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MARKOV TRACE ON FUNAR ALGEBRA

S.Yu. Orevkov

1. Introduction

Let Bn be the braid group with n strings and σ1, . . . , σn−1 its standard gener-
ators. Let k be a commutative ring with 1 6= 0. Given α, β ∈ k, we define the
k-algebra Kn = Kn(α, β) = Kn(α, β; k) as the quotient of the group algebra kBn

by the relations

σ3
1 − ασ2

1 + βσ1 − 1 = 0 (1)

and

yx̄y =2α− β2 − (x+ y)− (α2 − β)(x̄+ ȳ) + β(xy + yx) + α(xȳ + yx̄+ x̄y + ȳx)

+ (αβ − 1)(x̄ȳ + ȳx̄)− αxyx− (x̄yx+ xȳx+ xyx̄)− β(x̄ȳx+ xȳx̄)

+ (α− β2)x̄ȳx̄. (2)

where x, x̄, y, ȳ in (2) stand for σ1, σ
−1
1 , σ2, σ

−1
2 respectively. Up to a change of

the sign of β (for the sake of symmetricity), our definition of Kn is equivalent to
the definition given by Bellingeri and Funar in [1]. Our relation (2) is much shorter
than the corresponding relation in [1] (see [1; (2) and Table 1]) because we use σ−1

i

instead of σ2
i . Multiplying (2) by σ1 from the left or from the right, and simplifying

the result using (1) and the braid group relations, we obtain

ȳxȳ = 2β−α2−(x̄+ȳ)−. . . (swap x ↔ x̄, y ↔ ȳ, α ↔ β in (2) ) (3)

Using (1) – (3) together with the braid relations, it is easy to see that Kn are
finitely generated k-modules. Following [2], we denote the image of σi in Kn by si.

Set K∞ = limKn (in contrary to the case of Hecke or BMW algebras, the
morphisms Kn → Kn+1 induced by the standard embeddings Bn ⊂ Bn+1 are
not injective in general). We say that t : K∞ ⊗ k[u, v] → M is a Markov trace
on K∞ if M is a k[u, v]-module and t is a morphism of k[u, v]-modules such that
t(xy) = t(yx), t(xsn) = ut(x), t(xs−1

n ) = vt(x), x, y ∈ Kn, n = 1, 2, . . . .
It is claimed in [3] and [1] that a nontrivial Markov trace is constructed on Kn.

About 2004–2005 I indicated a gap in the proof of its well-definedness (see Remark
2.8 below). As it is explained in [2], the gap was really serious: formally, the main
result of [3] is wrong in the form it is stated. However, we show in this paper that
the main idea in [1, 3] is correct: to construct a Markov trace on Kn, it suffices
to check a finite number of identities though the number of them is much bigger
than in [1, 3]. Theoretically, this approach allows to compute the universal Markov
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2 S.YU. OREVKOV

trace on K∞, i. e., the projection of K∞(α, β;Z[α, β, u, v]) onto its quotient by the
submodule R̄ generated by

xy − yx, xsn − ux, xs−1
n − vx, x, y ∈ Kn, n = 1, 2, . . . (4)

but in practice, the volume of computations is so huge that we did them only in
some cases including the case of the universal Markov trace on K∞(0, 0). It appears
that it takes its values in Z[u, v]/I where I = (16, 4u2+4v, 4v2+4u, u3+v3+uv−3).
Note, that it was checked in [2] that K5(0, 0;Z)/(K5 ∩ R̄) = Z[u, v]/I.

Acknowledgement. I am grateful to Andrey Levin and Alexey Muranov for use-
ful discussions and advises.

2. Definitions and statement of results

2.1. K-reductions. Let F+
n be the free monoid on generators x±1

1 , . . . , x±1
n−1 (the

set of all not necessarily reduced words in x±1
i ) and F+

∞ =
⋃

F+
n . We denote the

empty word by 1. Let kF+
n and kF+

∞ be the corresponding free associative algebras
over k (as k-modules, they are freely generated by F+

n and by F+
∞ respectively).

We call basic replacements the pairs (U, V ) with U ∈ F+
∞, V ∈ kF+

∞ (which we
denote by U → V ) from the following list:

(i) xix
−1
i −→ 1, x−1

i xi −→ 1, i ≥ 1;

(ii) x2
i −→ αxi − β + x−1

i , i ≥ 1;

(iii) x−2
i −→ βx−1

i − α+ xi, i ≥ 1;

(iv) xε1
i+1 x

ε2
i xε3

i+1 −→ xε3
i xε2

i+1x
ε1
i , ε2 ∈ {ε1, ε3} ⊂ {−1, 1}, i ≥ 1;

(v) xi+1x
−1
i xi+1 −→ (the right hand side of (2) with x = xi, y = xi+1), i ≥ 1;

(vi) x−1
i+1 xi x

−1
i+1 −→ (the right hand side of (3) with x = xi, y = xi+1), i ≥ 1;

(vii) xε1
i+1x

ε2
i Wxε3

i+1 −→ VW where xε1
i+1x

ε2
i xε3

i+1 −→ V is one of (iv)–(vi) and

W is a word in x±1
1 , . . . , x±1

i−1;

(viii) xε1
j xε2

i −→ xε2
i xε1

j , {ε1, ε2} ⊂ {−1, 1}, j − 1 > i ≥ 1;

An elementary K-reduction of a monomial is AUB → AV B where AUB ∈ F+
∞

and U → V is a basic replacement. An elementary K-reduction of an element of
kF+

∞ is
∑m

j=1 cjWj → c1W
′
1 +

∑m
j=2 cjWj where c1, . . . , cm ∈ k, W1, . . .Wm are

pairwise distinct elements of F+
∞, and W1 → W ′

1 is an elementary K-reduction of a
monomial.

