MARKOV TRACE ON FUNAR ALGEBRA

S.Yu. Orevkov

1. Introduction

Let B_{n} be the braid group with n strings and $\sigma_{1}, \ldots, \sigma_{n-1}$ its standard generators. Let k be a commutative ring with $1 \neq 0$. Given $\alpha, \beta \in k$, we define the k-algebra $K_{n}=K_{n}(\alpha, \beta)=K_{n}(\alpha, \beta ; k)$ as the quotient of the group algebra $k B_{n}$ by the relations

$$
\begin{equation*}
\sigma_{1}^{3}-\alpha \sigma_{1}^{2}+\beta \sigma_{1}-1=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
y \bar{x} y= & 2 \alpha-\beta^{2}-(x+y)-\left(\alpha^{2}-\beta\right)(\bar{x}+\bar{y})+\beta(x y+y x)+\alpha(x \bar{y}+y \bar{x}+\bar{x} y+\bar{y} x) \\
& +(\alpha \beta-1)(\bar{x} \bar{y}+\bar{y} \bar{x})-\alpha x y x-(\bar{x} y x+x \bar{y} x+x y \bar{x})-\beta(\bar{x} \bar{y} x+x \bar{y} \bar{x}) \\
& +\left(\alpha-\beta^{2}\right) \bar{x} \bar{y} \bar{x} . \tag{2}
\end{align*}
$$

where x, \bar{x}, y, \bar{y} in (2) stand for $\sigma_{1}, \sigma_{1}^{-1}, \sigma_{2}, \sigma_{2}^{-1}$ respectively. Up to a change of the sign of β (for the sake of symmetricity), our definition of K_{n} is equivalent to the definition given by Bellingeri and Funar in [1]. Our relation (2) is much shorter than the corresponding relation in [1] (see [1; (2) and Table 1]) because we use σ_{i}^{-1} instead of σ_{i}^{2}. Multiplying (2) by σ_{1} from the left or from the right, and simplifying the result using (1) and the braid group relations, we obtain

$$
\begin{equation*}
\bar{y} x \bar{y}=2 \beta-\alpha^{2}-(\bar{x}+\bar{y})-\ldots \quad(\operatorname{swap} x \leftrightarrow \bar{x}, y \leftrightarrow \bar{y}, \alpha \leftrightarrow \beta \text { in }(2)) \tag{3}
\end{equation*}
$$

Using (1) - (3) together with the braid relations, it is easy to see that K_{n} are finitely generated k-modules. Following [2], we denote the image of σ_{i} in K_{n} by s_{i}.

Set $K_{\infty}=\lim K_{n}$ (in contrary to the case of Hecke or BMW algebras, the morphisms $K_{n} \rightarrow K_{n+1}$ induced by the standard embeddings $B_{n} \subset B_{n+1}$ are not injective in general). We say that $t: K_{\infty} \otimes k[u, v] \rightarrow M$ is a Markov trace on K_{∞} if M is a $k[u, v]$-module and t is a morphism of $k[u, v]$-modules such that $t(x y)=t(y x), t\left(x s_{n}\right)=u t(x), t\left(x s_{n}^{-1}\right)=v t(x), x, y \in K_{n}, n=1,2, \ldots$.

It is claimed in [3] and [1] that a nontrivial Markov trace is constructed on K_{n}. About 2004-2005 I indicated a gap in the proof of its well-definedness (see Remark 2.8 below). As it is explained in [2], the gap was really serious: formally, the main result of [3] is wrong in the form it is stated. However, we show in this paper that the main idea in $[1,3]$ is correct: to construct a Markov trace on K_{n}, it suffices to check a finite number of identities though the number of them is much bigger than in $[1,3]$. Theoretically, this approach allows to compute the universal Markov
trace on K_{∞}, i. e., the projection of $K_{\infty}(\alpha, \beta ; \mathbb{Z}[\alpha, \beta, u, v])$ onto its quotient by the submodule \bar{R} generated by

$$
\begin{equation*}
x y-y x, \quad x s_{n}-u x, \quad x s_{n}^{-1}-v x, \quad x, y \in K_{n}, n=1,2, \ldots \tag{4}
\end{equation*}
$$

but in practice, the volume of computations is so huge that we did them only in some cases including the case of the universal Markov trace on $K_{\infty}(0,0)$. It appears that it takes its values in $\mathbb{Z}[u, v] / I$ where $I=\left(16,4 u^{2}+4 v, 4 v^{2}+4 u, u^{3}+v^{3}+u v-3\right)$. Note, that it was checked in $[2]$ that $K_{5}(0,0 ; \mathbb{Z}) /\left(K_{5} \cap \bar{R}\right)=\mathbb{Z}[u, v] / I$.
Acknowledgement. I am grateful to Andrey Levin and Alexey Muranov for useful discussions and advises.

2. Definitions and statement of Results

2.1. K-reductions. Let F_{n}^{+}be the free monoid on generators $x_{1}^{ \pm 1}, \ldots, x_{n-1}^{ \pm 1}$ (the set of all not necessarily reduced words in $x_{i}^{ \pm 1}$) and $F_{\infty}^{+}=\bigcup F_{n}^{+}$. We denote the empty word by 1 . Let $k F_{n}^{+}$and $k F_{\infty}^{+}$be the corresponding free associative algebras over k (as k-modules, they are freely generated by F_{n}^{+}and by F_{∞}^{+}respectively).

We call basic replacements the pairs (U, V) with $U \in F_{\infty}^{+}, V \in k F_{\infty}^{+}$(which we denote by $U \rightarrow V$) from the following list:
(i) $x_{i} x_{i}^{-1} \longrightarrow 1, x_{i}^{-1} x_{i} \longrightarrow 1, i \geq 1$;
(ii) $x_{i}^{2} \longrightarrow \alpha x_{i}-\beta+x_{i}^{-1}, i \geq 1$;
(iii) $x_{i}^{-2} \longrightarrow \beta x_{i}^{-1}-\alpha+x_{i}, i \geq 1$;
(iv) $x_{i+1}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} x_{i+1}^{\varepsilon_{3}} \longrightarrow x_{i}^{\varepsilon_{3}} x_{i+1}^{\varepsilon_{2}} x_{i}^{\varepsilon_{1}}, \varepsilon_{2} \in\left\{\varepsilon_{1}, \varepsilon_{3}\right\} \subset\{-1,1\}, i \geq 1$;
(v) $x_{i+1} x_{i}^{-1} x_{i+1} \longrightarrow$ (the right hand side of (2) with $x=x_{i}, y=x_{i+1}$), $i \geq 1$;
(vi) $x_{i+1}^{-1} x_{i} x_{i+1}^{-1} \longrightarrow$ (the right hand side of (3) with $x=x_{i}, y=x_{i+1}$), $i \geq 1$;
(vii) $x_{i+1}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} W x_{i+1}^{\varepsilon_{3}} \longrightarrow V W$ where $x_{i+1}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} x_{i+1}^{\varepsilon_{3}} \longrightarrow V$ is one of $(i v)-(v i)$ and W is a word in $x_{1}^{ \pm 1}, \ldots, x_{i-1}^{ \pm 1}$;
(viii) $x_{j}^{\varepsilon_{1}} x_{i}^{\varepsilon_{2}} \longrightarrow x_{i}^{\varepsilon_{2}} x_{j}^{\varepsilon_{1}},\left\{\varepsilon_{1}, \varepsilon_{2}\right\} \subset\{-1,1\}, j-1>i \geq 1$;

An elementary K-reduction of a monomial is $A U B \rightarrow A V B$ where $A U B \in F_{\infty}^{+}$ and $U \rightarrow V$ is a basic replacement. An elementary K-reduction of an element of $k F_{\infty}^{+}$is $\sum_{j=1}^{m} c_{j} W_{j} \rightarrow c_{1} W_{1}^{\prime}+\sum_{j=2}^{m} c_{j} W_{j}$ where $c_{1}, \ldots, c_{m} \in k, W_{1}, \ldots W_{m}$ are pairwise distinct elements of F_{∞}^{+}, and $W_{1} \rightarrow W_{1}^{\prime}$ is an elementary K-reduction of a monomial.

