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Abstract. We prove a Lefschetz formula L(T ) =
∑

x∈F iT (x) for graph en-

domorphisms T : G→ G, where G is a general finite simple graph and F is the
set of simplices fixed by T . The degree iT (x) of T at the simplex x is defined

as (−1)dim(x)sign(T |x), a graded sign of the permutation of T restricted to

the simplex. The Lefschetz number L(T ) is defined similarly as in the con-
tinuum as L(T ) =

∑
k(−1)ktr(Tk), where Tk is the map induced on the k’th

cohomology group Hk(G) of G. A special case is the identity map T , where

the formula reduces to the Euler-Poincaré formula equating the Euler charac-
teristic with the cohomological Euler characteristic. The theorem assures that

if L(T ) is nonzero, then T has a fixed clique. A special case is the discrete

Brouwer fixed point theorem for graphs: if T is a graph endomorphism of a
connected graph G, which is star-shaped in the sense that only the zero’th

cohomology group is nontrivial, like for connected trees or triangularizations

of star shaped Euclidean domains, then there is clique x which is fixed by T .
If A is the automorphism group of a graph, we look at the average Lefschetz

number L(G). We prove that this is the Euler characteristic of the graph G/A
and especially an integer. We also show that as a consequence of the Lef-

schetz formula, the zeta function ζT (z) = exp(
∑∞

n=1 L(Tn) zn

n
) is a product

of two dynamical zeta functions and therefore has an analytic continuation as
a rational function. This explicitly computable product formula involves the

dimension and the signature of prime orbits.

1. Introduction

Brouwer’s fixed point theorem assures that any continuous transformation on
the closed ball in Euclidean space has a fixed point. First tackled by Poincaré in
1887 and by Bohl in 1904 [3] in the context of differential equations, [28], then by
Hadamard in 1910 and Brouwer in 1912 [5] in general, it is now a basic application
in algebraic topology [15, 23, 14]. It has its use for example in game theory: the
Kakutani generalization [25] has been used to prove Nash equilibria [11]. It is also
useful for the theorem of Perron-Frobenius in linear algebra [14] which is one of
the mathematical foundations for the page rank used to measure the relevance of
nodes in a network. More general than Brouwer is Lefschetz’ fixed point theorem∑
x∈F iT (x) = L(T ) [22] from 1926 which assures that if the Lefschetz number L(T )

of a continuous transformation on a manifold is nonzero, then T has a fixed point.
In 1928, Hopf [17] extended this to arbitrary finite Euclidean simplicial complexes
and prove that if T has no fixed point then L(T ) = 0. The third chapter of [6]
and [13] provides more history. Brouwer’s theorem follows from Lefschetz because
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2 OLIVER KNILL

a manifold M homeomorphic to the unit ball has Hk(M) are trivial for k > 0 so
that L(T ) = 1 assuring the existence of a fixed point.

Since Brouwer’s fixed point theorem has been approached graph theoretically
with hexagonal lattices [12] or using results on graph colorings like the Sperner
lemma [2], it is natural to inquire for a direct combinatorial analogue on graphs
without relating to any Euclidean structure. But already the most simple examples
like rotation on a triangle show, that an automorphism of a graph does not need to
have a fixed vertex, even if the graph is a triangularization of the unit disc. Indeed,
many graph endomorphisms in contractible graphs do not have fixed points. Even
the one-dimensional Brouwer fixed point theorem which is equivalent to the inter-
mediate value theorem does not hold: a reflection (a, b) → (b, a) on a two point
graph does not have a fixed vertex.

The reason for the failure is that searching for fixed vertices is too narrow. We do
not have to look for fixed points but fixed simplices. These fundamental entities are
also called cliques in graph theory. This is natural since already the discrete exterior
algebra deals with functions on the set G =

⋃
k Gk of simplices of the graph G, where

G0 = V is the set of vertices G1 = E is the number edges, G2 the set of triangles in G
etc. The Euler characteristic is the graded cardinality

∑
k(−1)k|Gk| =

∑
k(−1)kvk

of G. The role of tensors in the continuum is played by functions on G. A k-form
in particular is an antisymmetric function on Gk. The definition of the exterior
derivative df(x) =

∑
i(−1)if(x0, . . . , x̂i, . . . , xk) = f(δx) is already Stokes theorem

in its core because for a k-simplex x, the boundary δx =
⋃

(x0, . . . , x̂i, . . . , xk) is
the union of (k− 1)-dimensional simplices in x which form the boundary of x. The
definition of exterior derivative tells that df evaluated at a point x is the same
than f evaluated at the boundary point δx. We see that in graph theory, the term
”point” comes naturally when used for cliques of the graph.

Because of the atomic nature of cliques, we therefore prove a Lefschetz formula
which holds for graph endomorphisms of finite simple graphs and where the sim-
plices are the basic ”points”. Despite the discrete setting, the structure of the proof
is close to Hopf’s approach to the classical Lefschetz theorem [17]. More text book
proofs can now be found in [18, 26, 13]. While the definition of Lefschetz number
goes over directly, it was the definition of the degree =index of a map at a fixed
simplex which we needed to look for. Direct discretisations of the classical defini-
tion of the Kronecker-Brower degree iT (x) = sign det(1− dT (x)) do not work. We
found that the degree (which we also often call index)

iT (x) = (−1)dim(x)sign(T |x)

leads to a theorem. In this definition n = dim(x) is the dimension of the complete
graph x = Kn+1 and sign(T |x) is the signature of the permutation induced on x.
With this definition, every cyclic permutation on a simplex has index 1 and the
sum of the indices over all fixed subsimplices of a simplex is 1 for any permutation
T . This matches that L(T ) = 1 for any automorphism of a simplex Kn. The main
result is the Lefschetz formula

L(T ) =
∑

x∈F(T )

iT (x) ,
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where F(T ) is the subset of G which is fixed by T . The proof uses the Euler-
Poincaré formula which is the special case when T is the identity. A second part
is to verify that for a fixed point free map L(T ) = 0. A final ingredient is show
L(f |U ∪V) = L(f |U)+L(f |V) for two T -invariant simplex sets U ,V. The Lefschetz
number applied to the fixed point set is the Euler characteristic and equal to the
sum of indices, the Lefschetz number applied to H is zero.

The probabilistic link [21] between Poincaré-Hopf
∑
x∈V if (x) = χ(G) and

Gauss-Bonnet
∑
x∈V K(x) = χ(G) obtained by integrating over all injective func-

tions f on the vertex set V motivates to look for an analogue of Gauss-Bonnet
in this context. This is possible: define a Lefschetz curvature κ(x) on the set of
simplices x of G as the rational number

κ(x) =
1

|Aut(G)|
∑

T∈Autx(G)

iT (x) .

