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This paper is an elaborated version of the material presented by the author in a three hour minicourse at
V International Course of Mathematical Analysis in Andalusia, at Almeria, Spain September 12-16, 2011.
The author wishes to thank the organizing committees for the opportunity to present the course and for
their hospitality. The author also thanks Antonio Peralta for suggesting my name to the scientific commitee.

The minicourse on which this paper is based had its genesis in a series of talks the author had given to
undergraduates at Fullerton College in Fullerton, California and at the University of California, Irvine. Using
only the product rule for differentiation as a starting point, these enthusiastic students were introduced to
some aspects of the esoteric subject of non associative algebra, including triple systems as well as algebras.
Slides of these talks as well as other related material, including this paper, can be found at the author’s
website (www.math.uci.edu/∼brusso). Conversely, these undergraduate talks were motivated by the author’s
past and recent joint works on derivations of Jordan triples ([91],[92],[156]), which are among the many results
discussed here.

Parts I and II of this paper were covered in the three lectures making up the minicourse. For lack of
time, Part III of this paper was not covered in the lectures, although there was some implicit reference to it
in part I.

Part I is devoted to an exposition of the properties of derivations on various algebras and triple systems in
finite and infinite dimensions, the primary questions addressed being whether the derivation is automatically
continuous and to what extent it is an inner derivation. One section in Part I is devoted to the subject of
contractive projection, which plays an important role in the structure theory of Jordan triples and in Part
III.

Part II discusses cohomology theory of algebras and triple systems, in both finite and infinite dimensions.
Although the cohomology of associative and Lie algebras is substantially developed, in both finite and infinite
dimensions ([40],[76],[123]; see [95] for a review of [40]), the same could not be said for Jordan algebras.
Moreover, the cohomology of triple systems has a rather sparse literature which is essentially non-existent in
infinite dimensions. Thus, one of the goals of this paper is to encourage the study of continuous cohomology
of some Banach triple systems. Occasionally, an idea for a research project is mentioned (see subsection 8.2).
Readers are invited to contact the author, at brusso@uci.edu, if they share this goal.

Part III discusses three topics, two very recent, which involve the interplay between Jordan theory and
operator space theory (quantum functional analysis). The first one, a joint work of the author [145], discusses
the structure theory of contractively complemented Hilbertian operator spaces, and is instrumental to the
third topic, which is concerned with some recent work on enveloping TROs and K-theory for JB*-triples
[35],[36],[30]. The second topic presents some very recent joint work by the author concerning quantum
operator algebras [149].

A few proofs have been included but for the most part, theorems and other results are just stated and
a reference for the proof and in some cases for a definition, is provided. Brief biographical information on
some mathematicians, obtained primarily from Wikipedia, is provided in footnotes.
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As part of the undergraduate lectures mentioned above, a set of exercises was developed, proceeding from
elementary verifications to nontrivial theorems in the literature, with appropriate references. These occur
at the end of sections 1 and 3.

Since this paper is meant to introduce a large number of topics, many of which are purely algebraical in
nature, and others which the author has not studied yet but fully intends to study, he has taken the liberty
occasionally to rely on Mathematical Reviews, as well as authors’ introductions for some of the summaries.
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Part I

Derivations

1 Algebras

Let C denote the algebra of continuous complex valued functions on a locally compact Hausdorff space.

Definition 1.1 A derivation on C is a linear mapping δ : C → C satisfying the “product” rule:

δ(fg) = δ(f)g + fδ(g).

Theorem 1.2 There are no (non-zero) derivations on C. In other words, every derivation of C is identically
zero.

The proof of this theorem can be broken up into two parts of independent interest. The first theorem,
due to Singer1 and Wermer2, is valid for commutative semisimple Banach algebras. The second one is due
to Sakai3 and is valid for all C∗-algebras.

Theorem 1.3 (Singer and Wermer 1955 [185]) Every continuous derivation on C is zero.

Theorem 1.4 (Sakai 1960 [175]) Every derivation on C is continuous.

1.1 Derivations on finite dimensional algebras

1.1.1 Matrix multiplication—Associative algebras

Let Mn(C) denote the algebra of all n by n complex matrices, or more generally any finite dimensional
semisimple associative algebra.

Definition 1.5 A derivation on Mn(C) with respect to matrix multiplication is a linear mapping δ which
satisfied the product rule

δ(AB) = δ(A)B +Aδ(B).

Proposition 1.6 Fix a matrix A in Mn(C) and define

δA(X) = AX −XA.

Then δA is a derivation with respect to matrix multiplication.

1Isadore Singer (b. 1924). Isadore Manuel Singer is an Institute Professor in the Department of Mathematics at the
Massachusetts Institute of Technology. He is noted for his work with Michael Atiyah in 1962, which paved the way for new
interactions between pure mathematics and theoretical physics

2John Wermer (b. 1925)
3Soichiro Sakai (b. 1928)
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A more general form of the following theorem is due to Hochschild4 [93]. For an interesting summary of
Hochschild’s career see [178] and [177]. Theorem 1.7 is probably due to either Wedderburn5 or Noether6.
The proof we present here is due to Jacobson [100].

Theorem 1.7 Every derivation on Mn(C) with respect to matrix multiplication is of the form δA for some
A in Mn(C).

Proof. If δ is a derivation, consider the two representations of Mn(C)

z 7→
[

z 0
0 z

]

and z 7→
[

z 0
δ(z) z

]

.

The first is a direct sum of two copies of the identity representation; but so is the second, since

[

0 0
δ(z) z

]

is equivalent to

[

0 0
0 z

]

.

So

[

z 0
δ(z) 0

] [

a b
c d

]

=

[

a b
c d

] [

z 0
0 z

]

. Thus az = za, bz = zb and

δ(z)a = cz − zc and δ(z)b = dz − zd.

Since a and b are multiples of I they can’t both be zero.

1.1.2 Bracket multiplication—Lie algebras

We next consider a multiplication on matrices (or associative algebras) which leads to the theory of Lie
algebras7.

Definition 1.8 A derivation on Mn(C) with respect to bracket multiplication

[X,Y ] = XY − Y X

is a linear mapping δ which satisfies the product rule

δ([A,B]) = [δ(A), B] + [A, δ(B)].

Proposition 1.9 Fix a matrix A in Mn(C) and define

δA(X) = [A,X ] = AX −XA.

Then δA is a derivation with respect to bracket multiplication.

An algebra L with multiplication (x, y) 7→ [x, y] is a Lie algebra if

[x, x] = 0

and
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

4 Gerhard Hochschild (1915–2010) Gerhard Paul Hochschild was an American mathematician who worked on Lie groups,
algebraic groups, homological algebra and algebraic number theory

5Joseph Henry Maclagan Wedderburn (1882–1948). Scottish mathematician, who taught at Princeton University for
most of his career. A significant algebraist, he proved that a finite division algebra is a field, and part of the Artin–Wedderburn
theorem on simple algebras. He also worked on group theory and matrix algebra

6 Amalie Emmy Noether (1882–1935) Amalie Emmy Noether was an influential German mathematician known for her
groundbreaking contributions to abstract algebra and theoretical physics. Described as the most important woman in the
history of mathematics, she revolutionized the theories of rings, fields, and algebras. In physics, Noether’s theorem explains the
fundamental connection between symmetry and conservation laws

7Sophus Lie (1842–1899) Marius Sophus Lie was a Norwegian mathematician. He largely created the theory of continuous
symmetry, and applied it to the study of geometry and differential equations
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Left multiplication in a Lie algebra is denoted by ad(x): ad(x)(y) = [x, y]. An associative algebra A becomes
a Lie algebra A− under the product, [x, y] = xy − yx.

The first axiom implies that [x, y] = −[y, x] and the second (called the Jacobi identity) implies that
x 7→ adx is a homomorphism of L into the Lie algebra (EndL)−, that is, ad [x, y] = [adx, ad y].

Assuming that L is finite dimensional, the Killing form is defined by λ(x, y) = tr ad(x)ad(y).

Theorem 1.10 (CARTAN criterion [140]) A finite dimensional Lie algebra L over a field of character-
istic 0 is semisimple if and only if the Killing form is nondegenerate.

The proof is not given in Meyberg’s notes [140], but can be found in many places, for example [104].
A linear map D is a derivation if D · ad(x) = ad(Dx) + ad(x) ·D. Each ad(x) is a derivation, called an

inner derivation. Let Θ(L) be the set of all derivations on L.
A more general form of the following theorem is due to Hochschild [93]. Theorem 1.11 has been attributed

to Zassenhaus8 in [140], and to E. Cartan9 in [101]. We have taken the proof from [140, p.42].

Theorem 1.11 If the finite dimensional Lie algebra L over a field of characteristic 0 is semisimple (that
is, its Killing form is nondegenerate), then every derivation is inner.

Proof. Let D be a derivation of L. Since x 7→ trD · ad (x) is a linear form, there exists d ∈ L such that
trD · ad (x) = λ(d, x) = tr ad (d) · ad (x). Let E be the derivation E = D − ad (d) so that

trE · ad (x) = 0. (1)

Note next that

E · [ad (x), ad (y)] = E · ad (x) · ad (y)− E · ad (y) · ad (x)
= (ad (x) · E + [E, ad (x)]) · ad (y)− E · ad (y) · ad (x)

so that

[E, ad (x)] · ad (y) = E · [ad (x), ad (y)]− ad (x) · E · ad (y) + E · ad (y) · ad (x)
= E · [ad (x), ad (y)] + [E · ad (y), ad (x)]

and
tr [E, ad (x)] · ad (y) = trE · [ad (x), ad (y)].

However, since E is a derivation

[E, ad (x)] · ad (y) = E · ad (x) · ad (y)− ad (x) · E · ad (y)
= (ad (Ex) + ad (x) ·E) · ad (y)− ad (x) ·E · ad (y)
= ad (Ex) · ad (y).

Thus

λ(Ex, y) = tr ad (Ex) · ad (y)
= tr [E, ad (x)] · ad (y)
= trE · [ad (x), ad (y)] = 0 by (1)).

Since x and y are arbitrary, E = 0 and so D − ad (d) = 0.

8 Hans Zassenhaus (1912–1991) Hans Julius Zassenhaus was a German mathematician, known for work in many parts of
abstract algebra, and as a pioneer of computer algebra

9Elie Cartan 1869–1951. Elie Joseph Cartan was an influential French mathematician, who did fundamental work in
the theory of Lie groups and their geometric applications. He also made significant contributions to mathematical physics,
differential geometry, and group theory. He was the father of another influential mathematician, Henri Cartan.
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1.1.3 Circle multiplication—Jordan algebras

We next consider a multiplication on matrices (or associative algebras) which leads to the theory of Jordan
algebras10

Definition 1.12 A derivation on Mn(C) with respect to circle multiplication

X ◦ Y = (XY + Y X)/2

is a linear mapping δ which satisfies the product rule

δ(A ◦B) = δ(A) ◦B +A ◦ δ(B)

Proposition 1.13 Fix a matrix A in Mn(C) and define

δA(X) = AX −XA.

Then δA is a derivation with respect to circle multiplication.

