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HEAT EQUATION FOR WEIGHTED BANACH

SPACE VALUED FUNCTION SPACES

Bolis Basit and Hans Günzler

Abstract. We study the homogeneous equation (*) u′ = ∆u, t > 0, u(0) = f ∈
wX, where wX is a weighted Banach space, w(x) = (1+||x||)k, x ∈ R

n with k ≥ 0, ∆

is the Laplacian, Y a complex Banach space and X one of the spaces BUC(Rn, Y )},
C0(Rn, Y ), Lp(Rn, Y ), 1 ≤ p < ∞. It is shown that the mild solutions of (*) are still
given by the classical Gauss-Poisson formula, a holomorphic C0-semigroup.

§1. Introduction, Notation and Preliminaries

In this note1 Example 3.7.6 of [1, p. 154] about solutions of the heat equation

via holomorphic C0-semigroups is extended to weighted function spaces and Banach

space valued functions. Our treatment is different from [1, p. 154]: instead of using

Fourier transforms, direct methods are used.

Let w(x) := wk(x) = (1 + ||x||)k with k ∈ R+ = [0,∞), x = (x1, · · · , xn) ∈ Rn,

||x|| = (
∑n

k=1 x
2
k)

1/2. Then w ∈ C(Rn) and

(1.1) 1 ≤ w(x + y) ≤ w(x)w(y), w(y) ≤ w(x − y)w(x), w(0) = 1,

|w(x + y)/w(x) − 1| ≤ w(y)(w(y) − 1), x, y ∈ Rn.

Let Y be a complex Banach space and

(1.2) wX = {wg : g ∈ X} with X one of the spaces

BUC(Rn, Y ), C0(R
n, Y ), Lp(Rn, Y ), 1 ≤ p <∞.

Then wX is a Banach space with norm ||f ||wX = ||f/w||X and a linear subset

of S ′(Rn, Y ), wX is translation invariant, since X is and, with f = wg, g ∈ X ,
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fh(x) := f(x+h), one has fh/w = ghwh/w with wh/w ∈ BUC(Rn,R), using (1.1).

For any f : Rn → Y , |f |(x) = ||f(x)||, x ∈ Rn.

For f ∈ wX and ζ ∈ C+ := {z ∈ C : Re ζ > 0} define (see Lemma 1.3)

(1.3) (G(ζ)f)(x) := (4πζ)−n/2
∫
Rn f(x− y)e−||y||2/4ζ dy, x ∈ Rn.

Let χζ(x) = (4πζ)−n/2e−||x||2/4ζ , ζ ∈ C+, x ∈ Rn. Then χζ ∈ S(Rn) if ζ ∈ C+,

(1.4) (G(ζ)f) = χζ ∗ f , ζ ∈ C+, G(0)f = f , f ∈ wX .

The function χζ is defined and χ′
ζ =

dχζ

dζ exists for each ζ ∈ C+, thus holomorphic

on C+. Moreover, χ
(k)
ζ =

dkχζ

dζk ∈ S(Rn) for each ζ ∈ C+, k ∈ N0.

(1.5) I = I(ζ) = ((4πζ)−n/2
∫
Rn e

−(||x||2/4ζ) dx = 1 for each ζ ∈ C+.

Indeed, I(ζ) is holomorphic on C+ with I = 1 on (0,∞). It follows I = 1 on C+

by the identity theorem for complex valued holomorphic functions.

Also, for ζ = reiφ, 0 ≤ |φ| < α < π/2, r > 0, for any x ∈ Rn

(1.6) |χζ(x)| = (4πr)−n/2e−(||x||2 cosφ)/4r < (4πr)−n/2e−(||x||2 cosα)/4r.

(1.7) Fourier transform χ̂ζ(x) = e−ζ ||x||2, x ∈ Rn, ζ ∈ C+.

Indeed, it is enough to prove the case n = 1. We have

χ̂ζ(y) = e−ζy2

I(ζ, y), where

I(ζ, y) = (4πζ)−1/2
∫
R
e−(x+2iζy)2/4ζ dx, y ∈ R, ζ ∈ C+.

With F (x, y) := e−(x+2iζy)2/4ζ ,

∂
∂y

∫
R
F (x, y) dx =

∫
R

∂
∂yF (x, y) dx =

∫
R
2iζ ∂

∂xF (x, y)dx =

= 2iζ limN→∞(F (N, y)− F (−N, y)) = 0,

so I(ζ, y) = I(ζ, 0), = 1 for ζ real > 0 (e.g. [3, p. 274, Beispiel 1]), then for ζ ∈ C+

since I is holomorphic there.

