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Abstract A graph is integral means that all its eigenvalues are integers.

In this note, we determine all the integral Cayley graphs on finite abelian groups.

Moreover, we calculate the the number of integral Cayley graphs on a given finite

abelian group.
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1 Introduction and Main Results

A graph ,whose eigenvalues are integers, is called integral. Since 1974, Harary

and Schwenk (see [HS]) began to research the question. There are lots of literature

studying integral graphs(see e.g., [A][BC][Bu][EH][LL][So][Z]). In this note we focus

on the collection of Cayley graphs.

Let G be a group and let S be a subset of G that is closed under taking inverses

and does not contain the identity. Then the Cayley graph (see [GR])D(G, S) is the
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graph with vertex set G and edge set E(D(G, S)) = {gh | hg−1 ∈ S}.

Our purpose in this note is to characterize the integral Cayley graphs among

the finite abelian groups and compute the the number of integral Cayley graphs on

a given finite abelian group.

Let G be a abelian group with order n. By the theorem of finite abelian group,

G is isomorphic to the direct sum of some cyclic groups. So, in the following, we

assume that G = C1

⊕
C2

⊕
· · ·

⊕
Cm, where Ci = Z/niZ (ni not necessary be a

power of a prime number)for some integer ni, 1 ≤ i ≤ m. The main results in the

present note are stated as follows.

A. (see Theorem 1.) The Cayley graph D(G, S) is integral if and only if

S is a union of some orbits Hg,is.

B. (see Corollary 1.) For G = (Z/n1Z)
⊕

(Z/n2Z)
⊕

· · ·
⊕

(Z/nmZ), there

are at most 2r(G) integral Cayley graphs on G.

2 Proof of Main Theorem

Let Q(ζn) be the n-th cyclotomic field, and H = Gal(Q(ζn)/Q) be the Ga-

lois group of Q(ζn) over the rational number field Q. Now n1 is a positive divi-

sor of n with n = n1n2 · · ·nm = n1t. We define a group operation π1 of H on

Z/n1Z, π1 : H × (Z/n1Z) −→ Z/n1Z. Since Gal(Q(ζn)/Q) ∼= (Z/nZ)∗, for each

σ ∈ H, there is an element a ∈ (Z/nZ)∗ such that σ(ζn) = ζan. Then, for x ∈ Z/n1Z,

we have σ(ζxn1
) = ζatxn = ζaxn1

= ζyn1
, with y ≡ ax(modn1), 0 ≤ y < n1. The opera-

tion π1 is defined by π1(σ, x) = σ(x) = y. Then we extend the operation to G by

σ(x1, x2, · · · , xm) = (σ(x1), σ(x2), · · · , σ(xm)), for each (x1, x2, · · · , xm) ∈ G. Using



the orbit decomposition formula(see [L]), G\{0} is the disjoint union of the distinct

orbits, and we can write G \ {0} =
⊔

i∈I Hgi, where I is some indexing set, and the

gi are elements of distinct orbits.

We obtain the necessary and sufficient condition for a Cayley graph D(G, S) to

be integral as in the following theorem.

Theorem 1. The Cayley graph D(G, S) is integral if and only if S is a union

of some orbits Hg,is.

In the following, we give the proof Theorem 1 in the case of m = 2, i.e., G is a

direct sum of two summands.

Let Ĝ denote the group of multiplicative homomorphisms from G to C∗ (see [Se]

or [W]), where C is the complex number field. Then we have isomorphism G ∼= Ĝ,

since G is abelian. For each (a, b) ∈ G, there is an element χ(a,b) ∈ Ĝ such that

χ(a,b)(s, t) = ζasn1
× ζbtn2

, (s, t) ∈ G. The spectrum of Cayley graph D(G, S) is given by

[Ba] and [Bi],

spec(D(G, S)) = {λ(0,0), λ(0,1), · · · , λ(0,n2−1), λ(1,0), · · · , λ(n1−1,0), · · · , λ(n1−1,n2−1)},

where λ(a,b) =
∑

(s,t)∈S χ(a,b)(s, t) =
∑

(s,t)∈S ζ
as
n1

· ζbtn2
.

Proposition 1. If S is a union of some orbits Hg,is, the Cayley graph

D(G, S) is integral.

Proof. For each orbit Hgi, we have σHgi = {σ(hgi) | h ∈ H} = Hgi, σ ∈ H.



So σS = S, since S is a union of some orbits Hg,is. Thus

σ(λ(a,b)) =
∑

(s,t)∈S

σ(ζasn1
· ζbtn2

) =
∑

(s,t)∈S

σ(ζasn1
) · σ(ζbtn2

)

=
∑

(s,t)∈S

ζaσ(s)n1
· ζbσ(t)n2

= λ(a,b),

for every element σ ∈ H. By the Galois theory for finite Galois extensions, we get

λ(a,b) ∈ Q. Notice that λ(a,b) are algebraic integers, hence λ(a,b) ∈ Z, which shows

that the Cayley graph D(G, S) is integral. �

In another hand, we have the following proposition.

