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THE YAMABE CONSTANT ON NONCOMPACT MANIFOLDS

NADINE GROSSE AND MARC NARDMANN

ABSTRACT. We prove several facts about the Yamabe constant of Riemannian metrics on general non-
compact manifolds and about S. Kim’s closely related “Yamabe constant at infinity”. In particular we
show that the Yamabe constant depends continuously on the Riemannian metric with respect to the fine
C

2-topology, and that the Yamabe constant at infinity is even locally constant with respect to this topology.
We also discuss to which extent the Yamabe constant is continuous with respect to coarser topologies on
the space of Riemannian metrics.

1. INTRODUCTION

For a nonempty manifoldM of dimensionn ≥ 3, theYamabe mapYM assigns to every Riemannian
metricg onM a numberYM (g) ∈ R∪{−∞}, theYamabe constant ofg, as follows. For each compactly
supported not identically vanishing functionv ∈ C∞(M,R≥0), one defines

Eg(v) :=
1

‖v‖2Lp(g)

∫

M

(

an|dv|2g + scalg v
2
)

dµg ∈ R,

wherep = pn := 2n
n−2 andan := 4(n−1)

n−2 . The Yamabe constant ofg is

YM (g) := inf
{

Eg(v)
∣

∣

∣
v ∈ C∞

c (M,R≥0)\{0}
}

∈ R ∪ {−∞}.

YM (g) depends only on the conformal class ofg. Theσ-invariant ofM is

σ(M) := sup
{

YM (g)
∣

∣ g ∈ Metr(M)
}

,

whereMetr(M) denotes the set of Riemannian metrics onM . Every metricg on ann-manifold satisfies

YM (g) ≤ σ(Sn) = YSn(gst) = n(n− 1) vol(Sn, gst)
2/n,

wheregst is the standard metric on then-sphereSn. (See Section 2 for details and references.)

In the case whenM is compact without boundary, the Yamabe constant andσ-invariant have been
studied in hundreds of articles; cf. e.g. [3, 4, 8, 9, 21] and the reference lists therein. Several of these
works involve also Yamabe constants of noncompact manifolds as a tool. Some articles where the
noncompact case has been investigated for its own sake are [1, 2, 12, 13, 17, 18, 19]. In most cases the
focus was on special classes of noncompact manifolds and/ormetrics, e.g.R × N with compactN ,
coverings of closed manifolds, or manifolds of bounded geometry. The aim of the present article is to
state and prove several facts which hold for all manifolds and metrics.

One of these results is that the functionalYM is continuous in a suitable sense. In the case of compact
M , this was proved by Bérard Bergery [6, Proposition 7.2]. Hestated only continuity with respect to the
C∞-topology on the space of metrics, but the proof works obviously even for the (coarser)C2-topology;
in this form the result is also given in [7, Proposition 4.31]. The proof is not completely trivial, because
of the infimum that occurs in the definition ofYM . But it is still reasonably straightforward, and the
application of Moser’s lemma suggested in both references is not really necessary.

In the present article, we discuss the continuity ofYM on noncompact manifoldsM , where one has
to distinguish between the usual (metrizable)compact-openC2-topology and thefine (also known as
strongor Whitney) C2-topology, which is neither metrizable nor connected; cf. Section 3 for a review.
One can also consider another natural topology onMetr(M), which we call theuniformCk-topology;
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see Section 3. IfM is noncompact, this topology is strictly finer than the compact-openCk-topology
and strictly coarser than the fineCk-topology.

A straightforward generalization of Bérard Bergery’s arguments yields the following result:

1.1.Theorem. LetM be a nonempty manifold of dimension≥ 3. ThenYM is upper semicontinuous with
respect to the compact-openC2-topology onMetr(M). If M is compact orYM(g) = −∞, thenYM is
continuous atg with respect to the compact-openC2-topology. IfM is noncompact andYM (g) > −∞,
thenYM is not continuous atg for any compact-openCk-topology onMetr(M) with k ∈ N ∪ {∞}.

The Yamabe map has better continuity properties with respect to theuniformC2-topology (recall that
for f ∈ C∞(M,R), the functionf− ∈ C0(M,R≥0) is defined byf−(x) = −min{0, f(x)}):

1.2.Theorem. LetM be a nonempty manifold of dimensionn ≥ 3. Then the Yamabe mapYM is upper
semicontinuous with respect to the uniformC2-topology onMetr(M). At everyg ∈ Metr(M) which
satisfiesYM (g) = −∞ or admits anε ∈ R>0 with ‖(scalg − ε)−‖Ln/2(g) < ∞, the Yamabe map is

continuous with respect to the uniformC2-topology.

However, there exist metrics at which the Yamabe map is not continuous for any uniformCk-topology
with k ∈ N∪ {∞}. Such metrics can have scalar curvature0, so the sufficient criterion above cannot be
generalized toε = 0:

1.3.Example. Letn ≥ 4, letN be a nonempty closed(n−1)-manifold withσ(N) > 0. ThenN admits
a Riemannian metrich with scalh = 0 such that for the product metricg := h+dt2 onM := N×R, the
Yamabe mapYM is not continuous atg for any uniformCk-topology onMetr(M) with k ∈ N ∪ {∞}.

Even with respect to thefineC2-topology, it is not obvious that the Yamabe map is continuous at
every metric: the infimum in the definition makes the situation on noncompact manifolds even more
nonlocal than in the compact case. An argument sharper than Bérard Bergery’s yields our main result:

1.4.Theorem. LetM be a nonempty manifold of dimension≥ 3. Then the Yamabe mapYM is contin-
uous with respect to the fineC2-topology on the space of Riemannian metrics onM .

This shows that the fineC2-topology is the correct topology in the context of the Yamabe map on
noncompact manifolds, as one might have expected. Therefore we do not mention other topologies on
Metr(M) in the following results.

Theorem 1.4 implies that for eachr ∈ R∪{−∞} the set ofg ∈ Metr(M) with YM (g) = r is closed
with respect to the fineC2-topology onMetr(M). Forr = −∞, a stronger statement is true:

1.5.Theorem. LetM be a nonempty manifold of dimension≥ 3. Then the set ofg ∈ Metr(M) with
YM (g) = −∞ is open and closed with respect to the fineC2-topology onMetr(M).

S. Kim [17, 18] introduced another, closely related, functionalY = Y M on the spaceMetr(M) of
Riemannian metrics on a noncompactn-manifoldM : For a chosen compact exhaustion(Ki)i∈N of M ,
one defines

Y M (g) := lim
i→∞

YM\Ki
(g) ∈ [−∞, σ(Sn)] ,

where the restriction ofg to M\Ki is suppressed in the notation. The limit exists and does not depend
on the chosen exhaustion (cf. 2.8 below). We callY M (g) theYamabe constant at infinityof g.

1.6. Theorem. LetM be a noncompact manifold of dimension≥ 3. ThenY M is locally constant (in
particular continuous) with respect to the fineC2-topology onMetr(M).

In contrast,YM is certainly not locally constant, becauseYM(g) can be changed continuously by
modifying g on any compact subsetK of M while keeping it fixed outsideK.

Several general statements hold for the Yamabe constant andthe Yamabe constant at infinity:

1.7.Theorem. Every Riemannian metricg on a noncompact manifold of dimensionn ≥ 3 satisfies:

(1) −‖(scalg)−‖Ln/2(g) ≤ YM (g) ≤ Y M (g).
2



(2) If Y M (g) < 0, thenY M (g) = −∞.
(3) If YM (g) = −∞, thenY M (g) = −∞.

For some remarks and a conjecture related to Theorem 1.7(1),see Section 5.

1.8.Theorem. LetM be a nonempty manifold of dimensionn ≥ 3 each of whose connected components
is noncompact. Then:

(1) The image ofYM is an interval which contains−∞ and0. Thus0 ≤ σ(M) ≤ σ(Sn).
(2) If M is diffeomorphic to an open subset of a compactn-manifold, then0 < σ(M).

1.9.Remarks.
(1) If a metric g on a (possibly noncompact) manifoldM of dimension≥ 6 satisfiesYM (g) =

σ(Sn), theng is locally conformally flat, by Aubin’s local argument [5], [20, proof of Thm. B].
Whether this generalizes to dimension3, 4, or 5 is unclear. A simply connectedn-manifoldM
with n ≥ 3 admits a locally conformally flat metric if and only if it can be immersed intoSn

[22, pp. 49–50]. A noncompact connectedn-manifold can be immersed intoSn if and only if it
is parallelizable; cf. 2.11 below. Thus for many noncompactmanifoldsM of dimensionn ≥ 6
(e.g. all simply connected nonparallelizable ones),σ(Sn) does not lie in the image ofYM .

(2) We suspect thatσ(M) = σ(Sn) holds for every noncompact connectedn-manifoldM ; then for
suchM , the image ofYM would always be either[−∞, σ(Sn)[ or [−∞, σ(Sn)].

(3) By Theorems 1.8(1) and 1.7, the image ofY M contains−∞ and a nonnegative number, but no
negative real number. Hence it is not an interval. We don’t know any other lower or upper bound
on the number of “gaps” it has. Nor do we know whether there exists a manifoldM for which
the image ofY M contains an interval of nonzero length. We suspect that every noncompact
connectedn-manifoldM admits a Riemannian metricg with Y M (g) = σ(Sn). For each such
M which is diffeomorphic to an open subset of a compact manifold, this is true: [19, Theorem
3.1] implies thatY M (g) = σ(Sn) holds for anyg which is the pullback of a metric on the
compact manifold (note that the completeness assumption inthat theorem is irrelevant because
each conformal class contains a complete metric).

In the following Sections 2, 3, we review relevant definitions and basic facts, in particular about the
Yamabe constant and topologies onMetr(M). The rest of the article contains the proofs of the theorems
and of Example 1.3. The proofs are not presented in the order of the theorem numbers but in such a way
that every result has been proved before it is applied in other proofs.

2. PRELIMINARIES

2.1.Conventions. 0 ∈ N. The wordsmanifold, metric, map, sectionetc. mean smooth objects, except
when explicitly stated otherwise. Manifolds are pure-dimensional and second countable and do not have
a boundary; thus the notionsclosed manifoldandcompact manifoldare synonymous.

2.2. Compact exhaustions.Let M be ann-manifold. A compact exhaustionof M is a sequence
(Ki)i∈N of compact subsetsKi of M such that for everyi ∈ N, Ki is contained in the interior of
Ki+1 in M , and such thatM =

⋃

i∈NKi.

Every manifold admits a compact exhaustion. Every compact exhaustion(Ki)i∈N of acompactman-
ifold M satisfiesKi = M for all sufficiently largei. If a compact exhaustion(Ki)i∈N of a connected
manifold M satisfiesKi+1 = Ki 6= ∅ for somei, thenM = Ki (becauseKi is open, closed and
nonempty), thusM is compact.

2.3.Upper and lower semicontinuity. Let X be a topological space, letx ∈ X. A function f : X →
[−∞,∞] is upper [resp.lower] semicontinuous atx iff for every ε ∈ R>0 there exists a neighborhood
U of x such thatf(y) ≤ f(x) + ε [resp.f(y) ≥ f(x)− ε] holds for ally ∈ U . The functionf is upper
[resp.lower] semicontinuousiff it is upper [resp. lower] semicontinuous at eachx ∈ X.

In the article [6], the notions of upper and lower semicontinuity are mixed up. This has been corrected
in [7, Proposition 4.31].

In addition to the notations which occurred in the introduction, we will use the following ones:
3



2.4.Notations. LetM be ann-manifold.

• Our sign convention for the Laplacian∆g : C
∞(M,R) → C∞(M,R) with respect to a Rie-

mannian metricg is∆gu = −divg(du), i.e.∆gu = −∑n
i=1

∂2u
∂x2

i
in Euclidean space.

• Let q ∈ R≥1. TheLq(g)-norm of v ∈ C0(M,R) is ‖v‖Lq(g) :=
( ∫

M vq dµg

)2/q ∈ [0,∞],
where dµg denotes the density onM induced byg. TheLq(g)-norm of a1-form α on M is
‖α‖Lq(g) := ‖|α|g‖Lq(g). For a measurable subsetA of M , the norm‖.‖Lq(A;g) of a function or
1-form onM is defined in the same way as‖.‖Lq(g), just with

∫

A instead of
∫

M .