An element of F+
∞ (resp. of kF+

∞) is K-reduced if no K-reduction can be applied
to it. We denote the set of such elements by F red

∞ (resp. kF red
∞ ). We set also

F red
n = F+

n ∩ F red
∞ and kF red

n = kF+
n ∩ kF red

∞ . Then kF red
∞ is a submodule (not

a subalgebra) of kF+
∞. We denote π : kF+

∞ → K∞ and πn : kF+
n → Kn the

morphisms of k-algebras induced by xi 7→ si.
We say that an element X of F+

∞ is almost K-reduced if there exists a sequence
X = X1 → X2 → · · · → Xm of elementary K-reductions of type (viii) such that
Xm is K-reduced.

For X = xε1
i1
. . . xεm

im
∈ F+

∞, εj = ±1, we define the weight wtX =
∑

j ij and the

auxiliary weight wt′X =
∑

j jij . It is clear that the set of all monomials of a given

weight is finite. For X ∈ kF+
∞ we set wtX = maxi wtXi if X =

∑

i ciXi with
ci ∈ k and X1, X2, . . . pairwise distinct elements of F+

∞.
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The following statement is easy and we omit its proof.

Proposition 2.1.
a). If X → X ′ is an elementary K-reduction, then π(X) = π(X ′) and wtX ≥

wtX ′. If, moreover, X is a monomial, then wtX = wtX ′ if and only if X → X ′

is a K-reduction of type (viii) and in this case we have wt′(X) < wt′(X ′).

b). π(F red
∞ ) generates K∞ as a k-module.

c). kF red
∞ is a free k-module and F red

∞ is a free base of kF red
∞ .

d). F red
∞ is the set of all words X1X2 . . .Xm where Xν = x±1

iν
x±1
iν−1 . . . x

±1
jν

,

iν ≥ jν (1 ≤ ν ≤ m), i1 < · · · < im, and all the signs are mutually independent.

e). (Proven in [3]) π3 is an isomorphism of k-modules kF red
3 and K3.

Remark 2.2. Let

Si,j = {x±1
i x±1

i−1 . . . x
±1
j } and Si = {1} ∪ Si,i ∪ Si,i−1 ∪ · · · ∪ Si,1. (5)

Then Part (d) of Proposition 2.1 can be stated as follows: each element of F red
n can

be represented in a unique way as a product X1X2 . . .Xn−1 with Xi ∈ Si. Since
|Si| = 1 + 2 + · · ·+ 2i = 2i+1 − 1, we obtain |F red

n | =
∏n

i=1(2
i − 1), in particular,

|F red
2 | = 3, |F red

3 | = 3·7 = 21, |F red
4 | = 3·7·15 = 315, |F red

5 | = 3·7·15·31 = 9765.

Remark 2.3. In basic replacements (vii), it is enough to consider only words
W belonging to Si−1 (see (5) for the definition of Si−1).

We define a k-linear mapping r : kF+
∞ → kF red

∞ as follows. For each X ∈ F+
∞

we fix an arbitrary sequence of elementary K-reductions X = X1 → X2 → · · · →
Xm ∈ kF red

∞ and we set r(X) = Xm. Then we extend the mapping to kF+
∞ by

linearity.

2.2. Markov trace. Let A = k[u, v] and AKn = Kn(α, β;A). Let M =
M(α, β; k) be the quotient of AK∞ by the relations (4) and let t : AK∞ → M
be the quotient map. We call t the universal Markov trace on K∞ over k. It is
indeed universal in the sense that any Markov trace on K∞(α, β;A) with values in
an A-module M ′ is f ◦ t for some f ∈ HomA(M,M ′).

We define A-linear mappings τn : AF+
n → AF red

n−1 called Markov reductions

as follows. By Proposition 2.1(d), we have F red
n ⊂ F red

n−1 ∪ (F red
n−1xn−1F

red
n−1) ∪

(F red
n−1x

−1
n−1F

red
n−1). So, we set τn(X) = X , τn(Xxn−1Y ) = ur(XY ), and τn(Xx−1

n−1Y ) =

vr(XY ) for X, Y ∈ F+
n−1 and then we extend τn to AF red

n by linearity and to AF+
n

by setting τ(X) = τ(r(X)). Finally, we define τ : F red
∞ → AF+

1 = A by setting
τ(X) = τ2 ◦ · · · ◦ τn(X) for X ∈ AF red

n .
By definition of t and τ , we have t(π(X)) = t(π(τ(X))), thus M = t(K∞) is

generated by t(1). Let I = I(α, β; k) be the annihilator of M . Thus we have
M ∼= A/I.

2.3. Statement of the main result. Let shn : AF+
∞ → AF+

∞, n ∈ Z, be the
A-algebra endomorphism (the n-shift) induced by

shn xi =

{

xi+n, i+ n > 0,

0, i+ n ≤ 0.
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We set sh = sh1.
For X ∈ F+

5 , we define ρX ∈ EndA(AF red
4 ) by setting ρX(Y ) = τ5(X shY ).

