
translations.
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