It is an almost immediate consequence of the Lefschetz formula that the Gauss-
Bonnet type formula

(1)
∑
x∈G

κ(x) = L(G)

holds, where L(G) is the average over A = Aut(G) of all automorphisms. It is a
graph invariant which refers to the symmetry group of the graph. Unlike the Euler
characteristic it can be nonzero for odd dimensional graphs. For one-dimensional
geometric graphs for example, L(G) is the number of connected components and
the curvature κ(x) on each edge or vertex of Cn is constant 1/(2n). For complete
graphs, the Lefschetz curvature is concentrated on the set G0 of vertices and con-
stant 1/(n + 1). An other extreme case is when A is trivial, where curvature is 1
for even-dimensional simplices and −1 for odd-dimensional simplices. The Gauss-
Bonnet type Formula (1) is then just a reformulation of the Euler-Poincaré formula
because L(G) is then the cohomological Euler characteristic.

While L(G) behaves more like a spectral invariant of the graph as the later also
depends crucially on symmetries, we will see that L(G) is the Euler characteristic
of the quotient graph G/A of the graph by its automorphism group. The quotient
graph is a discrete analogue of an orbifold. In the case P3 for example, where we
have 6 automorphisms, the Lefschetz numbers are (3, 1, 1, 0, 0, 1) with the identity
L(Id) = χ(G) = 3, the rotations L(T ) = 0 and reflections of two vertices give
L(T ) = 1. The average L(G) = 1 is the Euler characteristic of K1 ∼ G/A. For the
complete graph K3, which has the same 6 automorphisms, the Lefschetz numbers
are (1, 1, 1, 1, 1, 1) and again L(G) = 1. The proof that L(G) is an Euler character-
istic only uses the Burnside lemma in group theory and is much simpler than the
analogous result for orbifolds.

Since the Lefschetz number is a weighted count of fixed points, the Lefschetz
number of the iterate Tn is a weighted count of periodic orbits. The Lefschetz zeta
function

ζT (z) = exp(

∞∑
n=1

L(Tn)
zn

n
)
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encodes this. It is an algebraic version of the Artin-Mazur [1] zeta function which in
dynamical systems theory is studied frequently [24]. Actually, as we will see in this
article, the Lefschetz formula implies that the Lefschetz zeta function of a graph
automorphism is the product of two zeta functions defined in dynamical systems
theory. It therefore has a product formula. This formula is a finite product over all
possible prime periods

ζT (z) =

∞∏
p=1

(1− zp)a(p)−b(p)(1 + zp)c(p)−d(p) ,

where a(p) rsp. c(p) is the number of odd-dimensional prime periodic orbits
{x, Tx, . . . , T p−1x} for which T p|x has positive rsp negative signature and b(p)
rsp. d(p) are the number of even-dimensional prime periodic orbits for which T p|x
has positive rsp. negative signature.

The zeta function (or rather its analytic continuation given by the rational func-
tion in the form of the just mentioned product formula) contains the Lefschetz
numbers of iterates of the map because it defines a Taylor series with periodic
coefficients

d

dz
log(ζ(z)) =

∞∑
n=1

L(Tn)zn−1 .

For the zeta function of a reflection at a circular graph Cn for example, where
ζ(z) = (z + 1)/(1 − z) the right hand side is 2 + 2z2 + 2z4 + · · · showing that
L(Tn) = 2 for odd n. An immediate consequence of product formulas for dy-
namical zeta functions gives a product formula which is in the case of the identity
ζId(z) = (1− z)−χ(G) again just a reformulation of the Euler-Poincaré formula.
As in number theory, where the coefficients in Dirichlet L-series are multiplicative
characters, also dynamical zeta function have coefficients which are multiplicative
by definition. When using the degree iT (x), this is not multiplicative because of the
dimension factor (−1)dim(x). We can split the permutation part from the dimension
part however and write a product formula for the zeta function which involves two
dynamical zeta functions.

Because graphs have finite automorphism groups A = Aut(G), one can define a
zeta function of the graph as

ζG(z) =
∏

T∈Aut(G)

ζT (z) .

As the Lefschetz zeta function of a transformation, the graph zeta function is a
rational function. For a reflection T at a circular graph Cn for example, we have
ζT (z) = (1 + z)/(1 − z) because L(T ) = 2, L(T 2) = 0 and exp(

∑
n odd 2zn/n) =

(1 + z)/(1− z) so that ζG(z) = (1 + z)/(1− z). For a graph with trivial automor-
phism group, we have ζG(z) = ζId(z) = (1− z)−χ(G). These examples prompt the
question about the role of the order of the zero or of pole at z = 1. The order
at z = 1 is important wherever zeta functions appear, the original Riemann zeta
function with a pole of order 1. An other example is for subshifts of finite type with
Markov matrix A, where the Bowen-Lanford formula [4] writes the dynamical zeta
function as ζ(z) = 1/det(1−Az) which by Perron-Frobenius has a pole of order k
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at z = 1 if A has k irreducible components.

The proof of the discrete Lefschetz formula is graph theoretical and especially
does not involve any limits. Like Sperner’s lemma, it would have convinced the in-
tuitionist Brouwer: both sides of the Lefschetz formula can be computed in finitely
many steps. The Lefschetz formula is also in this discrete incarnation a general-
ization of the Euler-Poincaré formula which is a linear algebra result in the case of
graphs. If we look at the set G of all the simplices of a graph, then this set can be
divided into a set F which is fixed and a set N which wander under the dynamics.
The fixed simplices can be dealt with combinatorically.

Lets see what happens in the special case when T acts on a complete graph G
and where x is the simplex which is the entire graph. Understanding this is crucial.
The Lefschetz fixed point formula is

∑
y∈F(T ) iT (y) = L(T ) = 1. Lets see the

proof: the permutation T induced on G decomposes into cycles y1, . . . , yk which all
are subsimplices of G. Since also arbitrary unions of simplices are simplices, the
transformation T fixes 2k − 1 simplices which is the set of all subsets except the
empty set which does not count as a fixed point. We have iT (yj) = 1 because the
order of the cyclic permutation cancels the dimensional grading. Next iT (yi∪yj) =
−1 and in general

iT (y) = (−1)|y|−1 ,

where |y| is the number of orbits in y. In other words, iT (y) depends on the
dimension of the ”orbit simplex”. Since

∑
y∈F(T )⊂x(−1)|y|−1 = 0 and i(∅) = −1,

we have
∑
y∈F(T )⊂x,y 6=∅ iT (y) = 1 which agrees with L(T ) = χ(G) = 1.