Let J4 = J4(α, β; k) be the minimal submodule of AF red
4 satisfying the following

properties (recall that the sets Si,j and Si are defined in (5)):

(J1) r(r(X3X2)X1)−r(X3r(X2X1)) ∈ J4 for any Xj ∈ sh3−j Sj \{1}, j = 1, 2, 3;

(J2) ρX(J4) ⊂ J4 for any X ∈ S4.

In a similar way we define a module L. Let N = AF red
2 ⊗A AF red

2 . We define
A-linear mappings τN : N → A and ρδ : N → N , δ = (δ1, δ2) ∈ {−1, 0, 1}, by
setting for any Y = xε1

1 ⊗ xε2
1 (ε1, ε2 ∈ {−1, 0, 1})

τN (Y ) = τ(xε1
1 xε2

1 ), ρδ(Y ) = xδ1
1 ⊗ τ3(x

ε1
2 xδ2

1 xε2
2 )

and we define L as the minimal submodule of N satisfying the conditions:

(L1) τ3(x
ε1
2 xε2

1 xε3
2 ) ⊗ xε4

1 − xε2
1 ⊗ τ3(x

ε3
2 xε4

1 xε1
2 ) ∈ L for any ε1, ε3 ∈ {−1, 1} and

for any ε2, ε4 ∈ {−1, 0, 1};

(L2) ρδ(L) ⊂ L for any δ ∈ {−1, 0, 1}2.

Theorem 2.4. (Main Theorem). I = τ(J4) + τN (L).

It is proven in §3 (see Corollary 3.2 for “⊃” and Corollary 3.7 for “⊂”).
This result allows (at least theoretically) to compute I. Indeed, we start with the

A-module J
(0)
4 generated by the elements in (J1) and compute its Gröbner baseG(0).

Set Ḡ(0) =
⋃

X∈S4
ρX(G(0)). Let J

(1)
4 be the A-module generated by G(0) ∪ Ḡ(0)

and G(1) its Gröbner base. Continuing this process, we construct an increasing

sequence of submodules J
(0)
4 ⊂ J

(1)
4 ⊂ . . . . Since the subring of A generated by

α, β, u, v is noetherian, there exists m0 such that J
(m0)
4 = J

(m0+1)
4 = . . . (m0 is

determined by the condition G(m0) = G(m0+1)). Then we have J4 = J
(m0)
4 . The

module L can be computed in a similar way as the limit of L(0) ⊂ L(1) ⊂ . . . where
L(0) is generated by the elements in (L1) and L(i+1) =

∑

δ ρδ(L
(i)).

Performing in practice this computation for α = β = 0, k = Z (the case consid-
ered in [3] and [2]) and in some other special cases, we obtain the following results.
To compute Gröbner bases, we use Singular 3-1-3 software.

Corollary 2.5. a). I(0, 0;Z) = (16, 4u2 + 4v, 4v2 + 4u, u3 + v3 + uv − 3).

b). I(α, 0;F2[α]) = (α4, α2(u2+ v), α2(v2+u+α), u3+αuv2 + v3 +uv+α2u+
αv + 1);

c). I(α, 0;F3[α]) =
(

α3 − 1, (u2 − α2)(u2 − αu− α2), v + u2
)

;

d). If k = Q or k = Fp for p = 5, 7, 11, 13, 17, 19, then I(α, 0; k[α]) = (f1, . . . , f5)
where

f1 = γ1γ2γ3, γ1 = α3 + 8, γ2 = 2α3 + 1, γ3 = 3α3 + 8,

f2 = γ1γ3(u− α),

f3 = γ3(6u
3 − 3α2u+ α3 + 2),

f4 = 336u4 − 792αu3 + 12(15α3 + 106)α2u2 + 6(141α3 + 544)u

− 114α7 − 1405α4 − 3152α,

f5 = 288v + 336α2u3 + 72(3α3 + 28)u2 − 48(9α3 + 44)αu− 6a8 + 53a5 + 472a2.
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The reduced Gröbner base of I with respect to the lexicographic order (v > u > α)
is {f1, . . . , f5} except the case k = F7 when it is {f1, f2, g, f5} with

g = 3α2f4 − f3 + 2α(u+ α)f2 + 2f1 = u3 + 2γ1αu
2 + 2γ3α

2u+ 3α3(α3 − 1),

Remark 2.6. The Markov trace t over k defines a link invariant P (L) =
Pα,β,k(L) = u(−n−e)/2v(−n+e)/2t(b) ∈ k[u±1/2, v±1/2]/I(α, β; k) where b is a repre-
sentation of a link L by a braid with n strings and e is the sum of exponents of
b. It is shown in [2] that P0,0;F2

and P0,0;Z/4Z depend on HOMFLY polynomial. A
computation shows that Pα,0;Q[α] and Pα,0;F3[α] detect the chirality of the knot 1071
(if one believes in Corollary 2.5, then Pα,0;F3[α](1071) can be computed by hand
very fast). Thus, in general Pα,β;k is independent of both HOMFLY and Kauffman
polynomials. Also we read in [1; §7.3]: “The 2-cabling of HOMFLY does not detect
the chirality of 1071 (this result was kindly communicated by H. R. Morton)”.

Remark 2.7. In the computed cases, u and v are not zero divisors in A/I.
If they are for some (α, β; k), then (due to [4]) it is a priori possible that t could
distinguish transversal links which are isotopic and have equal Bennequin numbers.
In fact, this was my main motivation in 2004 to study in detail [1] and [3].

Remark 2.8. The main mistake in [3] (which was repeated also in [1]) is that

the modules J
(0)
4 and L(0) were considered instead of J4 and L.