The first part of the following theorem of Sinclair11 is valid for all semisimple Banach algebras (and
continuous Jordan derivations).

Theorem 1.14 (Sinclair 1970 [181]) Every derivation on Mn(C) with respect to circle multiplication is
also a derivation with respect to matrix multiplication, and is therefore of the form δA for some A in Mn(C).

According to the pioneering work of Jacobson12 the above proposition and theorem need to be modified
for the real subalgebra (with respect to circle multiplication) of Hermitian matrices.

Proposition 1.15 Fix two matrices A,B in Mn(C) and define

δA,B(X) = A ◦ (B ◦X)−B ◦ (A ◦X).

Then δA,B is a derivation with respect to circle multiplication.

Theorem 1.16 (1949 Jacobson [101]) Every derivation of a finite dimensional semisimple Jordan alge-
bra J (in particular Mn(C) with circle multiplication) is a sum of derivations of the form δA,B for some A′s
and B′s elements of J .

Proof. First note that for any algebra, D is a derivation if and only if [Ra, D] = RDa, where Ra denotes
the operator of multiplication (on the right) by a. If you polarize the Jordan axiom (a2b)a = a2(ba), you
get [Ra, [Rb, Rc]] = RA(b,a,c) where A(b, a, c) = (ba)c − b(ac) is the “associator”. From the commutative
law ab = ba, you get A(b, a, c) = [Rb, Rc]a and so [Rb, Rc] is a derivation, sums of which are called inner,
forming an ideal in the Lie algebra of all derivations.

The Lie multiplication algebra L of the Jordan algebra A is the Lie algebra generated by the multi-
plication operators Ra. It is given by

L = {Ra +
∑

i

[Rbi , Rci ] : a, bi, ci ∈ A}

so that L is the sum of a Lie triple system and the ideal of inner derivations.
Now let D be a derivation of a semisimple finite dimensional unital Jordan algebra A. Then D̃ : X 7→

[X,D] is a derivation of L. It is well known to algebraists that L = L′ + C where L′ (the derived algebra
[L,L]) is semisimple and C is the center of L. Also D̃ maps L′ into itself and C to zero.

10Pascual Jordan (1902–1980) Pascual Jordan was a German theoretical and mathematical physicist who made significant
contributions to quantum mechanics and quantum field theory

11Alan M. Sinclair (retired)
12Nathan Jacobson (1910–1999) Nathan Jacobson was an American mathematician who was recognized as one of the

leading algebraists of his generation, and he was also famous for writing more than a dozen standard monographs
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By Theorem 1.11, D̃ is an inner derivation of L′ and hence also of L, so there exists U ∈ L such that
[X,D] = [X,U ] for all X ∈ L and in particular [Ra, D] = [Ra, U ]. Then Da = RDa1 = [Ra, D]1 = [Ra, U ]1 =
(RaU − URa)1 = a · U1− Ua so that D = RU1 − U ∈ L. Thus, D = Ra +

∑

[Rbi , Rci ] and so

0 = D1 = a+ 0 = a.

We summarize the previous three theorems, insofar as they concern Mn(C), in the following table. Since
Mn(C) is not a semisimple Lie algebra, its derivations must be taken modulo the center (See 2.3).

Table 1

Mn(C) (SEMISIMPLE ALGEBRAS)

matrix bracket circle
ab = a× b [a, b] = ab− ba a ◦ b = ab+ ba
Th. 1.7 Th. 1.11 Th. 1.14
δa(x) δa(x) δa(x)
= = =

ax− xa ax− xa ax− xa

The following table shows some properties of the three kinds of multiplication considered and thus
provides the axioms for various kinds of algebras which we will consider. These two tables also provide a
model for the discussion of various kinds of triple systems which will be considered later.

Table 2

ALGEBRAS

commutative algebras
ab = ba

associative algebras
a(bc) = (ab)c

Lie algebras
a2 = 0

(ab)c+ (bc)a+ (ca)b = 0

Jordan algebras
ab = ba

a(a2b) = a2(ab)

1.2 Derivations on C∗-algebras

The algebra Mn(C), with matrix multiplication, as well as the algebra C, with ordinary multiplication, are
examples of C∗-algebras (finite dimensional and commutative respectively). The following theorem, which
is due to Kadison13 and Sakai, and was preceded by some preliminary results of Kaplansky14 thus explains
Theorems 1.2 and 1.7.

Theorem 1.17 (Sakai, Kadison 1966 [176],[113]) Every derivation of a C∗-algebra is of the form x 7→
ax− xa for some a in the weak closure of the C∗-algebra.

13Richard Kadison (b. 1925) Richard V. Kadison is an American mathematician known for his contributions to the study
of operator algebras

14 Irving Kaplansky (1917–2006) Kaplansky made major contributions to group theory, ring theory, the theory of operator
algebras and field theory

8



1.3 Exercises (Gradus ad Parnassum)—Algebras

1. Prove the analog of Proposition 1.6 for associative algebras: Fix an element a in an associative algebra
A and define

δa(x) = [a, x] = ax− xa.

Then δa is a derivation with respect to the product of A.

2. Prove the analog of Proposition 1.9 for associative algebras: Fix an element a in an associative algebra
A and define

δa(x) = [a, x] = ax− xa.

Then δa is a derivation with respect to bracket multiplication [x, y] = xy − yx.

3. Prove the analog of Proposition 1.13 for associative algebras: Fix an element a in an associative algebra
A and define

δa(x) = [a, x] = ax− xa.

Then δa is a derivation with respect to circle multiplication x ◦ y = xy + yx.

4. Let a and b be two fixed elements in an associative algebra A. Show that the linear mapping

δa,b(x) = a ◦ (b ◦ x)− b ◦ (a ◦ x)

is a derivation of A with respect to circle multiplication x ◦ y = xy + yx.

(cf. the paragraph following Theorem 1.14)

5. Show that an associative algebra is a Lie algebra with respect to bracket multiplication.

6. Show that an associative algebra is a Jordan algebra with respect to circle multiplication.

7. Let us write δa,b for the linear mapping δa,b(x) = a(bx)− b(ax) in a Jordan algebra. Show that δa,b is
a derivation of the Jordan algebra by following the outline below. (cf. problem 4 above.)

(a) In the Jordan algebra axiom
u(u2v) = u2(uv),

replace u by u+ w to obtain the equation

2u((uw)v) + w(u2v) = 2(uw)(uv) + u2(wv) (2)

(b) In (1), interchange v and w and subtract the resulting equation from (1) to obtain the equation

2u(δv,w(u)) = δv,w(u
2). (3)

(c) In (2), replace u by x+ y to obtain the equation

δv,w(xy) = yδv,w(x) + xδv,w(y),

which is the desired result.

2 Automatic Continuity

The automatic continuity of various algebraic mappings plays important roles in the general theory of Banach
algebras and in particular in operator algebra theory. In this section, to set the stage for later work, we
highlight some of the theory using [54] as our source, to which the reader can refer for details and references.
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2.1 Uniqueness of Norm and automatic continuity. A short survey

A Banach algebra (A, ‖ · ‖) has a unique norm if each norm with respect to which A is a normed algebra
is equivalent to the given norm. In this case, the topological and algebraic structures of A are intimately
linked.

Proposition 2.1 A commutative semisimple Banach algebra has a unique norm.

Proposition 2.1 follows from

Theorem 2.2 (Silov 1947) Any homomorphism of a Banach algebra A to a commutative semisimple Ba-
nach algebra is continuous.

The following two theorems are certainly milestone results in the theory of automatic continuity in Banach
algebras. The second one was proved before Banach algebras were invented.

Theorem 2.3 (Johnson 1967) Each semisimple Banach algebra has a unique norm.

Theorem 2.4 (Eidelheit 1940) B(E) has a unique norm for any Banach space E,

Johnson’s15 1967 milestone is a consequence of the following theorem, which is called “the seed from
which automatic continuity theory has grown” and has lead to several basic unsolved problems

Theorem 2.5 (Johnson 1967) A homomorphism of a Banach algebra A ONTO a semisimple Banach
algebra B is continuous.

Question 2.6 In Johnson’s theorem, can you replace onto by dense range? What if A is a C∗-algebra?
What if A and B are both C∗-algebras?

In this connection, we have the following proposition.

Proposition 2.7 (Esterle 1980) Any homomorphism from C(Ω) onto a Banach algebra is continuous.

Theorem 2.3 has been extended to semisimple Jordan algebras (Rodriquez-Palacios 1985) and more
recently to arbitrary non associative semisimple Banach algebras in [136].

The next two propositions show some relations between automatic continuity and uniqueness of norm.

Proposition 2.8 If (A, ‖ · ‖) is a Banach algebra with the property that for any algebra norm ‖ · ‖1 there is
a constant C such that ‖a‖ ≤ C‖a‖1, then A has a unique norm if and only if every homomorphism from A
to any Banach algebra is continuous.

Proposition 2.9 Let A be a commutative Banach algebra, E a Banach A-module. Then A ⊕ E is a com-
mutative algebra via (a, x)(b, y) = (ab, a · y + b · x). If D : A → E is a derivation, define two norms
‖(a, x)‖1 = ‖a‖ + ‖x‖ and ‖(a, x)‖2 = ‖a‖ + ‖Da − x‖. These norms are equivalent if and only if D is
continuous.

Some other examples of Banach algebras with a unique norm are L1(R+, ω) (Jewell and Sinclair 1976)
and all finite dimensional Banach algebras.

2.2 Cohomology of Banach algebras

The automatic continuity problem for derivations can be stated as follows: Under what conditions on a
Banach algebra A are all derivations from A into some or all Banach A-modules automatically continuous?
It is of interest to note that if all homomorphisms from a Banach algebra A into any Banach algebra are
continuous, then all derivations from A into any Banach A-module E are continuous. The converse is false
however, as shown by Ringrose.

15Barry Johnson (1937–2002) cf. [182]
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Why are derivations important? One answer is given by cohomology, which is introduced here and
revisited in later sections as the principal purpose of this paper.

Let M be a Banach algebra and X a Banach M -module. For n ≥ 1, let Ln(M,X) = all continuous
n-linear maps (L0(M,X) = X). The coboundary operator is ∂ : Ln → Ln+1 (for n ≥ 1), defined by

∂φ(a1, · · · , an+1) = a1φ(a2, · · · , an+1)+
∑

(−1)jφ(a1, · · · , aj−1, ajaj+1, · · · , an+1)+(−1)n+1φ(a1, · · · , an)an+1

For n = 0, ∂ : X → L(M,X) ∂x(a) = ax− xa so Im∂ = the space of inner derivations. Since ∂ ◦ ∂ = 0,
Im(∂ : Ln−1 → Ln) ⊂ ker(∂ : Ln → Ln+1), Hn(M,X) = ker∂/Im∂ is a vector space. For n = 1,
ker∂ = {φ :M → X : a1φ(a2)− φ(a1a2) + φ(a1)a2 = 0} = the space of continuous derivations from M to X
Thus,

H1(M,X) =
derivations from M to X

inner derivations from M to X

measures how close continuous derivations are to inner derivations.
Later we shall discuss what the spaces H2(M,X), H3(M,X),. . . measure. In anticipation of this, we

present some miscellaneous remarks.