Lemma 1.1. If f ∈ wX respectively wf ∈ Lp(Rn,C) with 1 ≤ p < ∞, then

||(fy − f)/w||X → 0 respectively ||w(fy − f)||Lp → 0 as y → 0.
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Proof. Let f = wg, where g ∈ X . Then ||fy − f ||wX = ||wygy − wg||wX = ||(wy −

w)gy + wgy − wg||wX ≤ ||(wy − w)gy||wX + ||wgy −wg||wX = ||(wy/w − 1)gy||X +

||gy − g||X → 0 as y → 0 with (1.1) since ||gy − g||X → 0 as y → 0. The second

case follows similarly. �

Lemma 1.2. (A) If f ∈ wLp(Rn, Y ), wg ∈ Lq(Rn,C) with 1/p + 1/q = 1 and

1 ≤ p ≤ ∞, then (g ∗ f)(x) exists as a Bochner integral for all x ∈ Rn, and

g ∗ f ∈ wBUC(Rn, Y ); if additionally 1 < p < ∞ or f ∈ wC0(R
n, Y ) and q = 1,

then g ∗ f ∈ wC0(R
n, Y ).

(B) If f ∈ wLp(Rn, Y ), wg ∈ L1(Rn,C) with 1 ≤ p ≤ ∞, then g ∗ f(x) exists as

Bochner integral almost everywhere in Rn and g ∗ f ∈ wLp(Rn, Y ).

Proof. (A) Since

(1.8) ||f(y)g(x− y)|| = ||(f/w)(y)|||(wg)(x − y)|(w(y)/w(x − y)) ≤

|f/w|(y) |wg|(x− y)w(x),

(1.1), |f/w| ∈ Lp(Rn) and |wg|(x − ·) ∈ Lq(Rn), with the Hölder inequality [5, p.

34, Proposition 2] one has f(·)g(x− ·) ∈ L1(Rn) for all x ∈ Rn,

(1.9) ||g ∗ f(x)|| ≤ w(x)||wg||Lq ||f/w||Lp .

With this

||g ∗ f(x+ y)− g ∗ f(x)|| ≤ w(x)||f/w||Lp ||w(gy − g)||Lq ,

||g ∗ f(x+ y)− g ∗ f(x)|| ≤ w(x)||(fy − f)/w||Lp ||wg||Lq .

By Lemma 1.1, ||w(gy − g)||Lq → 0 respectively ||(fy − f)/w||Lp → 0 as y → 0 if

1 ≤ q <∞ respectively 1 ≤ p <∞. It follows g∗f ∈ wBUC(Rn, Y ) if 1 ≤ p, q ≤ ∞.

If p > 1, q < ∞ or f ∈ wC0(R
n, Y ) and q = 1, then (w|g|) ∗ (|f |/w) ∈ C0(R

n) by

[1,Proposition 1.3.2 b), d), p. 22 ]. It follows g ∗ f ∈ wC0(R
n, Y ).

(B) By Young’s inequality [5, p. 29], (w|g|) ∗ (|f |/w) ∈ Lp(Rn). So, (w|g|) ∗

(|f |/w)(x)) is finite almost everywhere on Rn. This, measurability of g(x − ·)f(·)

and (1.8) imply g ∗f(x) exists as a Bochner integral almost everywhere on Rn. The

above (w|g|) ∗ (|f |/w) ∈ Lp(Rn,C) and (1.8) give g ∗ f ∈ wLp(Rn, Y ). �
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Lemma 1.3. Let f ∈ wX, G(ζ) defined by (1.3n) and g = χζ or χ′
ζ :=

dχζ

dζ ,

ζ ∈ C+.

(i) g∗f(x) exist as a Bochner integral for all x ∈ Rn and g∗f ∈ wBUC(Rn, Y )∩

wX; if additionally 1 < p <∞ or f ∈ wC0(R
n, Y ), then g ∗ f ∈ wC0(R

n, Y )∩wX.

(ii) G(ζ) ∈ L(wX).

(iii) If 0 < α < π/2, then

(1.10) lim06=ζ→0,|arg ζ|<α ||χζ ∗ f − f ||wX = 0.

Proof. (i) Since wg ∈ Lq(Rn,C) for each 1 ≤ q ≤ ∞, (i) follows by Lemma 1.2.