An element of $F_{\infty}^{+}\left(\right.$resp. of $\left.k F_{\infty}^{+}\right)$is K-reduced if no K-reduction can be applied to it. We denote the set of such elements by $F_{\infty}^{\text {red }}$ (resp. $k F_{\infty}^{\text {red }}$). We set also $F_{n}^{\mathrm{red}}=F_{n}^{+} \cap F_{\infty}^{\mathrm{red}}$ and $k F_{n}^{\mathrm{red}}=k F_{n}^{+} \cap k F_{\infty}^{\mathrm{red}}$. Then $k F_{\infty}^{\mathrm{red}}$ is a submodule (not a subalgebra) of $k F_{\infty}^{+}$. We denote $\pi: k F_{\infty}^{+} \rightarrow K_{\infty}$ and $\pi_{n}: k F_{n}^{+} \rightarrow K_{n}$ the morphisms of k-algebras induced by $x_{i} \mapsto s_{i}$.

We say that an element X of F_{∞}^{+}is almost K-reduced if there exists a sequence $X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{m}$ of elementary K-reductions of type (viii) such that X_{m} is K-reduced.

For $X=x_{i_{1}}^{\varepsilon_{1}} \ldots x_{i_{m}}^{\varepsilon_{m}} \in F_{\infty}^{+}, \varepsilon_{j}= \pm 1$, we define the weight wt $X=\sum_{j} i_{j}$ and the auxiliary weight $\mathrm{wt}^{\prime} X=\sum_{j} j i_{j}$. It is clear that the set of all monomials of a given weight is finite. For $X \in k F_{\infty}^{+}$we set wt $X=\max _{i}$ wt X_{i} if $X=\sum_{i} c_{i} X_{i}$ with $c_{i} \in k$ and X_{1}, X_{2}, \ldots pairwise distinct elements of F_{∞}^{+}.

The following statement is easy and we omit its proof.

Proposition 2.1.

a). If $X \rightarrow X^{\prime}$ is an elementary K-reduction, then $\pi(X)=\pi\left(X^{\prime}\right)$ and wt $X \geq$ wt X^{\prime}. If, moreover, X is a monomial, then $\mathrm{wt} X=\mathrm{wt} X^{\prime}$ if and only if $X \rightarrow X^{\prime}$ is a K-reduction of type (viii) and in this case we have $\mathrm{wt}^{\prime}(X)<\mathrm{wt}^{\prime}\left(X^{\prime}\right)$.
b). $\pi\left(F_{\infty}^{\mathrm{red}}\right)$ generates K_{∞} as a k-module.
c). $k F_{\infty}^{\mathrm{red}}$ is a free k-module and $F_{\infty}^{\mathrm{red}}$ is a free base of $k F_{\infty}^{\mathrm{red}}$.
d). $F_{\infty}^{\mathrm{red}}$ is the set of all words $X_{1} X_{2} \ldots X_{m}$ where $X_{\nu}=x_{i_{\nu}}^{ \pm 1} x_{i_{\nu}-1}^{ \pm 1} \ldots x_{j_{\nu}}^{ \pm 1}$, $i_{\nu} \geq j_{\nu}(1 \leq \nu \leq m), i_{1}<\cdots<i_{m}$, and all the signs are mutually independent.
e). (Proven in [3]) π_{3} is an isomorphism of k-modules $k F_{3}^{\mathrm{red}}$ and K_{3}.

Remark 2.2. Let

$$
\begin{equation*}
S_{i, j}=\left\{x_{i}^{ \pm 1} x_{i-1}^{ \pm 1} \ldots x_{j}^{ \pm 1}\right\} \quad \text { and } \quad S_{i}=\{1\} \cup S_{i, i} \cup S_{i, i-1} \cup \cdots \cup S_{i, 1} \tag{5}
\end{equation*}
$$

Then Part (d) of Proposition 2.1 can be stated as follows: each element of $F_{n}^{\text {red }}$ can be represented in a unique way as a product $X_{1} X_{2} \ldots X_{n-1}$ with $X_{i} \in S_{i}$. Since $\left|S_{i}\right|=1+2+\cdots+2^{i}=2^{i+1}-1$, we obtain $\left|F_{n}^{\text {red }}\right|=\prod_{i=1}^{n}\left(2^{i}-1\right)$, in particular,
$\left|F_{2}^{\mathrm{red}}\right|=3, \quad\left|F_{3}^{\mathrm{red}}\right|=3 \cdot 7=21, \quad\left|F_{4}^{\mathrm{red}}\right|=3 \cdot 7 \cdot 15=315, \quad\left|F_{5}^{\mathrm{red}}\right|=3 \cdot 7 \cdot 15 \cdot 31=9765$.
Remark 2.3. In basic replacements (vii), it is enough to consider only words W belonging to S_{i-1} (see (5) for the definition of S_{i-1}).

We define a k-linear mapping $\mathbf{r}: k F_{\infty}^{+} \rightarrow k F_{\infty}^{\mathrm{red}}$ as follows. For each $X \in F_{\infty}^{+}$ we fix an arbitrary sequence of elementary K-reductions $X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow$ $X_{m} \in k F_{\infty}^{\text {red }}$ and we set $\mathbf{r}(X)=X_{m}$. Then we extend the mapping to $k F_{\infty}^{+}$by linearity.
2.2. Markov trace. Let $A=k[u, v]$ and $A K_{n}=K_{n}(\alpha, \beta ; A)$. Let $M=$ $M(\alpha, \beta ; k)$ be the quotient of $A K_{\infty}$ by the relations (4) and let $t: A K_{\infty} \rightarrow M$ be the quotient map. We call t the universal Markov trace on K_{∞} over k. It is indeed universal in the sense that any Markov trace on $K_{\infty}(\alpha, \beta ; A)$ with values in an A-module M^{\prime} is $f \circ t$ for some $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$.

We define A-linear mappings $\tau_{n}: A F_{n}^{+} \rightarrow A F_{n-1}^{\mathrm{red}}$ called Markov reductions as follows. By Proposition 2.1(d), we have $F_{n}^{\text {red }} \subset F_{n-1}^{\mathrm{red}} \cup\left(F_{n-1}^{\mathrm{red}} x_{n-1} F_{n-1}^{\mathrm{red}}\right) \cup$ $\left(F_{n-1}^{\mathrm{red}} x_{n-1}^{-1} F_{n-1}^{\mathrm{red}}\right)$. So, we set $\tau_{n}(X)=X, \tau_{n}\left(X x_{n-1} Y\right)=u \mathbf{r}(X Y)$, and $\tau_{n}\left(X x_{n-1}^{-1} Y\right)=$ $v \mathbf{r}(X Y)$ for $X, Y \in F_{n-1}^{+}$and then we extend τ_{n} to $A F_{n}^{\mathrm{red}}$ by linearity and to $A F_{n}^{+}$ by setting $\tau(X)=\tau(\mathbf{r}(X))$. Finally, we define $\tau: F_{\infty}^{\text {red }} \rightarrow A F_{1}^{+}=A$ by setting $\tau(X)=\tau_{2} \circ \cdots \circ \tau_{n}(X)$ for $X \in A F_{n}^{\text {red }}$.