1. One of the earliest papers on continuous cohomology is the pioneering [116] in which it is shown that
H1(C(Ω), E) = H2(C(Ω), E) = 0

2. “The major open question in the theory of derivations on C*-algebras” is whether H1(A,B(H)) = 0
(A ⊂ B(H))

3. A derivation from A into B(H) is inner if and only if it is completely bounded. ([42, Theorem 3.1])

4. The origin of continuous cohomology is the memoir of Barry Johnson [107]

2.3 Lie derivations of operator algebras and Banach algebras

Later we shall discuss derivations on operator algebras and more generally the continuous cohomology of
operator algebras. In this subsection, we record some results on derivations of the Lie algebra structure of
operator algebras, which anticipates said discussion as well as introduces Lie triple structure, which is one
of the main themes of this survey paper.

Theorem 2.10 (Miers 1973 [141]) If M is a von Neumann algebra, [M,M ] the Lie algebra linearly gen-
erated by {[X,Y ] = XY − Y X : X,Y ∈ M} and L : [M,M ] → M a Lie derivation, i.e., L is linear and
L[X,Y ] = [LX, Y ] + [X,LY ], then L has an extension D : M → M that is a derivation of the associative
algebra.

The proof involves matrix-like computations. Using Theorem 1.17 leads to

Theorem 2.11 (Miers 1973 [141]) If L : M → M is a Lie derivation, then L = D + λ, where D is an
associative derivation and λ is a linear map into the center of M vanishing on [M,M ].

A Lie triple derivation of an associative algebra M is a linear map L :M →M such that

L[[X,Y ], Z] = [[L(X), Y ], Z] + [[X,L(Y )], Z] + [[X,Y ], L(Z)]

for all X,Y, Z ∈M .

Theorem 2.12 (Miers 1978 [142]) If M is a von Neumann algebra with no central Abelian summands
and L is a Lie triple derivation, then there exists an operator A ∈M such that L(X) = [A,X ]+λ(X) where
λ : M → ZM is a linear map which annihilates brackets of operators in M .

Notice that no assumption of continuity was made in these theorems. Continuous Lie derivations of
associative Banach algebras have also been studied outside the operator algebra context, as evidenced in the
following.
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Theorem 2.13 (Johnson 1996 [109]) Every continuous Lie derivation of a symmetrically amenable Ba-
nach algebra A into a Banach A-module X is the sum of an associative derivation and a “trivial” derivation,
that is, a linear map which vanishes on commutators and maps into the “center” of the module. The same
holds if A is a C∗-algebra.

As shown in [137] and [5], the continuity assumption can be dropped if X = A and A is a C*-algebra or
a semisimple symmetrically amenable Banach algebra.

According to a review by Garth Dales [55]: “It remains an open question whether an analogous result
(automatic continuity) for Lie derivations from A into a Banach A-bimodule holds when A is an arbitrary
C*-algebra and when A is an arbitrary symmetrically amenable Banach algebra. It is also an interesting
open question whether or not every Lie derivation on a semisimple Banach algebra to itself has this form.”

As pointed out to the author by Martin Mathieu, a negative answer has been given, by Read [165], to
the last question raised by Dales in his review.

3 Triple systems

In this section, all algebras and triple systems will generally be finite dimensional. The first subsection
parallels subsection 1.1. Infinite dimensional cases and references for the proofs of the theorems in that
subsection will be given in section 5.

3.1 Derivations on finite dimensional triple systems

3.1.1 Triple matrix multiplication

Let Mm,n(C) denote the linear space of rectangular m by n complex matrices and note that it is close under
the operation A,B,C 7→ AB∗C, which we will call triple matrix multiplication.

Definition 3.1 A derivation on Mm,n(C) with respect to triple matrix multiplication is a linear mapping δ
which satisfied the triple product rule δ(AB∗C) = δ(A)B∗C +Aδ(B)∗C +AB∗δ(C)

Proposition 3.2 For two matrices, A ∈Mm(C), B ∈Mn(C), with A∗ = −A,B∗ = −B, define δA,B(X) =
AX +XB. Then δA,B is a derivation with respect to triple matrix multiplication.

Theorem 3.3 Every derivation on Mm,n(C) with respect to triple matrix multiplication is a sum of deriva-
tions of the form δA,B.

The proof of Theorem 3.3 is obtained by applying the result of Theorem 3.10 below to the symmetrized
product AB∗C + CB∗A.

Remark 3.4 These results hold true and are of interest for the case m = n.

3.1.2 Triple bracket multiplication

Let’s go back for a moment to square matrices and the bracket multiplication. Motivated by the last remark,
we define the triple bracket multiplication to be X,Y, Z 7→ [[X,Y ], Z].

Definition 3.5 A derivation on Mn(C) with respect to triple bracket multiplication is a linear mapping δ
which satisfies the triple product rule δ([[A,B], C]) = [[δ(A), B], C] + [[A, δ(B)], C] + [[A,B], δ(C)]

Proposition 3.6 Fix two matrices A,B in Mn(C) and define δA,B(X) = [[A,B], X ]. Then δA,B is a
derivation with respect to triple bracket multiplication.

Mn(C) is not a semisimple Lie algebra or semisimple Lie triple system, so a modification needs to be
made when considering Lie derivations or Lie triple derivations on it, as in Theorems 2.11 and 2.12. The
proof of the following theorem is taken from [140, Chapter 6].
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Theorem 3.7 Every derivation of a finite dimensional semisimple Lie triple system F is a sum of deriva-
tions of the form δA,B, for some A’s and B’s in the triple system. These derivations are called inner
derivations and their set is denoted InderF .

Proof. Let F be a finite dimensional semisimple Lie triple system (over a field of characteristic 0) and suppose
that D is a derivation of F . Let L be the Lie algebra (InderF )⊕ F with product

[(H1, x1), (H2, x2)] = ([H1, H2] + L(x1, x2), H1x2 −H2x1).

A derivation of L is defined by δ(H⊕a) = [D,H ]⊕Da. Together with the definition of semisimple Lie triple
system, it is proved in [140] that F semisimple implies L semisimple. Thus there exists U = H1 ⊕ a1 ∈ L
such that δ(X) = [U,X ] for all X ∈ L. Then 0 ⊕ Da = δ(0 ⊕ a) = [H1 + a1, 0 ⊕ a] = L(a1, a) ⊕ H1a so
L(a1, a) = 0 and D = H1 ∈ InderF .

3.1.3 Triple circle multiplication

Let’s now return to rectangular matrices and form the triple circle multiplication (AB∗C + CB∗A)/2. For
sanity’s sake, let us write this as

{A,B,C} = (AB∗C + CB∗A)/2

Definition 3.8 A derivation on Mm,n(C) with respect to triple circle multiplication is a linear mapping δ
which satisfies the triple product rule δ({A,B,C}) = {δ(A), B, C} + {A, δ(B), C}+ {B,A, δ(C)}

Proposition 3.9 Fix two matrices A,B in Mm,n(C) and define

δA,B(X) = {A,B,X} − {B,A,X}.

Then δA,B is a derivation with respect to triple circle multiplication.

The following theorem is a special case of Theorem 3.17.

Theorem 3.10 Every derivation of Mm,n(C) with respect to triple circle multiplication is a sum of deriva-
tion of the form δA,B.

We summarize Theorems 3.3,3.7 and 3.10, insofar as they concern Mn(C), in the following table. Since
Mn(C) is not a semisimple Lie triple system, its derivations must be taken modulo the center (See 2.3).

Table 3

Mm,n(C) (SS TRIPLE SYSTEMS)

triple triple triple
matrix bracket circle
ab∗c [[a, b], c] ab∗c+ cb∗a

Th. 3.3 Th. 3.7 Th. 3.10
δa,b(x) δa,b(x) δa,b(x)

= = =
ab∗x abx ab∗x
+xb∗a +xba +xb∗a
−ba∗x −bax −ba∗x
−xa∗b −xab −xa∗b
(sums) (sums) (sums)

(m = n)
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3.2 Axiomatic approach for triple systems

Definition 3.11 A triple system is defined to be a vector space with one ternary operation called triple
multiplication. Addition is denoted by a+ b and is commutative and associative:

a+ b = b+ a, (a+ b) + c = a+ (b + c).

Triple multiplication is denoted (simply and temporarily) by abc and is required to be linear in each of
its three variables:

(a+ b)cd = acd+ bcd, a(b+ c)d = abd+ acd, ab(c+ d) = abc+ abd.

Simple but important examples of triple systems can be formed from any algebra: if ab denotes the
algebra product, just define a triple multiplication to be (ab)c

Let’s see how this works in the algebras we introduced in subsection 1.1.

C; fgh = (fg)h, OR fgh = (fg)h

(Mn(C),×); abc = abc OR abc = ab∗c

(Mn(C), [, ]); abc = [[a, b], c]

(Mn(C), ◦); abc = (a ◦ b) ◦ c
All of these except the last one are useful. It turns out that the appropriate form of the triple product for

Jordan algebras is abc = (a ◦ b) ◦ c+(c ◦ b) ◦ a− (a ◦ c) ◦ b, since then you obtain a Jordan triple system. Also
for the second example, by taking the symmetrized triple product, in each case you also obtain a Jordan
triple system.

Definition 3.12 A triple system is said to be associative if the triple multiplication is associative in the
sense that ab(cde) = (abc)de = a(bcd)e (OR ab(cde) = (abc)de = a(dcb)e); and commutative if abc = cba.

3.2.1 Associative triple systems

The axiom which characterizes triple matrix multiplication is

(abc)de = ab(cde) = a(dcb)e.

The triple systems so defined are called associative triple systems or Hestenes16 algebras

Theorem 3.13 (Lister 1971 [132]) Every derivation of a finite dimensional semisimple associative triple
system (of the first kind) is inner.

Theorem 3.14 (Carlsson 1976 [38]) Every derivation of a finite dimensional semisimple associative triple
system (first or second kind) into a module, is inner.

The following theorem really belongs in section 5 since it concerns Banach associative triple systems.

Theorem 3.15 (Zalar 1995 [198]) LetW ⊂ B(H,K) be a TRO which contains all the compact operators.
If D is a derivation of W with respect to the associative triple product ab∗c then there exist a = −a∗ ∈ B(K)
and b = −b∗ ∈ B(H) such that Dx = ax+ xb.

This result has been extended to B(X,Y ) (X,Y Banach spaces) in [194].

3.2.2 Lie triple systems

The axioms which characterize triple bracket multiplication are

aab = 0, abc+ bca+ cab = 0,

and
de(abc) = (dea)bc+ a(deb)c+ ab(dec).

The triple systems so defined are called Lie triple systems and were developed by Jacobson and Koecher17.