• For Riemannian metricsg, h onM , dµh
dµg

∈ C∞(M,R>0) is defined by dµh = dµh
dµg

dµg.

• For f ∈ C0(M,R), the functionsf± ∈ C0(M,R≥0) are defined byf+(x) = max{0, f(x)}
andf−(x) = −min{0, f(x)}, respectively.

• Let k ∈ N. We define theCk(g)-norm of a (smooth) sectionh in the vector bundle Sym2T ∗M

overM by ‖h‖Ck(g) :=
∑k

i=0 sup
{

|∇ih|g(x)
∣

∣ x ∈ M
}

∈ [0,∞], where∇ih = ∇ · · ·∇h
denotes theith covariant derivative ofh with respect to the Levi-Civita connection ofg.

ForK ⊆ M , the “norm”‖h‖Ck(K;g) of a sectionh in Sym2T ∗M → M is defined in the same
way as‖h‖Ck(g), just with the suprema overM replaced by suprema overK. If K is compact,
then all values of‖.‖Ck(K;g) are finite and‖.‖Ck(g) is indeed a norm, and all such norms induced
by different metricsg are equivalent.

2.5. Yamabe constant andσ-invariant. Notation and terminology are not standardized: the letters
µ andQ are often used instead of ourY , definitions might differ by a factoran, and some people
call YM (g) theYamabe invariant, whereas others call theσ-invariant theYamabe invariant ofM . We
therefore avoid the termYamabe invariantentirely. TheYamabe constant, σ-invariant terminology and
the letterY seem to become more and more standard anyway.

Let M be a nonemptyn-manifold. The Yamabe constant is a conformal invariant: For everyg ∈
Metr(M) andu ∈ C∞(M,R>0), the conformal metric̃g := u4/(n−2)g satisfiesE g̃(v) = Eg(uv)
for all v ∈ C∞

c (M,R≥0)\{0}, henceYM (g) = YM (g̃). (This follows by partial integration from
dµg̃ = u2n/(n−2)dµg and scal̃g = u−(n+2)/(n−2)(an∆gu+ scalgu) and|dw|2g̃ = u−4/(n−2)|dw|2g.)

Hence also the Yamabe constant at infinity of a noncompact manifold is a conformal invariant.

Eg(v) = Eg(cv) holds for allg ∈ Metr(M) andc ∈ R>0 andv ∈ C∞(M,R≥0)\{0}. This implies

YM (g) = inf
{

Eg(v)
∣

∣ v ∈ C∞
c (M,R≥0), ‖v‖L2n/(n−2)(h) = 1

}

for any metrich ∈ Metr(M). We will use this fact repeatedly in the present article.

Wheneverg is a metric onM andU is a nonempty open subset ofM , we will denote the Yamabe
constant of the restriction ofg to U by YU(g); i.e., we suppress the restriction of the metric in our
notation. The same convention applies toY .

2.6. Fact. Let M,N be nonemptyn-manifolds withn ≥ 3, let ι : N → M be a smooth embedding.
Then each Riemannian metricg onM satisfiesYN (ι∗g) ≥ YM (g). Thusσ(N) ≥ σ(M).

Proof. For everyv ∈ C∞
c (N,R≥0)\{0}, we consider the function̂v ∈ C∞

c (M,R≥0)\{0} defined by
v̂ ◦ ι = v and supp(v̂) = ι(supp(v)). SinceEg(v̂) = Eι∗g(v), we obtainYN (ι∗g) ≥ YM (g). �

2.7. As mentioned in the introduction,YM (g) ≤ σ(Sn) holds for every nonemptyn-manifoldM and
g ∈ Metr(M). This is stated and proved for closedM in [20, Lemma 3.4], and the proof for arbitrary
M consists of exactly the same local argument involving test functions with supports in a small ball.

2.8. LetM be a noncompactn-manifold, let(Ki)i∈N be a compact exhaustion ofM , let g ∈ Metr(M).
In the definition of the Yamabe constant at infinityY M (g), the sequence

(

YM\Ki
(g)
)

i∈N
in R ∪ {−∞}

is monotonically increasing by Fact 2.6, becauseM\Ki+1 ⊆ M\Ki holds for eachi ∈ N. Since the
sequence is also bounded from above byσ(Sn), the limit limi→∞ YM\Ki

(g) exists in[−∞, σ(Sn)].

Let (K ′
i)i∈N be another compact exhaustion ofM . For everyi ∈ N, there exists a numberj(i) ∈ N

with K ′
i ⊆ Kj(i). Fact 2.6 yieldsYM\K ′

i
(g) ≤ YM\Kj(i)

(g) ≤ limj→∞ YM\Kj
(g) for eachi, hence

4



limi→∞ YM\K ′

i
(g) ≤ limi→∞ YM\Ki

(g). For symmetry reasons the reversed inequality holds as well.

ThusY M (g) does not depend on the chosen exhaustion, as we claimed in theintroduction.

2.9.Remark. Recall that we did not defineYM in the case whenM is empty; thusY M (g) is defined only
for noncompact manifolds (because every compact exhaustion of a compact manifoldM is eventually
constantM ). For a fixed dimensionn, a natural choice in the caseM = ∅ would beY∅(g) := σ(Sn) for
the uniqueg ∈ Metr(∅). Then the assumption ofM being nonempty could be omitted in the Theorems
1.1, 1.2 and 1.4. Moreover,Y M (g) would be defined in the same way as above for each metricg on a
closedn-manifoldM , and it would be equal toσ(Sn).

2.10.Remark. Without further comment we will often use Hölder’s inequality in the following form:
Forn ∈ N≥3, let p = 2n

n−2 . Then

‖v2w‖L1(g) ≤ ‖v‖2Lp(g)‖w‖Ln/2(g)

hold for all manifoldsM andg ∈ Metr(M) andv,w ∈ C0(M,R), because1 = 2
p +

2
n .

In Remark 1.9(1), we made the following claim:

2.11.Fact. Letn ≥ 0. A noncompact connectedn-manifold can be immersed intoSn if and only if it is
parallelizable.

Proof. LetM be a noncompact connectedn-manifold. First we prove thatM can be immersed intoSn

if and only if it can be immersed intoRn. The “if” part is obvious. For “only if”, letf : M → Sn

be an immersion, letx ∈ Sn. The setD := f−1({x}) is discrete and closed inM becausef is a
local diffeomorphism. SinceM is noncompact and connected, there exists an open subsetM ′ of M\D
which is diffeomorphic toM (choose a smooth triangulation ofM , use a diffeomorphismM → M
to move all elements ofD away from the(n − 1)-skeleton, and apply [14, Theorem 3.7]). The map
f |M ′ : M ∼= M ′ → Sn\{x} ∼= R

n is an immersion.
It remains to prove thatM can be immersed intoRn if and only if it is parallelizable. The “only if”

part is true because the immersion pullback of a tangent frame onRn is a tangent frame onM . The “if”
part is an application of Smale–Hirsch immersion theory; cf. [14, Theorem 4.7]. �

3. THE THREE TOPOLOGIES

In this section we briefly review the compact-open and fineCk-topologies. (The latter is also known
as thestrongor WhitneyCk-topology [15]; we follow Gromov [11] in calling it thefineCk-topology.)
After that, we define another natural topology on the set of Riemannian metrics, which we call the
uniformCk-topology. It has probably been considered in the literature before, but we don’t know where.

3.1.Definition (the fineCk-topology). Let E be a fiber bundle over a manifoldM , let k ∈ N ∪ {∞}.
The fineCk-topologyon the set of (smooth) sections inE is defined by declaring at each sections a
neighborhood basisBk(s) as follows [23, p. 9]. A sectionξ in the k-jet bundleJkE overM can be
identified with its graph, i.e. with the image graph(ξ) of ξ in the total space ofJkE. We defineUk(s) to
be the set of open neighborhoods of graph(jks) in the total space ofJkE. ForU ∈ Uk(s), we consider
the setNU of sections̃s in E with graph(jk s̃) ⊆ U . Then

Bk(s) :=
{

NU

∣

∣ U ∈ Uk(s)
}

.

Metr(M) is the set of sections in the fiber bundle Sym2
+T

∗M overM , whose fiber overx consists of the
positive definite symmetric bilinear forms onT ∗

xM . Thus a fineCk-topology is defined onMetr(M).

3.2.Examples. LetE be a fiber bundle over a manifoldM , let k ∈ N ∪ {∞}, letF ∈ C0(JkE,R≥0),
let ε ∈ C0(M,R>0), let s be a section inE with F ◦ jks = 0. Then the set of sections̃s in E with
F ◦ jk s̃ < ε is an open neighborhood ofs with respect to the fineCk-topology: sinceF , ε and the
projection pr: JkE → M are continuous, the setU = {η ∈ JkE | F (η) < ε(pr(η))} is an open
neighborhood of graph(jks), and thus the setNU of sections̃s in E with F ◦ jks̃ < ε is fineCk-open.

For instance, letg ∈ Metr(M). If F : J2Sym2
+T

∗M → R is one of the following maps, then the set
of h ∈ Metr(M) with F ◦ j2h < ε is an open neighborhood ofg with respect to the fineC2-topology:

5



(1) F : j2xh 7→ |scalh(x)− scalg(x)|.
(2) F : j2xh 7→ max

{
∣

∣|α|2h − 1
∣

∣

∣

∣ α ∈ T ∗
xM, |α|g = 1

}

.

(3) F : j2xh 7→
∣

∣

dµh
dµg

(x)− 1
∣

∣.

(4) F : j2xh 7→
∣

∣d
(dµh

dµg

)
∣

∣

g
(x).

(5) F : j2xh 7→
∣

∣∆g

(dµh
dµg

)

(x)
∣

∣.

(The maps (2), (3) even define fineC0-neighborhoods, and (4) defines a fineC1-neighborhood. But we
will later use only that they are fineC2-neighborhoods.) All these mapsF are well-defined because the
right-hand sides contain at most second derivatives ofh, and the continuity is easy to check in each case.

3.3.Definition (the compact-openCk-topology). For topological spacesX,Y , the compact-open topol-
ogy on the set of continuous mapsX → Y is well-known. LetE be a fiber bundle over a manifoldM , let
k ∈ N∪ {∞}. We consider the mapjk from the set of (smooth) sections inE to sections inJkE which
sends eachs to its k-jet prolongationjks, and we equip the set of sections inJkE with the subspace
topology of the compact-open topology on the space of continuous mapsM → JkE. Thecompact-open
Ck-topologyon the set of sections inE is the coarsest topology which makesjk continuous.

The following basic facts are well-known [15, p. 35–36]:

3.4. Facts. Let k ∈ N ∪ {∞}. The compact-openCk-topology onMetr(M) is metrizable and path-
connected (forg0, g1 ∈ Metr(M), the path(gt)t∈[0,1] given bygt := (1− t)g0 + tg1 is continuous). For
k < ∞, a sequence(gi)i∈N in Metr(M) converges tog ∈ Metr(M) with respect to the compact-open
Ck-topology if and only if for some (and hence every) auxiliarymetrich ∈ Metr(M) (e.g.h = g) and
for every compact subsetK of M , the sequence(‖gi − g‖Ck(K;h))i∈N converges to0. If M is compact,
then the fineCk-topology onMetr(M) is equal to the compact-openCk-topology onMetr(M). If
M is noncompact, then the fineCk-topology onMetr(M) is (much) finer than the compact-openCk-
topology. For instance it is neither first countable (hence not metrizable) nor connected. For metrics
g0, g1 ∈ Metr(M) which differ outside each compact subset ofM , every path fromg0 tog1, in particular
the map[0, 1] → Metr(M) given byt 7→ (1− t)g0 + tg1, is not fineCk-continuous. The compact-open
(resp. fine)C∞-topology (considered as a set of open sets) onMetr(M) is the union of all compact-open
(resp. fine)Ck-topologies onMetr(M) with k ∈ N. For l ∈ N ∪ {∞} with l ≥ k, the compact-open
C l-topology onMetr(M) is finer than the compact-openCk-topology, and the fineC l-topology on
Metr(M) is finer than the fineCk-topology.