By definition of t and τ, we have $t(\pi(X))=t(\pi(\tau(X)))$, thus $M=t\left(K_{\infty}\right)$ is generated by $t(1)$. Let $I=I(\alpha, \beta ; k)$ be the annihilator of M. Thus we have $M \cong A / I$.
2.3. Statement of the main result. Let $\operatorname{sh}^{n}: A F_{\infty}^{+} \rightarrow A F_{\infty}^{+}, n \in \mathbb{Z}$, be the A-algebra endomorphism (the n-shift) induced by

$$
\operatorname{sh}^{n} x_{i}= \begin{cases}x_{i+n}, & i+n>0 \\ 0, & i+n \leq 0\end{cases}
$$

We set $\mathrm{sh}=\mathrm{sh}^{1}$.
For $X \in F_{5}^{+}$, we define $\rho_{X} \in \operatorname{End}_{A}\left(A F_{4}^{\text {red }}\right)$ by setting $\rho_{X}(Y)=\tau_{5}(X \operatorname{sh} Y)$. Let $J_{4}=J_{4}(\alpha, \beta ; k)$ be the minimal submodule of $A F_{4}^{\text {red }}$ satisfying the following properties (recall that the sets $S_{i, j}$ and S_{i} are defined in (5)):
(J1) $\mathbf{r}\left(\mathbf{r}\left(X_{3} X_{2}\right) X_{1}\right)-\mathbf{r}\left(X_{3} \mathbf{r}\left(X_{2} X_{1}\right)\right) \in J_{4}$ for any $X_{j} \in \operatorname{sh}^{3-j} S_{j} \backslash\{1\}, j=1,2,3$;
(J2) $\rho_{X}\left(J_{4}\right) \subset J_{4}$ for any $X \in S_{4}$.
In a similar way we define a module L. Let $N=A F_{2}^{\text {red }} \otimes_{A} A F_{2}^{\text {red }}$. We define A-linear mappings $\tau_{N}: N \rightarrow A$ and $\rho_{\delta}: N \rightarrow N, \delta=\left(\delta_{1}, \delta_{2}\right) \in\{-1,0,1\}$, by setting for any $Y=x_{1}^{\varepsilon_{1}} \otimes x_{1}^{\varepsilon_{2}}\left(\varepsilon_{1}, \varepsilon_{2} \in\{-1,0,1\}\right)$

$$
\tau_{N}(Y)=\tau\left(x_{1}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}}\right), \quad \rho_{\delta}(Y)=x_{1}^{\delta_{1}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{1}} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}}\right)
$$

and we define L as the minimal submodule of N satisfying the conditions:
(L1) $\tau_{3}\left(x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}}\right) \otimes x_{1}^{\varepsilon_{4}}-x_{1}^{\varepsilon_{2}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{3}} x_{1}^{\varepsilon_{4}} x_{2}^{\varepsilon_{1}}\right) \in L$ for any $\varepsilon_{1}, \varepsilon_{3} \in\{-1,1\}$ and for any $\varepsilon_{2}, \varepsilon_{4} \in\{-1,0,1\}$;
(L2) $\rho_{\delta}(L) \subset L$ for any $\delta \in\{-1,0,1\}^{2}$.
Theorem 2.4. (Main Theorem). $I=\tau\left(J_{4}\right)+\tau_{N}(L)$.
It is proven in $\S 3$ (see Corollary 3.2 for " \supset " and Corollary 3.7 for " \subset ").
This result allows (at least theoretically) to compute I. Indeed, we start with the A-module $J_{4}^{(0)}$ generated by the elements in (J1) and compute its Gröbner base $G^{(0)}$. Set $\bar{G}^{(0)}=\bigcup_{X \in S_{4}} \rho_{X}\left(G^{(0)}\right)$. Let $J_{4}^{(1)}$ be the A-module generated by $G^{(0)} \cup \bar{G}^{(0)}$ and $G^{(1)}$ its Gröbner base. Continuing this process, we construct an increasing sequence of submodules $J_{4}^{(0)} \subset J_{4}^{(1)} \subset \ldots$. Since the subring of A generated by α, β, u, v is noetherian, there exists m_{0} such that $J_{4}^{\left(m_{0}\right)}=J_{4}^{\left(m_{0}+1\right)}=\ldots\left(m_{0}\right.$ is determined by the condition $\left.G^{\left(m_{0}\right)}=G^{\left(m_{0}+1\right)}\right)$. Then we have $J_{4}=J_{4}^{\left(m_{0}\right)}$. The module L can be computed in a similar way as the limit of $L^{(0)} \subset L^{(1)} \subset \ldots$ where $L^{(0)}$ is generated by the elements in (L1) and $L^{(i+1)}=\sum_{\delta} \rho_{\delta}\left(L^{(i)}\right)$.

Performing in practice this computation for $\alpha=\beta=0, k=\mathbb{Z}$ (the case considered in [3] and [2]) and in some other special cases, we obtain the following results. To compute Gröbner bases, we use Singular 3-1-3 software.

Corollary 2.5. a). $I(0,0 ; \mathbb{Z})=\left(16,4 u^{2}+4 v, 4 v^{2}+4 u, u^{3}+v^{3}+u v-3\right)$.
b). $I\left(\alpha, 0 ; \mathbb{F}_{2}[\alpha]\right)=\left(\alpha^{4}, \alpha^{2}\left(u^{2}+v\right), \alpha^{2}\left(v^{2}+u+\alpha\right), u^{3}+\alpha u v^{2}+v^{3}+u v+\alpha^{2} u+\right.$ $\alpha v+1)$;
c). $I\left(\alpha, 0 ; \mathbb{F}_{3}[\alpha]\right)=\left(\alpha^{3}-1,\left(u^{2}-\alpha^{2}\right)\left(u^{2}-\alpha u-\alpha^{2}\right), v+u^{2}\right)$;
d). If $k=\mathbb{Q}$ or $k=\mathbb{F}_{p}$ for $p=5,7,11,13,17,19$, then $I(\alpha, 0 ; k[\alpha])=\left(f_{1}, \ldots, f_{5}\right)$ where

$$
\begin{aligned}
f_{1}= & \gamma_{1} \gamma_{2} \gamma_{3}, \quad \gamma_{1}=\alpha^{3}+8, \quad \gamma_{2}=2 \alpha^{3}+1, \quad \gamma_{3}=3 \alpha^{3}+8 \\
f_{2}= & \gamma_{1} \gamma_{3}(u-\alpha) \\
f_{3}= & \gamma_{3}\left(6 u^{3}-3 \alpha^{2} u+\alpha^{3}+2\right) \\
f_{4}= & 336 u^{4}-792 \alpha u^{3}+12\left(15 \alpha^{3}+106\right) \alpha^{2} u^{2}+6\left(141 \alpha^{3}+544\right) u \\
& -114 \alpha^{7}-1405 \alpha^{4}-3152 \alpha, \\
f_{5}= & 288 v+336 \alpha^{2} u^{3}+72\left(3 \alpha^{3}+28\right) u^{2}-48\left(9 \alpha^{3}+44\right) \alpha u-6 a^{8}+53 a^{5}+472 a^{2} .
\end{aligned}
$$

The reduced Gröbner base of I with respect to the lexicographic order $(v>u>\alpha)$ is $\left\{f_{1}, \ldots, f_{5}\right\}$ except the case $k=\mathbb{F}_{7}$ when it is $\left\{f_{1}, f_{2}, g, f_{5}\right\}$ with

$$
g=3 \alpha^{2} f_{4}-f_{3}+2 \alpha(u+\alpha) f_{2}+2 f_{1}=u^{3}+2 \gamma_{1} \alpha u^{2}+2 \gamma_{3} \alpha^{2} u+3 \alpha^{3}\left(\alpha^{3}-1\right)
$$

Remark 2.6. The Markov trace t over k defines a link invariant $P(L)=$ $P_{\alpha, \beta, k}(L)=u^{(-n-e) / 2} v^{(-n+e) / 2} t(b) \in k\left[u^{ \pm 1 / 2}, v^{ \pm 1 / 2}\right] / I(\alpha, \beta ; k)$ where b is a representation of a link L by a braid with n strings and e is the sum of exponents of b. It is shown in [2] that $P_{0,0 ; \mathbb{F}_{2}}$ and $P_{0,0 ; \mathbb{Z} / 4 \mathbb{Z}}$ depend on HOMFLY polynomial. A computation shows that $P_{\alpha, 0 ; \mathbb{Q}[\alpha]}$ and $P_{\alpha, 0 ; \mathbb{F}_{3}[\alpha]}$ detect the chirality of the knot 10_{71} (if one believes in Corollary 2.5, then $P_{\alpha, 0 ; \mathbb{F}_{3}[\alpha]}\left(10_{71}\right)$ can be computed by hand very fast). Thus, in general $P_{\alpha, \beta ; k}$ is independent of both HOMFLY and Kauffman polynomials. Also we read in [1; $\S 7.3]$: "The 2-cabling of HOMFLY does not detect the chirality of 10_{71} (this result was kindly communicated by H. R. Morton)".

Remark 2.7. In the computed cases, u and v are not zero divisors in A / I. If they are for some $(\alpha, \beta ; k)$, then (due to [4]) it is a priori possible that t could distinguish transversal links which are isotopic and have equal Bennequin numbers. In fact, this was my main motivation in 2004 to study in detail [1] and [3].