16Magnus Hestenes (1906–1991) Magnus Rudolph Hestenes was an American mathematician. Together with Cornelius
Lanczos and Eduard Stiefel, he invented the conjugate gradient method

17Max Koecher (1924–1990) Max Koecher was a German mathematician. His main research area was the theory of
Jordan algebras, where he introduced the Kantor-Koecher-Tits construction
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Theorem 3.16 (Lister 1952 [131]) Every derivation of a finite dimensional semisimple Lie triple system
is inner.

3.2.3 Jordan triple systems

The axioms which characterize triple circle multiplication are

abc = cba,

and
de(abc) = (dea)bc− a(edb)c+ ab(dec).

The triple systems so defined are called Jordan triple systems and were developed principally by Kurt
Meyberg, Ottmar Loos and Erhard Neher, among many others.

Theorem 3.17 Every derivation of a finite dimensional semisimple Jordan triple system is inner.

Proof. We outline a proof following [140, Chapter 11] and [49]. For simplicity, we assume non-degeneracy of
a Jordan triple system [49, p. 25].

Let V be a Jordan triple and let L(V ) be its TKK Lie algebra (Tits-Kantor-Koecher). L(V ) =
V ⊕ V0 ⊕ V and the Lie product is given by

[(x, h, y), (u, k, v)] = (hu− kx, [h, k] + x v − u y, k♮y − h♮v).

Here, a b is the left multiplication operator x 7→ {abx} (also called the box operator), V0 = span{V V }
is a Lie subalgebra of L(V ) and for h =

∑

i ai bi ∈ V0, the map h♮ : V → V is defined by

h♮ =
∑

i

bi ai.

We can show the correspondence of derivations δ : V → V and D : L(V ) → L(V ) for Jordan triple V
and its TKK Lie algebra L(V ). Let θ : L(V ) → L(V ) be the main involution θ(x⊕ h⊕ y) = y ⊕−h♮ ⊕ x

Lemma 3.18 Let δ : V → V be a derivation of a Jordan triple V , with TKK Lie algebra (L(V ), θ). Then
there is a derivation D : L(V ) → L(V ) satisfying

D(V ) ⊂ V and Dθ = θD.

Proof. Given a, b ∈ V , we define

D(a, 0, 0) = (δa, 0, 0)

D(0, 0, b) = (0, 0, δb)

D(0, a b, 0) = (0, δa b+ a δb, 0)

and extend D linearly on L(V ). Then D is a derivation of L(V ) and evidently, D(V ) ⊂ V .
It is readily seen that Dθ = θD, since

Dθ(0, a b, 0) = D(0,−b a, 0)

= (0, −δb a− b δa, 0)

= θ(0, δa b+ a δb, 0)

= θD(0, a b, 0).

Lemma 3.19 Let V be a Jordan triple with TKK Lie algebra (L(V ), θ). Given a derivation D : L(V ) →
L(V ) satisfying D(V ) ⊂ V and Dθ = θD, the restriction D|V : V → V is a triple derivation.

Theorem 3.20 Let V be a Jordan triple with TKK Lie algebra (L(V ), θ). There is a one-one correspondence
between the triple derivations of V and the Lie derivations D : L(V ) → L(V ) satisfying D(V ) ⊂ V and
Dθ = θD.
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Lemma 3.21 Let V be a Jordan triple with TKK Lie algebra (L(V ), θ). Let D : L(V ) → L(V ) be a Lie
inner derivation such that D(V ) ⊂ V . Then the restriction D|V is a triple inner derivation of V .

Corollary 3.22 Let δ be a derivation of a finite dimensional semisimple Jordan triple V . Then δ is a triple
inner derivation of V .

Proof. The TKK Lie algebra L(V ) is semisimple. Hence the result follows from the Lie result and Lemma 3.21.

The proof of Lemma 3.21 is instructive. The steps are as follows.

1. D(x, k, y) = [(x, k, y), (a, h, b)] for some (a, h, b) ∈ L(V )
2. D(x, 0, 0) = [(x, 0, 0), (a, h, b)] = (−h(x), x b, 0)
3. δ(x) = −h(x) = −∑

i αi βi(x)
4. D(0, 0, y) = [(0, 0, y), (a, h, b)] = (0,−a y, h♮(y))
5. δ(x) = −h♮(x) = ∑

i βi αi(x)
6. δ(x) = 1

2

∑

i(βi αi − αi βi)(x)

We summarize the previous three definitions in the following table

Table 4

TRIPLE SYSTEMS

associative triple systems
(abc)de = ab(cde) = a(dcb)e

Lie triple systems
aab = 0

abc+ bca+ cab = 0
de(abc) = (dea)bc+ a(deb)c+ ab(dec)

Jordan triple systems
abc = cba

de(abc) = (dea)bc− a(edb)c+ ab(dec)

3.3 Exercises (Gradus ad Parnassum)—Triple systems

1. Prove the analog of Proposition 3.2 for associative algebrasA with involution: For two elements a, b ∈ A
with a∗ = −a, b∗ = −b, define δa,b(x) = ax + xb. Then δa,b is a derivation with respect to the triple
multiplication ab∗c. (Use the notation 〈abc〉 for ab∗c)

2. Prove the analog of Proposition 3.6 for associative algebras A: Fix two elements a, b ∈ A and define
δa,b(x) = [[a, b], x]. Then δa,b is a derivation with respect to the triple multiplication [[a, b], c]. (Use
the notation [abc] for [[a, b], c])

3. Prove Proposition 3.9: Fix two matrices a, b inMm,n(C) and define δa,b(x) = {a, b, x}−{b, a, x}. Then
δA,B is a derivation with respect to triple circle multiplication. (Use the notation {abc} for ab∗c+cb∗a)

4. Show that Mn(C) is a Lie triple system with respect to triple bracket multiplication. In other words,
show that the three axioms for Lie triple systems in Table 4 are satisfied if abc denotes [[a, b], c] =
(ab− ba)c− c(ab− ba) (a, b and c denote matrices). (Use the notation [abc] for [[a, b], c])

5. Show that Mm,n(C) is a Jordan triple system with respect to triple circle multiplication. In other
words, show that the two axioms for Jordan triple systems in Table 4 are satisfied if abc denotes
ab∗c+ cb∗a (a, b and c denote matrices). (Use the notation {abc} for ab∗c+ cb∗a)

6. Let us write δa,b for the linear process
δa,b(x) = abx

in a Lie triple system. Show that δa,b is a derivation of the Lie triple system by using the axioms for
Lie triple systems in Table 4. (Use the notation [abc] for the triple product in any Lie triple system,
so that, for example, δa,b(x) is denoted by [abx])
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7. Let us write δa,b for the linear process

δa,b(x) = abx− bax

in a Jordan triple system. Show that δa,b is a derivation of the Jordan triple system by using the
axioms for Jordan triple systems in Table 4. (Use the notation {abc} for the triple product in any
Jordan triple system, so that, for example, δa,b(x) = {abx} − {bax})

8. On the Jordan algebra Mn(C) with the circle product a ◦ b = ab+ ba, define a triple product

{abc} = (a ◦ b) ◦ c+ (c ◦ b) ◦ a− (a ◦ c) ◦ b.

Show that Mn(C) is a Jordan triple system with this triple product.

Hint: show that {abc} = 2abc+ 2cba

9. On the vector space Mn(C), define a triple product 〈abc〉 = abc (matrix multiplication without the
adjoint in the middle). Formulate the definition of a derivation of the resulting triple system, and state
and prove a result corresponding to Proposition 3.2. Is this triple system associative?

10. In an associative algebra, define a triple product 〈abc〉 to be abc. Show that the algebra becomes an
associative triple system with this triple product.

11. In an associative triple system with triple product denoted 〈abc〉, define a binary product ab to be
〈aub〉, where u is a fixed element. Show that the triple system becomes an associative algebra with
this product. Suppose further that 〈auu〉 = 〈uua〉 = a for all a. Show that we get a unital involutive
algebra with involution a♯ = 〈uau〉.

12. In a Lie algebra with product denoted by [a, b], define a triple product [abc] to be [[a, b], c]. Show that
the Lie algebra becomes a Lie triple system with this triple product. ([140, ch. 6, ex. 1, p. 43])

13. Let A be an algebra (associative, Lie, or Jordan; it doesn’t matter). Show that the set D := Der (A) of
all derivations of A is a Lie subalgebra of End (A). That is, D is a linear subspace of the vector space
of linear transformations on A, and if D1, D2 ∈ D, then D1D2 −D2D1 ∈ D.

14. Let A be a triple system (associative, Lie, or Jordan; it doesn’t matter). Show that the set D := Der (A)
of derivations of A is a Lie subalgebra of End (A). That is, D is a linear subspace of the vector space
of linear transformations on A, and if D1, D2 ∈ D, then D1D2 −D2D1 ∈ D.

3.4 Supplemental exercises (Gradus ad Parnassum)—Algebras and triple sys-
tems

1. In an arbitrary Jordan triple system, with triple product denoted by {abc}, define a triple product by

[abc] = {abc} − {bac}.

Show that the Jordan triple system becomes a Lie triple system with this new triple product.
([140, ch. 11, Th. 1, p. 108])

2. In an arbitrary associative triple system, with triple product denoted by 〈abc〉, define a triple product
by

[xyz] = 〈xyz〉 − 〈yxz〉 − 〈zxy〉+ 〈zyx〉.
Show that the associative triple system becomes a Lie triple system with this new triple product.
([140, ch. 6, ex. 3, p. 43])

3. In an arbitrary Jordan algebra, with product denoted by xy, define a triple product by [xyz] =
x(yz)− y(xz). Show that the Jordan algebra becomes a Lie triple system with this new triple product.
([140, ch. 6, ex. 4, p. 43])
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4. In an arbitrary Jordan triple system, with triple product denoted by {abc}, fix an element y and define
a binary product by

ab = {ayb}.
Show that the Jordan triple system becomes a Jordan algebra with this (binary) product.
([140, ch. 10, Th. 1, p. 94]—using different language; see also [193, Prop. 19.7, p. 317])

5. In an arbitrary Jordan algebra with multiplication denoted by ab, define a triple product

{abc} = (ab)c+ (cb)a− (ac)b.

Show that the Jordan algebra becomes a Jordan triple system with this triple product. ([140, ch. 10,
p. 93]—using different language; see also [193, Cor. 19.10, p. 320])

6. Show that every Lie triple system, with triple product denoted [abc] is a subspace of some Lie algebra,
with product denoted [a, b], such that [abc] = [[a, b], c].
([140, ch. 6, Th. 1, p. 45])

7. Find out what a semisimple associative algebra is and prove that every derivation of a finite dimensional
semisimple associative algebra is inner, that is, of the form x 7→ ax−xa for some fixed a in the algebra.
([93, Theorem 2.2])

8. Find out what a semisimple Lie algebra is and prove that every derivation of a finite dimensional
semisimple Lie algebra is inner, that is, of the form x 7→ [a, x] for some fixed a in the algebra.
([140, ch. 5, Th. 2, p. 42]; see also [93, Theorem 2.1])

9. Find out what a semisimple Jordan algebra is and prove that every derivation of a finite dimensional
semisimple Jordan algebra is inner, that is, of the form x 7→ ∑n

i=1(ai(bix) − bi(aix)) for some fixed
elements a1, . . . , an and b1, . . . , bn in the algebra. [105, c. p. 320] and [32, c.p. 270]

10. In an associative triple system with triple product 〈xyz〉, show that you get a Jordan triple system
with the triple product {xyz} = 〈xyz〉+ 〈zyx〉. Then use Theorem 3.10 to prove Theorem 3.3.