Consider a sections0 in a fiber bundleE over a noncompact manifoldM . Each neighborhood ofs0
with respect to the compact-openC0-topology contains sectionss such that the valuess(x) ands0(x)
are, intuitively speaking, farther and farther away asx tends to infinity inM . Whereas, again intuitively
speaking, for each elements of a typical neighborhood ofs0 with respect to thefineC0-topology, the
valuess(x) ands0(x) become closer and closer asx tends to infinity inM . (Similar intuitive statements
involving derivatives ofs0, s apply to the higherCk-topologies.) A topology with the property that,
for a typical elements of a typical neighborhood ofs0, the distance ofs0(x), s(x) stays uniform asx
tends to infinity can in general make sense only after one has equipped the fibers ofE with an auxiliary
metric which defines what is meant by “distance” and “uniform”. The resulting topology will then
depend strongly on that auxiliary metric. But in the specialsituation whereE = Sym2

+T
∗M , a uniform

topology can be defined without reference to an auxiliary metric:

3.5.Definition (the uniformCk-topology). LetM be a manifold, letk ∈ N. We define theuniformCk-
topologyonMetr(M) by declaring at eachg ∈ Metr(M) a neighborhood basisB′

k(g): for ε ∈ R>0,
we letNg,ε,k :=

{

h ∈ Metr(M)
∣

∣ ‖h − g‖Ck(g) < ε
}

andB
′
k(g) := {Ng,ε,k | ε ∈ R>0}. We define

theuniformC∞-topologyonMetr(M) to be the union of all uniformCk-topologies (considered as sets
of open sets) onMetr(M) with k ∈ N.

Proof that this defines a neighborhood basis of a topology onMetr(M). EachB
′
k(g) is nonempty, and

eachNg,ε,k containsg. For every two elementsNg,ε0,k,Ng,ε1,k of B
′
k(g), the setNg,ε0,k ∩ Ng,ε1,k

contains an element ofB′
k(g), namelyNg,min(ε0,ε1),k. �
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The uniformCk-topologies are natural objects in particular when one considers Riemannian metrics
on product manifoldsM × N with compactM and noncompactN . The compact-open topologies
are much too coarse to control the Yamabe constant even near product metrics, as Theorem 1.1 shows.
Whereas the fine topologies are much too fine for instance for areasonable discussion of1-parameter
families of product metricsgM (t)⊕ gN onM ×N , because they make such a1-parameter family con-
tinuous only if it is constant. In contrast, the uniformCk-topology makes such a1-parameter family
continuous if and only if(gM (t))t∈R is aCk-continuous family (the fine/uniform/compact-open distinc-
tion plays no role here becauseM is compact); moreover, it makes the Yamabe map continuous atmany
product metrics (providedk ≥ 2), as one can see from Theorem 1.3. This is what one would intuitively
expect from a nice topology onMetr(M × N). Unfortunately, Example 1.3 shows that the uniform
topologies do not makeYM×N continuous ateveryproduct metric.

3.6.Facts. LetM be a manifold, letk, l ∈ N∪{∞} with l ≥ k. The uniformCk-topology onMetr(M)
coarser than the uniformC l-topology. It is finer than the compact-openCk topology, and it is coarser
than the fineCk-topology; in particular, it is equal to both these topologies ifM is compact. IfM
is noncompact, then the uniformCk-topology onMetr(M) is neither equal to any compact-openCr-
topology nor equal to any fineCr-topology.

Proof. For l ∈ N, every uniformCk-neighborhoodNg,ε,k of g ∈ Metr(M) contains a uniformC l-
neighborhood ofg, namelyNg,ε,l. Thus the uniformCk-topology is coarser than the uniformC l-
topology if l ∈ N. The same holds by definition of the uniformC∞-topology also forl = ∞.

Every uniformCk-neighborhoodNg,ε,k is a fineCk-neighborhood ofg: since|∇i(h − g)|g(x) de-
pends continuously onjixh, there exists a neighborhoodU of graph(g) in JkSym2

+T
∗M such that the

elements of

Ng,ε,k =
{

h ∈ Metr(M)
∣

∣

∣

∑k
i=0 sup

{

|∇i(h− g)|g(x)
∣

∣ x ∈ M
}

< ε
}

are precisely thoseh ∈ Metr(M) with graph(jkh) ⊆ U . Thus the uniformCk-topology is coarser than
the fineCk-topology.

For K ⊆ M andU ⊆ JkSym2
+T

∗M , let MK,U,k := {h ∈ Metr(M) | ∀x ∈ K : jkxh ∈ U}.
By definition of the compact-openCk-topology, the setsMK,U,k such thatK ⊆ M is compact and
U ⊆ JkSym2

+T
∗M is open form a subbase of the compact-openCk-topology. We claim that each of

these subbase elements is uniformCk-open. In order to check this, we consider an elementg of MK,U,k.
SinceU is open andK is compact, there exists anε ∈ R>0 such that|∇i(h − g)|g(x) < ε

k+1 holds
for all h ∈ MK,U,k andx ∈ K andi ∈ {0, . . . , k}; here∇ denotes the Levi-Civita connection ofg.
Therefore the uniformCk-open setNg,ε,k is obviously contained inMK,U,k. As this is true for every
g ∈ MK,U,k, the setMK,U,k is indeed uniformCk-open. This proves that the uniformCk-topology is
finer than the compact-openCk-topology.

The uniformCk-topology is not equal to any fineCr-topology if M is noncompact, because the
uniform Ck-topology is by definition first countable, whereas the fineCr-topology is not ifM is non-
compact; cf. Facts 3.4.

The uniformCk-topology is not equal to any compact-openCr-topology ifM is noncompact: We
take any metricg onM and anyf ∈ C∞(M,R>0) which is not bounded from above, and we consider
γ : [0, 1] → Metr(M) given byγ(t) := (1 − t)g + tfg. This γ is compact-openCr-continuous at0,
becauselimt→0‖γ(t) − γ(0)‖Cr(K;γ(0)) = limtց0 t‖(f − 1)g‖Cr(K;g) = 0 holds for every compact
subsetK of M . But γ is not uniformCk-continuous at0: For the neighborhoodNg,1,k ⊆ Ng,1,0 of
g = γ(0), there does not exist anyδ ∈ R>0 with ∀t ∈ [0, δ] : γ(t) ∈ Ng,1,k. That’s because
∥

∥γ(t)− g
∥

∥

C0(g)
= t
∥

∥(1− f)g
∥

∥

C0(g)
= t sup

x∈M

∣

∣(1− f)g
∣

∣

g
(x) = t sup

x∈M

√

dim(M) |f(x)− 1| = ∞

for eacht ∈ R>0. Thus the uniformCk-topology differs indeed from the compact-open topologies. �

We leave it to the interested reader to state and prove further properties of the uniformCk-topology.
In the present article it serves only as an instructive intermediate step between the compact-open and fine
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topologies which clarifies nicely the continuity properties of the Yamabe map, in particular at product
metrics on product manifolds one of whose factors is compact. All we have to know in that context are
the facts listed above and Lemma 10.1 below.

4. PROOF OF UPPER SEMICONTINUITY

The proof of the following fact generalizes directly the onefor closed manifolds [6, Proposition 7.2].

4.1.Lemma. LetM be a nonempty manifold of dimensionn ≥ 3. LetMetr(M) be equipped with the
compact-openC2-topology. ThenYM is upper semicontinuous. In particular,YM is continuous at each
metricg with YM(g) = −∞.

Proof. For eachv ∈ C∞
c (M,R≥0)\{0}, the mapMetr(M) → R given byg 7→ Eg(v) is continuous

with respect to the compact-openC2-topology: Since this topology is metrizable, it suffices toshow
that whenever a sequence(gi)i∈N in Metr(M) converges tog, then limi→∞Egi(v) = Eg(v). For
the compact setK := supp(v), the convergence of(gi)i∈N to g implies limi→∞‖gi − g‖C2(K;g) = 0,
which yields obviouslylimi→∞‖scalgi − scalg‖C0(K) = 0 andlimi→∞

∥

∥|dv|2gi − |dv|2g
∥

∥

C0(K)
= 0 and

limi→∞

∥

∥

dµgi
dµg

− 1
∥

∥

C0(K)
= 0, thuslimi→∞Egi(v) = Eg(v). Henceg 7→ Eg(v) is indeed continuous.

Recall that wheneverX is a topological space andY is a nonempty set andf : X × Y → R has
the property thatf(., y) : X → R is continuous for everyy ∈ Y , then the mapX → R ∪ {−∞}
given byx 7→ inf{f(x, y) | y ∈ Y } is upper semicontinuous. Applying this toX = Metr(M) and
Y = C∞

c (M,R≥0)\{0} andf : (g, v) 7→ Eg(v), we see thatYg is upper semicontinuous with respect
to the compact-openC2-topology. �

4.2.Corollary. LetM be a nonempty manifold of dimension≥ 3, let k ∈ N≥2 ∪ {∞}. LetMetr(M)
be equipped either with the compact-openCk-topology or with the uniformCk-topology or with the fine
Ck-topology. ThenYM is upper semicontinuous. It is continuous at each metricg with YM (g) = −∞.

Proof. Each of the considered topologies is finer than the compact-openC2-topology. �

5. PROOF OFTHEOREM 1.7

Proof of Theorem 1.7(1).By Fact 2.6,YM (g) ≤ YM\K(g) holds for all compact subsetsK of M . Thus
YM (g) ≤ Y M (g). In order to prove−‖(scalg)−‖Ln/2(g) ≤ YM (g), we apply the Hölder inequality

to eachv ∈ C∞
c (M,R≥0)\{0} (using‖v‖2Lp = ‖v2‖Lp/2 and 2

p + 2
n = 1 for p = 2n

n−2 ) and take the
infimum overv afterwards:

∫

M

(

an|dv|2g + scalg v2
)

dµg

‖v‖2Lp(g)

≥ −
∫

M (scalg)− v2 dµg

‖v‖2Lp(g)

≥ −
∥

∥(scalg)−
∥

∥

Ln/2(g)
. �

5.1.Remarks. In the estimateYM (g) ≤ Y M (g), equality is possible. Clearly we haveYM (g) = Y M (g)
if YM(g) = σ(Sn). If YM (g) = −∞, then Theorem 1.7(3) will give equality. Moreover, if(M,g) is
homogeneous in the sense that there exists an open bounded subsetU of M such that for eachx ∈ M
there is an isometry ofM with f(x) ∈ U , thenYM(g) = Y M (g): see [12, Remark 14].

Equality in−‖(scalg)−‖Ln/2(g) ≤ YM (g) can also occur. For instance, ifM is closed and scalg is a
nonpositive constant, then we have equality. For closed manifolds, scalg being a nonpositive constant is
the only possibility to get equality (this is easy to deduce from the Aubin–Schoen theorem [20] which
implies that the infimum in the definition ofYM (g) is achieved at somev). On noncompact manifolds
equality holds also e.g. ifYM (g) = −∞.

While‖(scalg)−‖Ln/2(g) < ∞ impliesYM (g) > −∞, the converse is in general not true: for instance,
then-dimensional hyperbolic space has Yamabe constantσ(Sn), but satisfies‖(scalg)−‖Ln/2(g) = ∞
because of its infinite volume and constant negative scalar curvature. That the two conditions are not
equivalent should not be surprising:YM(g) is a conformal invariant ofg, but theLn/2(g)-norm of
(scalg)− is only invariant under rescalings ofg by constants. We expect that this is the only reason for
the failure of equivalence:
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5.2. Conjecture. LetM be a manifold of dimensionn ≥ 3. ThenYM(g) = −∞ holds if and only if
∥

∥(scalg)−
∥

∥

Ln/2(g)
= ∞ holds for all metricsg in the conformal class ofg.

For instance, hyperbolic space is conformal to a subset of Euclidean space with‖(scalg)−‖Ln/2(g) = 0.

Proof of Theorem 1.7(2). Let Y M (g) < 0. Assume that−∞ < Y M (g). Let p = pn. We choose
a compact exhaustion(K ′

i)i≥1 of M and defineK0 := ∅. We will construct recursively a compact
exhaustion(Ki)i≥1 of M and a sequence(vi)i≥1 in C∞

c (M,R≥0)\{0} such that the properties

supp(vi) ⊆ Ki\Ki−1, Eg(vi) ≤ Y M (g) + 1
2i
, ‖vi‖Lp(g) = 1

hold for all i ≥ 1.