3. Proof of Main Theorem

3.1. Easy part: τ(J4) + τN (L) ⊂ I.

Let J
(0)
4 ⊂ J

(1)
4 ⊂ . . . and L(0) ⊂ L(1) ⊂ . . . be as defined in §2.3.

For n ≥ 4 and a ∈ AKn, we define tn,a ∈ HomA(F
red
4 , A) by setting tn,a(X) =

t(a π(shn−4 X)). Similarly, for n ≥ 1 and a, b ∈ AKn, we define tn,a,b ∈ HomA(N,A)

by setting tn,a,b(X ⊗ Y ) = t
(

π(shn−1 X) a π(shn−1 Y ) b
)

.

Lemma 3.1.
a). J4 ⊂ ker tn,a for any n ≥ 4 and any a ∈ Kn.
b). L ⊂ ker tn,a,b for any n ≥ 1 and any a, b ∈ Kn.

Proof. We prove by induction that a) J
[i)
3 ⊂ ker tn,a and b) L[i) ⊂ ker tn,a,b. For

i = 0, the statement is evident. Suppose that it is true for i− 1 and let us prove it
for i. Note that we have

t
(

a π(shp τn−p(X)) b
)

= t
(

a π(shp X) b
)

for a, b ∈ Kn−1, X ∈ AF+
n (6)

a). It is enough to check that ρX(Y ) ∈ ker tn,a for any Y ∈ J
(i−1)
4 , X ∈ S4.

n ≥ 4, a ∈ Kn. Indeed,

tn,a(ρX(Y )) = t
(

a π(shn−4 ρX(Y ))
)

by definition of tn,a

= t
(

a π(shn−4 τ5(X shY ))
)

by definition of ρX

= t
(

a π
(

(shn−4 X)(shn−3 Y )
)

)

by (6)

= tn+1,a′(Y ) for a′ = a π(shn−4 X) ∈ Kn+1

= 0 by the induction hypothesis
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b). It is enough to check that ρδ(Y ) ∈ ker tn,a,b for any Y ∈ L(i−1), δ = (δ1, δ2) ∈

{−1, 0, 1}2, n ≥ 1, a, b ∈ Kn. Indeed, let Y =
∑

j cjx
ε1(j)
1 ⊗ x

ε2(j)
1 . Then

tn,a,b(ρδ(Y )) = tn,a,b

(

∑

cjx
δ1
1 ⊗ τ3(x

ε1(j)
2 xδ2

1 x
ε2(j)
2 )

)

def. of ρδ

=
∑

cjt
(

π(shn−1 xδ1
1 ) a π

(

shn−1 τ3(x
ε1(j)
2 xδ2

1 x
ε2(j)
2 )

)

b
)

def. of tn,a,b

=
∑

cjt
(

sδ1n a s
ε1(j)
n+1 s

δ2
n s

ε2(j)
n+1 b

)

by (6)

=
∑

cjt
(

s
ε1(j)
n+1 s

δ2
n s

ε2(j)
n+1 b sδ1n a

)

t(xy) = t(yx)

=
∑

cjt
(

π
(

shn x
ε1(j)
1

)

sδ2n π
(

shn x
ε2(j)
1

)

b sδ1n a
)

= tn+1,a′,b′(Y ) a′ = sδ2n , b′ = bsδ1n a

= 0 by induction hypothesis

Corollary 3.2. τ(J4) + τN (L) ⊂ I.

Proof. Indeed, by Lemma 3.1, we have t(τ(X)) = t4,1(X) = 0 for any X ∈ J4 and
t(τN (X)) = t1,1,1(X) = 0 for any X ∈ L. Thus τ(J4) + τN (L) ⊂ ker(t|A) = I.

3.2. Difficult part: I ⊂ τ(J4) + τN (L).
Let, as above, R̄ be the submodule of K∞ generated by the elements (4). Set

R = π−1(R̄). Then we have I = A ∩ R̄ = A ∩ R. Let wt : AF+
∞ → Z≥0 be the

weight function defined in §2.1. It defines a filtration on AF+
∞, namely, A = AF+

[0] ⊂

AF+
[1] ⊂ AF+

[2] ⊂ . . . where AF+
[w] = {X ∈ AF+

∞ | wtX ≤ w}.

We shall work with the following set of generators R = RT ∪RM ∪RN ∪RH of
R as an A-module (we set here u+ = u, u− = v):

RT = {XY − Y X |X, Y ∈ F+
∞}, trace relations;

RM = {x±1
n X − u±X |X ∈ F+

n , n ≥ 1}, Markov relations;

RN = {UX − V X |X,U ∈ F+
∞, U

(i)–(vi)
−→ V }, nonhomogeous K-relations;

RH = {UX − V X |X,U ∈ F+
∞, U

(viii)
−→ V }, homogeous K-relations.

Let R[w] = R ∩ AF+
[w] and let R[w] be the A-submodule of R generated by R[w]

and let H be the submodule generated by RT ∪ RH (the elements of H are wt-
homogeneous). Note, that by Proposition 2.1(a) we have

X ≡ r(X) ≡ τn(X) ≡ τ(X) mod R[wtX] for X ∈ AF+
n . (7)

In what follows, a notation like X1 ≡ X2 ≡ X3 ≡ . . . means that Xi ≡ Xi+1

mod R[wtXi] and wtXi+1 ≥ wtXi, in particular, in this case we always have X1 ≡
X2 ≡ X3 ≡ . . . mod R[wtX1].