11. Find out what a semisimple associative triple system is and prove that every derivation of a finite
dimensional semisimple associative triple system is inner (also find out what inner means in this
context). ([38])

12. Find out what a semisimple Lie triple system is and prove that every derivation of a finite dimensional
semisimple Lie triple system is inner, that is, of the form x 7→ ∑n

i=1[aibix] for some fixed elements
a1, . . . , an and b1, . . . , bn in the Lie triple system.
([140, ch. 6, Th.10, p. 57])

13. Find out what a semisimple Jordan triple system is and prove that every derivation of a finite dimen-
sional semisimple Jordan triple system is inner, that is, of the form x 7→ ∑n

i=1({aibix} − {biaix}) for
some fixed elements a1, . . . , an and b1, . . . , bn in the Jordan triple system.
([140, ch. 11, Th. 8, p.123 and Cor. 2, p. 124])

4 Contractive projections

The purpose of this section is to describe the role which contractive projections have played in the theory
of JB∗-triples, which is the primary algebraic structure of interest in this survey. We shall return to the
subject of contractive projections in section 9.2.

Contractive projections on Banach spaces have been the focus of much study. For a survey see [163]. We
are concerned here with the interplay between the algebraic structure and contractive projections.
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4.1 Projective stability

A well-known and useful result in the structure theory of operator triple systems is the “contractive projection
principle,” that is, the fact that the range of a contractive projection on a JB∗-triple is linearly isometric
in a natural way to another JB∗-triple. The genesis of the role of contractive projections in Banach triple
systems lies in the following theorem. This was preceded by a similar principle in a geometric context [186],
which was unknown to the authors of [73].

Theorem 4.1 (Friedman and Russo 1985 [73]) The range of a contractive projection on a C∗-algebra
is linearly isometric to a JC∗-triple, that is, a linear subspace of B(H) which is closed under the symmetric
triple product xy∗z + zy∗x.

Thus, as shown later and described below, the category of JB∗-triples and contractions is stable under
contractive projections. To put this result in proper prospective, let B be the category of Banach spaces and
contractions. We say that a sub-category S of B is projectively stable if it has the property that whenever
A is an object of S and X is the range of a morphism of S on A which is a projection, then X is isometric
(that is, isomorphic in S) to an object in S.

Examples of projectively stable categories are the following.

• L1, contractions (Grothendieck 1955 [81])

• Lp, 1 ≤ p <∞, contractions
(Douglas 1965 [58], Ando 1966 [3], Bernau-Lacey 1974 [22], Tzafriri 1969 [190])

• C∗-algebras, completely positive unital maps (Choi-Effros 1977 [41])

• ℓp, 1 ≤ p <∞, contractions
(Lindenstrauss-Tzafriri 1977 [130])

• JC∗-algebras, positive unital maps
(Effros-Stormer 1979 [67])

• TROs (ternary rings of operators),
complete contractions (Youngson 1983 [197])

• JB∗-triples, contractions
(Kaup 1984 [119], Stacho 1982 [186], Friedman-Russo 1985 [73])

• ℓp-direct sums of Cp(H), 1 ≤ p <∞, H Hilbert space, contractions
(Arazy-Friedman, 1978 [10], 2000 [11])

• ℓp-direct sums of Lp(Ω, H), 1 ≤ p <∞, H Hilbert space, contractions
(Raynaud 2004 [164])

• ℓp-direct sums of Cp(H), 1 ≤ p 6= 2 <∞, H Hilbert space, complete contractions
(LeMerdy-Ricard-Roydor 2009 [128])

It follows immediately that if S is projectively stable, then so is the category S∗ of spaces whose dual
spaces belong to S. It should be noted that TROs, C∗-algebras and JC∗-algebras are not stable under
contractive projections and JB∗-triples are not stable under bounded projections.

4.1.1 More about JB*-triples

JB*-triples are generalizations of JB*-algebras and C*-algebras. The axioms can be said to come geometry
in view of Kaup’s Riemann mapping theorem [118] . Kaup showed in 1983 that JB*-triples are exactly those
Banach spaces whose open unit ball is a bounded symmetric domain. Kaup’s holomorphic characterization
of JB*-triples directly led to the proof of the projective stability of JB*-triples mentioned above.

19



Many authors have studied the interplay between JB*-triples and infinite dimensional holomorphy. Con-
tractive projections have proved to be a valuable tool for the study of problems on JB*-triples (Gelfand-
Naimark theorem [75], structure of inner ideals [64], operator space characterization of TROs [146], to name
a few) They are justified both as a natural generalization of operator algebras as well as because of their
connections with complex geometry.

Preduals of JBW*-triples have been called pre-symmetric spaces [59] and have been proposed as mathe-
matical models of physical systems [69]. In this model the operations on the physical system are represented
by contractive projections on the pre-symmetric space.

JB*-triples first arose in Koecher’s proof [124], [133] of the classification of bounded symmetric domains
in Cn. The original proof of this fact, done in the 1930’s by Cartan, used Lie algebras and Lie groups,
techniques which do not extend to infinite dimensions. On the other hand, to a large extent, the Jordan
algebra techniques do so extend, as shown by Kaup and Upmeier.18

4.1.2 Application: Gelfand Naimark theorem for JB*-triples

Theorem 4.2 (Friedman and Russo 1986 [75]) Every JB*-triple is isometically isomorphic to a sub-
triple of a direct sum of Cartan factors.

The theorem was not unexpected. However, the proof required new techniques because of the lack of an
order structure on a JB*-triple.

• Step 1: February 1983 Friedman-Russo [73]

Let P : A → A be a linear projection of norm 1 on a JC*-triple A. Then P (A) is a JB*-triple under
{xyz}P (A) = P ({xyz}) for x, y, z ∈ P (A).

• Step 2: April 1983 Friedman-Russo [72]

Same hypotheses. Then P is a conditional expectation in the sense that

P{PaPbPc} = P{Pa, b, P c}

and
P{PaPbPc} = P{aPbPc}.

• Step 3: May 1983 Kaup [119]

Let P : U → U be a linear projection of norm 1 on a JB*-triple U . Then P (U) is a JB*-triple under
{xyz}P (U) = P ({xyz}U ) for x, y, z ∈ P (U). Also, P{PaPbPc} = P{Pa, b, P c} for a, b, c ∈ U , which
extends one of the formulas in the previous step.

• Step 4: February 1984 Friedman-Russo [74]

Every JBW*-triple splits into atomic and purely non-atomic ideals.

• Step 5: August 1984 Dineen [56]

The bidual of a JB*-triple is a JB*-triple.

• Step 6: October 1984 Barton-Timoney [21]

The bidual of a JB*-triple is a JBW*-triple, that is, the triple product is separately weak*-continuous.

• Step 7: December 1984 Horn [97]

Every JBW*-triple factor of type I is isomorphic to a Cartan factor. More generally, every JBW*-triple
of type I is isomorphic to a direct sum of L∞ spaces with values in a Cartan factor.

18The opposite is true concerning cohomology. Lie algebra cohomology is well developed, Jordan algebra cohomology is not
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• Step 8: March 1985 Friedman-Russo [75]

Putting it all together

π : U → U∗∗ = A⊕N = (⊕αCα)⊕N = σ(U∗∗)⊕N

implies that σ ◦ π : U → A = ⊕αCα is an isometric isomorphism.

Consequences of the Gelfand-Naimark theorem

• Every JB*-triple is isomorphic to a subtriple of a JB*-algebra.

• In every JB*-triple, ‖{xyz}‖ ≤ ‖x‖‖y‖‖z‖
• Every JB*-triple contains a unique norm-closed ideal J such that U/J is isomorphic to a JC*-triple
and J is purely exceptional, that is, every homomorphism of J into a C*-algebra is zero.

4.1.3 Preservation of type

The following results are due to Chu-Neal-Russo [50], and simultaneously, to Bunce-Peralta [34]. The
corresponding (classical) result for von Neumann algebras, due to Tomiyama [189], required, of necessity,
that the range of the projection be a subalgebra, since the category of von Neumann algebras and positive
normal contractions is not projectively stable.

Theorem 4.3 Let P be a normal contractive projection on a JBW ∗-triple Z of type I. Then P (Z) is of
type I.

Theorem 4.4 Let P be a normal contractive projection on a semifinite JBW ∗-triple Z. Then P (Z) is a
semifinite JW ∗-triple.

4.2 Projective rigidity

By considering the converse of projective stability, one is lead to the following definition.

A sub-category S of B is projectively rigid if it has the property that whenever A is an object of S
and X is a subspace of A which is isometric to an object in S, then X is the range of a morphism of S on
A which is a projection.

Examples of projectively rigid categories are the following.

• ℓp, 1 < p <∞, contractions
(Pelczynski 1960 [154])

• Lp, 1 ≤ p <∞, contractions
(Douglas 1965 [58], Ando 1966 [3], Bernau-Lacey 1974 [22])

• Cp, 1 ≤ p <∞, contractions
(Arazy-Friedman 1977 [9])

• Preduals of von Neumann algebras,
contractions (Kirchberg 1993 [122])

• Preduals of TROs, complete contractions (Ng-Ozawa 2002 [150])

• Preduals of JBW*-triples, contractions19 (Neal-Russo 2008 [148])

• ℓp-direct sums of Cp(H), 1 ≤ p 6= 2 <∞, H Hilbert space, complete contractions
(LeMerdy-Ricard-Roydor 2009 [128])

Theorem 4.5 (Neal-Russo) The category of preduals of JBW ∗-triples with no summands of the form
L1(Ω, H) where H is a Hilbert space of dimension at least two, is projectively rigid.

19with one exception, see Theorem 4.5
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4.3 Structural Projections

4.3.1 Structure of inner ideals

In a series of papers, mainly by Edwards and Rüttimann (cf. [63]), the ideal structure of C*-algebras and
JB*-algebras has been thoroughly studied, and a surprising geometric characterization of the closed inner
ideals among the closed subtriples of a JB*-triple has been established: a norm-closed subtriple B of a JB*-
triple A is an inner ideal if and only if every bounded linear functional on B has a unique norm-preserving
linear extension to A.

Loos and Neher ([134],[135]) have introduced the notions of complementation and structural projection
in the purely algebraic setting of Jordan pairs and Jordan *-triples. Let A be an anisotropic Jordan *-triple;
then for every element a in A the quadratic mapping Q(a) is defined by Q(a)x: = {axa}. The kernel Ker(B)
of a subset B in A is the subspace of A consisting of all elements annihilated by the mappings Q(b) as b
ranges over B. A subtriple B is said to be complemented if A = B ⊕Ker(B). A linear projection P on A is
said to be structural if it satisfies Q(Pa) = PQ(a)P for all a in A, which occurs if and only if its range B =
P(A) is a complemented subtriple of A.