Proposition 2. If the Cayley graph D(G, S) is integral, then S is a union

of some orbits Hg,is .

Before the proof, we need some preparation and the following two lemmas.

Let Γ be a (n − 1)-order square matrix with the row and column index in

G \ {(0, 0)}. Namely, we suppose Γ = (γ(a,b)(α,β)), where γ(a,b)(α,β) is the entry of the

(a, b)-th row and (α, β)-th column, with (a, b), (α, β) ∈ G \ {(0, 0)}. And γ(a,b)(α,β) =

χ(a,b)(α, β) = ζaαn1
× ζbβn2

. For the matrix Γ, we have the following lemma.

Lemma 1. The matrix Γ is nonsingular, i.e., det(Γ) 6= 0.

Proof. Let χ be a nontrivial character of finite abelian group G, we know

that
∑

g∈G χ(g) = 0. Then the sum of all entries in each row of Γ is −1. Hence, to

prove this lemma, it suffice to show the n×n block matrix Γ′ =

(
1 1
1 Γ

)
is invertible.

Let K be the space of complex valued class function on G. Then all the el-

ements of Ĝ form an orthonormal basis of K(see [Se]). Suppose there exist n

complex numbers k(a,b), (a, b) ∈ G such that
∑

(a,b)∈G k(a,b)R(a,b) = (0, 0, · · · , 0),



where R(a,b) is the (a, b)-th row of the matrix Γ′. Then we have the class func-

tion
∑

(a,b)∈G k(a,b)χ(a,b) = 0. So k(a,b) = 0 for all (a, b) ∈ G, which shows that the

row vectors of Γ′ are linearly independent and so Γ′ is invertible. �

Let τ be such a (n− 1)-dimension column vector as

τ = (v(0,1), v(0,2), · · · , v(0,n2−1), v(1,0), · · · , v(n1−1,0), · · · , v(n1−1,n2−1))
T

with v(a,b) = 1 for (a, b) ∈ S and 0 otherwise. It is easy to see that

Γτ = (λ(0,1), λ(0,2), · · · , λ(0,n2−1), λ(1,0), · · · , λ(n1−1,0), · · · , λ(n1−1,n2−1))
T .

Let τi be the (n− 1)-dimension column vector for the orbit Hgi just as τ for S. We

denote W the vector space {ω ∈ Qn−1 | Γω ∈ Qn−1} and V ⊂ Qn−1 the the vector

space spanned by the vectors {τi, i ∈ I}. We obtain the following lemma for W and

V.

Lemma 2. we have that W and V are the same vector space, i.e., W = V.

Proof. By Proposition 1, Γτi ∈ Zn−1, i ∈ I. So we get V ⊂ W. Let ω ∈ W and

ω = (ω(0,1), ω(0,2), · · · , ω(0,n2−1), ω(1,0), · · · , ω(n1−1,0), · · · , ω(n1−1,n2−1))
T , u = Γω =

(u(0,1), u(0,2), · · · , u(0,n2−1), u(1,0), · · · , u(n1−1,0), · · · , u(n1−1,n2−1))
T . First, we show that

u(a,b) = u(c,d) if (a, b), (c, d) in the same orbitHgi for some i ∈ I. Because (a, b), (c, d) ∈

Hgi, there exist an element σ ∈ H such that σ(a, b) = (c, d), namely, σ(a) = c, and



σ(b) = d. In fact,

u(a,b) = σ(u(a,b)) = σ(
∑

(k,l)∈G\{0}

ω(k,l)χ(a,b)(k, l)) =
∑

(k,l)∈G\{0}

ω(k,l)σ(χ(a,b)(k, l))

=
∑

(k,l)∈G\{0}

ω(k,l)σ(ζ
ak
n1

· ζbln2
) =

∑

(k,l)∈G\{0}

ω(k,l)ζ
σ(a)k
n1

· ζσ(b)ln2

=
∑

(k,l)∈G\{0}

ω(k,l)ζ
ck
n1

· ζdln2
= u(c,d),

which implies that Γ(W ) ⊂ V. Notice that the matrix Γ is nonsingular by Lemma 1

and V ⊂ W. Hence dimW = dimV, and W = V. �

Now it is time to prove Proposition 2.

Proof of Proposition 2. Since the Cayley graph D(G, S) is integral, then

Γτ ∈ Qn−1. We have τ ∈ W. By Lemma 2, τ ∈ V and τ =
∑

i∈I ciτi for some

coefficients ci ∈ Q. By the construction of τ and τ ,is, we conclude that S is the union

of the Hg,is with ci = 1. The proof is completed. �

Remark Merging Proposition 1 and Proposition 2 together, we have Theorem

1 in the case of m = 2. For the general case, by [Ba] and [Bi], spec(D(G, S)) =

{λg | g = (g1, g2, · · · , gm) ∈ G}, where λg =
∑

(s1,s2,··· ,sm)∈S ζ
g1s1
n1

ζg2s2n1
· ζgmsm

n2
. So far,

we have given the ideas and methods to the proof of Theorem 1. It is not hard to

find these ideas and methods can be applied to the general case. In another words,

with the formula of spectrum, we can prove the Theorem 1 for any m ∈ Z+ (Z+,

the set of all positive integers) in the same way as above. So we obtain the result of

Theorem 1.