Lemma 3.3. Let Z = X shn−4 Y for X ∈ AF+
∞, Y ∈ J4 ∩ sh4−n AF+

∞, n ≥ 1.
Then Z ∈ R[w] + τ(J4) where w = wtZ.

Proof. We denote shn−4 Y by Yn. If X ∈ AF+
m with m > n, then

XYn ≡ τm(X)Yn ≡ τm−1(τm(X))Yn ≡ · · · ≡ τn+1 ◦ · · · ◦ τm−1 ◦ τm(X)Yn,
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hence it is enough to prove the statement of the lemma under the additional hy-
pothesis X ∈ AF+

n . We prove it by induction.

If n = 1, then X ∈ AF+
1 = A and Y ∈ J4 ∩ sh3 AF+

∞ = J4 ∩ A ⊂ τ(J4), so, the
statement is trivial.

Suppose that n ≥ 2, the statement is true for n−1, and let us prove it for n. By
linearity, it is enough to consider the case when X ∈ F+

n and since X ≡ r(X), we
may assume that X ∈ F red

n . Let X = X1X2 . . .Xn−1, Xi ∈ Si (see Remark 2.2).

We have Xn−1 = (shn−5 X ′
4)X

′′
n−5 with X ′

4 ∈ S4 ∩ sh5−nAF+
∞ and X ′′

n−5 ∈ Sn−5

(we assume here that Si = {1} when i ≤ 0). Note that Yn may involve only x±1
n−4+i,

i = 1, 2, 3, whereas X ′′
n−5 may involve only x±1

i , i ≤ n − 5, hence they commute.
Therefore, denoting X1 . . .Xn−2 by X ′′′

n−2, we obtain

Z = X ′′′
n−2(sh

n−5 X ′
4)X

′′
n−5(sh

n−4 Y ) ≡ X ′′′
n−2(sh

n−5 X ′
4)(sh

n−4 Y )X ′′
n−5

≡ X ′′
n−5X

′′′
n−2(sh

n−5 X ′
4)(sh

n−4 Y ) = X ′′
n−5X

′′′
n−2 sh

n−5(X ′
4 shY )

≡ X ′′
n−5X

′′′
n−2 sh

n−5
(

τ5(X
′
4 sh Y )

)

= X ′ shn−5 Y ′

where X ′ = X ′′
n−5X

′′′
n−2 ∈ AF+

n−1 and Y ′ = τ5(X
′
4 shY ) = ρX′

4
(Y ) ∈ J4.

To complete the proof, it remains to check that Y ′ ∈ sh5−n AF+
∞. Indeed, we

have X ′
4 ∈ sh5−n AF+

∞, Y ∈ sh4−n AF+
∞, hence sh Y ∈ sh5−n AF+

∞ and we obtain

X ′
4 shY ∈ sh5−n AF+

∞ whence Y ′ = τ5(X
′
4 shY ) ∈ sh5−n AF+

∞. �

The next lemma is similar. For n ≥ 1 and X1, X2 ∈ AF+
n we define ϕn,X1,X2

∈

HomA(N,AF+
n+1) by setting ϕn,X1,X2

(Y1 ⊗ Y2) = X1(sh
n−1 Y1)X2(sh

n−1 Y2).

Lemma 3.4. Let Z = ϕn,X1,X2
(Y ) for n ≥ 1, X1, X2 ∈ AF+

n , Y ∈ L. Then
Z ∈ R[w] + τN (L) where w = wtZ.

Proof. It is enough to consider the case when X1, X2 ∈ F red
n . Then there exist

X ′
i, X

′′
i ∈ F red

n−1 and δi ∈ {−1, 0, 1} such that Xi = X ′
ix

δi
n−1X

′′
i (i = 1, 2). Let

Y =
∑

j

cjx
ε1(j)
1 ⊗ x

ε2(j)
1 . (8)

Then we have

Z =
∑

cj X1x
ε1(j)
n X2x

ε2(j)
n =

∑

cj X
′
1x

δ1
n−1X

′′
1 x

ε1(j)
n X ′

2x
δ2
n−1X

′′
2 x

ε2(j)
n

≡
∑

cj X
′′
2X

′
1x

δ1
n−1X

′′
1X

′
2x

ε1(j)
n xδ2

n−1x
ε2(j)
n

=
∑

cj X
′′
2X

′
1x

δ1
n−1X

′′
1X

′
2 sh

n−2
(

x
ε1(j)
2 xδ2

1 x
ε2(j)
2

)

≡
∑

cj X
′′
2X

′
1x

δ1
n−1X

′′
1X

′
2 sh

n−2 τ3
(

x
ε1(j)
2 xδ2

1 x
ε2(j)
2

)

= ϕn−1,X̄1,X̄2
(Ȳ )

where X̄1 = X ′′
2X

′
1, X̄2 = X ′′

1X
′
2, Ȳ = ρδ(Y ). So, we have Z ≡ Z̄ = ϕn−1,X̄1,X̄2

(Ȳ )

where X̄1, X̄2 ∈ AF+
n−1, Ȳ ∈ L.

Thus, by induction we reduce the problem to the case n = 1. In this case we
have X1, X2 ∈ AF+

1 = A, hence, for Y as in (8), we have Z = ϕ1,X1,X2
(Y ) =

∑

cjx
ε1(j)
1 x

ε2(j)
1 , hence Z ≡ τ2(Z) = τN (Y ) ∈ τN (L). �
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The next statement is the Pentagon Lemma from [3] adapted for our setting.