In [64], the study of structural projections on JBW*-triples is continued. It is shown that a structural
projection on a JBW*-triple is necessarily contractive and weak* continuous, and that every weak* closed
inner ideal in a JBW*-triple A is a complemented subtriple of A and therefore the range of a unique structural
projection.

4.3.2 Geometric characterization

Since structural projections are contractive and weak* continuous, every structural projection is the adjoint
of a contractive linear projection on the predual of A. The contractive projections P on A∗ that arise in
this way also have the property that they are neutral, in that, if x is an element of for which ‖Px‖ and ‖x‖
coincide then Px and x also coincide. It follows from the results of [62] that the mapping P 7→ P ∗(A) is a
bijection from the family of neutral projections on A∗ for which P ∗A is a subtriple of A onto the complete
lattice of weak*-closed inner ideals in A.

The L-orthogonal complement G⋄ of a subset G of a complex Banach space E is the set of elements x in
E such that, for all elements y in G, ‖x ± y‖ = ‖x‖ + ‖y‖: A contractive projection P on E is said to be a
GL-projection if the L-orthogonal complement PE⋄ of the range PE of P is contained in the kernel of P. It
is shown in [61] that, for a JBW ∗-triple A with pre dual A∗, a linear projection R on A is structural if and
only if it is the adjoint of a neutral GL-projection on A, thereby giving a purely geometric characterization
of structural projections.

4.3.3 Physical interpretation

The predual of a JBW*-triple A, also called a prosymmetric space, has been proposed as a model of the
state space of a statistical physical system, in which contractive linear mappings on A∗ represent operations
or filters on the system. For a discussion of this model we refer to [61] and for an application to decoherent
states we refer to [60].

In the theory of Banach spaces and in the study of state spaces of physical systems, much effort has
been devoted to the investigation of when particular closed subspaces of a Banach space are the ranges
of contractive projections. Since the range of a contractive projection on a pre-symmetric space is itself a
pre-symmetric space, this problem is particularly relevant in the case of pre-symmetric spaces. The main
results of [60] are used to determine under what circumstances the closed subspace of A∗ generated by a
family {xj : j ∈ Λ} of elements of A∗ of norm one which are pairwise decoherent (see [60] for the definition)
is the range of a contractive projection. (Is Theorem 4.5 relevant here?)

5 Derivations on operator algebras and operator triple systems

In this section we shall review the literature about derivations on associative and non associative operator
algebras and operator triple systems, with the main focus being on some new results concerning the notion
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of weak amenability.
There are two basic questions concerning derivations of Banach algebras and Banach triple systems,

namely, whether they are automatically continuous, and to what extent are they all inner, in the appropriate
context. These questions are significant in the case of a derivation of a space into itself, or into an appropriate
module. The contexts which we shall consider are

(i) C*-ALGEBRAS (more generally, associative Banach algebras)

(ii) JC*-ALGEBRAS (more generally, Jordan Banach algebras)

(iii) JC*-TRIPLES (more generally, Banach Jordan triples)

One could and should also consider:

(i′) Banach associative triple systems

(ii′) Banach Lie algebras

(iii′) Banach Lie triple systems

5.1 C*-algebras

In the context of associative algebras, a derivation is a linear mapping satisfying the property D(ab) =
a ·Db+Da · b, and an inner derivation is a derivation of the form ad x(a) = x · a− a · x (x ∈M).

The main automatic continuity results for C∗-algebra are due to Kaplansky (commutative and type I
cases), Sakai, and Ringrose20.

The main inner derivation results are due primarily to Sakai, Kadison, Connes21 , and Haagerup22. We
won’t define the terms amenable and nuclear here. We refer to the excellent notes by Runde [173] for these
definitions and much other information. Weak amenability will be defined shortly, as it is the focus of our
discussion.

Theorem 5.1 (Sakai 1960 [175]) Every derivation from a C∗-algebra into itself is continuous.

Theorem 5.2 (Ringrose 1972 [166]) Every derivation from a C∗-algebra into a Banach A-bimodule is
continuous.

Theorem 5.3 (Sakai [176], Kadison [113]) Every derivation of a C∗-algebra is of the form x 7→ ax−xa
for some a in the weak closere of the C∗-algebra

Theorem 5.4 (Connes 1976 [51]) Every amenable C∗-algebra is nuclear.

Theorem 5.5 (Haagerup 1983 [82]) Every nuclear C∗-algebra is amenable.

Theorem 5.6 (Haagerup 1983 [82]) Every C∗-algebra is weakly amenable.

20 John Ringrose (b. 1932) John Ringrose is a leading world expert on non-self-adjoint operators and operator algebras.
He has written a number of influential texts including Compact non-self-adjoint operators (1971) and, with R V Kadison,
Fundamentals of the theory of operator algebras in four volumes published in 1983, 1986, 1991 and 1992

21 Alain Connes b. 1947 Alain Connes is the leading specialist on operator algebras. In his early work on von Neumann
algebras in the 1970s, he succeeded in obtaining the almost complete classification of injective factors. Following this he made
contributions in operator K-theory and index theory, which culminated in the Baum-Connes conjecture. He also introduced
cyclic cohomology in the early 1980s as a first step in the study of noncommutative differential geometry. Connes has applied
his work in areas of mathematics and theoretical physics, including number theory, differential geometry and particle physics

22 Uffe Haagerup b. 1950 Haagerup’s research is in operator theory, and covers many subareas in the subject which are
currently very active - random matrices, free probability, C*-algebras and applications to mathematical physics
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5.2 A bridge to Jordan algebras

A Jordan derivation from a Banach algebra A into a Banach A-module is a linear map D satisfying D(a2) =
aD(a) +D(a)a, (a ∈ A), or equivalently, D(ab+ ba) = aD(b) +D(b)a+D(a)b+ bD(a), (a, b ∈ A). Sinclair
proved in 1970 [181] that a bounded Jordan derivation from a semisimple Banach algebra to itself is a
derivation, although this result fails for derivations of semisimple Banach algebras into a Banach bi-module.

Nevertheless, a celebrated result of B.E. Johnson in 1996 [109] states that every bounded Jordan derivation
from a C∗-algebra A to a Banach A-bimodule is an associative derivation. In view of the intense interest in
automatic continuity problems in the past half century, it is therefore somewhat surprising that the following
problem has remained open for fifteen years.

Problem 5.7 Is every Jordan derivation from a C∗-algebra A to a Banach A-bimodule automatically con-
tinuous (and hence a derivation, by Johnson’s theorem)?

In 2004, J. Alaminos, M. Brešar and A.R. Villena [4] gave a positive answer to the above problem for
some classes of C∗-algebras including the class of abelian C∗-algebras. Combining a theorem of Cuntz from
1976 [53] with the theorem just quoted yields

Theorem 5.8 Every Jordan derivation from a C∗-algebra A to a Banach A-module is continuous.

In the same way, using the solution in 1996 by Hejazian-Niknam [88] in the commutative case we have

Theorem 5.9 Every Jordan derivation from a C∗-algebra A to a Jordan Banach A-module is continuous.

(Jordan module will be defined below)

These last two results will also be among the consequences of some work of Peralta and Russo [156],
described below, on automatic continuity of derivations into Jordan triple modules.

5.3 JC*-algebras

In the context of Jordan algebras, a derivation is a linear mapping satisfying the property D(a◦b) = a◦Db+
Da ◦ b, and an inner derivation is a derivation of the form

∑

i[L(xi)L(ai) − L(ai)L(xi)], (xi ∈ M,ai ∈ A)
b 7→ ∑

i[xi ◦ (ai ◦ b)− ai ◦ (xi ◦ b)]
The main automatic continuity results for JC∗-algebras are due to Upmeier23, Hejazian-Niknam, and

Alaminos-Bresar-Villena. The main inner derivation results are due to Jacobson and Upmeier. We have
already mentioned the results of Hejazian-Niknam and Alaminos-Bresar-Villena in this context.

Theorem 5.10 (Upmeier 1980 [191]) Every derivation of a reversible JC∗-algebra extends to a deriva-
tion of its enveloping C∗-algebra.

In particular, this theorem improves Theorem 1.14 in the case of a C∗-algebra.

Theorem 5.11 (Jacobson 1951 [105]) Every derivation of a finite dimensional semisimple Jordan alge-
bra into a (Jordan) module is inner.

The proof of this theorem uses the theory of Lie algebras and Lie triple systems.

Because of the structure theory for real Jordan operator algebras, the following theorem completely
answers the question of when all derivations are inner on a JBW-algebra.

Theorem 5.12 (Upmeier 1980 [191])
1. Purely exceptional JBW-algebras have the inner derivation property
2. Reversible JBW-algebras have the inner derivation property
3. ⊕L∞(Sj , Uj) has the inner derivation property if and only if supj dimUj <∞ (Uj spin factors).

23 Harald Upmeier (b. 1950)
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5.4 JC*-triples

In the context of Jordan triple systems, a derivation is a linear or conjugate linear mapping satisfying the
property D{a, b, c} = {Da.b, c}+ {a,Db, c}+ {a, b,Dc}, and an inner derivation is a derivation of the form
∑

i[L(xi, ai)− L(ai, xi)] (xi ∈M,ai ∈ A) b 7→ ∑

i[{xi, ai, b} − {ai, xi, b}].
For reasons related to the definition of Jordan triple module in the complex case, and which are discussed

in both [92] and [156], although a derivation from a Jordan triple system to itself is linear, nevertheless, in
the complex case, a derivation of a Jordan triple system into a Jordan triple module (other than the triple
itself) is declared to be a conjugate linear map.

The main automatic continuity results for JC∗-triples, where the triple product is given by {x, y, z} =
(xy∗z + zy∗x)/2 are due to Barton24 and Friedman25 and Peralta26 and Russo27, and the main inner
derivation results are due to Ho-Martinez-Peralta-Russo, Meyberg, Kühn-Rosendahl, and Ho-Peralta-Russo..

Before stating these results, we must acknowledge the pioneering efforts of Harris28 to the study of Jordan
operator triple systems, especially for the papers [86] and [87] devoted respectively to infinite dimensional
holomorphy and spectral and ideal theory.

Theorem 5.13 (Barton-Friedman 1990 [20]) Every derivation of a JB∗-triple is continuous.

Theorem 5.14 (Peralta-Russo 2010 [156]) Necessary and sufficient conditions under which a deriva-
tion of a JB∗-triple into a Jordan triple module is continuous.

(JB∗-triple and Jordan triple module are defined below)

The proofs of the following two theorems rely heavily on the theories of Lie algebras and Lie triple
systems.

Theorem 5.15 (Meyberg 1972 [140]) Every derivation of a finite dimensional semisimple Jordan triple
system is inner

Theorem 5.16 (Kühn-Rosendahl 1978 [126]) Every derivation of a finite dimensional semisimple Jor-
dan triple system into a Jordan triple module is inner.

The proofs of the following two theorems rely on operator theory and functional analysis.

Theorem 5.17 ((Ho-Martinez-Peralta-Russo 2002 [91]) Cartan factors of type In,n, II (even or ∞),
and III have the inner derivation property.