2. The Lefschetz number

Given a simple graph G = (V,E) denote by Gk the set of complete Kk+1 sub-
graphs of G. Elements in Gk are called cliques. The set G2 is the set of all triangles
in G, G1 = E the set of edges and G0 = V the set of vertices. If the cardinality of
Gk is denoted by vk, then the Euler characteristic of G is defined as

χ(G) =

∞∑
k=0

(−1)kvk ,

a finite sum.

To get the discrete exterior bundle, define a k-form as a function on Gk which
is antisymmetric in its (k + 1) arguments. The set Ωk of all k-forms is a vector
space of dimension vk. The exterior derivative d : Ωk → Ωk+1 is defined as df(x) =∑
i(−1)if(x0, . . . , x̂i, . . . , xk), where x̂ denotes a variable taken away. A form is

closed if df = 0. It is exact if f = dg. The vector space Hk(T ) of closed forms
modulo exact forms is the cohomology group of dimension bk, the Betti number.
The cohomological Euler characteristic of G is defined as

∞∑
k=0

(−1)kbk .

The sign ambiguity of forms can be fixed by defining an orientation on G. The later
assigns a constant n-form 1 to each maximal n-dimensional simplex; a simplex be-
ing maximal if it is not contained in a larger simplex. G is orientable if one can find
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an orientation which is compatible on the intersection of maximal simplices. If G
should be nonorientable, we can look at a double cover G′ of G and define Hk(G)
as Hk(G′). A graph automorphism lifts to the cover and a fixed point in the cover
projects down to a fixed point on G.

Example:
Let G be a triangle. The vector space of 0-forms is three dimensional, the space
of 1-forms 3-dimensional and the space of 2 forms one-dimensional. An orienta-
tion is given by defining f(1, 2, 3) = 1 inducing orientations on the edges f(1, 2) =
f(2, 3) = f(3, 1) = 1.

A graph endomorphism is a map T of V such that if (a, b) ∈ E then T (a, b) ∈ E.
If T is invertible, then f is called a graph automorphism. Denote by Tp the induced
map on the vector space Hp(G). As a linear map it can be described by a matrix
once a basis is introduced on Hp(G).

Remark.
We can focus on graph automorphisms, because the image im(T ) is T -invariant and
T restricted to the attractor im(Tn) for sufficiently large n is an automorphism.
This is already evident by ignoring the graph structure when looking at permuta-
tions only.

The following definition is similar as in the continuum

Definition. Given a graph endomorphism T : G→ G on a simple graph G, define
the Lefschetz number as

L(T ) =

∞∑
p=0

(−1)ptr(Tp) ,

where Tk is the map T induces on Hk(G).

Examples.
1) For the identity map T , the number L(T ) is the cohomological Euler character-
istic of G. Denote by F(T ) the set of fixed points of T . In the same way as the
classical Lefschetz-Hopf theorem we have then L(T ) =

∑
x iT (x) =

∑
x(−1)dim(x),

where iT is the index of the transformation.
2) If G is a zero dimensional graph, a graph without edges, and T is a permutation
of V then it is an automorphism and L(T ) is equal to the number of fixed points
of T . The reason is that only H0(G) is nontrivial and has dimension v0. The
transformation T0 is the permutation defined by T and tr(T0) = v0.
3) If G is a complete graph, then any permutation is an automorphism. Only
H0(G) is nontrivial and has dimension 1 and L(T ) = 1.
4) The tetractys is a graph of order 10 which is obtained by dividing a triangle into
9 triangles. The automorphism group is the symmetry group D3 of the triangle.
Again, since only H0(G) is nontrivial, L(T ) = 1 for all automorphisms. For rota-
tions, there is only one fixed point, the central triangle. For reflections, we have 2
vertices, 2 edges and 3 triangles fixed.
5) For a cyclic graph Cn with n ≥ 4, both H0(G) and H1(G) are nontrivial. If T
preserves orientation and is not the identity, then there are no fixed points. The
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Lefschetz number is 0. For the reflection T , the Lefschetz number is 2. Any reflec-
tion has either 2 edges or two vertices or a vertex and an edge fixed.
6) The Petersen graph has order 10 and size 15 has Euler characteristic −5 and an
automorphism group of 120 elements. The Lefschetz number of the identity is −5,
there are 24 automorphisms with L(T ) = 0 and 80 automorphisms with L(T ) = 1
and 15 automorphisms with L(T ) = 3. The sum of all Lefschetz numbers is 120
and the average Lefschetz number therefore 1. We will call this L(G) and see that
it is χ(G/A), where G/A is the quotient graph which consists of one point only.

3. Lefschetz fixed point theorem

Definition. Denote by F(T ) the set of simplices x which are invariant under the
endomorphism T . A simplex is invariant if T (x) = x. In this case, T |x is a
permutation of the simplex.

Definition. For a fixed simplex x in the graph G and an endomorphism T , define
the index

iT (x) = (−1)dim(x)sign(T |x) ,

where sign(T |x) is the signature of the permutation T induces on x. The integer
sign(T ) ∈ {−1, 1 } is the determinant of the corresponding permutation matrix.

Remarks.
1) In the continuum, the inner structure of a fixed point is accessible through the
derivative and classically, iT (x) = sign(det(dT (x)−I)) is the index of a fixed point.
2) Is there a formal relation between the continuum and the discrete? In the con-
tinuum, we have iT (x) = p(1) where p is the characteristic polynomial of dT (x). In
the discrete we have iT (x) = −p(0) where p is the characteristic polynomial of the
permutation matrix −P of T restricted to x.

Examples.
1) If x is a 0-dimensional simplex (a vertex), then iT (x) = 1 for every fixed point
x and the sum of indices agrees with L(T ).
2) If x is a 1-dimensional simplex K2 (an edge) and f is the identity, then iT (x) =
−1. If f flips two point in x = K2, then iT (x) = 1.
3) Let G be a cyclic graph Cn with n ≥ 4. An automorphism is either a rotation or
a reflection. We have tr(T1) = −1 in the orientation preserving case and tr(T1) = 1
in the orientation reversing case. For any invariant simplex, we have iT (x) = 1.
4) If G is a wheel graph and T is a rotation, then there is one fixed point and
L(T ) = 1. The index of the fixed point is 1 as any 0-dimensional fixed point has.

Theorem 3.1 (Lefschetz formula). For any graph endomorphism T of a simple
graph G with fixed point set F(T ) we have

L(T ) =
∑

x∈F(T )

iT (x) .