Lemma 3.5 (Pentagon Lemma). Let Z2, Z2 ∈ RN ∪RM be such that Z1−Z2 ∈
H + AF+

[w−1] where w = wtZ1 = wtZ2. Then Z1 − Z2 ∈ R[w−1] + τ(J4) + τN (L).

Proof. Let Xi ∈ F+
∞ be the leading monomial of Zi, i = 1, 2, i. e. wtXi = wtZi and

wt(Zi −Xi) ≤ w − 1. Then X1 −X2 ∈ H, hence there exists a sequence of words
X1 = W1, . . . ,Wm = X2 such that Wi+1 is obtained from Wi either by a cyclic
permutation or by exchanging two consecutive commuting letters. By definition of
RM and RN we have Xi = UiX

′
i and Zi = (Ui − Vi)X

′
i, i = 1, 2, where Ui → Vi is

an elementary K-reduction of types (i)–(vi) if Zi ∈ RN and Ui = x±1
n , Vi = u± if

Zi ∈ RM .
Following [3] and [1], we represent such sequences W1, . . . ,Wm by diagrams.

A diagram is a union of mutually transversal curves in the cylinder S1 × [0, 1],
each curve being labeled by a letter x±1

i . In pictures we represent the cylinder
by a rectangle whose vertical sides are supposed to be identified, so, the fibers of
the projection pr2 : S1 × [0, 1] → [0, 1] we call horizontal circles. Each curve is
monotone, i. e., its projection onto [0, 1] is bijective. We say that a diagram is
admissible if two curves labeled by x±1

i and x±1
j may cross only if |i− j| ≥ 2. The

words Wi (up to cyclic permutation) are read on horizontal circles.
We say that curves Γ1, . . . ,Γm form a bunch of parallel curves or just a bunch if

the curves are pairwise disjoint and all the crossings lying on
⋃

Γi can be covered
by disks whose intersections with the diagram are as in Figure 1.

In our case, the first and the last word of the sequence are X1 and X2. So, on
the boundary of the cylinder we indicate (by a bold line) segments corresponding
to U1 and U2. As in [3] and [1], a diagram is called interactive if it contains a curve
which joins the bold segments. We also say that a curve is active if it meets at least
one bold segment.

Step 1. If all active curves form a single bunch, then Z1 − Z2 ∈ H.

In this case we have U1 = U2. Let V1 = r(U1) =
∑

cjWj , cj ∈ A, Wj ∈ F+
∞. For

each j we consider the diagram obtained from the initial diagram by replacing the
bunch of active curves by a bunch of curves labeled by Wj . If a curve crosses the
bunch, its label commutes with all letters occurring in U1, hence it commutes with
all letters in Wj , i. e., the new diagram is admissible and it defines a congruence
WjX

′
1 ≡ WjX

′
2 mod H. Hence (recall that X1 − X2 ∈ H) we have Z1 − Z2 =

(X1 − V1X
′
1)− (X2 − V1X

′
2) ≡ V1X

′
2 − V1X

′
1 =

∑

cjWj(X
′
2 −X ′

1) ≡ 0 mod H.

Step 2. If Z1, Z2 ∈ RM , then Z1 − Z2 ∈ H.

In this case there is only one active curve, so we apply the result of Step 1.

Step 3. If the diagram is non-interactive, then Z1 − Z2 ∈ H +R[w−1].

Due to Step 2, we may suppose that Z1 ∈ RN . Then U1 = xε1
n xε2

n−1x
ε3
n with

ε1, ε3 ∈ {−1, 1} and ε2 ∈ {−1, 0, 1}.
Let A and B be the points on the lower bold segment that correspond to the

letters xε1
n and xε3

n of U1 and let AD and BC be the corresponding active curves
(see Figure 2). They cut the cylinder into two halves. Let Q be that half whose
side AB is contained in the bold segment (the quadrangle ABCD in Figure 2).

Let Γ be the curve outcoming from U1 and labeled by xε2
n−1 if ε2 6= 0 or a generic

monotone curve in Q if ε2 = 0. Let us choose a horizontal circle (the dashed line in
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A B

. . .

Γ

D C

E F

X3 X X4 5

Figure 1 Figure 2

Figure 2) so that all crossings are below it and let us choose points E and F on it so
that the segment EF which crosses Γ has no other intersections with the diagram.
We may suppose that the intersection of the diagram with the upper half-cylinder
(beyond EF ) is a union of segments of vertical lines.

Let ∆ be the diagram obtained by replacing AD and BC with monotone curves
AED and BFC where ED, FC are straight line segments and AE, BF are curves
in Q which are chosen so close to Γ that the active curves outcoming from U1 form
a bunch in the lower half-cylinder (below EF ). The label of any curve Γ′ 6= Γ
entering Q is not x±1

i with |n− i| ≤ 1 (indeed, since Γ′ attains the lower boundary
outside the bold segment, it crosses AD or BC). Hence ∆ is admissible.

Let Y be the word read from ∆ along the circle EF . The bunch of active curves
in the lower half-cylinder ensures that Y = U1Y

′ and the result of Step 1 yields

Z1 ≡ (U1 − r(U1))Y
′ mod H. (9)

Now, let us study the upper part of ∆ (beyond EF ). All possible crossing
in this part are on ED and FC. Hence, up to cyclic permutation, we have X2 =
xε1
n X3x

ε2
n−1X4x

ε3
n X5 and Y = U1Y

′ = U1X4X5X3 (see Figure 2). Since the diagram
is not interactive, U2 is a subword of one of X3, X4, X5, hence the active curves
outcoming from U2 form a bunch and Y ′ = Y1U2Y2, i. e., Y = U1Y1U2Y2, Y1, Y2 ∈
F+
∞. Hence, by Step 1, we have

Z2 ≡ U1Y1(U2 − r(U2))Y2 mod H. (10)

We have also

U1Y1r(U2)Y2 ≡ r(U1)Y1r(U2)Y2 ≡ r(U1)Y1U2Y2 mod R[w−1].