WhenKj andvj have already been constructed with these properties for allj ∈ N with 1 ≤ j <
i, we find vi as follows. SinceM\Ki−1 containsM\K ′

j for all sufficiently largej, Fact 2.6 yields

YM\Ki−1
(g) ≤ YM\K ′

j
(g) for all sufficiently largej. This impliesYM\Ki−1

(g) ≤ Y M (g). Thus there

exists a functioñvi ∈ C∞
c (M\Ki−1,R≥0) with Eg(ṽi) ≤ Y M (g) + 1

2i
and‖ṽi‖Lp(g) = 1. We let

vi ∈ C∞(M,R≥0) be the extension of̃vi with supp(vi) = supp(ṽi) and defineKi := K ′
m(i), where

m(0) := 0 andm(i) := min{j ∈ N | j ≥ i, j > m(i− 1), supp(vi) ⊆ K ′
j\∂K ′

j}. This completes the
recursive definition of(Ki)i≥1 and(vi)i≥1.

For eachi ≥ 1, the properties supp(vi) ⊆ Ki\Ki−1 andEg(vi) ≤ Y M (g) + 1
2i

and‖vi‖Lp(g) = 1

hold by construction. The setsKi form a compact exhaustion ofM because(K ′
i)i≥1 is a compact

exhaustion ofM (eachx ∈ M lies in someK ′
j and thus inKj , and eachKi lies in the interior ofKi+1

becauseK ′
m(i) lies in the interior ofK ′

m(i+1)). Thus(Ki)i≥1 and(vi)i≥1 have the claimed properties.

For j, k ∈ N with 0 ≤ k < j, we considerwj,k :=
∑j

i=k+1 vi |M\Kk
∈ C∞

c (M\Kk,R≥0). Using
that the supports of the functionsvi are pairwise disjoint, we compute:

YM\Kk
(g) ≤ Eg(wj,k)

=

∫

M

(

an

∣

∣

∣

∑j
i=k+1 dvi

∣

∣

∣

2

g
+ scalg

(

∑j
i=k+1 vi

)2
)

dµg

(
∫

M

(

∑j
i=k vi

)p
dµg

)2/p

=

j
∑

i=k+1

∫

M

(

an|dvi|2 + scalgv
2
i

)

dµg

( j
∑

i=k+1

‖vi‖pLp(g)

)2/p

= (j − k)−2/p
j
∑

i=k+1

Eg(vi)

≤ (j − k)−2/p

(

(j − k)Y M (g) +

j
∑

i=k+1

1

2i

)

≤ (j − k)2/n Y M (g) + 2.

SinceY M (g) < 0, this tends to−∞ as j → ∞. Thus we obtainYM\Kk
(g) = −∞ for eachk, in

particularY M (g) = −∞, in contradiction to our assumption. HenceY M (g) = −∞. �

Proof of Theorem 1.7(3). Let YM(g) = −∞. We argue by contradiction and assumeY M (g) > −∞.
Then there exists a compact subsetK0 ⊂ M with YM\K0

(g) > −∞. We choose a compact subset
K1 of M whose interior containsK0, and a smooth cutoff functionη ∈ C∞(M, [0, 1]) which is1 on a
neighborhood ofK0 and vanishes on a neighborhood of the closure ofM\K1. Theorem 1.7(1) implies
YK1\∂K1

(g) ≥ −‖(scalg)−‖Ln/2(K1;g)
> −∞. Let p = pn, let v ∈ C∞

c (M,R≥0) with
∫

M vp dµg = 1.
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Sinceηv ∈ C∞
c (K1\∂K1,R≥0) and(1− η)v ∈ C∞

c (M\K0,R≥0), we obtain:

Eg(v) =

∫

M

(

an
∣

∣d
(

ηv + (1− η)v
)∣

∣

2

g
+ scalg

(

ηv + (1− η)v
)2
)

dµg

=

∫

M

(

an
∣

∣d
(

ηv
)
∣

∣

2

g
+ scalg

(

ηv
)2
)

dµg +

∫

M

(

an
∣

∣d
(

(1− η)v
)
∣

∣

2

g
+ scalg

(

(1− η)v
)2
)

dµg

+ 2

∫

M

(

an
〈

d
(

ηv
)

,d
(

(1− η)v
)〉

g
+ scalg η (1− η) v2

)

dµg

≥ YK1\∂K1
(g)

(
∫

M
ηpvpdµg

)2/p

+ YM\K0
(g)

(
∫

M
(1− η)pvpdµg

)2/p

+ 2

∫

M

(

an
〈

η dv + v dη, (1 − η)dv − v dη
〉

g
+ scalg η (1− η) v2

)

dµg

≥ min
{

YK1\∂K1
(g), 0

}

+min
{

YM\K0
(g), 0

}

− 2
∥

∥scalg η (1− η)
∥

∥

Ln/2(g)

+ 2an

∫

M
η(1 − η)|dv|2g dµg + 2an

∫

M

(

v − 2ηv
)

〈dv,dη〉g dµg − 2an

∫

M
v2|dη|2g dµg

≥ min
{

YK1\∂K1
(g), 0

}

+min
{

YM\K0
(g), 0

}

− 2
∥

∥scalg
∥

∥

Ln/2(K1\K0;g)

+ 2an

∫

M
(1− 2η)∆g(η) v

2 dµg − 2an
∥

∥|dη|2g
∥

∥

Ln/2(g)

≥ min
{

YK1\∂K1
(g), 0

}

+min
{

YM\K0
(g), 0

}

− 2
∥

∥scalg
∥

∥

Ln/2(K1\K0;g)

− 2an
∥

∥(1− 2η)∆g(η)
∥

∥

Ln/2(g)
− 2an

∥

∥|dη|2g
∥

∥

Ln/2(g)
.

This is a finite number independent ofv. HenceYM(g) > −∞, a contradiction. �

6. PREPARATIONS FOR THE FINE CONTINUITY PROOFS

6.1.Lemma. Letn ∈ N, let (Ki)i≥0 be a compact exhaustion of a Riemanniann-manifold(M,g), let
(εi)i≥0 be a sequence of positive real numbers. Then there exists a function δ ∈ C∞(M,R>0) which
satisfies for everyi ≥ 0 the inequalitiesδ |M\Ki

≤ εi and

∥

∥δ
∥

∥

Ln/2(M\Ki,g)
≤ εi,

∥

∥dδ
∥

∥

Ln(M\Ki,g)
≤ εi,

∥

∥δ scalg
∥

∥

Ln/2(M\Ki,g)
≤ εi,

∥

∥∆gδ
∥

∥

Ln/2(M\Ki,g)
≤ εi.

Proof. We defineK ′
−1 := ∅ andK ′

i := Ki\(Ki−1\∂Ki−1) for i ≥ 0. For eachi ≥ 0, we choose a
functionβi ∈ C∞(K ′

i, [0, 1]) which is constant1 nearK ′
i−1 ∩K ′

i and is constant0 nearK ′
i ∩K ′

i+1. We
define recursivelyε′−1 := 1 andε′i := min

{

1
2ε

′
i−1, εi

}

∈ R>0 for i ≥ 0. For allj ≥ i ≥ 0, this implies
ε′j ≤ 2−(j−i)εi. Thus

∀i ≥ 0 :
∑

j>i

ε′j ≤
∑

j>i

2−(j−i)εi = εi.

We letδ−1 := 1 and, for alli ≥ 0,

δi := min

{

δi−1, εi,
ε′i

‖1‖Ln/2(K ′

i,g)
+ ‖scalg‖Ln/2(K ′

i,g)
+ ‖dβi‖Ln(K ′

i,g)
+ ‖∆gβi‖Ln/2(K ′

i,g)

}

> 0.

The functionδ ∈ C∞(M,R) given byδ |K ′

i
= (δi − δi+1)βi + δi+1 is positive because(δi)i≥0 is a

monotonically decreasing sequence of positive numbers. Itsatisfiesδ |M\Ki
≤ εi for every i ≥ 0,

because(δi)i≥0 is monotonically decreasing withδ |K ′

i
≤ δi ≤ εi. SinceM\Ki ⊆

⋃

j>iK
′
j holds for
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everyi ≥ 0, we obtain fori ≥ 0:

∥

∥δ
∥

∥

Ln/2(M\Ki,g)
≤
∑

j>i

∥

∥δ
∥

∥

Ln/2(K ′

j ,g)
≤
∑

j>i

δj
∥

∥1
∥

∥

Ln/2(K ′

j ,g)
≤
∑

j>i

ε′j ≤ εi,

∥

∥δ scalg
∥

∥

Ln/2(M\Ki,g)
≤
∑

j>i

∥

∥δ scalg
∥

∥

Ln/2(K ′

j ,g)
≤
∑

j>i

δj
∥

∥scalg
∥

∥

Ln/2(K ′

j ,g)
≤
∑

j>i

ε′j ≤ εi,

∥

∥dδ
∥

∥

Ln(M\Ki,g)
≤
∑

j>i

∥

∥dδ
∥

∥

Ln(K ′

j ,g)
≤
∑

j>i

δj
∥

∥dβj
∥

∥

Ln(K ′

j ,g)
≤
∑

j>i

ε′j ≤ εi,

∥

∥∆gδ
∥

∥

Ln/2(M\Ki,g)
≤
∑

j>i

∥

∥∆gδ
∥

∥

Ln/2(K ′

j ,g)
≤
∑

j>i

δj
∥

∥∆gβj
∥

∥

Ln/2(K ′

j ,g)
≤
∑

j>i

ε′j ≤ εi. �

6.2.Lemma. Letn ∈ N, let (Ki)i∈N be a compact exhaustion of a Riemanniann-manifold(M,g), let
(εi)i∈N be a sequence of positive real numbers. Then there exist a fineC2-neighborhoodU of g and a
functionδ ∈ C∞(M,R>0) such that the following conditions hold for allh ∈ U :

(1) ∀i ∈ N : δ |M\Ki
≤ εi and ‖δ‖Ln/2(M\Ki,g)

≤ εi and ‖δ scalg‖Ln/2(M\Ki,g)
≤ εi.

(2) ∀x ∈ M : ∀α ∈ T ∗
xM :

∣

∣|α|2h − |α|2g
∣

∣ ≤ δ(x)|α|2g .
(3) |scalg − scalh| ≤ δ.

(4)
∣

∣

∣
1− dµh

dµg

∣

∣

∣
≤ δ.

(5) ∀i ∈ N :
∥

∥

∥
d
(

(

(1−δ)dµh
dµg

)1/2
)
∥

∥

∥

2

Ln(M\Ki,g)
≤ εi and

∥

∥

∥
∆g

(

(1−δ)dµh
dµg

)
∥

∥

∥

Ln/2(M\Ki,g)
≤ εi.

Proof. For eachi ∈ N, we choosẽεi ∈ R>0 so small that

ε̃i ≤ 1
2 ,

√

ε̃i + ε̃i ≤
√
εi, 3ε̃i + 2ε̃

3/2
i ≤ εi.

We apply Lemma 6.1 to the sequence(ε̃i)i∈N and obtain a functionδ ∈ C∞(M,R>0) with the properties
stated in Lemma 6.1, but with̃εi instead ofεi. Then condition (1) holds, because∀i ∈ N : ε̃i ≤ εi. The
Examples 3.2 imply thatg has a fineC2-neighborhoodU such that everyh ∈ U satisfies

(a) |scalh − scalg| < δ;
(b) ∀x ∈ M : max

{∣

∣|α|2h − 1
∣

∣

∣

∣ α ∈ T ∗
xM, |α|g = 1

}

< δ(x);
(c)
∣

∣

dµh
dµg

− 1
∣

∣ < δ;

(d)
∣

∣d
(dµh

dµg

)
∣

∣

g
< δ;

(e)
∣

∣∆g

(dµh
dµg

)
∣

∣ < δ.