Examples.
1) For the identity map T (x) = x we have L(T ) = χ(G) as in the continuum.
The formula rephrases the Euler-Poincaré formula telling that the homological
Euler characteristic is the graph theoretical Euler characteristic because iT (x) =
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(−1)dim(x) and every x is a fixed point.
2) Assume G is a 1-dimensional circular graph Cn with n ≥ 4. If T is orientation
preserving, then the Lefschetz number is 0, otherwise it is 2 and we have two fixed
points. Lets compute L(T ) in the orientation preserving case: the space H0(G)
is R and the map T induces the identity on it. The space H1(G) consists of all
constant functions on edges and T induces −Id. If T is orientation reversing, then
the left hand side is 1− (−1) = 2. Indeed we have then two fixed points.
3) Assume G is an octahedron and T is an orientation preserving automorphims
of G, then T0 on H0(G) and T2 on H2(G) are both the identity and since H1(G)
is trivial, the Lefschetz number is 2. There are always at least two fixed simplices.
It is possible to have two triangles or two vertices invariant.
4) The Lefschetz number of any map induced on the wheel graphs is 1 because only
H0(G) is nontrivial. Any endomorphism has at least one fixed point.
5) If G is an icosahedron, then there are automorphims which have just two trian-
gles fixed. Also two fixed points are possible.
6) Assume T is an orientation reversing map, a reflection on an octahedron. We
do not need to have a fixed point. Indeed, the map T induced on H2(G) is −1 and
the Lefschetz number is L(G) = 1− 1 = 0.
7) If G consists of two triangles glued together at one edge, then χ(G) = 1. Take
T which exchanges the two triangles. This leaves the central edge invariant. The
Lefschetz number of T is 1.
8) For a complete graph G = Kn+1, any permutation is a graph automorphism.
The Lefschetz number is 1 because only H0(G) is nontrivial. The index of any
cyclic subsimplex is 1. As in the identity case, we have

∑
x∈F(T ) iT (x) = 1, which

is the L(T ). As mentioned in the introduction one can see this special case as a
Euler-Poincaré formula for the orbit graph because T on every cyclic orbit y is a
cyclic permutation with iT (y) = 1.

The classical Poincaré lemma in Euclidean space assures that for a region home-
omorphic to a star-shaped region only H0(G) is nonzero. This motivates to define:

Definition. A graph G = (V,E) is called star-shaped if all vector spaces Hk(G)
are trivial for k ≥ 1.

Examples.
1) Given an arbitrary graph H = (V,E), then the pyramid construction

G = (V ∪ {p}, E ∪ {(v, p) | v ∈ V }

is star-shaped.
2) Any tree G is star-shaped as there are no triangles in the tree making Hk(G)
trivially vanish for k ≥ 2. The vector space H1(G) is trivial because there are no
loops.
3) The complete graph is star-shaped.
4) The cycle graph Cn is not star-shaped for n > 3.
5) Any finite simply connected and connected subgraph of an infinite hexagonal
graph is star-shaped.
6) The icosahedron and octahedron are both not star-shaped. Actually, any ori-
entable 2-dimensional geometric graph (a graph where each unit sphere is a 1-
dimensional circular graph) is not star-shaped as Poincaré duality H0(G) ∼ H2(G)
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holds for such graphs.

As in the continuum, the Brouwer fixed point theorem follows:

Theorem 3.2 (Brouwer fixed point). A graph endomorphism T on a connected
star-shaped graph G has a fixed clique.

Proof. We have L(T ) = 1 because only H0(G) = R is nontrivial and G is connected.
Apply the Lefschetz fixed point theorem. �

4. Proof

We can restrict ourself to graph automorphisms because an endomorphism T
restricted to the attractor G′ =

⋂∞
k=0 T

k(G) of T is an automorphism. Any fixed
point of T is obviously in the attractor G′ so that the sum in the Lefschetz formula
does not change when looking at T on G′ instead of T on G. Also the Lefschetz
number L(T ) does not change as any invariant cohomology class, an eigenvector w
of the linear map Lk on the vector space Hk(G) must be supported on G′.

The set of G is the union of the set F of simplices which are fixed and the set N
of simplices which are not fixed by the automorphism T . It is possible that some
elements in N can be a subsimplex of an element in F . For a cyclic rotation on
the triangle K3 for example, the triangle itself is in F but its vertices are in N .
To see the Lefschetz number more clearly, we extend T to Gk. Given a k-simplex x,
it has an orbit x, T (x), T 2(x), . . . , Tnk (x) which will eventually circle in a loop since
Tk is a map on a finite set.

Definition. The Euler characteristic of a subset A of G is defined as

χ(A) =

∞∑
p=0

(−1)p|A ∩ Gp| .

The Lefschetz number L of T restricted to an invariant set A is defined as

L(T |A) =

∞∑
p=0

(−1)ptr(Tp|A) ,

where Tp is the map induced on the linear subspace generated by functions on A.

Remarks.
1) The linear subspace generated by functions on A is in general not invariant
under the exterior derivative d: a function supported on A has df which is defined
on G and not on A in general.
2) We have χ(G) = χ(G), where the left hand side is the Euler characteristic
of the super graph and the right hand side the Euler characteristic of the graph.
Note however that there are subsets of G which are not graphs. For a triangle for
example, we can look at the set V = G1 of edges and get the Euler characteristic
χ(V) = −3.

Lemma 4.1 (Additivity of L). Assume U ,V are disjoint subsets of G and assume
both are T -invariant. Then

L(T |U ∪ V) = L(T |U) + L(T |V) .
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Especially, for T = Id,

χ(U ∪ V) = χ(U) + χ(V) .

Remark.
The vertex sets defined by two subsets U ,V ⊂ G do not need to be disjoint. For
a triangle G = K3 for example, U = G3 and V = G1 are disjoint sets in G even so
every y ∈ V is a subgraph of every nonempty subset of U .

Proof. We only have to show that

Lk(G) = Lk(U) + Lk(V) .

Let Ul be the set of l-simplices in U , Vl the set of simplices in V. The sets Ul are T
invariant for l ≤ k. Any member fl of a cohomology class H l(G) is a function on
Ul can be decomposed as fl = fU where fU has support in Ul etc. The matrix Lk
is a block matrix and the trace is the sum of the traces of the blocks. �

Corollary 4.2. Assume U ,V are T -invariant subsets of G, then

L(T |U ∪ V) = L(T |U) + L(T |V)− L(T |U ∩ V ) .

Proof. Write W = U ∩ V and apply lemma(4.1) twice for the disjoint sets U =
U \W,W and then U ,V \W which has the union U ∪ V. �

Lemma 4.3. If T has no fixed point in G, then L(T ) = 0. More generally
L(T |N ) = 0 if T has no fixed points on N ⊂ G.