Combining this with (9) and (10), we obtain

Z1 ≡ (U1 − r(U1))Y1U2Y2 ≡ U1Y1(U2 − r(U2))Y2 ≡ Z2 mod H +R[w−1].

Step 4. Consider the open intervals obtained after removing of all endpoints of all
active curves. If at least one of the words corresponding to these intervals is not
almost K-reduced (see the definition in §2.1 ), then Z1 − Z2 ∈ H +R[w−1].

Suppose that the word which is not almost K-reduced is a subword Y of X2.
Since it is disjoint from the active curves, we can write X2 = U2X3Y X4. The fact
that Y is not almost K-reduced means that there exists a sequence Y = Y0 → Y1 →
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· · · → Y ′U3Y
′′ of exchanges of commuting letters such that U3 is the left hand side

of an elementary replacement of type (i)–(vi). The fact that Y does not meet any
active curve means that the diagrams corresponding to the both chains

X1 → · · · →X2 = U2X
′Y0X

′′ → U2X
′Y1X

′′ → · · · → U2X
′(Y ′U3Y

′′)X ′′,

X2 = U2X
′Y0X

′′ → U2X
′Y1X

′′ → · · · → U2X
′(Y ′U3Y

′′)X ′′

are non-interactive. By Step 3 this implies Z1 ≡ Z3 ≡ Z2 mod H +R[w−1] where
Z3 = U2X

′Y ′(U3 − r(U3))Y
′′X ′′.

Step 5. If Z1 ∈ RN and the diagram is interactive, then the active curves are
arranged up to symmetry either as in Figure 3.1 or as in Figure 3.2 where each of
the dashed lines may or may not be included into the diagram, n ≥ 1.

x±1
n x±1

n−1 x±1
n x±1

n−1 x±1
n x±1

n−1 x±1
n x±1

n−1 x±1
n

x±1
n x±1

n−1 x±1
n x±1

n−1 x±1
n x±1

n x±1
n−1 x±1

n x±1
n−1

Figure 3.1 Figure 3.2

Indeed, we draw the curves adjacent to one of the bold segments and we try all
the ways to complete the picture to an admissible diagram. Easy to see that only
these two pictures can be obtained.

Step 6. If the active curves are as in Figure 3.1, then Z1−Z2 ∈ H+R[w−1]+τ(J4).

Suppose that the active curves are as in Figure 3.1 (the bottom boundary corre-
sponds to X1). Then U1 = xε4

n xε5
n−1x

ε6
n , U2 = xε1

n xε2
n−1x

ε4
n , X2 = U2Y xε5

n−1X3x
ε6
n X4

where ε1, ε4, ε6 = ±1 and ε2, ε5 ∈ {−1, 0, 1}.
We begin as in Step 3. Let Q be the curvilinear quadrangle adjacent to the

lower bold segment and bounded by the active xn-curves outcoming from U1. Let
C1 be a horizontal circle such that the part of the diagram beyond C1 is a union
of segments of vertical lines. Let Γ be either the (xn−1)-curve outcoming from U1

(if it exists) or just a generic monotone curve in Q. Then we push the xn-curves
inside the domain Q from its boundary so that they form (together with Γ) a bunch
below C1, and so that the portions of the pushed curves beyond C1 are segments
of straight lines (see Figure 4.1).

U2 Y xε5
n−1 X3 xε6

n X4 U2 Y1 xε3
n−2Y2 xε5

n−1X3 xε6
n X4

C

C

C1

2

3

Figure 4.1 Figure 4.2
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Since all curves outcoming from Y cross an xn-curve, Y does not contain x±1
i for

n− 1 ≤ i ≤ n+ 1. By Step 4, we may suppose that Y is almost K-reduced, hence
Y has at most one occurrence of x±1

n−2, i. e., Y = Y1x
ε3
n−2Y2 with ε3 ∈ {−1, 0, 1}

and Y1, Y2 do not contain x±1
i for n− 2 ≤ i ≤ n+ 1.

We choose horizontal circles C2 and C3 so that the intersection point of the
xn-curve and the (xn−2)-curve (if it exists) is between them and we modify the
diagram as it is shown in Figure 4.2. If we apply the result of Step 1 to the part of
the diagram which is below C2 and to that which it beyond C3, we obtain:

Z1 ≡ Y1x
ε1
n xε2

n−1x
ε3
n−2

(

U1 − r(U1)
)

Y2X3X4 mod H (below C2),

Z2 ≡ Y1

(

U2 − r(U2)
)

xε3
n−2x

ε5
n−1x

ε6
n Y2X3X4 mod H. (beyond C3).

Hence Z1 − Z2 ≡ X ′ shn−3 Y ′ mod H where X ′ = Y2X3X4Y1 and

Y ′ = r(xε1
3 xε2

2 xε4
3 ) xε3

1 xε5
2 xε6

3 − xε1
3 xε2

2 xε3
1 r(xε4

3 xε5
2 xε6

3 ).