Property (b) yields condition (2): that’s because
∣

∣|α|2h − |α|2g
∣

∣ ≤ δ(x)|α|2g holds forα = 0, and because
for α ∈ T ∗

xM\{0}, β := α/|α|g satisfies|β|g = 1 and thus
∣

∣|β|2h − 1
∣

∣ ≤ δ(x), which implies thatα
satisfies

∣

∣|α|2h − |α|2g
∣

∣ ≤ δ(x)|α|2g . The properties (a) and (c) yield (3) and (4), respectively.It remains
to verify (5). Using1

2 ≤ 1− ε̃i ≤ 1− δ ≤ 1 and (c) and (d), we obtain

∣

∣

∣
d
(

(

(1− δ)dµh
dµg

)1/2
)
∣

∣

∣

g
=

∣

∣

∣

∣

∣

(1− δ)d
(dµh

dµg

)

− dµh
dµg

dδ

2
(

(1− δ)dµh
dµg

)1/2

∣

∣

∣

∣

∣

g

≤
∣

∣

∣

∣

∣

d
(dµh

dµg

)

√
2
(dµh

dµg

)1/2

∣

∣

∣

∣

∣

g

+

∣

∣

∣

∣

∣

(dµh
dµg

)1/2
dδ

√
2

∣

∣

∣

∣

∣

g

≤ δ
√

2(1 − δ)
+

√

1 + δ

2
|dδ|g

≤ δ + |dδ|g,
11



hence, because ofδ ≤ 1 and the properties stated in Lemma 6.1:

∀i ∈ N :
∥

∥

∥
d
(

(

(1− δ)dµh
dµg

)1/2
)∥

∥

∥

Ln(M\Ki,g)
≤
(
∫

M\Ki

δn dµg

)1/n

+ ‖dδ‖Ln(M\Ki;g)

≤
(
∫

M\Ki

δn/2 dµg

)1/n

+ ε̃i = ‖δ‖1/2
Ln/2(M\Ki;g)

+ ε̃i ≤
√

ε̃i + ε̃i ≤
√
εi.

Thus the first inequality in (5) holds. Similarly we get from (c), (d), (e):
∣

∣

∣
∆g

(

(1− δ)dµh
dµg

)∣

∣

∣
=
∣

∣

∣
(1− δ)∆g

(dµh
dµg

)

− dµh
dµg

∆gδ − 2
〈

dδ,d
(dµh

dµg

)〉

g

∣

∣

∣
≤ δ + 2

∣

∣∆gδ
∣

∣+ 2δ |dδ|g;

hence
∥

∥

∥
∆g

(

(1− δ)dµh
dµg

)
∥

∥

∥

Ln/2(M\Ki,g)
≤
∥

∥δ
∥

∥

Ln/2(M\Ki,g)
+ 2
∥

∥∆gδ
∥

∥

Ln/2(M\Ki,g)

+ 2
∥

∥δ
∥

∥

Ln(M\Ki,g)

∥

∥dδ
∥

∥

Ln(M\Ki,g)

≤ ε̃i + 2ε̃i + 2
√

ε̃i ε̃i

≤ εi.

Thus also the second inequality in (5) holds. �

6.3.Corollary. Letn ∈ N, let (M,g) be a Riemanniann-manifold, letε ∈ R>0. Then there exist a fine
C2-neighborhoodU of g and a functionδ ∈ C∞(M,R>0) such that the following conditions hold for
all h ∈ U :

(1) δ ≤ ε and ‖δ‖Ln/2(g) ≤ ε and ‖δ scalg‖Ln/2(M,g) ≤ ε.

(2) ∀x ∈ M : ∀α ∈ T ∗
xM :

∣

∣|α|2h − |α|2g
∣

∣ ≤ δ(x)|α|2g .
(3) |scalg − scalh| ≤ δ.

(4)
∣

∣

∣
1− dµh

dµg

∣

∣

∣
≤ δ.

(5)
∥

∥

∥
d
(

(

(1− δ)dµh
dµg

)1/2
)∥

∥

∥

2

Ln(g)
≤ ε and

∥

∥

∥
∆g

(

(1− δ)dµh
dµg

)∥

∥

∥

Ln/2(g)
≤ ε.

Proof. We choose any compact exhaustion(Ki)i≥0 of M with K0 = ∅ and consider the sequence
(εi)i≥0 with ∀i : εi = ε. The claim of the Corollary is thei = 0 statement of Lemma 6.2. �

7. FINE CONTINUITY: PROOFS OF THE THEOREMS1.4 AND 1.6 AND 1.5

Proof of Theorem 1.4.By Corollary 4.2,YM is upper semicontinuous with respect to the fineC2-
topology. It remains to prove lower semicontinuity with respect to this topology.

Let g ∈ Metr(M), let ε0 ∈ R>0. We chooseε ∈ ]0, 1[ so small that

ε(1 + ε)2
(

3an
2

+ 2(1 + ε)

)

≤ ε0,

(

(1 + ε)2/p − 1
)

|YM (g)| ≤ ε0,
(

1− (1− ε)2+2/p
)

|YM (g)| ≤ ε0.

(1)

Let p = 2n
n−2 . There exist a fineC2-neighborhoodU of g and a functionδ ∈ C∞(M,R>0) with the

properties stated in Corollary 6.3. For everyh ∈ U and everyv ∈ C∞
c (M,R≥0) with

∫

M vp dµh = 1,
we have to estimateEh(v) from below.
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Sinceδ ≤ ε < 1 by 6.3(1), we can considerw =
(dµh

dµg
(1 − δ)

)1/2
v ∈ C∞

c (M,R≥0)\{0}. With
6.3(2,3), we obtain:

Eh(v) = an

∫

M
|dv|2h dµh +

∫

M
scalh v

2 dµh

≥ an

∫

M
(1− δ) dµh

dµg
|dv|2g dµg +

∫

M

dµh
dµg

(scalg − δ) v2 dµg

≥ an

∫

M
|dw|2g dµg − an

∫

M
v2
∣

∣

∣
d
(

(dµh
dµg

(1− δ)
)1/2

)∣

∣

∣

2

g
dµg

− 2an

∫

M

〈

v dv,
(dµh

dµg
(1− δ)

)1/2
d
(

(dµh
dµg

(1 − δ)
)1/2

)〉

g
dµg

+

∫

M
scalg(1− δ) dµh

dµg
v2 dµg −

∫

M
scalg(1− δ) dµh

dµg
v2 dµg +

∫

M

dµh
dµg

(scalg − δ) v2 dµg

= Eg(w)‖w‖2Lp(g) − an

∫

M
v2
∣

∣

∣
d
(

(dµh
dµg

(1− δ)
)1/2

)
∣

∣

∣

2

g
dµg

− an
2

∫

M
v2 ∆g

(dµh
dµg

(1− δ)
)

dµg +

∫

M

dµh
dµg

δ scalg v
2 dµg −

∫

M

dµh
dµg

δ v2 dµg.

Corollary 6.3(4) yieldsdµh
dµg

≤ 1 + ε, thus‖v‖Lp(g) ≤ (1 + ε)1/p‖v‖Lp(h) = (1 + ε)1/p ≤ 1 + ε. Using
this and 6.3(1,5) and

∥

∥

dµh
dµg

δ scalg
∥

∥

Ln/2(g)
≤
∥

∥

dµh
dµg

∥

∥

L∞(g)

∥

∥δ scalg
∥

∥

Ln/2(g)
≤ (1 + ε)

∥

∥δ scalg
∥

∥

Ln/2(g)
,

we obtain:

Eh(v) ≥ YM (g)‖w‖2Lp(g) − an(1 + ε)2
∥

∥

∥
d
(

(dµh
dµg

(1− δ)
)1/2

)∥

∥

∥

2

Ln(g)

− an
2
(1 + ε)2

∥

∥∆
(dµh

dµg
(1− δ)

)∥

∥

Ln/2(g)
− (1 + ε)3 ‖δ scalg‖Ln/2(g) − (1 + ε)3 ‖δ‖Ln/2(g)

≥ YM (g)‖w‖2Lp(g) − ε(1 + ε)2
(

3an
2

+ 2(1 + ε)

)

≥ YM (g)‖w‖2Lp(g) − ε0.

Sincew2 = (1− δ)dµh
dµg

v2 ≤ (1− δ)(1 + δ)v2 ≤ v2 by Corollary 6.3(1,4), we have

‖w‖2Lp(g) ≤ (1 + ε)2/p ‖w‖2Lp(h) ≤ (1 + ε)2/p ‖v‖2Lp(h) = (1 + ε)2/p.

On the other hand,w2 = (1− δ)dµh
dµg

v2 ≥ (1− δ)2v2 ≥ (1− ε)2v2 yields

‖w‖2Lp(g) ≥ (1− ε)2/p‖w‖2Lp(h) ≥ (1− ε)2+2/p‖v‖2Lp(h) = (1− ε)2+2/p.

Therefore we obtain from (1):

Eh(v) ≥
{

(1 + ε)2/p YM (g) − ε0 if YM (g) ≤ 0

(1− ε)2+2/p YM(g) − ε0 if YM (g) > 0

}

≥ YM (g)− 2ε0.

This holds for allv ∈ C∞
c (M,R≥0) with

∫

M vp dµh = 1 and thus for allv ∈ C∞
c (M,R≥0)\{0}.

Taking the infimum over all suchv yieldsYM (h) ≥ YM (g)−2ε0. Since for everyε0 ∈ R>0 there exists
a neighborhoodU of g such that this is true for allh ∈ U , the mapYM is lower semicontinuous atg. �

Following essentially the same proof we would see that alsoY M is continuous with respect to the
fineC2-topology. But we will show even more: thatY M is locally constant.

Proof of Theorem 1.6.We have to show that eachg ∈ Metr(M) has a fineC2-neighborhood on which
Y M is constant. Let(Ki)i∈N be a compact exhaustion ofM . We first study the case whereYM\Ki0

(g) >

−∞ holds for somei0 ∈ N. By Fact 2.6,YM\Ki
(g) > −∞ holds then for alli ≥ i0.
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For i > i0, there exists avi ∈ C∞(M,R≥0) which has compact support inM\Ki and satisfies
‖vi‖Lp(g) = 1 andEg(vi) ≤ YM\Ki

(g) + i−1. ForAi :=
∫

M (scalg)− v2i dµg (which is a finite number
becausevi has compact support), we chooseεi ∈ R>0 so small that

(1− εi)
−2/p

(

(1 + εi)
2i−1 + (ε2i + 3εi)Ai + (1 + εi)εi

)

≤ 2i−1,

(1− εi)
−2/p (1 + εi)

2 |YM\Ki
(g)| ≤ |YM\Ki

(g)| + i−1
(2)

and

εi(1 + εi)
2

(

3an
2

+ 2(1 + εi)

)

≤ i−1,

(

(1 + εi)
2/p − 1

)

|YM (g)| ≤ i−1,
(

1− (1− εi)
2+2/p

)

|YM (g)| ≤ i−1.

(3)

We chooseεi ∈ R>0 arbitrarily for i ≤ i0. For the resulting sequence(εi)i∈N, there exist a function
δ ∈ C∞(M,R>0) and a fineC2-neighborhoodU of g with the properties stated in Lemma 6.2. We
obtain for everyh ∈ U and everyi > i0:

YM\Ki
(h) ≤ Eh(vi) = ‖vi‖−2

Lp(h)

(

an

∫

M\Ki

|dvi|2h dµh +

∫

M\Ki

scalh v
2
i dµh

)

≤ ‖vi‖−2
Lp(h)

(

an

∫

M\Ki

(1 + εi)
2 |dvi|2g dµg +

∫

M\Ki

(δ + scalg) v
2
i

dµh
dµg

dµg

)

≤ ‖vi‖−2
Lp(h)

(

(1 + εi)
2 Eg(vi)− (1 + εi)

2

∫

M\Ki

scalg v
2
i dµg

+

∫

M\Ki

scalg v
2
i

dµh
dµg

dµg + (1 + εi)‖δ‖Ln/2(M\Ki;g)

)

.