Proof. Given a simplex x, the orbit U = {T k(x) } is T -invariant and L(T |U) = 0.
To see this, note that Hk(U) is trivial for k ≥ 2. There are two possibilities: either
U is connected, or U has n connectivity components. In the first case, the orbit
graph U has a retraction to a cyclic subgraph so that H0(U) = R and H1(U) = R.
In that case, T0, T1 are both identities on H0(U), H1(U) and L(T ) = 0. In the
second case, H0(G) is n-dimensional and the only cohomology which is nontrivial.
The map T is a cyclic permutation matrix on H0 which has trace zero. For two
T invariant sets U ,V ⊂ G, the intersection is also invariant and also has zero
Lefschetz number. Therefore, the Lefschetz number of the union of all orbits is
zero by lemma (4.1). �

The next lemma assures that for any finite simple graph G, the graph theoretical
Euler characteristic is equal to the cohomological Euler characteristic.

Lemma 4.4 (Euler-Poincaré formula). If T is the identity, then L(T ) = χ(G).

In other words, for any simple graph, the cohomological Euler characteristic
L(Id) is the same than the graph theoretical Euler characteristic.

Proof. This is linear algebra [8, 9]: Denote by Cm the vector space of m-forms
on G. It has dimension vm. The kernel Zm = ker(d) of dimension zm and range
Rm = ran(d) of dimension rm From the rank-nullety theorem in linear algebra
dim(ker(dm)) + dim(ran(dm)) = vm, we get

(2) zm = vm − rm .
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From the definition of the cohomology groups Hm(G) = Zm(G)/Rm−1(G) of di-
mension bm we get

(3) bm = zm − rm−1 .

Adding Equations (2) and (3) gives

vm − bm = rm−1 + rm .

Summing this up over m (using r−1 = 0, rm = 0 for m > m0)

∞∑
m=0

(−1)m(vm − bm) =

∞∑
m=0

(−1)m(rm−1 + rm) = 0

which implies
∑∞
m=0(−1)mvm =

∑∞
m=0(−1)mbm. �

Lemma 4.5 (Fixed point). If F is the set of simplices in G fixed by T then

L(T |F) = χ(F) =
∑
x∈F

iT (x) .

Proof. Because every x ∈ F is fixed we have a disjoint union F =
⋃
x∈F(T ) x and

L(T ) = χ(F). Because T is the identity on each fixed point, we have iT (x) =
(−1)dim(x) and the second equality holds. �

Examples.
1) If there are n maximal invariant simplices which do not intersect, then L(T ) = n.
This follows from the additivity of L and the fact that T restricted to a simplex
has L(T |x) = 1 indepedent of T .
2) Let G = K7. Let T be a permutation with two cyclic orbits y, z of order
3, 4 inside. The transformation has 3 fixed points x, y, z in total. We have iT (x) =
(−1)3+4sign(T |x) = 1 and iT (y) = (−1)3sign(T |y) = −1, iT (y) = (−1)4sign(T |y) =
1 and the sum is iT (x) + iT (y) + iT (z) = 1 = L(T ).

Now to the proof of the theorem:

Proof. The fixed point set F of T is invariant and satisfies L(T |F) = χ(F) =∑
x∈F(T ) iT (x). The set N of simplices which are not fixed satisfies L(T |N ) = 0.

L(T ) = L(T |G) = L(T |F) + L(T |N ) = L(T |F) = χ(F) =
∑

x∈F(T )

iT (x) .

�

Example.
To illustrate the proof, look at an example, where we split a triangle into 4 triangles
and rotate it by 60 degrees. The fixed point set F consists of the central triangle
alone and the complement Fc = H = G \ F . The fixed point set consists only of
one point, the central triangle x ∈ G2. All other parts of the supergraph G move,
including the edges and vertices of the triangle itself.
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5. Lefschetz curvature

We have seen in [21] that averaging the Poincaré-Hopf index theorem formula
[20] ∑

x∈V
if (x) = χ(G)

over a probability space of all injective functions f : V → R leads to Gauss-Bonnet
[19] ∑

x∈V
K(x) = χ(G) .

It is therefore natural to look at the average iT (x) as a curvature when we sum up
over all stabilizer elements in Ax = Autx(G).

Definition. Define the Lefschetz curvature of a simplex x ∈ G as

κ(x) =
1

|A|
∑
T∈Ax

iT (x)

and the average Lefschetz number

L(G) =
1

|A|
∑
T∈A

L(T )

when averaging over all automorphisms.

The number L(G) has an interpretation as the expected index of fixed points
a graph if we chose a random automorphism in the automorphism group. It is a
lower bound for the expected number of fixed points of a random automorphism
on a graph.

Examples.
1) For a cycle graph Cn with n ≥ 4, half of the automorphisms have L(T ) = 0
and half have L(T ) = 2. The average Lefschetz number is 1.
2) For a complete graph Kn, all automorphisms satisfy L(T ) = 1 so that the
average Lefschetz number is 1.
3) For the Petersen graph G, the average Lefschetz number is 1.

If the Lefschetz formula is compared with the Poincaré-Hopf formula, then κ(x)
is an analogue of Euler curvature and the next result is an analogue of Gauss-
Bonnet but we sum over all simplices in G. The Lefschetz curvature is a nonlocal
property. It does not depend only on a small neighborhood of the point but on the
symmetries which fix the point = simplex.

Theorem 5.1 (Average Lefschetz).∑
x∈G

κ(x) = L(G) .
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Proof. Use the Lefschetz fixed point theorem to sum over A = Aut(G):

L(G) =
1

|A|
∑
T∈A

L(T )

=
1

|A|
∑
T∈A

∑
x∈F(T )

ix(T )

=
1

|A|
∑
x∈G

∑
T∈Ax

ix(T )

=
∑
x∈G

1

|A|
∑
T∈Ax

ix(T ) =
∑
x∈G

κ(x) .

�

Remark.
Unlike the Gauss-Bonnet theorem, this Gauss-Bonnet type theorem sums over all
possible simplices G, not only vertices V of the graph. The Lefschetz curvature is
constant on each orbit of the automorphism group A and the sum over all curva-
tures over such an equivalence class is an integer 1 or −1. Theorem (5.1) is the
Euler-Poincaré formula in disguise since we will interpret L(G) as an Euler charac-
teristic of an ”orbifold” graph which in the discrete is just a graph.