Remark 2.8. The main mistake in [3] (which was repeated also in [1]) is that the modules $J_{4}^{(0)}$ and $L^{(0)}$ were considered instead of J_{4} and L.

3. Proof of Main Theorem

3.1. Easy part: $\tau\left(J_{4}\right)+\tau_{N}(L) \subset I$.

Let $J_{4}^{(0)} \subset J_{4}^{(1)} \subset \ldots$ and $L^{(0)} \subset L^{(1)} \subset \ldots$ be as defined in $\S 2.3$.
For $n \geq 4$ and $a \in A K_{n}$, we define $t_{n, a} \in \operatorname{Hom}_{A}\left(F_{4}^{\text {red }}, A\right)$ by setting $t_{n, a}(X)=$ $t\left(a \pi\left(\operatorname{sh}^{n-4} X\right)\right)$. Similarly, for $n \geq 1$ and $a, b \in A K_{n}$, we define $t_{n, a, b} \in \operatorname{Hom}_{A}(N, A)$ by setting $t_{n, a, b}(X \otimes Y)=t\left(\pi\left(\operatorname{sh}^{n-1} X\right) a \pi\left(\operatorname{sh}^{n-1} Y\right) b\right)$.

Lemma 3.1.

a). $J_{4} \subset \operatorname{ker} t_{n, a}$ for any $n \geq 4$ and any $a \in K_{n}$.
b). $L \subset \operatorname{ker} t_{n, a, b}$ for any $n \geq 1$ and any $a, b \in K_{n}$.

Proof. We prove by induction that a) $J_{3}^{[i)} \subset \operatorname{ker} t_{n, a}$ and b) $L^{[i)} \subset \operatorname{ker} t_{n, a, b}$. For $i=0$, the statement is evident. Suppose that it is true for $i-1$ and let us prove it for i. Note that we have

$$
\begin{equation*}
t\left(a \pi\left(\operatorname{sh}^{p} \tau_{n-p}(X)\right) b\right)=t\left(a \pi\left(\operatorname{sh}^{p} X\right) b\right) \quad \text { for } \quad a, b \in K_{n-1}, X \in A F_{n}^{+} \tag{6}
\end{equation*}
$$

a). It is enough to check that $\rho_{X}(Y) \in \operatorname{ker} t_{n, a}$ for any $Y \in J_{4}^{(i-1)}, X \in S_{4}$. $n \geq 4, a \in K_{n}$. Indeed,

$$
\begin{aligned}
t_{n, a}\left(\rho_{X}(Y)\right) & =t\left(a \pi\left(\operatorname{sh}^{n-4} \rho_{X}(Y)\right)\right) & & \text { by definition of } t_{n, a} \\
& =t\left(a \pi\left(\operatorname{sh}^{n-4} \tau_{5}(X \operatorname{sh} Y)\right)\right) & & \text { by definition of } \rho_{X} \\
& =t\left(a \pi\left(\left(\operatorname{sh}^{n-4} X\right)\left(\operatorname{sh}^{n-3} Y\right)\right)\right) & & \text { by }(6) \\
& =t_{n+1, a^{\prime}}(Y) & & \text { for } a^{\prime}=a \pi\left(\operatorname{sh}^{n-4} X\right) \in K_{n+1} \\
& =0 & & \text { by the induction hypothesis }
\end{aligned}
$$

b). It is enough to check that $\rho_{\delta}(Y) \in \operatorname{ker} t_{n, a, b}$ for any $Y \in L^{(i-1)}, \delta=\left(\delta_{1}, \delta_{2}\right) \in$ $\{-1,0,1\}^{2}, n \geq 1, a, b \in K_{n}$. Indeed, let $Y=\sum_{j} c_{j} x_{1}^{\varepsilon_{1}(j)} \otimes x_{1}^{\varepsilon_{2}(j)}$. Then

$$
\begin{array}{rll}
t_{n, a, b}\left(\rho_{\delta}(Y)\right)=t_{n, a, b}\left(\sum c_{j} x_{1}^{\delta_{1}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right)\right) & \text { def. of } \rho_{\delta} \\
& =\sum c_{j} t\left(\pi\left(\operatorname{sh}^{n-1} x_{1}^{\delta_{1}}\right) a \pi\left(\operatorname{sh}^{n-1} \tau_{3}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right)\right) b\right) & \text { def. of } t_{n, a, b} \\
& =\sum c_{j} t\left(s_{n}^{\delta_{1}} a s_{n+1}^{\varepsilon_{1}(j)} s_{n}^{\delta_{2}} s_{n+1}^{\varepsilon_{2}(j)} b\right) & \text { by }(6) \tag{6}\\
& =\sum c_{j} t\left(s_{n+1}^{\varepsilon_{1}(j)} s_{n}^{\delta_{2}} s_{n+1}^{\varepsilon_{2}(j)} b s_{n}^{\delta_{1}} a\right) & t(x y)=t(y x) \\
& =\sum c_{j} t\left(\pi\left(\operatorname{sh}^{n} x_{1}^{\varepsilon_{1}(j)}\right) s_{n}^{\delta_{2}} \pi\left(\operatorname{sh}^{n} x_{1}^{\varepsilon_{2}(j)}\right) b s_{n}^{\delta_{1}} a\right) & \\
& =t_{n+1, a^{\prime}, b^{\prime}}(Y) & a^{\prime}=s_{n}^{\delta_{2}}, b^{\prime}=b s_{n}^{\delta_{1}} a
\end{array}
$$

$$
=0
$$

by induction hypothesis

Corollary 3.2. $\tau\left(J_{4}\right)+\tau_{N}(L) \subset I$.
Proof. Indeed, by Lemma 3.1, we have $t(\tau(X))=t_{4,1}(X)=0$ for any $X \in J_{4}$ and $t\left(\tau_{N}(X)\right)=t_{1,1,1}(X)=0$ for any $X \in L$. Thus $\tau\left(J_{4}\right)+\tau_{N}(L) \subset \operatorname{ker}\left(\left.t\right|_{A}\right)=I$.
3.2. Difficult part: $I \subset \tau\left(J_{4}\right)+\tau_{N}(L)$.

Let, as above, \bar{R} be the submodule of K_{∞} generated by the elements (4). Set $R=\pi^{-1}(\bar{R})$. Then we have $I=A \cap \bar{R}=A \cap R$. Let wt $: A F_{\infty}^{+} \rightarrow \mathbb{Z}_{\geq 0}$ be the weight function defined in §2.1. It defines a filtration on $A F_{\infty}^{+}$, namely, $A=A F_{[0]}^{+} \subset$ $A F_{[1]}^{+} \subset A F_{[2]}^{+} \subset \ldots$ where $A F_{[w]}^{+}=\left\{X \in A F_{\infty}^{+} \mid\right.$wt $\left.X \leq w\right\}$.

We shall work with the following set of generators $\mathcal{R}=\mathcal{R}_{T} \cup \mathcal{R}_{M} \cup \mathcal{R}_{N} \cup \mathcal{R}_{H}$ of R as an A-module (we set here $u_{+}=u, u_{-}=v$):

$$
\begin{array}{ll}
\mathcal{R}_{T}=\left\{X Y-Y X \mid X, Y \in F_{\infty}^{+}\right\}, & \text {trace relations; } \\
\mathcal{R}_{M}=\left\{x_{n}^{ \pm 1} X-u_{ \pm} X \mid X \in F_{n}^{+}, n \geq 1\right\}, & \text { Markov relations; } \\
\mathcal{R}_{N}=\left\{U X-V X \mid X, U \in F_{\infty}^{+}, U \xrightarrow{(i)-(v i)} V\right\}, & \text { nonhomogeous } K \text {-relations; } \\
\mathcal{R}_{H}=\left\{U X-V X \mid X, U \in F_{\infty}^{+}, U \xrightarrow{(v i i i)} V\right\}, & \text { homogeous } K \text {-relations. }
\end{array}
$$

Let $\mathcal{R}_{[w]}=\mathcal{R} \cap A F_{[w]}^{+}$and let $R_{[w]}$ be the A-submodule of R generated by $\mathcal{R}_{[w]}$ and let H be the submodule generated by $\mathcal{R}_{T} \cup \mathcal{R}_{H}$ (the elements of H are wthomogeneous). Note, that by Proposition 2.1(a) we have

$$
\begin{equation*}
X \equiv \mathbf{r}(X) \equiv \tau_{n}(X) \equiv \tau(X) \quad \bmod R_{[\mathrm{wt} X]} \quad \text { for } X \in A F_{n}^{+} \tag{7}
\end{equation*}
$$

In what follows, a notation like $X_{1} \equiv X_{2} \equiv X_{3} \equiv \ldots$ means that $X_{i} \equiv X_{i+1}$ $\bmod R_{\left[\mathrm{wt} X_{i}\right]}$ and $\mathrm{wt} X_{i+1} \geq \mathrm{wt} X_{i}$, in particular, in this case we always have $X_{1} \equiv$ $X_{2} \equiv X_{3} \equiv \ldots \bmod R_{\left[\mathrm{wt} X_{1}\right]}$.