Using−ε2i − 3εi = (1− εi)− (1 + εi)
2 ≤ dµh

dµg
− (1 + εi)

2 ≤ (1 + εi)− (1 + εi)
2 < 0, we get

YM\Ki
(h) ≤ ‖vi‖−2

Lp(h)

(

(1 + εi)
2Eg(vi) +

∫

M\Ki

(

dµh
dµg

− (1 + εi)
2
)

scalg v
2
i dµg + (1 + εi)εi

)

≤ ‖vi‖−2
Lp(h)

(

(1 + εi)
2Eg(vi) +

∫

M\Ki

(

(1 + εi)
2 − dµh

dµg

)

(scalg)− v2i dµg + (1 + εi)εi

)

≤ ‖vi‖−2
Lp(h)

(

(1 + εi)
2Eg(vi) + (ε2i + 3εi)

∫

M\Ki

(scalg)− v2i dµg + (1 + εi)εi

)

≤ ‖vi‖−2
Lp(h)

(

(1 + εi)
2
(

YM\Ki
(g) + i−1

)

+ (ε2i + 3εi)Ai + (1 + εi)εi

)

.

Since(1− εi)
2/p ≤ ‖vi‖2Lp(M\Ki;h)

≤ (1+ εi)
2/p andAi ≥ 0 and2− 2

p > 0, we obtain from (2) in the
caseYM\Ki

(g) < 0:

YM\Ki
(h) ≤ (1 + εi)

2i−1 + (ε2i + 3εi)Ai + (1 + εi)εi

(1− εi)2/p
+

(1 + εi)
2 YM\Ki

(g)

(1 + εi)2/p
≤ YM\Ki

(g) +
2

i
;

and in the caseYM\Ki
(g) ≥ 0:

YM\Ki
(h) ≤ (1 + εi)

2i−1 + (ε2i + 3εi)Ai + (1 + εi)εi

(1− εi)2/p
+

(1 + εi)
2 YM\Ki

(g)

(1− εi)2/p
≤ YM\Ki

(g) +
3

i
.

As this holds for everyi > i0, we haveY M (h) ≤ Y M (g) for all h ∈ U .

The proof ofY M (h) ≥ Y M (g) works now almost exactly as the estimates in the lower semicontinuity
part of the proof of Theorem 1.4: We replace everyε by εi, replace everyM by M\Ki, replace every
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ε0 by i−1, consider test functionsv ∈ C∞
c (M\Ki,R≥0)\{0} instead ofv ∈ C∞

c (M,R≥0)\{0}, define

w :=
(dµh

dµg
(1−δ)

)1/2
v as before, use (3) instead of (1), and apply the properties ofδ andU from Lemma

6.2 instead of Corollary 6.3. For eachi > i0, we obtain in this wayEh(v) ≥ YM\Ki
(g) − 2i−1 for all

v ∈ C∞
c (M\Ki,R≥0)\{0}, henceYM\Ki

(h) ≥ YM\Ki
(g)− 2i−1. This impliesY M (h) ≥ Y M (g).

Thus eachg ∈ Metr(M) with YM\Ki
(g) > −∞ has a fineC2-neighborhoodU on whichYM is

constant.

It remains to consider the case whereYM\Ki
(g) = −∞ for all i ∈ N. For everyi > 0, there exists a

functionvi ∈ C∞
c (M\Ki,R≥0) with ‖vi‖Lp(g) = 1 andEg(vi) ≤ −i. ForAi :=

∫

M (scalg)− v2i dµg,
we chooseεi ∈ R>0 so small that the first inequality of (2) is valid. There exista fineC2-neighborhood
U of g and a functionδ ∈ C∞(M,R>0) with the properties stated in Lemma 6.2. The same estimate as
above yields

YM\Ki
(h) ≤ ‖vi‖−2

Lp(h)

(

(1 + εi)
2Eg(vi) + (ε2i + 3εi)

∫

M\Ki

(scalg)− v2i dµg + (1 + εi)εi

)

≤ (1 + εi)
2Eg(vi)

(1 + εi)2/p
+

(1 + ε2i )i
−1 + (ε2i + 3εi)Ai + (1 + εi)εi

(1− εi)2/p

≤ −i+ 2i−1.

Since this holds for alli > 0, we obtainY M (h) = −∞ for all h ∈ U .

Hence, in each case, everyg ∈ U has a fineC2-neighborhood on whichY M is constant. �

Proof of Theorem 1.5.Y −1
M ({−∞}) is fineC2-closed inMetr(M) because of Theorem 1.4. Theorem

1.7(1,3) tells us thatY −1
M ({−∞}) is equal toY

−1
M ({−∞}). Theorem 1.6 implies thatY

−1
M ({−∞}) is

fineC2-open inMetr(M). �

8. PROOF OFTHEOREM 1.8

8.1. Lemma. Let (M,h) be a closed Riemannian manifold of dimensionn ≥ 2. If n ≥ 3, assume
YM (h) < 0. If n = 2, assume thatM has negative Euler characteristic. Then there exists anih ∈ R>0

such that for everyi ∈ [ih,∞[ and every Riemannian metricg onM × R which coincides withh+ dt2

onM × [0, 3i], the inequalityYM×R(g) ≤ −i1/(n+1) holds. In particularYM×R(h+ dt2) = −∞.

Proof. Let p = 2(n+1)
(n+1)−2 . If dim(M) ≥ 3, then by the solution of the Yamabe problem on closed

manifolds, there is a functionw ∈ C∞(M,R>0) with Eh(w) = YM (h) and‖w‖Lq(h) = 1, where
q = 2n

n−2 . SinceYM(h) < 0, there exists a numberih > 0 such that

8an ‖w‖2L2(h)

i1+2/p ‖w‖2Lp(h)

+ i2/(n+1) YM(h)

32/p ‖w‖2Lp(h)

≤ −i1/(n+1)

holds for alli ∈ [ih,∞[. For such ani, let g be a Riemannian metric onM × R which coincides with
h+ dt2 onM × [0, 3i].

We choose a functionui ∈ C∞(R, [0, 1]) with supp(ui) ⊂ [0, 3i] andui |[i,2i] ≡ 1 and |u′i| ≤ 2
i .

Theni ≤ ‖ui‖2L2(R) and‖u′i‖2L2(R) ≤ 4
i2
· 2i = 8

i andi2/p ≤ ‖ui‖2Lp(R) ≤ (3i)2/p, hence

‖u′i‖2L2(R)

‖ui‖2Lp(R)

≤ 8

i1+2/p
,

‖ui‖2L2(R)

‖ui‖2Lp(R)

≥ i

(3i)2/p
=

i2/(n+1)

32/p
.

We consider the functionvi ∈ C∞(M × R,R≥0)\{0} defined byvi(x, t) := w(x)ui(t).
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Since scalg(x, t) = scalh(x) and d(x,t)vi(z, 1) = ui(t)dxw(z)+w(x)u′i(t) for all (x, t) ∈ M× [0, 3i]

andz ∈ TxM , and sincean+1 =
4n
n−1 < 4(n−1)

n−2 = an andYM (h) < 0, we obtain:

Eg(vi) =

∫

M×R

(

an+1 |dvi|2g + scalg v
2
i

)

dµg

(
∫

M×R

vpi dµg

)2/p
≤

∫

M×[0,3i]

(

an|dvi|2g + scalg v
2
i

)

dµg

(
∫

M×[0,3i]
vpi dµg

)2/p

=

an

∫

M
w2 dµh ·

∫

[0,3i]
(u′i)

2 dt+
∫

M

(

an|dw|2h + scalhw
2

)

dµh ·
∫

[0,3i]
u2i dt

(
∫

M
wp dµh ·

∫

[0,3i]
upi dt

)2/p

=
an ‖w‖2L2(h) ‖u′i‖2L2(R) + YM (h)‖ui‖2L2(R)

‖w‖2Lp(h) ‖ui‖2Lp(R)

≤
8an ‖w‖2L2(h)

i1+2/p ‖w‖2Lp(h)

+ i2/(n+1) YM(h)

32/p ‖w‖2Lp(h)

≤ −i1/(n+1).

ThusYM×R(g) ≤ Eg(vi) ≤ −i1/(n+1) andYM×R(h+ dt2) ≤ inf{−i1/(n+1) | i ∈ [ih,∞[} = −∞.

It remains to prove the case whereM is a closed2-manifold with χ(M) < 0. There exists an
ih ∈ R>0 with

∀i ∈ [ih,∞[ :
8a3 ‖1‖2L2(h)

i4/3 ‖1‖2
L6(h)

+ i2/3
4πχ(M)

31/3‖1‖2
L6(h)

≤ −i1/3.

We takew = 1 and defineui, vi as before. Using the Gauss–Bonnet theorem
∫

M scalh dµh = 4πχ(M),
we obtain similarly as above (withp = 2·3

3−2 = 6) for i ≥ ih:

Eg(vi) =

a3‖w‖2L2(h) ‖u′i‖2L2(R) +

∫

M

(

a3|dw|2h + scalhw
2

)

dµh ‖ui‖2L2(R)

‖w‖2Lp(h) ‖ui‖2Lp(R)

≤
8a3 ‖1‖2L2(h)

i1+2/6 ‖1‖2
L6(h)

+ i2/3
4πχ(M)

31/3 ‖1‖2
L6(h)

≤ −i1/3.

ThusYM×R(g) ≤ Eg(vi) ≤ −i1/3 andYM×R(h+ dt2) ≤ inf{−i1/3 | i ∈ [ih,∞[} = −∞. �

8.2.Lemma. Letm,n ∈ N≥3, let g0 be a Riemannian metric on the openn-ball Bn. Then there is a
metricg ∈ Metr(Bn) with YBn(g) ≤ −m which coincides withg0 outside a compact subsetK ofBn.

Proof. Let M be an(n − 1)-dimensional compact submanifold ofBn which admits a Riemannian
metric h of scalar curvature−1 (and henceYM (h) < 0 if n ≥ 4, andχ(M) < 0 if n = 3): If
n ≥ 4, we can chooseM diffeomorphic toSn−1; if n = 3, we can chooseM diffeomorphic to a
closed orientable surface of genus2. There exist a relatively compact (tubular) neighborhoodU of
M in Bn and a diffeomorphismϕ : U → M × R. Let ih be as in Lemma 8.1 (with then there
replaced byn − 1). We choose a numberi ≥ ih with i1/n ≥ m, and a Riemannian metricg on Bn

whose restriction toϕ−1(M × [0, 3i]) is ϕ∗(h + dt2) and whose restriction toBn\U is g0. This yields
YBn(g) ≤ YM×R(g) ≤ −i1/n ≤ −m by Fact 2.6 and Lemma 8.1. �

Proof of Theorem 1.8(1).From Gromov’s h-principle [10, Theorem 4.5.1] (which holdsfor manifolds
each of whose connected components is noncompact) we know that there exists a metricg0 ∈ Metr(M)
with positive scalar curvature. Clearly,YM (g0) ≥ 0. Hence0 ≤ σ(M) ≤ σ(Sn).

We choose an embedded openn-ball B in M . For anym ∈ N≥3, Lemma 8.2 gives us a metricg1
on M which coincides withg0 outside a compact subsetK of B and satisfiesYB(g1) ≤ −m, hence
alsoYM(g1) ≤ −m by Fact 2.6. We consider the pathg : [0, 1] → Metr(M) from g0 to g1 given by
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g(t) := (1− t)g0 + tg1. This path is continuous with respect to the fineC2-topology onMetr(M): for
everyt0 ∈ [0, 1] and every neighborhoodU of graph(j2(g(t0))) in J2Sym2

+T
∗M , the set oft ∈ [0, 1]

with graph(j2(g(t))) ⊆ U is open in[0, 1] because allg(t) coincide outside the compact subsetK of
M .

According to Theorem 1.4, the map[0, 1] → R∪{−∞} (which actually takes only values inR) given
by t 7→ YM(g(t)) is therefore continuous, being a composition of continuousmaps. Thus[−m,YM (g0)]
is contained in the image ofYM . Since this holds for everym, the interval]−∞, YM (g0)] is contained
in the image ofYM .