Theorem 5.18 ((Ho-Martinez-Peralta-Russo 2002 [91]) Infinite dimensional Cartan factors of type
Im,n,m 6= n, and IV do not have the inner derivation property.

5.4.1 Some consequences of Peralta-Russo work [156] on automatic continuity

For JB*-triples:

1. Automatic continuity of derivation on JB∗-triple (Barton-Friedman)

2. Automatic continuity of derivation of JB∗-triple into its dual (Suggests ternary weak amenability)

3. Automatic continuity of derivation of JB∗-algebra into a Jordan module (Hejazian-Niknam)

For C*-algebras:

1. Automatic continuity of derivation of C∗-algebra into a module (Ringrose)

2. Automatic continuity of Jordan derivation of C∗-algebra into a module (Johnson)

3. Automatic continuity of Jordan derivation of C∗-algebra into a Jordan module (Hejazian-Niknam)

24 Tom Barton (b. 1955) Tom Barton is Senior Director for Architecture, Integration and CISO at the University of
Chicago. He had similar assignments at the University of Memphis, where he was a member of the mathematics faculty before
turning to administration

25Yaakov Friedman (b. 1948) Yaakov Friedman is director of research at Jerusalem College of Technology
26 Antonio Peralta (b. 1974)
27 Bernard Russo (b. 1939)
28Lawrence A. Harris (PhD 1969)

25



5.4.2 Summary of Ho-Peralta-Russo work [92] on ternary weak amenability

Recall that a Banach algebra A is said to be amenable if every bounded derivation of A into a dual A-module
is inner, and weakly amenable if every (bounded) derivation from A to A∗ is inner.

A Jordan Banach triple E is said to be weakly amenable or ternary weakly amenable if every continuous
triple derivation from E into its dual space is necessarily inner.

The main results of [92] are:

1. Commutative C∗-algebras are ternary weakly amenable.

2. Commutative JB∗-triples are approximately weakly amenable, that is, every derivation into its dual
is approximated in norm by inner derivations.

3. B(H),K(H) are ternary weakly amenable if and only if they are finite dimensional.

4. Cartan factors of type Im,n of finite rank with m 6= n, and of type IV are ternary weakly amenable if
and only if they are finite dimensional.

We provide some examples now of the details of the results of [92] just mentioned.

Lemma 5.19 The C∗-algebra A = K(H) of all compact operators on an infinite dimensional Hilbert space
H is not Jordan weakly amenable, that is, not every Jordan derivation into the dual is inner.

Proof: We shall identify A∗ with the trace-class operators on H . Supposing that A were Jordan weakly
amenable, let ψ ∈ A∗ be arbitrary. Then Dψ (= adψ) is an associative derivation and hence a Jordan
derivation, so by assumption would be an inner Jordan derivation. Thus there would exist ϕj ∈ A∗ and
bj ∈ A such that

Dψ(x) =
n
∑

j=1

[ϕj ◦ (bj ◦ x)− bj ◦ (ϕj ◦ x)]

for all x ∈ A.

For x, y ∈ A, a direct calculation yields

ψ(xy − yx) = −1

4





n
∑

j=1

bjϕj − ϕjbj



 (xy − yx).

It is known (Pearcy-Topping 1971 [153]) that every compact operator on a separable (which we may
assume WLOG) infinite dimensional Hilbert space is a finite sum of commutators of compact operators.

By the just quoted theorem of Pearcy and Topping, every element of K(H) can be written as a finite
sum of commutators [x, y] = xy − yx of elements x, y in K(H).

Thus, it follows that the trace-class operator

ψ = −1

4





n
∑

j=1

bjϕj − ϕjbj





is a finite sum of commutators of compact and trace-class operators, and hence has trace zero. This is a
contradiction, since ψ was arbitrary, completing the proof.

Proposition 5.20 The JB∗-triple A =Mn(C) is ternary weakly amenable.

Proof: Let us denote by Dt(A,A∗) the triple derivations of A into A∗, by Inn∗
b(A,A

∗) the inner associative
derivations of A into A∗ and by Innt(A,A∗) the inner triple derivations from A into A∗. Then by a
Proposition which is a step in the proof that commutative C*-algebras are ternary weakly amenable,

Dt(A,A∗) = Inn∗
b(A,A

∗) ◦ ∗+ Innt(A,A∗),
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so it suffices to prove that Inn∗
b(A,A

∗) ◦ ∗ ⊂ Innt(A,A∗).

As in the proof of the Lemma, if D ∈ Inn∗
b(A,A

∗) so that Dx = ψx− xψ for some ψ ∈ A∗, then

ψ = [ϕ1, b1]− [ϕ2, b2] +
Tr (ψ)

n
I,

where b1, b2 are self adjoint elements of A and ϕ1 and ϕ2 are self adjoint elements of A∗.

It is easy to see that, for each x ∈ A, we have

D(x∗) = {ϕ1, 2b1, x} − {2b1, ϕ1, x} − {ϕ2, 2b2, x}+ {2b2, ϕ2, x},

so that D ◦ ∗ ∈ Innt(A,A∗), as required.

5.5 Main automatic continuity result

We shall now give some details about the paper [156] which has been mentioned several times already. This
involves Jordan triples, Jordan triple modules, quadratic annihilator, and separating spaces

5.5.1 Jordan triples

A complex (resp., real) Jordan triple is a complex (resp., real) vector space E equipped with a non-trivial
triple product

E × E × E → E

(x, y, z) 7→ {xyz}
which is bilinear and symmetric in the outer variables and conjugate linear (resp., linear) in the middle one
satisfying the so-called “Jordan Identity”:

L(a, b)L(x, y)− L(x, y)L(a, b) = L(L(a, b)x, y)− L(x, L(b, a)y), (4)

for all a, b, x, y in E, where L(x, y)z := {xyz}.
A JB∗-algebra is a complex Jordan Banach algebra A equipped with an algebra involution ∗ satisfying

‖{a, a∗, a}‖ = ‖a‖3, a ∈ A. (Recall that {a, a∗, a} = 2(a ◦ a∗) ◦ a− a2 ◦ a∗).
A (complex) JB∗-triple is a complex Jordan Banach triple E satisfying the following axioms:

(a) For each a in E the map L(a, a) is an hermitian operator on E with non negative spectrum.

(b) ‖{a, a, a}‖ = ‖a‖3 for all a in A.

Every C∗-algebra (resp., every JB∗-algebra) is a JB∗-triple with respect to the product {abc} = 1
2 (ab∗c+

cb∗a) (resp., {abc} := (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗).

5.5.2 Jordan triple modules

If A is an associative algebra, an A-bimodule is a vector space X , equipped with two bilinear products
(a, x) 7→ ax and (a, x) 7→ xa from A×X to X satisfying the following axioms:

a(bx) = (ab)x, a(xb) = (ax)b, and, (xa)b = x(ab),

for every a, b ∈ A and x ∈ X .

If J is a Jordan algebra, a Jordan J-module is a vector space X , equipped with two bilinear products
(a, x) 7→ a ◦ x and (x, a) 7→ x ◦ a from J ×X to X , satisfying:

a ◦ x = x ◦ a, a2 ◦ (x ◦ a) = (a2 ◦ x) ◦ a, and,

2((x ◦ a) ◦ b) ◦ a+ x ◦ (a2 ◦ b) = 2(x ◦ a) ◦ (a ◦ b) + (x ◦ b) ◦ a2,
for every a, b ∈ J and x ∈ X
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If E is a complex Jordan triple, a Jordan triple E-module (also called triple E-module) is a vector space
X equipped with three mappings

{., ., .}1 : X × E × E → X
{., ., .}2 : E ×X × E → X
{., ., .}3 : E × E ×X → X

satisfying:

1. {x, a, b}1 is linear in a and x and conjugate linear in b, {abx}3 is linear in b and x and conjugate linear
in a and {a, x, b}2 is conjugate linear in a, b, x

2. {x, b, a}1 = {a, b, x}3, and {a, x, b}2 = {b, x, a}2 for every a, b ∈ E and x ∈ X .

3. Denoting by {., ., .} any of the products {., ., .}1, {., ., .}2 and {., ., .}3, the identity {a, b, {c, d, e}} =
{{a, b, c} , d, e} − {c, {b, a, d} , e} + {c, d, {a, b, e}} , holds whenever one of the elements a, b, c, d, e is in
X and the rest are in E.

It is a little bit laborious to check that the dual space, E∗, of a complex (resp., real) Jordan Banach
triple E is a complex (resp., real) triple E-module with respect to the products:

{a, b, ϕ} (x) = {ϕ, b, a} (x) := ϕ {b, a, x} (5)

and
{a, ϕ, b} (x) := ϕ {a, x, b}, ∀ϕ ∈ E∗, a, b, x ∈ E. (6)

For each submodule S of a triple E-module X , we define its quadratic annihilator, AnnE(S), as the set

{a ∈ E : Q(a)(S) = {a, S, a} = 0}.

5.5.3 Separating spaces

Separating spaces have been revealed as a useful tool in results of automatic continuity.

Let T : X → Y be a linear mapping between two normed spaces. The separating space, σ
Y
(T ), of T in Y

is defined as the set of all z in Y for which there exists a sequence (xn) ⊆ X with xn → 0 and T (xn) → z.

A straightforward application of the closed graph theorem shows that a linear mapping T between two
Banach spaces X and Y is continuous if and only if σ

Y
(T ) = {0}

5.5.4 Main result

Theorem 5.21 Let E be a complex JB∗-triple, X a Banach triple E-module, and let δ : E → X be a triple
derivation. Then δ is continuous if and only if AnnE(σX

(δ)) is a (norm-closed) linear subspace of E and

{Ann
E
(σ

X
(δ)),Ann

E
(σ

X
(δ)), σ

X
(δ)} = 0.

Corollary 5.22 Let E be a real or complex JB∗-triple. Then
(a) Every derivation δ : E → E is continuous.
(b) Every derivation δ : E → E∗ is continuous.

Part II

Cohomology

6 Cohomology of finite dimensional algebras

6.1 Associative algebras

The starting point for the cohomology theory of algebras is the paper of Hochschild from 1945 [94]. The
standard reference of the theory is [40]. Two other useful references are due to Weibel ([195],[196]). We
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review here the definitions of the cohomology groups Hn(M,X) and the interpretation of them in the cases
n = 1, 2.

Let M be an associative algebra and X a two-sided M -module. For n ≥ 1, let Ln(M,X) be the linear
space of all n-linear maps from M to X (L0(M,X) = X). The coboundary operator is the linear mapping
∂ : Ln → Ln+1 (for n ≥ 1) defined by

∂φ(a1, · · · , an+1) = a1φ(a2, · · · , an+1)+
∑

(−1)jφ(a1, · · · , aj−1, ajaj+1, · · · , an+1)+(−1)n+1φ(a1, · · · , an)an+1

For n = 0, ∂ : X → L(M,X) is defined by ∂x(a) = ax − xa. Since ∂ ◦ ∂ = 0, Im(∂ : Ln−1 → Ln) ⊂
ker(∂ : Ln → Ln+1), and Hn(M,X) = ker∂/Im∂ is a vector space.