Lemma 3.3. Let $Z=X \operatorname{sh}^{n-4} Y$ for $X \in A F_{\infty}^{+}, Y \in J_{4} \cap \operatorname{sh}^{4-n} A F_{\infty}^{+}, n \geq 1$. Then $Z \in R_{[w]}+\tau\left(J_{4}\right)$ where $w=$ wt Z.

Proof. We denote $\operatorname{sh}^{n-4} Y$ by Y_{n}. If $X \in A F_{m}^{+}$with $m>n$, then

$$
X Y_{n} \equiv \tau_{m}(X) Y_{n} \equiv \tau_{m-1}\left(\tau_{m}(X)\right) Y_{n} \equiv \cdots \equiv \tau_{n+1} \circ \cdots \circ \tau_{m-1} \circ \tau_{m}(X) Y_{n}
$$

hence it is enough to prove the statement of the lemma under the additional hypothesis $X \in A F_{n}^{+}$. We prove it by induction.

If $n=1$, then $X \in A F_{1}^{+}=A$ and $Y \in J_{4} \cap \operatorname{sh}^{3} A F_{\infty}^{+}=J_{4} \cap A \subset \tau\left(J_{4}\right)$, so, the statement is trivial.

Suppose that $n \geq 2$, the statement is true for $n-1$, and let us prove it for n. By linearity, it is enough to consider the case when $X \in F_{n}^{+}$and since $X \equiv \mathbf{r}(X)$, we may assume that $X \in F_{n}^{\text {red }}$. Let $X=X_{1} X_{2} \ldots X_{n-1}, X_{i} \in S_{i}$ (see Remark 2.2). We have $X_{n-1}=\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right) X_{n-5}^{\prime \prime}$ with $X_{4}^{\prime} \in S_{4} \cap \operatorname{sh}^{5-n} A F_{\infty}^{+}$and $X_{n-5}^{\prime \prime} \in S_{n-5}$ (we assume here that $S_{i}=\{1\}$ when $i \leq 0$). Note that Y_{n} may involve only $x_{n-4+i}^{ \pm 1}$, $i=1,2,3$, whereas $X_{n-5}^{\prime \prime}$ may involve only $x_{i}^{ \pm 1}, i \leq n-5$, hence they commute. Therefore, denoting $X_{1} \ldots X_{n-2}$ by $X_{n-2}^{\prime \prime \prime}$, we obtain

$$
\begin{aligned}
Z & =X_{n-2}^{\prime \prime \prime}\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right) X_{n-5}^{\prime \prime}\left(\operatorname{sh}^{n-4} Y\right) \equiv X_{n-2}^{\prime \prime \prime}\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right)\left(\operatorname{sh}^{n-4} Y\right) X_{n-5}^{\prime \prime} \\
& \equiv X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime}\left(\operatorname{sh}^{n-5} X_{4}^{\prime}\right)\left(\operatorname{sh}^{n-4} Y\right)=X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime} \operatorname{sh}^{n-5}\left(X_{4}^{\prime} \operatorname{sh} Y\right) \\
& \equiv X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime} \operatorname{sh}^{n-5}\left(\tau_{5}\left(X_{4}^{\prime} \operatorname{sh} Y\right)\right)=X^{\prime} \operatorname{sh}^{n-5} Y^{\prime}
\end{aligned}
$$

where $X^{\prime}=X_{n-5}^{\prime \prime} X_{n-2}^{\prime \prime \prime} \in A F_{n-1}^{+}$and $Y^{\prime}=\tau_{5}\left(X_{4}^{\prime} \operatorname{sh} Y\right)=\rho_{X_{4}^{\prime}}(Y) \in J_{4}$.
To complete the proof, it remains to check that $Y^{\prime} \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$. Indeed, we have $X_{4}^{\prime} \in \operatorname{sh}^{5-n} A F_{\infty}^{+}, Y \in \operatorname{sh}^{4-n} A F_{\infty}^{+}$, hence sh $Y \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$and we obtain $X_{4}^{\prime} \operatorname{sh} Y \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$whence $Y^{\prime}=\tau_{5}\left(X_{4}^{\prime} \operatorname{sh} Y\right) \in \operatorname{sh}^{5-n} A F_{\infty}^{+}$.

The next lemma is similar. For $n \geq 1$ and $X_{1}, X_{2} \in A F_{n}^{+}$we define $\varphi_{n, X_{1}, X_{2}} \in$ $\operatorname{Hom}_{A}\left(N, A F_{n+1}^{+}\right)$by setting $\varphi_{n, X_{1}, X_{2}}\left(Y_{1} \otimes Y_{2}\right)=X_{1}\left(\operatorname{sh}^{n-1} Y_{1}\right) X_{2}\left(\operatorname{sh}^{n-1} Y_{2}\right)$.

Lemma 3.4. Let $Z=\varphi_{n, X_{1}, X_{2}}(Y)$ for $n \geq 1, X_{1}, X_{2} \in A F_{n}^{+}, Y \in L$. Then $Z \in R_{[w]}+\tau_{N}(L)$ where $w=$ wt Z.

Proof. It is enough to consider the case when $X_{1}, X_{2} \in F_{n}^{\text {red }}$. Then there exist $X_{i}^{\prime}, X_{i}^{\prime \prime} \in F_{n-1}^{\mathrm{red}}$ and $\delta_{i} \in\{-1,0,1\}$ such that $X_{i}=X_{i}^{\prime} x_{n-1}^{\delta_{i}} X_{i}^{\prime \prime}(i=1,2)$. Let

$$
\begin{equation*}
Y=\sum_{j} c_{j} x_{1}^{\varepsilon_{1}(j)} \otimes x_{1}^{\varepsilon_{2}(j)} \tag{8}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
Z & =\sum c_{j} X_{1} x_{n}^{\varepsilon_{1}(j)} X_{2} x_{n}^{\varepsilon_{2}(j)}=\sum c_{j} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} x_{n}^{\varepsilon_{1}(j)} X_{2}^{\prime} x_{n-1}^{\delta_{2}} X_{2}^{\prime \prime} x_{n}^{\varepsilon_{2}(j)} \\
& \equiv \sum c_{j} X_{2}^{\prime \prime} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} X_{2}^{\prime} x_{n}^{\varepsilon_{1}(j)} x_{n-1}^{\delta_{2}} x_{n}^{\varepsilon_{2}(j)} \\
& =\sum c_{j} X_{2}^{\prime \prime} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} X_{2}^{\prime} \operatorname{sh}^{n-2}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right) \\
& \equiv \sum c_{j} X_{2}^{\prime \prime} X_{1}^{\prime} x_{n-1}^{\delta_{1}} X_{1}^{\prime \prime} X_{2}^{\prime} \operatorname{sh}^{n-2} \tau_{3}\left(x_{2}^{\varepsilon_{1}(j)} x_{1}^{\delta_{2}} x_{2}^{\varepsilon_{2}(j)}\right)=\varphi_{n-1, \bar{X}_{1}, \bar{X}_{2}}(\bar{Y})
\end{aligned}
$$

where $\bar{X}_{1}=X_{2}^{\prime \prime} X_{1}^{\prime}, \bar{X}_{2}=X_{1}^{\prime \prime} X_{2}^{\prime}, \bar{Y}=\rho_{\delta}(Y)$. So, we have $Z \equiv \bar{Z}=\varphi_{n-1, \bar{X}_{1}, \bar{X}_{2}}(\bar{Y})$ where $\bar{X}_{1}, \bar{X}_{2} \in A F_{n-1}^{+}, \bar{Y} \in L$.