If ε2 6= 0, then r(Y ′) ∈ J4 by Condition (J1) of the definition of J4. Thus, using

Lemma 3.3 and observing that wt(X ′ shn−3 Y ′) < w, we obtain

Z1 − Z2 ≡ X ′ shn−3 Y ′ ≡ X ′ shn−3 r(Y ′) ≡ 0 mod H +R[w−1] + τ(J4).

If ε2 = 0, then X ′ shn−3 Y ′ ≡ X ′ shn−3(xε3
1 Y ′′) mod H where r(Y ′′) ∈ J4, thus

Z1 −Z2 ≡ X ′ shn−3(xε3
1 Y ′′) ≡ X ′xε3

n−2 sh
n−3 r(Y ′′) ≡ 0 mod H +R[w−1] + τ(J4).

Step 7. If the active curves are as in Figure 3.2, then Z1−Z2 ∈ H+R[w−1]+τN (L).

X3 xε2
n−1 X4 U2

Figure 5

Again, as in the beginning of Steps 3 and 6, we transform the diagram as in
Figure 5 and we obtain

Z1 ≡ X3(U1 − r(U1))X4x
ε4
n−1 and Z2 ≡ X3x

ε2
n−1X4(U2 − r(U2)) mod H

where U1 = xε1
n xε2

n−1x
ε3
n , U2 = xε3

n xε4
n−1x

ε1
n , ε1, ε3 = ±1, ε2, ε4 ∈ {−1, 0, 1}. Hence

Z1 − Z2 ≡ X3x
ε2
n−1X4r(U2)−X3r(U1)X4x

ε4
n−1 mod H (11)

Note that x±1
i for n − 1 ≤ i ≤ n + 1 does not occur in X1 and X2. Indeed, if it

does, then the diagram curve starting in it cannot attain the opposite side of the
cylinder outside the bold segment because it cannot cross the xn-curves. Thus,

X3x
ε2
n−1X4r(U2) ≡ X ′

3x
ε2
n−1X

′
4r(U2)X5 ≡ X ′

3x
ε2
n−1X

′
4r(U2)τ(X5) mod H +R[w−1]
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where X ′
3, X

′
4 ∈ F+

n−1 and X5 ∈ shn+1 F+
∞ (the same for other term in (11)). So,

replacing, if necessary, Xj by X ′
j (j = 3, 4), we may assume that X3, X4 ∈ F+

n−1.

Then we may pass from (11) to

Z1 − Z2 ≡ X3x
ε2
n−1X4τn+1(U2)−X3τn+1(U1)X4x

ε4
n−1 mod H +R[w−1]

= ϕn−1,X3,X4
(Y )

where Y = xε2
1 ⊗ τ3(x

ε3
2 xε4

1 xε1
2 )− τ3(x

ε1
2 xε2

1 xε3
2 )⊗ xε4

1 ∈ L. Thus if n > 1, then the
result follows from Lemma 3.4. If n = 1, then ε2 = ε4 = 0, X3 = X4 = 1, and (11)
yields Z1 − Z2 ≡ 0.

Step 8. We proved that Z1−Z2 ⊂ H+R[w−1]+ τ(J4)+ τN (L). Hence Z1−Z2 ⊂

R[w−1] + τ(J4) + τN (L) because H is homogeneous and Z1 − Z2 ∈ AF+
[w−1]. The

Pentagon Lemma is proven. �

Lemma 3.6. R[w] ∩ AF+
[w−1] ⊂ R[w−1] + τ(J4) + τN (L)

Proof. For Z ∈ R[w] ∩ AF+
[w−1], let m = m(Z) be the minimal number such that

Z ≡ c1Z1 + · · · + cmZm mod H + R[w−1] with ci ∈ A, Zi ∈ R. To prove that
Z ∈ R[w−1] + τ(J4) + τN (L), we use the induction by m. The statement is trivial
for m = 0 because H is homogeneous.

Suppose that m > 0 and the statement is true for any smaller m. Let Xi be the
leading monomial of Zi, i. e., Xi ∈ F+

∞ and wtZi − Xi < w. Then
∑

ciXi ≡ 0
mod H. The term cmXm of this congruence cancels. Hence there exists j < m such
that Xm −Xj ∈ H. Then cm(Zm − Zj) ∈ R[w−1] + τ(J4) + τN (L) by Lemma 3.5
and Z − cm(Zm − Zj) ∈ R[w−1] + τ(J4) + τN (L) by the induction hypothesis. �

Corollary 3.7. I ⊂ τ(J4) + τN (L).

Proof. Let I ′ = τ(J4) + τN (L). Since I = R ∩ A and R =
⋃

w R[w], it is enough to
prove that R[w]∩A ⊂ I ′ for any w. For w = 0 we have R[0] = 0, hence R[0]∩A ⊂ I ′.

Suppose that R[w−1] ∩A ⊂ I ′. Let Z ∈ R[w] ∩A. Since R[w] ∩A ⊂ R[w] ∩AF+
[w−1],

by Lemma 3.6 we have Z ∈ R[w−1] + I ′, i. e., Z = Z ′ + Z0 with Z ′ ∈ R[w−1],
Z0 ∈ I ′. Since Z ′ = Z − Z0 ∈ A, we have Z ′ ∈ R[w−1] ∩ A and by the induction
hypothesis we obtain Z ′ ∈ I ′ whence Z = Z ′ + Z0 ∈ I ′. Thus R[w] ∩ A ⊂ I ′. �

Main Theorem is proven (see Corollary 3.2 and Corollary 3.7).
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