(ii) The operator G(ζ) : wX → wX defined by G(ζ)f := χζ ∗ f is linear and

bounded by (1.9).

(iii) With y = |ζ|1/2z and θ = ζ
|ζ| , it follows by (1.5)

χζ∗f(x)−f(x) =
∫
Rn [f(x−y)−f(x)]χζ(y) dy =

∫
Rn [f(x−|ζ|1/2z)−f(x)]χθ(z) dz.

Case X = BUC(Rn, Y ), C0(R
n, Y ). Let ε > 0. Since wχθ ∈ L1(Rn), then using

(1.1), for 0 < |ζ| ≤ 1, |arg ζ| < α there exists c = c(ε, α) > 0 independent of ζ,

such that

I1 = sup x∈Rn
1

w(x)

∫
||z||≥c

||f(x− |ζ|1/2z)− f(x)|||χθ(z)| dz ≤ 2||f ||wX×

∫
||z||≥c

w(z)|χθ(z)| dz ≤ 2||f ||wX(4π)−n/2
∫
||z||>c

w(z)e−||z||2(cos α)/4dz < ε.

Then for the above ζ

||χζ ∗f(x)−f(x)||wX ≤ I1+ sup x∈Rn
1

w(x)

∫
||z||≤c ||f(x−|ζ|1/2z)−f(x)|||χθ(z)| dz ≤

I1+ sup x∈Rn,||z||≤c
||f(x−|ζ|1/2z)−f(x)||

w(x) (4π)−n/2
∫
Rn e

−||z||2(cosα)/4 dz = I1 + I2.

Using Lemma 1.1, there is δ > 0 such that I2 ≤ ε if |ζ|1/2c < δ. It follows

I1 + I2 ≤ 2ε if 0 < |ζ|1/2 < δ/c and |arg ζ| ≤ α.

Case X = Lp: By (i) χζ ∗ f ∈ wLp(Rn, Y ) ∩ BUC(Rn, Y ). For ζ ∈ C+ with

y = |ζ|1/2z using the Minkowski inequality [3, p. 251, A 92]

||χζ ∗ f − f ||wLp = [
∫
Rn

||
∫
Rn

[f(x−y)−f(x)]χζ(y) dy||
p

wp
k(x)

dx]
1

p ≤
∫
Rn [

∫
Rn

||f(x−y)−f(x)||p

wp
k(x)

dx]
1

p |χζ(y)| dy =
∫
Rn [

∫
Rn

||f(x−|ζ|1/2z)−f(x)||p

wp
k(x)

dx]
1

p |χθ(z)| dz.

By Lemma 1.1,
∫
Rn

||f(x−|ζ|1/2z)−f(x)||p

wp
k(x)

dx]
1

p → 0 as |ζ| → 0 for each z ∈ Rn. So,

by the dominated convergence theorem as in Lemma 1.3.3 (b) of [1, p. 23] we get
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the statement since

|χθ(z)| < (4π)−n/2e−||z||2(cosα)/4 =: F (z) by (1.6), ||f−|ζ|1/2z||wX ≤ w(z)||f ||wX

and wF ∈ L1(Rn), if z ∈ Rn, |argζ| < α, 0 < |ζ| ≤ 1. �

§2. Main results

Theorem 2.1. For wX of (1.2), the G of (1.3) is a holomorphic C0-semigroup of

angle π/2 on wX. Its generator is the Laplacian ∆wX := ∆ on wX with domain:

D(∆wX) = {f ∈ wX : distribution-∆f ∈ wX}, ∆ =
∑n

j=1 ∂
2/∂x2j

where we identify wX with a subspace of S ′(Rn, Y ).

Proof. (a): We have χζ ∈ S(Rn) for ζ ∈ C+ and

dχζ

dζ (x) = ∆χζ(x) for ζ ∈ C+, x ∈ Rn.

Moreover, by Lemma 1.3 G(ζ)f = χζ ∗ f ∈ wX , ||χζ ∗ f − f ||wX → 0 as in (1.10)

for all ζ ∈ C+, f ∈ wX and G(ζ) ∈ L(wX). Then Ĝ(ζ)f = χ̂ζ · f̂ follows as in [1,

p. 154]. By (1.7), χ̂ζ1+ζ2 = χ̂ζ1 χ̂ζ2 . So, G(ζ1 + ζ2) = G(ζ1)G(ζ2), ζ1, ζ2 ∈ C+. This

means that G is a C0-semigroup on wX .