3 Computation the number of integral Cayley graphs

Let d | n0, 0 < d < n0, and denote Gn0
(d) the set {k | 0 < k < n0, gcd(k, n0) =

d}. So we get a collection Gn0
of such Gn0

(d),s, i.e., Gn0
= {Gn0

(d) | d | n0, 0 < d <



n0}. In the case of m = 1, G = Z/nZ, it is easy to check that all the orbits Hg,is is

the collection Gn. Thus Theorem 7.1 in [So] can be deduced from Theorem 1.

Denote PG the collection of Cartesian product {p1 × p1 × · · · × pm | pi ∈

Gn
i

or pi = 0, not all pi are zeros }. For a Cartesian product P ∈ PG, choose

one element ρ ∈ P, ρ = (a1, a2, · · · , am). Denote Q(P ) the cyclotomic field

Q(ζa1n1
, ζa2n2

, · · · , ζamnm
) = Q(ζa1n1

) ·Q(ζa2n2
) · · ·Q(ζamnm

),

[Q(P ) : Q] the dimension of Q(P ) as vector space over Q and |P | the cardinal

number of P. We have the following Lemma.

Lemma 3. Under the operation of H restricted on the Cartesian product

P ∈ PG, P is divided into |P |
[Q(P ):Q]

orbits.

To prove Lemma 3, we need the following proposition.

Proposition 3. Let K1, K2, · · · , Km(m > 2), be Galois extensions of a

field k, with Galois group H1, H2, · · · , Hm, respectively. Assume K1, K2, · · · , Km

are subfields of some field. Then K1K2 · · ·Km is Galois over k. Let map

Gal(K1K2 · · ·Km/k) → H1 ×H2 × · · · ×Hm

by restriction, namely, σ 7→ (σ |K1
, σ |K2

, · · · , σ |Km
). This map is injective.

Proof. By induction, it is easy to see Proposition 3 is a extension of Theorem

1.14 in Chapter 6 of [L]. We omit the details. �

Proof of Lemma 2. Notice that Q(P ) ⊂ Q(ζn). If σ ∈ H, then the

restriction of σ to Q(P ) is in Gal(Q(P )/Q). So by Proposition 3 above, every orbit



contained in some Cartesian product P has [Q(P ) : Q] elements, which implies that

P can be divided into |P |
[Q(P ):Q]

orbits under group action of H. �

Let r(G) = ΣP∈PG

|P |
[Q(P ):Q]

. By Lemma 3, r(G) is the orbits number of group

operation of H on G. So we obtain the following Corollary by Theorem 1.

Corollary 1. For G = (Z/n1Z)
⊕

(Z/n2Z)
⊕

· · ·
⊕

(Z/nmZ), there are at

most 2r(G) integral Cayley graphs on G.

References

[A ] Omran Ahmadi, Noga Alon, Ian F. Blake, Igor E. Shparlinski, Graphs with

integral spectrum, Linear Algebra and its Applications, 2009, 430: 547-552.

[Ba ] K. Babai, Spectra of Cayley Graphs, Journal of Combinatorial Theory, Series

B 27, 180-189 (1979)

[BC ] K. Balinska, D.Cvetkovic, Z.Radosavljevic, S.Simic, D.Stevanovic, A Survey

on Integral Graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 2002,

13 :42-65.

[Bi ] N. Biggs, Algebraic Graph theory, North-Holland, Amsterdam, 1985.

[Bu ] F. Bussemaker, D.Cvetkovic, There are exactly connected, cubic, integral

graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 1976, 544:

43-48.

[EH ] F. Esser, F. Haraly, Digraphs with real and Gaussian spectra,

Discrete Appl. Math. 1980, 2: 113-124.



[GR ] C. Godsil, G. Royle, Algebraic Graph theory, New York: Springer-Verlag,

2001.

[HS ] F. Haraly, A.Schwenk, Z.Radosavljevic, S.Simic, D.Stevanovic, A Survey on

Which graphs have integral spectra, in:R. Bali, F. Haraly,(Eds.), Graphs and

Combinatorics, Berlin: Springer-Verlag, 1974, P.45. 2002, 13 :42-65.

[L ] S. Lang, Algebra, Revised Third Edition, New York: Springer-Verlag, 2002.

[LL ] X. L. Li, G. N. Lin, On integral trees problems, KeXue TongBao, 1988,

33:802-806.

[Se ] J. P. Serre, Linear Representations of Finite Groups, GTM 42, New York:

Springer-Verlag, 1977.

[So ] W. So, Integral circulant graphs, Discrete Mathematics, 2005, 306: 153-158.

[W ] L. C. Washington, Introduction to Cyclotomic Fields, Second Edition, New

York: Springer-Verlag, 2003.

[Z ] H. R. Zhang, Constructing Integral Directed Graph by Circulant Matrix Meth-

ods, J. Zhengzhou Univ. 2005, 37(4):28-34.