Examples.
1) If G is the complete graph Kn+1, then A = Sn+1 is the full permutation group
and since L(T ) = 1 for all T , we also have L(G) = 1. Now lets compute the
Lefschetz curvature. For every fixed x we have iT (x) = (−1)dim(x)sign(T |x) and
averaging over all T gives zero except if x is a vertex, where

κ(x) =
|Ax|
|A|

=
1

n+ 1
.

The Lefschetz curvature of a vertex is the same than the Euler curvature of a vertex.
The curvature is zero on Gk for k > 0 because the indices of even odd dimensional
permutations cancel.
2) If G is star shaped then L(T ) = 1 for all T and L(G) = 1. It reflects the Brouwer
analogue that every transformation has a fixed point. If G is a star graph Sn, then
the automorphism group is Dn. For the center point iT (x) = 1 for all transforma-
tions and κ(x) = 1. All other points have κ(x) = 0. While the Euler curvature is
positive at the spikes and negative in the center, the Lefschetz curvature is entirely
concentrated at the center.
3) If G = Cn for n ≥ 4, then A = D2n is the dihedral group. For reflections we
have L(T ) = 2, for the rotations, L(T ) = 0. Therefore, L(G) = 1. The stabilizer
group Ax(G) consists always of two elements whether it is a vertex or edge and
iT (x) = 1 in both cases. We have κ(x) = 1/(2n) and

∑
x κ(x) = 1. The curvature

is located both on vertices and edges. Unlike the Euler curvature, the Lefschetz
curvature is now nonzero.
4) If G is the wheel graph Wn with n ≥ 4, then again A is the dihedral group.
We still have L(G) = 1 but now L(T ) = 1 for all automorphisms. The center
vertex has the full automorphism group as stabilizer group and iT (x) = 1 for any
transformation. Therefore κ(x) = 1 at the center and κ(x) = 0 everywhere else.
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The center has grabbed all curvature.
5) If G has a trivial automorphism group, then L(G) = χ(G) is the Euler character-
istic. Also each stabilizer group is trivial and iT (x) = (−1)|x| so that κ(x) = iT (x) =
(−1)|x|. In this case, the curvature is spread on all simplices, even-dimensional ones
have positive curvature and odd-dimensional ones have negative curvature. It is
amusing that the Euler-Poincaré formula can now be seen as a Gauss-Bonnet for-
mula for Lefschetz curvature.
6) For the octahedron G, the orientation preserving automorphisms T satisfy
L(T ) = 2. They are realized as rotations if the graph is embedded as a convex
regular polygon. The orientation reversing automorphisms have L(T ) = 0. The
average Lefschetz number is L(G) = 1 and the Lefschetz curvature is constant 1 at
every point.
7) We can look at the Erdoes-Rényi probability space Ωn [10] of 2n graphs G on a
vertex set with n vertices. The number L(G) is a random variable on Ωn. We com-
puted the expectation En[L] for small n as follows: E2[L] = 1,E3[L] = 11/8,E4[L] =
43/32,E5[L] = 1319/1024,E6[L] = 8479/8192. Like Euler characteristic expecta-
tion of random graphs, the expectation of L(G) is expected to oscillate more and
more as n→∞. While L(G) takes values 1 or 2 in the case n = 1, . . . , 5, there are
graphs on 6 vertices, where the maximal Lefschetz number is 3 and the minimal 0.
The computation for n = 6 is already quite involved since we have 32768 graphs
and look at all the automorphisms and for each automorphism find all fixed points.

The average Lefschetz number L(G) obtained by averaging over the automor-
phism group A = Aut(G) is always an integer, since it is the Euler characteristic
of agraph.

Definition. Let G/A be the orbigraph defined by the automorphism group A acting
on G. Two vertices are identified if there is an automorphism mapping one into
the other.

Remark.
G/A is a graph if we assume equivalence classes of vertices are connected, if some
individual vertices had been connected. If geometric graphs G in which unit spheres
have topological properties from spheres and fixed dimension are considered discrete
analogues of manifolds and B is a subgroup of automorphisms of G, then then G/B
plays the role of orbifolds. Examples are geometric graphs with boundary, where
each unit sphere is either sphere like or a half sphere of the same fixed dimension.

Theorem 5.2 (Average Lefschetz is Euler characteristic). The Lefschetz number
satisfies L(G) = χ(G/A) and is an integer. The sum of the Lefschetz curvatures in
an equivalence class of simplices is either 1 or −1.

Proof. The proof only uses elementary group theory and some combinatorics about
the indices, as well as Theorem (3.1).
1) First, the Burnside lemma for the finite group A acting on G

|G/A| = 1

|A|
∑
T∈A
|FT | ,

where FT is the set of fixed points of T and G/A is the set of simplices in G/A.
2) The number (−1)dim(x) of a simplex x ∈ G/A is equal to the index iT (y) for
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every simplex y which projects onto x. Proof. We have seen in the introduction
that the dimension dim(y) = |y| − 1 of the simplex of T |y satisfies

iT (y) = (−1)|y|−1 .

3) Let G+ be the set of simplices x which are mapped under G → G/A to an
even dimensional simplex. These are the simplices y for which T |y have index 1
independent of T . Similarly, let G− be the set of simplices which are projected to
an odd dimensional simplex. All these simplices have negative index for all T ∈ A.
We therefore know that we have a partition G = G+ ∪ G− and that for any T ∈ A
and every y ∈ G the index iy(T ) is equal to (−1)dim(x) where x = y/A.
4) We can now use the Burnside lemma restricted to A invariant sets G+,G− and
get

|G/A|2k =
1

|A|
∑
T∈A
|FT+ | ,

|G/A|2k+1 =
1

|A|
∑
T∈A
|FT− | ,

where FT± is the set of fixed simplices y of T for which iT (y) = ±1.
5) Let now |G/A|k the set of simplices in G/A which have dimension k. We use the
Lefschetz fixed point formula to finish the proof:

χ(G/A) =

∞∑
k=0

(−1)k|G/A|k =
1

|A|
∑
T∈A
|FT+ | − |FT− |

=
1

|A|
∑
T∈A

∑
x∈F(T )

iT (x) =
1

|A|
∑
T∈A

L(T ) = L(G) .