(b) Holomorphy of G : C+ → L(wX). By [1, Proposition A.3, (ii) ⇒ (i)], it is

enough to show that for any f ∈ wX with U(ζ) = G(ζ)f the U is holomorphic

on C+. Now, again by [1, Proposition A.3], holomorphy of the function ζ → wχζ

defined on C+ with values in L1(Rn) follows, since the complex valued F (ζ) =
∫
Rn w(x)χζ (x)g(x) dx is continuous for each g ∈ L∞(Rn) and by Morera’s theorem

[4, p.75], Fubini and (1.6) it is holomorphic. So to fixed z there exists ψ in L1(Rn)

with w(
∆χζ

∆ζ ) → ψ in L1(Rn); so there are ζn → ζ with
χζn−χζ

ζn−ζ → ψ/w almost

everywhere on Rn; with the holomorphy of χζ(x) for each x ∈ Rn one gets ψ/w = χ′
ζ

almost everywhere and

(2.1) ||(
∆χζ

∆ζ − χ′
ζ)w||L1 =

∫
Rn |

∆χζ(x)
∆ζ − χ′

ζ(x)|w(x) dx → 0 as 0 6= ∆ζ → 0.

Since wχ′
ζ ∈ Lq(Rn) for all q ≥ 1, χ′

ζ ∗ f(x) exists with Hölder’s inequality as a

Bochner integral for all x ∈ Rn. By Lemma 1.3, ∆U(ζ)
∆ζ , χ′

ζ ∗f ∈ wX , ζ, ζ+∆ζ ∈ C+,

∆ζ 6= 0. We have
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∆U(ζ)
∆ζ − χ′

ζ ∗ f = (
∆χζ

∆ζ − χ′
ζ) ∗ f and using Young’s inequality [5, p. 29]

||(
∆χζ

∆ζ − χ′
ζ) ∗ f ||wX = ||(1/w)

∫
Rn(

∆χζ

∆ζ − χ′
ζ)(· − y)f(y) dy||X ≤

||
∫
Rn |(

∆χζ

∆ζ − χ′
ζ)(· − y)|w(· − y)(||f(y)||/w(y)) dy||X ≤

||(
∆χζ

∆ζ − χ′
ζ)w||L1 ||f/w||X .

With (2.1), holomorphy of U on C+ follows, and

(2.2) G′(ζ)f = (G(ζ)f)′ = χ′
ζ ∗ f , ζ ∈ C+, f ∈ wX .

(c) Let f , distribution ∆f ∈ wX . We have ∂χt

∂t = ∆xχt on (0,∞) × Rn, ∆x =
∑n

j=1(
∂

∂xj
)2. So by (2.2), in S ′(Rn, Y ), t > 0,

(2.3) dG(t)f
dt = d(χt∗f)

dt = dχt

dt ∗ f =

(∆χt) ∗ f = ∆G(t)f = χt ∗ (∆f) = G(t)∆f .

Let A|D(A) be the generator of the C0- semigroup G : R+ → L(wX), defined

by Proposition 3.1.9 g) of [1, p. 115 ]; let ∆ be the Laplace operator applied to

S ⊂ D′ := D′(Rn, Y ); with wX ⊂ D′(Rn, Y ),

D := {f ∈ wX : ∆wXf ∈ wX} and ∆wX := ∆|D are well defined. We show

(2.4) D(A) = D, A = ∆wX .

(c.1) D ⊂ D(A), A = ∆wX on D:

If f ∈ D, G(·)f ∈ C([0,∞), wX) by (a), with (2.3) and g := ∆wXf ∈ wX one has

G(f)f − f =
∫ t

0 (
d
ds )(G(s)f) ds =

∫ t

0 G(s)g ds, t ∈ R+. With Proposition 3.1.9 f) of

[1, p. 115 ] one gets f ∈ D(A) and Af = g = ∆wXf .

(c.2) D(A) ⊂ D :

With F (t) := (1/t)
∫ t

0 G(s)f ds, t > 0, f ∈ D(A), one has F (t) → f in wX as t→ 0,

since G(t)f → f in wX by (a). F (t) → f in wX implies F (t) → f in L1
loc(R

n, Y ),

so (∆F (t))(ϕ) = F (t)(∆xϕ) → f(∆xϕ) = (∆f)(ϕ) for ϕ ∈ D(Rn,C).