Thus, by induction we reduce the problem to the case $n=1$. In this case we have $X_{1}, X_{2} \in A F_{1}^{+}=A$, hence, for Y as in (8), we have $Z=\varphi_{1, X_{1}, X_{2}}(Y)=$ $\sum c_{j} x_{1}^{\varepsilon_{1}(j)} x_{1}^{\varepsilon_{2}(j)}$, hence $Z \equiv \tau_{2}(Z)=\tau_{N}(Y) \in \tau_{N}(L)$.

The next statement is the Pentagon Lemma from [3] adapted for our setting.
Lemma 3.5 (Pentagon Lemma). Let $Z_{2}, Z_{2} \in \mathcal{R}_{N} \cup \mathcal{R}_{M}$ be such that $Z_{1}-Z_{2} \in$ $H+A F_{[w-1]}^{+}$where $w=\mathrm{wt} Z_{1}=\mathrm{wt} Z_{2}$. Then $Z_{1}-Z_{2} \in R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$.
Proof. Let $X_{i} \in F_{\infty}^{+}$be the leading monomial of $Z_{i}, i=1,2$, i. e. wt $X_{i}=\mathrm{wt} Z_{i}$ and $\mathrm{wt}\left(Z_{i}-X_{i}\right) \leq w-1$. Then $X_{1}-X_{2} \in H$, hence there exists a sequence of words $X_{1}=W_{1}, \ldots, W_{m}=X_{2}$ such that W_{i+1} is obtained from W_{i} either by a cyclic permutation or by exchanging two consecutive commuting letters. By definition of \mathcal{R}_{M} and \mathcal{R}_{N} we have $X_{i}=U_{i} X_{i}^{\prime}$ and $Z_{i}=\left(U_{i}-V_{i}\right) X_{i}^{\prime}, i=1,2$, where $U_{i} \rightarrow V_{i}$ is an elementary K-reduction of types $(i)-(v i)$ if $Z_{i} \in \mathcal{R}_{N}$ and $U_{i}=x_{n}^{ \pm 1}, V_{i}=u_{ \pm}$if $Z_{i} \in \mathcal{R}_{M}$.

Following [3] and [1], we represent such sequences W_{1}, \ldots, W_{m} by diagrams. A diagram is a union of mutually transversal curves in the cylinder $S^{1} \times[0,1]$, each curve being labeled by a letter $x_{i}^{ \pm 1}$. In pictures we represent the cylinder by a rectangle whose vertical sides are supposed to be identified, so, the fibers of the projection $\mathrm{pr}_{2}: S^{1} \times[0,1] \rightarrow[0,1]$ we call horizontal circles. Each curve is monotone, i. e., its projection onto $[0,1]$ is bijective. We say that a diagram is admissible if two curves labeled by $x_{i}^{ \pm 1}$ and $x_{j}^{ \pm 1}$ may cross only if $|i-j| \geq 2$. The words W_{i} (up to cyclic permutation) are read on horizontal circles.

We say that curves $\Gamma_{1}, \ldots, \Gamma_{m}$ form a bunch of parallel curves or just a bunch if the curves are pairwise disjoint and all the crossings lying on $\bigcup \Gamma_{i}$ can be covered by disks whose intersections with the diagram are as in Figure 1.

In our case, the first and the last word of the sequence are X_{1} and X_{2}. So, on the boundary of the cylinder we indicate (by a bold line) segments corresponding to U_{1} and U_{2}. As in [3] and [1], a diagram is called interactive if it contains a curve which joins the bold segments. We also say that a curve is active if it meets at least one bold segment.

Step 1. If all active curves form a single bunch, then $Z_{1}-Z_{2} \in H$.
In this case we have $U_{1}=U_{2}$. Let $V_{1}=\mathbf{r}\left(U_{1}\right)=\sum c_{j} W_{j}, c_{j} \in A, W_{j} \in F_{\infty}^{+}$. For each j we consider the diagram obtained from the initial diagram by replacing the bunch of active curves by a bunch of curves labeled by W_{j}. If a curve crosses the bunch, its label commutes with all letters occurring in U_{1}, hence it commutes with all letters in W_{j}, i. e., the new diagram is admissible and it defines a congruence $W_{j} X_{1}^{\prime} \equiv W_{j} X_{2}^{\prime} \bmod H$. Hence (recall that $X_{1}-X_{2} \in H$) we have $Z_{1}-Z_{2}=$ $\left(X_{1}-V_{1} X_{1}^{\prime}\right)-\left(X_{2}-V_{1} X_{2}^{\prime}\right) \equiv V_{1} X_{2}^{\prime}-V_{1} X_{1}^{\prime}=\sum c_{j} W_{j}\left(X_{2}^{\prime}-X_{1}^{\prime}\right) \equiv 0 \bmod H$.
Step 2. If $Z_{1}, Z_{2} \in \mathcal{R}_{M}$, then $Z_{1}-Z_{2} \in H$.
In this case there is only one active curve, so we apply the result of Step 1.
Step 3. If the diagram is non-interactive, then $Z_{1}-Z_{2} \in H+R_{[w-1]}$.
Due to Step 2, we may suppose that $Z_{1} \in \mathcal{R}_{N}$. Then $U_{1}=x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n}^{\varepsilon_{3}}$ with $\varepsilon_{1}, \varepsilon_{3} \in\{-1,1\}$ and $\varepsilon_{2} \in\{-1,0,1\}$.

Let A and B be the points on the lower bold segment that correspond to the letters $x_{n}^{\varepsilon_{1}}$ and $x_{n}^{\varepsilon_{3}}$ of U_{1} and let $A D$ and $B C$ be the corresponding active curves (see Figure 2). They cut the cylinder into two halves. Let Q be that half whose side $A B$ is contained in the bold segment (the quadrangle $A B C D$ in Figure 2).

Let Γ be the curve outcoming from U_{1} and labeled by $x_{n-1}^{\varepsilon_{2}}$ if $\varepsilon_{2} \neq 0$ or a generic monotone curve in Q if $\varepsilon_{2}=0$. Let us choose a horizontal circle (the dashed line in

Figure 1

Figure 2

Figure 2) so that all crossings are below it and let us choose points E and F on it so that the segment $E F$ which crosses Γ has no other intersections with the diagram. We may suppose that the intersection of the diagram with the upper half-cylinder (beyond $E F$) is a union of segments of vertical lines.

Let Δ be the diagram obtained by replacing $A D$ and $B C$ with monotone curves $A E D$ and $B F C$ where $E D, F C$ are straight line segments and $A E, B F$ are curves in Q which are chosen so close to Γ that the active curves outcoming from U_{1} form a bunch in the lower half-cylinder (below $E F$). The label of any curve $\Gamma^{\prime} \neq \Gamma$ entering Q is not $x_{i}^{ \pm 1}$ with $|n-i| \leq 1$ (indeed, since Γ^{\prime} attains the lower boundary outside the bold segment, it crosses $A D$ or $B C)$. Hence Δ is admissible.