�

Remarks.
1) Since L(G) = χ(G/A) and κ is constant on each orbit, the Lefschetz curvature
of a simplex x can be rewritten as (−1)|x/A|/|Ax| where x/A is the simplex af-
ter identification with A and Ax is the orbit of x under the automorphism group.
Since L(G) = χ(G/A) the Gauss-Bonnet type formula (5.1) is also equivalent to an
Euler-Poincaré formula in general. The number κ(x) encodes so the orbit length of
x under the automorphism group A.
2) One can also see this as graded summation of an elementary result in linear
algebra (see [16] page 21): if a finite group acts linearly on a finite dimensional
vector space V , then dim(F) = (1/|A|)

∑
T∈A tr(T ). Proof. Let j : F → V be the

inclusion. Define f(v) = 1/|A|
∑
T∈A T (v). The image of f is in F . If π : V → F is

the projection then f = jπ. If v ∈ F , then Tv = v for all T ∈ A so that f(v) = v.
Therefore πj = Id|F . and dim(F ) = tr(Id|F) = tr(πj) = tr(jπ) = tr(f). If A is
cyclic this simplifies to dim(F) = tr(T ).

Examples.
1) Let G be the complete graph Kn. Its automorphism group has 2k elements. The
orbifold graph is a single point. The average Lefschetz number is 1.
2) Let G be cycle graph Cn. The automorphism group is the dyadic group Dn with
2n elements. The orbigraph is again a single point. The average Lefschetz number
is 1.
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3) Let G be the discrete graph Pn. Its automorphism group is the full permutation
group again. The orbifold graph is a single point. The average Lefschetz number
is 1.
4 Let G be the octahedron. Its automorphism group has 48 elements. The orbi-
graph is again a single point and the average Lefschetz number is 1.

Remark.
The analogue statement for manifolds needs more algebraic topology like the Leray-
Serre spectral sequence [7]: if a manifold G has a finite group A of symmetries, then
the average Lefschetz number L(T ) of all the symmetry transformations T is the
Euler characteristic χ(O) of the orbifold O = M/A.

6. Lefschetz zeta function

Having a Lefschetz number, it is custom to define a Lefschetz zeta function which
encodes the Lefschetz numbers of iterates Tn of the graph automorphism T . Zeta
functions are one of those objects which are interesting in any mathematical field,
whether it is number theory, complex analysis, topology, dynamical systems or
algebraic geometry. The case of graph theory considered here is a situation where
one can see basic ideas like analytic continuation work. For any pair (G,T ) where
T is an automorphism of a finite simple graph, we can construct an explicit rational
function ζ(z). The product formula we will derive allows to compute this function
by hand for small graph dynamical systems.

Definition. The Lefschetz zeta function of an automorphism T of a graph G is
defined as

ζT (z) = exp(

∞∑
n=1

L(Tn)
zn

n
) .

For example, T is a reflection of a circular graph C5 where L(T 2) = L(Id) =
χ(G) = 0 and L(T ) = L(T 3) = L(T 5) = · · · = 2, we have

ζT (z) = exp(

∞∑
n=1

2
z2n−1

2n− 1
) = exp(log(1 + z)− log(1− z)) =

1 + z

1− z
.

The Lefschetz zeta function is an algebraic version of the Artin-Mazur zeta func-
tion [1]. It is already interesting for the identity since

ζId(z) = exp(

∞∑
n=1

L(Tn)
zn

n
) = exp(

∞∑
n=1

χ(G)
zn

n
) = exp(−χ(G) log(1−z)) = (1−z)−χ(G) .

Proposition 6.1. ζT (z) is a rational function.

Proof. By definition L(Tn) =
∑
k(−1)ktr(Tnk ) we see that exp(

∑
n tr(Tnk )(−1)nzn/n) =

exp(− log(1− zTk)) = det(1− zTk)−1 for every k and so

ζT (z) =

∞∏
k=1

det(1− zTk)(−1)
k+1

.

�
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The Lefschetz formula allows to write this as a product over periodic simplex
orbits. Let F(Tn) denote the set of fixed simplices of Tn. Then

(4) ζT (z) =

∞∏
m=1

∏
x∈F(Tm)

exp(iTm(x)
zm

m
) = exp(

∞∑
m=1

zm

m

∑
x∈F(Tm)

iTm(x)) .

Since iTn(x) = (−1)dim(x)
∏m=1
k=0 φ(T kx), where φ(y) = det(PT (y)) is the determi-

nant of the permutation y → T (y) induced on the simplex, we can write this as
ζT |E(z)/ζT |O(z), a quotient of two dynamical systems zeta function

ζ(z) = exp(

∞∑
m=1

zm

m

∑
x∈F(Tm)

m−1∏
k=0

φ(T kx))

with φ ∈ {−1, 1} giving the sign of the permutation.

Definition. Let F(p) be the set of periodic orbits of minimal period p. They are
called prime orbits. Let a(p) rsp. c(p) be the number of odd dimensional prime
periodic orbits {x, Tx, . . . , T p−1x } for which T p|x has positive rsp negative signa-
ture. Let b(p) rsp. d(p) be the number of odd-dimensional prime periodic orbits for
which T p|x has positive (rsp.) negative signature.

One only has to remember: ”signature and z-sign flip flop” and ”dimension has
exponents ’odd on top’”.

Theorem 6.2 (Product formula). The zeta function of an automorphism T on a
simple graph G is the rational function

ζT (z) =
∞∏
p=1

(1− zp)a(p)−b(p)(1 + zp)c(p)−d(p) .

Proof. Because prime periods are smaller or equal than the product of the cycle
lengths of the permutation, the product is finite. While we can follow the compu-
tation from the book [24] almost verbatim, there is a twist: since the permutation
part of the index is multiplicative when iterating an orbit, the dimension part is
not. If the dimension is odd, then each transformation step changes the sign in
the inner sum of the zeta function. If we write iT (x) = (−1)dim(x)φ(x), where
φ(x) is the sign of the permutation, then only the φ part is multiplicative. Let
x be a periodic orbit of minimal period p. If we loop it q times, we can write
Ψ(xq) =

∏pq−1
k=0 φ(T kx) = [

∏p−1
k=0 φ(T kx)]q = [Ψ(x)]q. As in [24]:

∑
x∈F(Tm)

Ψ(xm) =
∑
p|m

∑
x∈F(p)

pΨ(xm/p) .
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The definition (4) gives (substituting q = m/p in the third identity):

ζ(z) = exp(

∞∑
m=1

zm

m

∑
x∈F(m)

m−1∏
k=0

φ(T kx)) = exp(

∞∑
m=1

∑
p|m

zm

m
p

∑
x∈F(p)

Ψ(xm/p))

= exp(

∞∑
p=1

∞∑
q=1

zpq

q

∑
x∈F(p)

Ψ(xq)) = exp(

∞∑
p=1

∞∑
q=1

∑
x∈F(p)

zpq

q
Ψ(xq))

= exp(

∞∑
p=1

∑
x∈F(p)

∞∑
q=1

zpq

q
Ψ(xq)) = exp(

∞∑
p=1

∑
x∈F(p)

∞∑
q=1

(zp)q

q
[Ψ(x)]q)

= exp(

∞∑
p=1

∑
x∈F(p)

− log(1− zp
p−1∏
k=0

φ(T kx))) =

∞∏
p=1

∏
x∈F(p)

[(1− zp
p−1∏
k=0

φ(T kx))]−1

=
∏
x∈F

[(1− zp(x)
p(x)−1∏
k=0

φ(T kx))]−1 = (1− zp)a(p)−b(p)(1 + zp)c(p)−d(p) .