It remains to show that there is also a metrich ∈ Metr(M) with YM (h) = −∞. We choose a
compact exhaustion(Ki)i∈N of M and a sequence of open ballsBi ⊂ Ki+1\Ki; this is possible: since
M is noncompact, eachKi+1\Ki has nonempty interior. Lemma 8.2 yields for eachi ∈ N a metrichi
onBi which coincides outside a compact subset ofBi with g0 and satisfiesYBi(hi) ≤ −i. We define
h ∈ Metr(M) by h |Bi = h for every i ∈ N, andh = g0 on M\⋃i∈NBi. By Fact 2.6, we have
YM (h) ≤ YBi(h) = YBi(hi) ≤ −i for all i; henceYM (h) = −∞. �

Proof of Theorem 1.8(2).If the n-manifoldM , each of whose connected components is noncompact, is
diffeomorphic to an open subset of a closedn-manifoldM , then there exists an embeddingι : M → M
such that for each connected componentC of M the setC\ι(M) has nonempty interior. (LetC be a
connected component ofM such thatMC := C ∩ ι(M) is nonempty. There exists a smooth embedding
γ : [0, 1] → C with γ−1(MC) = [0, 1[. Moreover, there is a closed tubular neighborhoodA in MC

of the image ofγ |[0,1[ such thatMC\A is diffeomorphic toMC . Taking ι |ι−1(C) to be the inclusion
ι−1(C) ∼= MC

∼= MC\A → C for eachC, we obtain an embeddingι with the claimed property.) We
choose such an embedding and identifyM with ι(M).

We extend the constant functionan onM to a functions ∈ C∞(M,R) which is somewhere negative
on each connected component ofM ; this is possible becauseC\M has nonempty interior for each
connected componentC of M . By [16, Theorem 1.1],M admits a Riemannian metricg with scalar
curvatures. The metricg := ι∗g onM has constant scalar curvaturean.

Let p = pn. By the Sobolev embedding theorem on(M,g), there is a constantc ∈ R>0 such that
‖u‖Lp(g) ≤ c‖u‖H1,2(g) holds for allu ∈ C∞(M,R). Every test functionv ∈ C∞

c (M,R≥0)\{0} can
be extended by0 to a functionv ∈ C∞(M,R≥0)\{0} and thus satisfies

‖v‖2Lp(g) = ‖v‖2Lp(g) ≤ c2‖v‖2H1,2(g) = c2‖v‖2H1,2(g) =
c2

an

∫

M

(

an|dv|2g + anv
2
)

dµg

=
c2

an
Eg(v)‖v‖2Lp(g).

This yieldsEg(v) ≥ an/c
2 for all test functionsv, henceYM (g) ≥ an/c

2 > 0 andσ(M) > 0. �

9. THE COMPACT-OPEN DISCONTINUITY OF THEYAMABE MAP : PROOF OFTHEOREM 1.1

Proof of Theorem 1.1.For the compact-openC2-topology, upper semicontinuity ofYM and continuity
at metricsg with YM (g) = −∞ have been proved in Lemma 4.1. IfM is compact, then the fine
C2-topology coincides with the compact-openC2-topology, so Theorem 1.4 yields the compact-open
C2-continuity; of course this continuity was already known from [7, Proposition 4.31]. It remains to
show that ifM is noncompact, then at each metricg ∈ Metr(M) with YM(g) > −∞ the Yamabe map
YM is not (lower semi)continuous with respect to the compact-openC∞-topology (and hence neither
with respect to any other compact-openCk-topology).

Theorem 1.8(1) says thatM admits a metricg−∞ with YM(g−∞) = −∞. We choose a compact
exhaustion(Ki)i≥0 of M and define(gi)i≥0 in Metr(M) by

gi :=

{

g onKi

g−∞ onM\Ki+1
,
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and onKi+1\Ki in an arbitrary way such thatgi becomes a smooth metric onM . Then(gi)i≥0 con-
verges tog in the compact-openC∞-topology: since every compact subsetK of M is contained in some
Kj , we have‖gi − g‖Cr(K;g) ≤ ‖gi − g‖Cr(Kj ;g) = 0 for i ≥ j and allr ∈ N.

By Theorem 1.7(3),YM (g−∞) = −∞ implies limi→∞ YM\Ki
(g−∞) = −∞. Since the sequence

(

YM\Ki
(g−∞)

)

i≥0
is monotonically increasing, it must be constant−∞.

HenceYM(gi) ≤ YM\Ki+1
(gi) = YM\Ki+1

(g−∞) = −∞ for all i ≥ 0. But the limit metricg
satisfiesYM(g) > −∞. This shows thatYM is not compact-openC∞-continuous. �

10. PREPARATIONS FOR THE UNIFORM CONTINUITY PROOF

10.1.Lemma. LetM be a manifold, letε ∈ R>0. Everyg ∈ Metr(M) has a neighborhoodU with
respect to the uniformC2-topology such that the following properties hold for allh ∈ U :

(1) ∀α ∈ T ∗M :
∣

∣|α|2h − |α|2g
∣

∣ ≤ ε|α|2g.

(2)
∣

∣

∣

dµh
dµg

− 1
∣

∣

∣
≤ ε.

(3) |scalh − scalg| ≤ ε
2

(

1 + |scalg|
)

.

Proof. SinceR>0 ∋ t 7→ 1
t is continuous, there exists aδ ∈ R>0 such that

∣

∣

1
t − 1

∣

∣ ≤ ε holds for all
t ∈ R>0 with |t−1| ≤ δ. We claim that everyh ∈ Ng,δ,0 satisfies (1). In order to prove that, we consider
h ∈ Ng,δ,0 andx ∈ M andα ∈ T ∗

xM . The spectral theorem yields ag-orthonormal basis(e1, . . . , en)
of TxM which is alsoh-orthogonal; thus there areh1, . . . , hn ∈ R>0 with ∀i, j : h(ei, ej) = hiδij . The
conditionh ∈ Ng,δ,0 implies|h−g|g(x) ≤ δ, i.e.δ2 ≥∑n

i,j=1(h(ei, ej)−g(ei, ej))
2 =

∑n
i=1(hi−1)2.

In particular∀i : |hi− 1| ≤ δ, hence∀i :
∣

∣

1
hi

− 1
∣

∣ ≤ ε. For the numbersαi := α(ei), we compute (using

that
(

h
−1/2
1 e1, . . . , h

−1/2
n en

)

is anh-orthonormal basis ofTxM ):

∣

∣

∣
|α|2h − |α|2g

∣

∣

∣
=

∣

∣

∣

∣

∣

n
∑

i=1

1

hi
α2
i −

n
∑

i=1

α2
i

∣

∣

∣

∣

∣

≤
n
∑

i=1

∣

∣

∣

∣

1

hi
− 1

∣

∣

∣

∣

α2
i ≤ ε|α|2g .

This proves our claim; in particular, every elementh of U1 := Ng,δ,2 ⊆ Ng,δ,0 satisfies (1).

Since(R>0)
n ∋ (t1, . . . , tn) 7→

∏n
i=1

√
ti is continuous, there exists a numberδ2 ∈ R>0 such that

∣

∣

∏n
i=1

√
ti − 1

∣

∣ ≤ ε holds for all(t1, . . . , tn) ∈ (R>0)
n with ∀i : |ti − 1| ≤ δ2. We claim that every

h ∈ Ng,δ2,0 satisfies (2). In order to prove that, we considerh ∈ U2 andx ∈ M and again ag-
orthonormal basis(e1, . . . , en) of TxM which is alsoh-orthogonal, and we defineh1, . . . , hn as before.
We obtain
∣

∣

∣

dµh
dµg

− 1
∣

∣

∣
(x) =

∣

∣

∣

∣

dµh(e1, . . . , en)

dµg(e1, . . . , en)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

dµh

(

h
−1/2
1 e1, . . . , h

−1/2
n en

)

dµg(e1, . . . , en)

n
∏

i=1

h
1/2
i − 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∏

i=1

h
1/2
i − 1

∣

∣

∣

∣

∣

.

Since∀i : |hi − 1| ≤ δ2 holds by the same argument as above, we get
∣

∣

dµh
dµg

− 1
∣

∣(x) ≤ ε. This is true for
everyx ∈ M , which proves our claim; in particular, everyh ∈ U2 := Ng,δ2,2 ⊆ Ng,δ2,0 satisfies (1).

There exists a (small) numberδ3 ∈ ]0, 1[ with

δ3
1− δ3

≤ ε

2
,

2n2

1− δ3

(

3nδ23
2(1 − δ3)2

+
3δ3

2(1 − δ3)

)

+
2n3

1− δ3

(

3nδ3
2(1− δ3)

)2

≤ ε

2
.

Let U3 := Ng,δ3,2. We claim that (3) holds for everyh ∈ U3.

Let x ∈ M . We choose a basis(e1, . . . , en) of TxM with the same properties as before and define
h1, . . . , hn in the same way. Existence of normal coordinates atx tells us that there are local coordinates
(x1, . . . , xn) aroundx such that the corresponding coordinate vector fields∂1, . . . , ∂n satisfy atx the
equations∂i(x) = ei andΓk

ij(x) = 0 for all i, j, k ∈ {1, . . . , n}, whereΓk
ij are the Christoffel symbols

of the metricg with respect to the local coordinates. As usual,gij andhij denote the elements of
the inverses of the matrix-valued functions(gij)i,j=1...n and(hij)i,j=1...n given bygij = g(∂i, ∂j) and
hij = h(∂i, ∂j). At x, they satisfygij(x) = δij andhij(x) = 1

hi
δij . Let Γ̃k

ij denote the Christoffel
symbols ofh with respect to our local coordinates. In the following, allsums run from1 to n.
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Fromh ∈ Ng,δ3,2, we deduce

δ23 ≥ |h− g|2g (x) =
∑

i,j,k,l

(

gikgjl(hij − gij)(hkl − gkl)
)

(x) =
∑

i

(hi − 1)2

and (with∇ denoting the Levi-Civita connection ofg), using∇g = 0,

δ23 ≥ |∇h|2g(x) =
∑

i,j,k

(

(∇∂ih)(∂j , ∂k)
)2

(x) =
∑

i,j,k

(

∂ihjk −
∑

l

Γl
ijhlk −

∑

l

Γl
ikhlj

)2

(x)

=
∑

i,j,k

(∂ihjk)(x)
2

and

δ23 ≥ |∇∇h|2g(x)

=
∑

i,j,k,l

(

∂l(∇∂ih)(∂j , ∂k)

−
∑

m

(

Γm
li (∇∂mh)(∂j , ∂k) + Γm

lj (∇∂ih)(∂m, ∂k) + Γm
lk(∇∂ih)(∂j , ∂m)

))2

(x)

=
∑

i,j,k,l

(

∂l

(

∂ihjk −
∑

m

Γm
ijhmk −

∑

m

Γm
ikhmj

))2

(x)

=
∑

i,j,k,l

(

∂l∂ihjk −
∑

m

(∂lΓ
m
ij )hmk −

∑

m

(∂lΓ
m
ik)hmj

)2

(x).

Hence we obtain for alli, j, k, l ∈ {1, . . . , n}:

δ3 ≥ |hi − 1|,
δ3 ≥ |∂ihjk|(x),

δ3 ≥
∣

∣

∣
∂l∂ihjk − (∂lΓ

k
ij)hk − (∂lΓ

j
ik)hj

∣

∣

∣
(x).

(4)

Recall that the Christoffel symbols are given byΓ̃c
ab =

1
2

∑

m hcm(∂ahbm + ∂bham − ∂mhab). Since
every functionA ∈ C∞(Rn,GL(n)) satisfies∂i(A−1) = −A−1(∂iA)A

−1, we get

(∂dΓ̃
c
ab)(x) = −

∑

m

(

∂dhcm
2hchm

(

∂ahbm + ∂bham − ∂mhab

)

)

(x)

+
1

2hc

(

∂d∂ahbc + ∂d∂bhac − ∂d∂chab

)

(x).

(5)

Using the symmetryΓk
ij = Γk

ji, we obtain from (4):

∣

∣

∣
∂d∂ahbc + ∂d∂bhac − ∂d∂chab − 2hc∂dΓ

c
ab

∣

∣

∣
(x)

=
∣

∣

∣

(

∂d∂ahbc − hc∂dΓ
c
ab − hb∂dΓ

b
ac

)

+
(

∂d∂bhac − hc∂dΓ
c
ba − ha∂dΓ

a
bc

)

−
(

∂d∂chab − hb∂dΓ
b
ca − ha∂dΓ

a
cb

)

∣

∣

∣
(x)

≤ 3δ3.
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Together with (5) and (4), this yields
∣

∣

∣
∂dΓ̃

c
ab − ∂dΓ

c
ab

∣

∣

∣
(x) ≤

∑

m

∣

∣

∣

∣

∂dhcm
2hchm

(

∂ahbm + ∂bham − ∂mhab

)

∣

∣

∣

∣

(x)

+

∣

∣

∣

∣

∂d∂ahbc + ∂d∂bhac − ∂d∂chab − 2hc∂dΓ
c
ab

2hc

∣

∣

∣

∣

(x)

≤
∑

m

3δ23
2hchm

+
3δ3
2hc

≤ 3nδ23
2(1− δ3)2

+
3δ3

2(1− δ3)
.