Let Y be the word read from Δ along the circle $E F$. The bunch of active curves in the lower half-cylinder ensures that $Y=U_{1} Y^{\prime}$ and the result of Step 1 yields

$$
\begin{equation*}
Z_{1} \equiv\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) Y^{\prime} \quad \bmod H \tag{9}
\end{equation*}
$$

Now, let us study the upper part of Δ (beyond $E F$). All possible crossing in this part are on $E D$ and $F C$. Hence, up to cyclic permutation, we have $X_{2}=$ $x_{n}^{\varepsilon_{1}} X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} x_{n}^{\varepsilon_{3}} X_{5}$ and $Y=U_{1} Y^{\prime}=U_{1} X_{4} X_{5} X_{3}$ (see Figure 2). Since the diagram is not interactive, U_{2} is a subword of one of X_{3}, X_{4}, X_{5}, hence the active curves outcoming from U_{2} form a bunch and $Y^{\prime}=Y_{1} U_{2} Y_{2}$, i. e., $Y=U_{1} Y_{1} U_{2} Y_{2}, Y_{1}, Y_{2} \in$ F_{∞}^{+}. Hence, by Step 1, we have

$$
\begin{equation*}
Z_{2} \equiv U_{1} Y_{1}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) Y_{2} \quad \bmod H \tag{10}
\end{equation*}
$$

We have also

$$
U_{1} Y_{1} \mathbf{r}\left(U_{2}\right) Y_{2} \equiv \mathbf{r}\left(U_{1}\right) Y_{1} \mathbf{r}\left(U_{2}\right) Y_{2} \equiv \mathbf{r}\left(U_{1}\right) Y_{1} U_{2} Y_{2} \quad \bmod R_{[w-1]}
$$

Combining this with (9) and (10), we obtain

$$
Z_{1} \equiv\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) Y_{1} U_{2} Y_{2} \equiv U_{1} Y_{1}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) Y_{2} \equiv Z_{2} \quad \bmod H+R_{[w-1]}
$$

Step 4. Consider the open intervals obtained after removing of all endpoints of all active curves. If at least one of the words corresponding to these intervals is not almost K-reduced (see the definition in §2.1), then $Z_{1}-Z_{2} \in H+R_{[w-1]}$.

Suppose that the word which is not almost K-reduced is a subword Y of X_{2}. Since it is disjoint from the active curves, we can write $X_{2}=U_{2} X_{3} Y X_{4}$. The fact that Y is not almost K-reduced means that there exists a sequence $Y=Y_{0} \rightarrow Y_{1} \rightarrow$
$\cdots \rightarrow Y^{\prime} U_{3} Y^{\prime \prime}$ of exchanges of commuting letters such that U_{3} is the left hand side of an elementary replacement of type $(i)-(v i)$. The fact that Y does not meet any active curve means that the diagrams corresponding to the both chains

$$
\begin{aligned}
X_{1} \rightarrow \cdots \rightarrow X_{2} & =U_{2} X^{\prime} Y_{0} X^{\prime \prime} \rightarrow U_{2} X^{\prime} Y_{1} X^{\prime \prime} \rightarrow \cdots \rightarrow U_{2} X^{\prime}\left(Y^{\prime} U_{3} Y^{\prime \prime}\right) X^{\prime \prime} \\
X_{2} & =U_{2} X^{\prime} Y_{0} X^{\prime \prime} \rightarrow U_{2} X^{\prime} Y_{1} X^{\prime \prime} \rightarrow \cdots \rightarrow U_{2} X^{\prime}\left(Y^{\prime} U_{3} Y^{\prime \prime}\right) X^{\prime \prime}
\end{aligned}
$$

are non-interactive. By Step 3 this implies $Z_{1} \equiv Z_{3} \equiv Z_{2} \bmod H+R_{[w-1]}$ where $Z_{3}=U_{2} X^{\prime} Y^{\prime}\left(U_{3}-\mathbf{r}\left(U_{3}\right)\right) Y^{\prime \prime} X^{\prime \prime}$.

Step 5. If $Z_{1} \in \mathcal{R}_{N}$ and the diagram is interactive, then the active curves are arranged up to symmetry either as in Figure 3.1 or as in Figure 3.2 where each of the dashed lines may or may not be included into the diagram, $n \geq 1$.

Figure 3.1

Figure 3.2

Indeed, we draw the curves adjacent to one of the bold segments and we try all the ways to complete the picture to an admissible diagram. Easy to see that only these two pictures can be obtained.
Step 6. If the active curves are as in Figure 3.1, then $Z_{1}-Z_{2} \in H+R_{[w-1]}+\tau\left(J_{4}\right)$.
Suppose that the active curves are as in Figure 3.1 (the bottom boundary corresponds to X_{1}). Then $U_{1}=x_{n}^{\varepsilon_{4}} x_{n-1}^{\varepsilon_{5}} x_{n}^{\varepsilon_{6}}, U_{2}=x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n}^{\varepsilon_{4}}, X_{2}=U_{2} Y x_{n-1}^{\varepsilon_{5}} X_{3} x_{n}^{\varepsilon_{6}} X_{4}$ where $\varepsilon_{1}, \varepsilon_{4}, \varepsilon_{6}= \pm 1$ and $\varepsilon_{2}, \varepsilon_{5} \in\{-1,0,1\}$.

We begin as in Step 3. Let Q be the curvilinear quadrangle adjacent to the lower bold segment and bounded by the active x_{n}-curves outcoming from U_{1}. Let C_{1} be a horizontal circle such that the part of the diagram beyond C_{1} is a union of segments of vertical lines. Let Γ be either the $\left(x_{n-1}\right)$-curve outcoming from U_{1} (if it exists) or just a generic monotone curve in Q. Then we push the x_{n}-curves inside the domain Q from its boundary so that they form (together with Γ) a bunch below C_{1}, and so that the portions of the pushed curves beyond C_{1} are segments of straight lines (see Figure 4.1).

Figure 4.1

Figure 4.2

Since all curves outcoming from Y cross an x_{n}-curve, Y does not contain $x_{i}^{ \pm 1}$ for $n-1 \leq i \leq n+1$. By Step 4, we may suppose that Y is almost K-reduced, hence Y has at most one occurrence of $x_{n-2}^{ \pm 1}$, i. e., $Y=Y_{1} x_{n-2}^{\varepsilon_{3}} Y_{2}$ with $\varepsilon_{3} \in\{-1,0,1\}$ and Y_{1}, Y_{2} do not contain $x_{i}^{ \pm 1}$ for $n-2 \leq i \leq n+1$.

We choose horizontal circles C_{2} and C_{3} so that the intersection point of the x_{n}-curve and the (x_{n-2})-curve (if it exists) is between them and we modify the diagram as it is shown in Figure 4.2. If we apply the result of Step 1 to the part of the diagram which is below C_{2} and to that which it beyond C_{3}, we obtain:

$$
\begin{aligned}
& Z_{1} \equiv Y_{1} x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n-2}^{\varepsilon_{3}}\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) Y_{2} X_{3} X_{4} \bmod H \\
& Z_{2} \equiv Y_{1}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) x_{n-2}^{\varepsilon_{3}} x_{n-1}^{\varepsilon_{5}} x_{n}^{\varepsilon_{6}} Y_{2} X_{3} X_{4} \bmod H . \quad\left(\text { below } C_{2}\right) \\
& \text { (beyond } \left.C_{3}\right)
\end{aligned}
$$

Hence $Z_{1}-Z_{2} \equiv X^{\prime} \operatorname{sh}^{n-3} Y^{\prime} \bmod H$ where $X^{\prime}=Y_{2} X_{3} X_{4} Y_{1}$ and

$$
Y^{\prime}=\mathbf{r}\left(x_{3}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} x_{3}^{\varepsilon_{4}}\right) x_{1}^{\varepsilon_{3}} x_{2}^{\varepsilon_{5}} x_{3}^{\varepsilon_{6}}-x_{3}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} x_{1}^{\varepsilon_{3}} \mathbf{r}\left(x_{3}^{\varepsilon_{4}} x_{2}^{\varepsilon_{5}} x_{3}^{\varepsilon_{6}}\right)
$$

If $\varepsilon_{2} \neq 0$, then $\mathbf{r}\left(Y^{\prime}\right) \in J_{4}$ by Condition (J1) of the definition of J_{4}. Thus, using Lemma 3.3 and observing that $\mathrm{wt}\left(X^{\prime} \operatorname{sh}^{n-3} Y^{\prime}\right)<w$, we obtain

$$
Z_{1}-Z_{2} \equiv X^{\prime} \operatorname{sh}^{n-3} Y^{\prime} \equiv X^{\prime} \operatorname{sh}^{n-3} \mathbf{r}\left(Y^{\prime}\right) \equiv 0 \quad \bmod H+R_{[w-1]}+\tau\left(J_{4}\right)
$$

If $\varepsilon_{2}=0$, then $X^{\prime} \operatorname{sh}^{n-3} Y^{\prime} \equiv X^{\prime} \operatorname{sh}^{n-3}\left(x_{1}^{\varepsilon_{3}} Y^{\prime \prime}\right) \bmod H$ where $\mathbf{r}\left(Y^{\prime \prime}\right) \in J_{4}$, thus
$Z_{1}-Z_{2} \equiv X^{\prime} \operatorname{sh}^{n-3}\left(x_{1}^{\varepsilon_{3}} Y^{\prime \prime}\right) \equiv X^{\prime} x_{n-2}^{\varepsilon_{3}} \operatorname{sh}^{n-3} \mathbf{r}\left(Y^{\prime \prime}\right) \equiv 0 \quad \bmod H+R_{[w-1]}+\tau\left(J_{4}\right)$.
Step 7. If the active curves are as in Figure 3.2, then $Z_{1}-Z_{2} \in H+R_{[w-1]}+\tau_{N}(L)$.