Now by (2.5) below one has ∆F (t) = (1/t)(G(t)f − f); by definition of D(A)

and Proposition 3.1.9 g) [A., p. 115], (1/t)(G(t)f − f) → some g in wX , so in

L1
loc(R

n, Y ), so (1/t)(G(t)f − f)(ϕ) → f(ϕ). together one gets ∆f = g, ∈ wX ,
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that is f ∈ D. With (c.1) this gives (2.4). It remains to show

(2.5) ∆
∫ t

0 G(s)fds = G(t)f − f , f ∈ wX .

For this, with f ∈ wX , with Lemma 1.3 define β(t, x) := (χt ∗ f)(x), (t, x) ∈

M := (0,∞)×Rn. With Lebesgue’s Dominated Convergence theorem and analogs

of (1.6) for the derivatives of χt one gets inductively β ∈ C∞(M,Y ), with

(2.6) ∂β/∂t = (χ′
t) ∗ f = (∆xχt) ∗ f = ∆xβ.

If 0 < ε < t, Ψε(t, x) :=
∫ t

ε
β(s, x)ds, x ∈ Rn, is well defined with Ψε ∈ C((ε,∞)×

Rn, Y ), Ψε(t) := Ψε(t, ·) ∈ C(Rn, Y ) ⊂ D′(Rn, Y ) if t > ε. If ϕ ∈ D(Rn), all

the following integrals exist (even as Riemann integrals), with twice Fubini, partial

integration and (2.6) one has

(∆Ψε(t))(ϕ) =
∫
Rn Ψε(t, x)(∆xϕ)(x) dx =

∫
Rn

∫ t

ε β(s, x)(∆xϕ)(x)ds dx =
∫ t

ε

∫
Rn ∆xβ(s, x)ϕ(x)dxds =

∫ t

ε

∫
Rn(∂/∂s)β(s, x)ϕ(x)dx ds =

∫
Rn(

∫ t

ε (∂/∂s)β(s, x)ds)ϕ(x)dx =
∫
Rn(β(t, x) − β(ε, x))ϕ(x)dx.

This implies

(2.7) ∆Ψε = G(t)f −G(ε)f , ∈ wX .

G(·)f : R+ → wX is continuous, so
∫ t

ε
G(s)f ds →

∫ t

0
G(s)f ds as ε → 0. Fur-

thermore, the Riemann sums Σm :=
∑m

1 (G(sj)f) (sj −sj−1) →
∫ t

ε
G(s)f ds in wX

as m → ∞, sj = ε + j(t − ε)/m. Similarly Σm(x) :=
∑m

1 β(sj , x)(sj − sj−1) →
∫ t

ε
β(s, x) ds = Ψε(t, x) in Y as m→ ∞, for each x ∈ Rn.

If K is compact ⊂ Rn, then sup {||Σm(x)|| : m ∈ N, x ∈ K} <∞, so
∫
Rn Σm(x)ϕ(x) dx →

∫
Rn Ψε(t, x)ϕ(x) dx for ϕ ∈ D(Rn).

As above,
∫ t

ε
G(s)f ds = Ψε(t) follows, and then Ψε(t) →

∫ t

0
G(s)f ds in wX .

Therefore (∆Ψε(t))(ϕ) =
∫
Rn Ψε(t)∆xϕdx →

∫
Rn(

∫ t

0
G(s)f ds)∆xϕdx =

(∆
∫ t

0 G(s)f ds)(ϕ) as ε → 0; since G(ε)f → f , (2.7) implies (2.5). �

Corollary 2.2. All mild solutions u : [0,∞) → wX of

(a) u′ = ∆wXu are given by u(t) = G(t)f with f ∈ wX, they are C1-solutions
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on (0,∞), ∈ C∞(M,Y ) and classical solutions of

(b) ∂u(t,x1,··· ,xn)
∂t =

∑n
1

∂2u(t,x1,··· ,xn)
∂x2

j
on M := (0,∞)× Rn with

(c) u(t, ·) → f in wX as t → 0.

Conversely, any classical solution of (b) with (c) defines a mild solution of (a) on

[0,∞).

For the proofs of most of this see [1, Corollary 3.7.21].

Remark 2.3. Since the Gauss-Poisson formula (1.4) for G defines by Theorem

2.1 a holomorphic C0-semigroup with generator A = ∆wX , with Corollary 2.2 the

results of [2, Theorems 5.2/6.3, Examples 6.2] can be applied to the heat equation.
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