The well-known local coordinate formula for scalar curvature tells us that

scalg(x) =
∑

a,b,c

gab
(

∂cΓ
c
ab − ∂bΓ

c
ac +

∑

d

Γd
abΓ

c
cd −

∑

d

Γd
acΓ

c
bd

)

(x) =
∑

a,c

(

∂cΓ
c
aa − ∂aΓ

c
ac

)

(x)

and

scalh(x) =
∑

a,b,c

hab
(

∂cΓ̃
c
ab − ∂bΓ̃

c
ac +

∑

d

Γ̃d
abΓ̃

c
cd −

∑

d

Γ̃d
acΓ̃

c
bd

)

(x)

=
∑

a,c

∂cΓ̃
c
aa − ∂aΓ̃

c
ac +

∑

d Γ̃
d
aaΓ̃

c
cd −

∑

d Γ̃
d
acΓ̃

c
ad

ha
(x).

Using the estimate
∣

∣Γ̃k
ij

∣

∣(x) ≤ 1

2

∑

m

∣

∣

∣
hcm(∂ahbm + ∂bham − ∂mhab)

∣

∣

∣
(x) ≤ 3nδ3

2(1− δ3)
,

we obtain finally:

∣

∣scalh − scalg
∣

∣(x) =

∣

∣

∣

∣

∣

∑

a,c

∂cΓ̃
c
aa − ∂aΓ̃

c
ac +

∑

d Γ̃
d
aaΓ̃

c
cd −

∑

d Γ̃
d
acΓ̃

c
ad − ha

(

∂cΓ
c
aa − ∂aΓ

c
ac

)

ha

∣

∣

∣

∣

∣

(x)

≤
∑

a,c

∣

∣

∣

∣

∣

(

∂cΓ̃
c
aa − ∂cΓ

c
aa

)

− (∂aΓ̃
c
ac − ∂aΓ

c
ac)

ha

∣

∣

∣

∣

∣

(x)

+
∑

a,c,d

∣

∣

∣

∣

∣

Γ̃d
aaΓ̃

c
cd − Γ̃d

acΓ̃
c
ad

ha

∣

∣

∣

∣

∣

(x) +
|1− ha|

ha

∣

∣

∣

∣

∣

∑

a,c

(

∂cΓ
c
aa − ∂aΓ

c
ac

)

∣

∣

∣

∣

∣

(x)

≤ 2n2

1− δ3

(

3nδ23
2(1− δ3)2

+
3δ3

2(1− δ3)

)

+
2n3

1− δ3

(

3nδ3
2(1 − δ3)

)2

+
δ3

1− δ3
|scalg(x)|

≤ ε

2

(

1 + |scalg|(x)
)

.

This is true for everyx ∈ M , which proves our claim.

The uniformC2-neighborhoodU := U1 ∩ U2 ∩ U3 of g has the desired property. �

11. CONTINUITY WITH RESPECT TO THE UNIFORM TOPOLOGY: PROOF OFTHEOREM 1.2

Proof of Theorem 1.2.Upper semicontinuity and continuity at metrics with Yamabeconstant−∞ fol-
low from Corollary 4.2. It remains to prove lower semicontinuity at each metricg ∈ Metr(M) with
YM (g) > −∞ for which there exists a numberδ ∈ R>0 with ‖(scalg − δ)−‖Ln/2(g) < ∞.

We start with the caseδ = 1. Let ε0 ∈ ]0, 1[. Let p = pn. There exists a (small)ε ∈ ]0, 1[ such that
3
2ε(7 − ε)(1 − ε)−2/p

∥

∥(scalg − 1)−
∥

∥

Ln/2(g)
≤ ε0

and

(

1− (1− ε)2

(1 + ε)2/p

)

|YM (g)| ≤ ε0.
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Let

A :=
{

x ∈ M
∣

∣

∣

ε
2

(

1− ε
2

)−1 ≤ scalg(x)
}

,

B :=
{

x ∈ M
∣

∣

∣
0 < scalg(x) < ε

2

(

1− ε
2

)−1
}

,

C :=
{

x ∈ M
∣

∣

∣
scalg(x) ≤ 0

}

.

We choose a uniformC2-neighborhood ofU with the properties stated in Lemma 10.1. For every
h ∈ U andv ∈ C∞

c (M,R), we have

− (1− ε)2
∫

A
scalg v

2 dµg +

∫

A

(

scalg − ε
2 |scalg| − ε

2

)

v2 dµh
dµg

dµg

≥ −(1− ε)2
∫

A
scalg v

2 dµg + (1− ε)

∫

A

(

(

1− ε
2

)

scalg − ε
2

)

v2 dµg

= ε
2(1− ε)

∫

A
(scalg − 1) v2 dµg

≥ − ε
2(1− ε)

∫

A
(scalg − 1)− v2 dµg ≥ − ε

2(1− ε)
∥

∥(scalg − 1)−
∥

∥

Ln/2(A;g)
‖v‖2Lp(A;g)

≥ − ε
2(1− ε)

∥

∥(scalg − 1)−
∥

∥

Ln/2(g)
‖v‖2Lp(g)

and

− (1− ε)2
∫

B
scalg v

2 dµg +

∫

B

(

scalg − ε
2 |scalg| − ε

2

)

v2 dµh
dµg

dµg

≥ −(1− ε)2
∫

B
scalg v

2 dµg + (1 + ε)

∫

B

(

(

1− ε
2

)

scalg − ε
2

)

v2 dµg

≥ ε
2 (5− 3ε)

∫

B
scalg v

2 dµg − ε
2(1 + ε)

∫

B
v2 dµg ≥ ε

2(5− 3ε)

∫

B
(scalg − 1) v2 dµg

≥ − ε
2(5− 3ε)

∥

∥(scalg − 1)−
∥

∥

Ln/2(g)
‖v‖2Lp(g)

and

− (1− ε)2
∫

C
scalg v

2 dµg +

∫

C

(

scalg − ε
2 |scalg| − ε

2

)

v2 dµh
dµg

dµg

≥ −(1− ε)2
∫

C
scalg v

2 dµg + (1 + ε)

∫

C

(

(

1 + ε
2

)

scalg − ε
2

)

v2 dµg

= ε
2(7− ε)

∫

C
scalg v

2 dµg − ε
2(1 + ε)

∫

C
v2 dµg ≥ ε

2(7− ε)

∫

C
(scalg − 1) v2 dµg

≥ − ε
2(7− ε)

∥

∥(scalg − 1)−
∥

∥

Ln/2(g)
‖v‖2Lp(g) ;

hence, using
∫

M vp dµg =
∫

M vp
(dµh

dµg

)−1
dµh ≤ (1− ε)−1

∫

M vp dµh:

− (1− ε)2
∫

M
scalg v

2 dµg +

∫

M

(

scalg − ε
2 |scalg| − ε

2

)

v2 dµh
dµg

dµg

≥ −3
2ε(7− ε)

∥

∥(scalg − 1)−
∥

∥

Ln/2(g)
‖v‖2Lp(g)

≥ −3
2ε(7− ε)(1 − ε)−2/p

∥

∥(scalg − 1)−
∥

∥

Ln/2(g)
‖v‖2Lp(h) .
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We get for allh ∈ U andv ∈ C∞
c (M,R≥0) with ‖v‖Lp(h) = 1:

Eh(v) = an

∫

M
|dv|2h dµh

dµg
dµg +

∫

M
scalh v

2 dµh
dµg

dµg

≥ (1− ε)2
∫

M
an |dv|2g dµg +

∫

M

(

scalg − ε
2 |scalg| − ε

2

)

v2 dµh
dµg

dµg

≥ (1− ε)2
(

Eg(v) ‖v‖2Lp(g) −
∫

M
scalg v

2 dµg

)

+

∫

M

(

scalg − ε
2 |scalg| − ε

2

)

v2 dµh
dµg

dµg

≥ (1− ε)2 YM (g) ‖v‖2Lp(g) − 3
2ε(7− ε)(1 − ε)−2/p

∥

∥(scalg − 1)−
∥

∥

Ln/2(g)
.

Since(1 + ε)−2/p = (1 + ε)−2/p ‖v‖2Lp(h) ≤ ‖v‖2Lp(g) ≤ (1 − ε)−2/p ‖v‖2Lp(h) = (1 − ε)−2/p, we
obtain in the caseYM (g) ≥ 0:

(1− ε)2 YM (g) ‖v‖2Lp(g) ≥
(1− ε)2

(1 + ε)2/p
YM (g) = YM (g) −

(

1− (1− ε)2

(1 + ε)2/p

)

|YM (g)| ≥ YM(g) − ε0;

and in the caseYM (g) < 0:

(1− ε)2 YM (g) ‖v‖2Lp(g) ≥
(1− ε)2

(1− ε)2/p
YM (g) ≥ YM (g),

because2− 2/p > 0. This yields in each case:

Eh(v) ≥ YM(g) − 2ε0 ,

henceYM (h) ≥ YM (g) − 2ε0. Since there exists for everyε0 ∈ R>0 a uniformC2-neighborhoodU
such that this holds for allh ∈ U , the Yamabe map is indeed lower semicontinuous in the caseδ = 1.

Now we consider an arbitraryδ ∈ R>0. Because of our assumption ong, the metricg = δg satisfies
∫

M

(

(scalg − 1)−
)n/2

dµg =

∫

M

(

1
δ (scalg − δ)−

)n/2
δn/2 dµg =

∫

M

(

(scalg − δ)−
)n/2

dµg < ∞.

Thus the case we have proved already yields lower semicontinuity of YM at g and hence, by conformal
invariance ofYM , also atg. �

12. DISCONTINUITY WITH RESPECT TO THE UNIFORM TOPOLOGY: PROOF OFEXAMPLE 1.3

Proof of 1.3.Sinceσ(N) > 0, there exists a metrich ∈ Metr(N) with YN (h) ≥ 0. Like every
nonempty closed manifold of dimension≥ 3, N admits a metrich′ with YN (h′) < 0. We choose a
smooth path(ht)t∈[0,1] in Metr(N) with h0 = h′ andh1 = h. Let t0 := min{t ∈ [0, 1] | YN (ht) = 0}
(the minimum exists becauseYN is continuous). By the solution of the Yamabe problem for closed
manifolds, the conformal class ofht0 contains a metrickt0 = f2ht0 with scalar curvature0. For
t ∈ [0, 1], let kt := f2ht andgt := kt + dt2. ThenYN (kt) = YN (ht) < 0 for all t < t0. Thus, for
all t < t0, Lemma 8.1 impliesYM (gt) = −∞. On the other hand,YM (gt0) ≥ 0 because scalgt0

= 0.
Every uniformC∞-neighborhood ofgt0 contains metricsgt with t < t0, because for eachr ∈ N,
‖gt − gt0‖Cr(gt0 )

= ‖ht − ht0‖Cr(ht0 )
tends to0 as t → t0. HenceYM is not continuous atgt0

with respect to the uniformC∞-topology, and thus not continuous with respect to any uniform Ck-
topology. �
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DEPARTMENT OFMATHEMATICS, UNIVERSITY OF LEIPZIG

E-mail address: Nadine.Grosse@math.uni-leipzig.de

DEPARTMENT OFMATHEMATICS, UNIVERSITY OF HAMBURG

E-mail address: Marc.Nardmann@math.uni-hamburg.de

23


	1. Introduction
	2. Preliminaries
	3. The three topologies
	4. Proof of upper semicontinuity
	5. Proof of Theorem ??
	6. Preparations for the fine continuity proofs
	7. Fine continuity: proofs of the theorems ?? and ?? and ??
	8. Proof of Theorem ??
	9. The compact-open discontinuity of the Yamabe map: proof of Theorem ??
	10. Preparations for the uniform continuity proof
	11. Continuity with respect to the uniform topology: proof of Theorem ??
	12. Discontinuity with respect to the uniform topology: proof of Example ??
	References