Figure 5

Again, as in the beginning of Steps 3 and 6, we transform the diagram as in Figure 5 and we obtain

$$
Z_{1} \equiv X_{3}\left(U_{1}-\mathbf{r}\left(U_{1}\right)\right) X_{4} x_{n-1}^{\varepsilon_{4}} \text { and } Z_{2} \equiv X_{3} x_{n-1}^{\varepsilon_{2}} X_{4}\left(U_{2}-\mathbf{r}\left(U_{2}\right)\right) \quad \bmod H
$$

where $U_{1}=x_{n}^{\varepsilon_{1}} x_{n-1}^{\varepsilon_{2}} x_{n}^{\varepsilon_{3}}, U_{2}=x_{n}^{\varepsilon_{3}} x_{n-1}^{\varepsilon_{4}} x_{n}^{\varepsilon_{1}}, \varepsilon_{1}, \varepsilon_{3}= \pm 1, \varepsilon_{2}, \varepsilon_{4} \in\{-1,0,1\}$. Hence

$$
\begin{equation*}
Z_{1}-Z_{2} \equiv X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} \mathbf{r}\left(U_{2}\right)-X_{3} \mathbf{r}\left(U_{1}\right) X_{4} x_{n-1}^{\varepsilon_{4}} \quad \bmod H \tag{11}
\end{equation*}
$$

Note that $x_{i}^{ \pm 1}$ for $n-1 \leq i \leq n+1$ does not occur in X_{1} and X_{2}. Indeed, if it does, then the diagram curve starting in it cannot attain the opposite side of the cylinder outside the bold segment because it cannot cross the x_{n}-curves. Thus,

$$
X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} \mathbf{r}\left(U_{2}\right) \equiv X_{3}^{\prime} x_{n-1}^{\varepsilon_{2}} X_{4}^{\prime} \mathbf{r}\left(U_{2}\right) X_{5} \equiv X_{3}^{\prime} x_{n-1}^{\varepsilon_{2}} X_{4}^{\prime} \mathbf{r}\left(U_{2}\right) \tau\left(X_{5}\right) \quad \bmod H+R_{[w-1]}
$$

where $X_{3}^{\prime}, X_{4}^{\prime} \in F_{n-1}^{+}$and $X_{5} \in \operatorname{sh}^{n+1} F_{\infty}^{+}$(the same for other term in (11)). So, replacing, if necessary, X_{j} by $X_{j}^{\prime}(j=3,4)$, we may assume that $X_{3}, X_{4} \in F_{n-1}^{+}$. Then we may pass from (11) to

$$
\begin{aligned}
Z_{1}-Z_{2} & \equiv X_{3} x_{n-1}^{\varepsilon_{2}} X_{4} \tau_{n+1}\left(U_{2}\right)-X_{3} \tau_{n+1}\left(U_{1}\right) X_{4} x_{n-1}^{\varepsilon_{4}} \bmod H+R_{[w-1]} \\
& =\varphi_{n-1, X_{3}, X_{4}}(Y)
\end{aligned}
$$

where $Y=x_{1}^{\varepsilon_{2}} \otimes \tau_{3}\left(x_{2}^{\varepsilon_{3}} x_{1}^{\varepsilon_{4}} x_{2}^{\varepsilon_{1}}\right)-\tau_{3}\left(x_{2}^{\varepsilon_{1}} x_{1}^{\varepsilon_{2}} x_{2}^{\varepsilon_{3}}\right) \otimes x_{1}^{\varepsilon_{4}} \in L$. Thus if $n>1$, then the result follows from Lemma 3.4. If $n=1$, then $\varepsilon_{2}=\varepsilon_{4}=0, X_{3}=X_{4}=1$, and (11) yields $Z_{1}-Z_{2} \equiv 0$.

Step 8. We proved that $Z_{1}-Z_{2} \subset H+R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$. Hence $Z_{1}-Z_{2} \subset$ $R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$ because H is homogeneous and $Z_{1}-Z_{2} \in A F_{[w-1]}^{+}$. The Pentagon Lemma is proven.

Lemma 3.6. $R_{[w]} \cap A F_{[w-1]}^{+} \subset R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$
Proof. For $Z \in R_{[w]} \cap A F_{[w-1]}^{+}$, let $m=m(Z)$ be the minimal number such that $\left.Z \equiv c_{1} Z_{1}+\cdots+c_{m} Z_{m} \bmod H+R_{[w-1}\right]$ with $c_{i} \in A, Z_{i} \in \mathcal{R}$. To prove that $Z \in R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$, we use the induction by m. The statement is trivial for $m=0$ because H is homogeneous.

Suppose that $m>0$ and the statement is true for any smaller m. Let X_{i} be the leading monomial of Z_{i}, i. e., $X_{i} \in F_{\infty}^{+}$and $\mathrm{wt} Z_{i}-X_{i}<w$. Then $\sum c_{i} X_{i} \equiv 0$ $\bmod H$. The term $c_{m} X_{m}$ of this congruence cancels. Hence there exists $j<m$ such that $X_{m}-X_{j} \in H$. Then $c_{m}\left(Z_{m}-Z_{j}\right) \in R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$ by Lemma 3.5 and $Z-c_{m}\left(Z_{m}-Z_{j}\right) \in R_{[w-1]}+\tau\left(J_{4}\right)+\tau_{N}(L)$ by the induction hypothesis.
Corollary 3.7. $I \subset \tau\left(J_{4}\right)+\tau_{N}(L)$.
Proof. Let $I^{\prime}=\tau\left(J_{4}\right)+\tau_{N}(L)$. Since $I=R \cap A$ and $R=\bigcup_{w} R_{[w]}$, it is enough to prove that $R_{[w]} \cap A \subset I^{\prime}$ for any w. For $w=0$ we have $R_{[0]}=0$, hence $R_{[0]} \cap A \subset I^{\prime}$. Suppose that $R_{[w-1]} \cap A \subset I^{\prime}$. Let $Z \in R_{[w]} \cap A$. Since $R_{[w]} \cap A \subset R_{[w]} \cap A F_{[w-1]}^{+}$, by Lemma 3.6 we have $Z \in R_{[w-1]}+I^{\prime}$, i. e., $Z=Z^{\prime}+Z_{0}$ with $Z^{\prime} \in R_{[w-1]}$, $Z_{0} \in I^{\prime}$. Since $Z^{\prime}=Z-Z_{0} \in A$, we have $Z^{\prime} \in R_{[w-1]} \cap A$ and by the induction hypothesis we obtain $Z^{\prime} \in I^{\prime}$ whence $Z=Z^{\prime}+Z_{0} \in I^{\prime}$. Thus $R_{[w]} \cap A \subset I^{\prime}$.

Main Theorem is proven (see Corollary 3.2 and Corollary 3.7).

References

1. P. Bellingeri, L. Funar, Polynomial invariants of links satisfying cubic skein relations, Asian J. Math. 8 (2004), 475-509.
2. M. Cabanes, I. Marin, On trenary quotients of cubic Hecke algebras, Commun. Math. Phys. (to appear); arxiv:math.GT/1010.1465.
3. L. Funar, On cubic Hecke algebras, Commun. Math. Phys. 173 (1995), 513-558.
4. S. Yu. Orevkov, V. V. Shevchishin, Markov theorem for transversal links, J. of Knot Theory and Ramifications 12 (2003), 905-913.

IMT, Université Paul Sabatier, Toulouse, France

Steklov Mathematical Institute, Moscow, Russia