It is in the last identity that we have split up F into 4 classes, depending on whether
the dimension is even or odd or whether the permutation T p(x) on x is even or odd.
If the signature is −1, then this produces an alternating sum before the log comes
in which leads to a (1 + zp)±1 factor depending on the dimension. If the signature
is 1, then we have (1− zp)± factors depending on the dimension.
In the case T = Id for example, where the signature is always 1, we have (1− z)a−b
where a is the number of odd fixed points and b the number of even fixed points so
that it is (1− z)−χ(G). �

Corollary 6.3. If G is the union of two disjoint graphs G1, G2 and T is an auto-
morphism of G inducing automorphisms Ti on Gi, then

ζT (z) = ζT1
(z)ζT2

(z) .

Proof. The numbers a(p), b(p), c(p), d(p) are additive. �

Remarks.
1) As in number theory, product formulas are typical for zeta function. The proto-
type is the Euler product formula or so called golden key

ζ(s) =
∏
p

(1− p−s)−1 =
∏
p

(1− zlog(p))−1 ,

where z = e−s was plugged in just to get formally more close to the dynamical
formula above and explain the etymology of the dynamical-zeta function.
2) One usually asks for a functional equation in the case of zeta functions. If the
number of even dimensional and odd dimensional fixed points correspond, we have
a symmetry z → −z.

Examples.
1) For T = Id, we have a(1) =

∑
k odd vk and b(1) =

∑
k even vk so that ζId(z) =

(1− z)a−b = (1− z)−χ(G).
2) For a reflection T at C4, we have two periodic vertex orbit of period p = 1,
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one periodic vertex orbit of period 2 and two edge orbits of period 2. The product
formula gives

(1− z2)2

(1− z)2(1− z2)
=

1 + z

1− z
.

3) For a rotation T of C4 we have a periodic vertex orbit of period 4 and a periodic
edge orbits of period 4. The product formula gives 1. This follows also directly
from the definition since L(T k) = 0 for all k.
4) For any automorphism T of the complete graph G = Kn, we have L(Tn) = 1 so
that ζT (z) = (1− z)−1.
5) For the identity on the Petersen graph, we have 10 fixed vertices of index 1 and
15 edges of index −1 ζ(Id) = (1− z)15/(1− z)10 = (1− z)5 reflecting the fact that
χ(G) = −5.

Finite graphs have finite automorphism groups so that one can look at

ζG(z) =
∏
T∈A

ζT (z) .

Corollary 6.4. ζ(z) is a rational function.

Proof. It is a finite product of rational functions. �

Corollary 6.5. If G is the union of two disjoint graphs Gi, then

ζG(z) = ζG1
(z)ζG2

(z) .

Proof. This follows from Corollary (6.3). �

Examples.
1) We have seen ζT (z) = (1 + z)/(1− z) for reflections and ζ(z) = 1 for rotations
so that ζCn

(z) = ( 1+z
1−z )n.

2) If G has a trivial automorphism group, the product formula is equivalent to the
Euler-Poincaré formula and ζG(z) = ζId(z) = (1− z)−χ(G).
3) For the complete graph Kn, we have ζG(z) = (1− z)−n!. The order of the pole
at z = 1 is the size of the automorphism group.
4) For the Petersen graph, we computed

ζG(z) = (1− z)10(1 + z)90(1 + z2)30(1 + z + z2)40(1− z4)30(1− z5)24(1− z6)20 .

Remark.
There are other zeta functions for graphs. The Ihara zeta function [27] is defined
as

∏
p(1− u|p|)−1 where p runs over all closed prime paths in the graph and |p| is

its length. For Cn, it is (1 − zn)−2 because there are only two prime paths and
both have length n. The Ihara zeta function appears unrelated to the above zeta
function and is closer to the Selberg zeta function [24], where the geodesic flow play
the role of automorphism. Both are of course isomorphism invariants. Unlike the
average Lefschetz number L(G) which is also an isomorphism invariant, the zeta
function encodes more information about the graph than G/A.
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slage. J. Reine Angew. Math., 127:179–276, 1904.

[4] R. Bowen and O. E. Lanford, III. Zeta functions of restrictions of the shift transformation. In

Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 43–49.
Amer. Math. Soc., 1970.
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Figure 1. The complete graph G = K2 has A = S2 as auto-
morphism group. All transformations T have Lefschetz number 1.
The zeta function of T = Id only involves a(1) = 1, b(1) = 2 so
that (1− z)1−2. The reflection T has a fixed K2 of negative signa-
ture giving c(1) = 1 and a 0-dimensional periodic point of period
2 giving b(2) = 1 so that ζ(z) = (1 + z)/(1− z2) = 1/(1− z).

Figure 2. A graph G of order 8 and size 9 with automorphism
group S2×S2. T1 = Id with 8 fixed vertices of index 1 and 9 fixed
edges of index −1 has Lefschetz number L(T ) = −1. T2 has 6 fixed
vertices of index 1 and 5 fixed edges of index −1 with Lefschetz
number L(T2) = 1. T3 has two fixed vertices of index 1 and one
edge of index 1 leading to L(T3) = 3. T4 finally has only one fixed
edge of index 1.
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Figure 3. A graph with a symmetry group of 2 elements. The
reflection has 2 fixed vertices of index 1, one fixed edge of index 1
and 2 fixed triangles of index 1.

Figure 4. The complete graph G = K3 has A = S3 as auto-
morphism group. All transformations T have Lefschetz number
L(T ) = 1.
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Figure 5. The 120 automorphisms of the Petersen Graph. In
each case, L(T ) and ζ(z) are computed and the fixed vertices
marked.
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Figure 6. The graph G = C4 has as the automorphism group of
the graph G = C4 is the dihedral group D4. The automorphism
T1 = Id with 4 fixed vertices of index 1 and 4 fixed edges of index
−1 with L(T1) = 0. There are 4 rotations which have no fixed
points and L(T ) = 0. There are 2 reflections which fix two vertices
of index 1. There are 2 reflections which fix two edges of index 1.
All reflections have Lefschetz number 2.
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