For n = 1, ker ∂ = {φ :M → X : a1φ(a2)−φ(a1a2)+φ(a1)a2 = 0} which is the space of derivations from
M to X ; and ∂ : X → L(M,X) is given by ∂x(a) = ax− xa so that Im ∂ is the space of inner derivations

Thus H1(M,X) measures how close derivations are to inner derivations.

An associative algebra B is an extension of associative algebra A if there is a homomorphism σ of B
onto A. The extension splits if B = kerσ ⊕ A∗ where A∗ is an algebra isomorphic to A, and is singular if
(kerσ)2 = 0.

Proposition 6.1 There is a one to one correspondence between isomorphism classes of singular extensions
of A and H2(A,A)

6.2 Lie algebras

Shortly after the introduction of the cohomology for associative algebras was introduced, there appeared a
corresponding theory for Lie algebras. We follow [104] for the definitions and initial results. Applications
can be found in [76] and [123].

If L is a Lie algebra, then an L-module is a vector spaceM and a mapping ofM×L intoM , (m,x) 7→ mx,
satisfying (m1 +m2)x = m1x+m2x, α(mx) = (αm)x = m(αx), and m[x1, x2] = (mx1)x2 − (mx2)x1.

Let L be a Lie algebra, M an L-module. If i ≥ 1, an i-dimensional M -cochain for L is a skew symmetric
i-linear mapping f of L×L× · · · ×L into M . Skew symmetric means that if two arguments in f(x1, · · · , xi)
are interchanged, the value of f changes sign. A 0-dimensional cochain is a constant function from L to M .

The coboundary operator δ (for i ≥ 1) is:

δ(f)(x1, · · · , xi+1) =

i+1
∑

q=1

(−1)i+1f(x1, · · · , x̂q, · · · , xi+1)xq+

i+1
∑

q<r=1

(−1)r+qf(x1, · · · , x̂q, · · · , x̂r, · · · , xi+1, [xq, xr ]).

and for i = 0, δ(f)(x) = ux (module action), if f is the constant u ∈M .

One verifies that δ2 = 0 giving rise to cohomology groups

Hi(L,M) = Zi(L,M)/Bi(L,M)

If i = 0 we take Bi = 0 and H0(L,M) = Z0(L,M) = {u ∈M : ux = 0, ∀x ∈ L}.

Theorem 6.2 (Whitehead lemmas) If L is a finite dimensional semisimple Lie algebra over a field of
characteristic 0, then

H1(L,M) = H2(L,M) = 0

for every finite dimensional module M of L.

Theorem 6.3 (Whitehead) If L is a finite dimensional semisimple Lie algebra over a field of characteristic
0, then

Hi(L,M) = 0 (∀i ≥ 0)

for every finite dimensional irreducible module M of L such that ML 6= 0.
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6.3 Jordan algebras

The cohomology theory for Jordan algebras is less well developed than for associative and Lie algebras. A
starting point would seem to be the papers of Gerstenhaber in 1964 [77] and Glassman in 1970 [80], which
concern arbitrary nonassociative algebras. A study focussed primarily on Jordan algebras is [79].

Let A be an algebra defined by a set of identities and let M be an A-module. A singular extension of
length 2 is, by definition, a null extension of A by M . A null extension is a short exact sequence

0 →M
α→ E

β→ A→ 0

where, provisionally,M is an algebra (rather than an A-module) with M2 = 0. If n > 2, a singular extension
of length n is an exact sequence of bimodules

0 →M →Mn−1 → · · · →M2 → E → A→ 0

Morphisms, equivalences, addition, and scalar multiplication of equivalence classes of singular extensions
can be defined. Then for n ≥ 2, Hn(A,M) := equivalence classes of singular extensions of length n. These
definitions are equivalent to the classical ones in the associative and Lie cases.

It is shown in [77] (using generalized projective resolutions) showed that if 0 → M ′ → M → M ′′ → 0 is
an exact sequence of A-bimodules, then there are natural homomorphisms δn so that the long sequence

0 → Der (A,M ′) → Der (A,M) → Der (A,M ′′)
δ1→

H2(A,M ′) → H2(A,M) → H2(A,M ′′)
δ2→

H3(A,M ′) → H3(A,M) → H3(A,M ′′) →

· · · → Hn(A,M ′′)
δn→ Hn+1(A,M ′) → · · ·

is exact. In particular,
Hn(A,M) = ker δn/im δn−1 (n ≥ 2)

What about H0(A,M) and H1(A,M) and Jordan algebras? For this we turn first to Glassman’s thesis
of 1968, embodied in [79] and [80]. Given an algebra A, consider the functor T from the category C of
A-bimodules and A-homomorphisms to the category V of vector spaces and linear maps:

M ∈ C 7→ Der (A,M) ∈ V , η 7→ η̃

where η ∈ HomA(M1,M2) and η̃ ∈ Hom(Der (A,M1),Der (A,M2)) is given by η̃ = η ◦D.
(

A
D→M1

η→M2

)

An inner derivation functor is a subfunctor J which respects epimorphisms, that is,

M ∈ C 7→ J (A,M) ⊂ Der (A,M) ∈ V

and if η ∈ HomA(M1,M2) is onto, then so is J (A, η) := η̃|J (A,M)

Relative to the choice of J one defines H1(A,M) = Der (A,M)/J (A,M). (The definition of H0(A,M)
is more involved so is omitted here). Glassman then proves that

0 → H0(A,M ′) → H0(A,M) → H0(A,M ′′)
δ0→

H1(A,M ′) → H1(A,M) → H1(A,M ′′)
δ1→

H2(A,M ′) → H2(A,M) → H2(A,M ′′)
δ2→

H3(A,M ′) → H3(A,M) → H3(A,M ′′) →

· · · → Hn(A,M ′′)
δn→ Hn+1(A,M ′) → · · ·
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is exact.
We mention just one other result from [79]. In a Jordan algebra, recall that {xby} = (xb)y+(by)x−(xy)b.

The b-homotope of J , written J (b) is the Jordan algebra structure on the vector space J given by the
multiplication x ·b y = {xby}. If M is a bimodule for J and b is invertible, the corresponding bimodule M (b)

for J (b) is the vector space M with action a ·b m = m ·b a = {abm}.

Lemma 6.4 Hn(J,M) ∼ Hn(J (b),M (b))

We next record the Jordan analogs of the first and second Whitehead lemmas as described in [103]. The
first one has already been mentioned in Theorem 5.11.

Theorem 6.5 (Jordan analog of first Whitehead lemma [102]) Let J be a finite dimensional semisim-
ple Jordan algebra over a field of characteristic 0 and let M be a J-module. Let f be a linear mapping of J
into M such that

f(ab) = f(a)b+ af(b).

Then there exist vi ∈M, bi ∈ J such that

f(a) =
∑

i

((via)b − vi(abi)).

Theorem 6.6 (Jordan analog of second Whitehead lemma [155]) Let J be a finite dimensional semisim-
ple (separable?) Jordan algebra and let M be a J-module. Let f be a bilinear mapping of J × J into M such
that

f(a, b) = f(b, a)

and
f(a2, ab) + f(a, b)a2 + f(a, a)ab = f(a2b, a) + f(a2, b)a+ (f(a, a)b)a

Then there exist a linear mapping g from J into M such that

f(a, b) = g(ab)− g(b)a− g(a)b

A study of low dimensional cohomology for quadratic Jordan algebras is given in [138]. Since quadratic
Jordan algebras (which we do not define here) can be considered a bridge from Jordan algebras to Jordan
triple systems, this would seem to be a good place to look for exploring cohomology theory for Jordan triples.
Indeed, this is hinted at in [139]

7 Cohomology of operator algebras

We are now going to summarize the main points of this theory using the two survey articles [167], [184] as
our primary guide.

7.1 Continuous Hochschild cohomology

As we saw in section 6, Hochschild cohomology involves an associative algebra A and A-bimodules X and
gives rise to

• n-cochains Ln(A,X),

• coboundary operators ∆n,

• n-coboundaries Bn,

• n-cocycles Zn and

• cohomology groups Hn(A,X).
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If A is a Banach algebra and X is a Banach A-bimodule ( that is, a Banach space with module actions
jointly continuous) we have the continuous versions of the above concepts Lnc , Bnc , Znc , Hn

c (A,X).
Warning: Bnc is not always closed, so Hn

c is still only a vector space.

Let A be a C*-algebra of operators acting on a Hilbert space H and let X be a dual normal A-module
(X is a dual space and the module actions are separately ultra weakly-weak*-continuous). Further, we now
have

• normal n-cochains Lnw(A,X), that is, bounded and separately weakly continuous n-cochains

• coboundary operators ∆n,

• normal n-coboundaries Bnw,

• normal n-cocycles Znw and

• normal cohomology groups Hn
w(A,X).

Thus, for a C*-algebra acting on a Hilbert space we have three possible cohomology theories:

• the purely algebraic Hochschild theory Hn

• the bounded theory Hn
c

• the normal theory Hn
w

Theorem 7.1 (Johnson,Kadison,Ringrose 1972 [111]) Hn
w(A,X) ∼ Hn

w(R,X)
(R =ultraweak closure of A)

Theorem 7.2 (Johnson,Kadison,Ringrose 1972 [111]) Hn
w(A,X) ∼ Hc

w(A,X)

By Theorems 7.1 and 7.2, all four cohomology groups

Hn
w(A,X) , Hn

w(R,X) , Hn
c (R,X) , Hn

w(R,X)

are pairwise isomorphic.

Theorem 7.3 (Johnson,Kadison,Ringrose 1972 [111]) Hn
c (R,X) = 0 ∀n ≥ 1

(R =hyperfinite von Neumann algebra)

Theorem 7.4 (Connes 1978 [52]) If R is a von Neumann algebra with a separable predual, and H1
c (R,X) =

0 for every dual normal R-bimodule X, then R is hyperfinite.

At this point, there were two outstanding problems of special interest;

Problem 7.5 Hn
c (R,R) = 0 ∀n ≥ 1 for every von Neumann algebra R?

Problem 7.6 Hn
c (R,B(H)) = 0 ∀n ≥ 1 for every von Neumann algebra R acting on a Hilbert space H?

In the words of John Ringrose, “The main obstacle to advance was a paucity of information about the
general bounded linear (or multilinear) mapping between operator algebras. The major breakthrough, lead-
ing to most of the recent advances, came through the development of a rather detailed theory of completely
bounded mappings.”

This development, based on the following definitions, occurred about a decade later.
Let A be a C*-algebra and let S be a von Neumann algebra, both acting on the same Hilbert space H

with A ⊂ S. We can view S as a dual normal A-module with A acting on S by left and right multiplication.
We now have

• completely bounded n-cochains Lncb(A,S)

• coboundary operators ∆n,

• completely bounded n-coboundaries Bncb,

• completely bounded n-cocycles Znbc

• completely bounded cohomology groups Hn
cb(A,S).
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7.2 Completely bounded maps

In this subsection, we shall give an introduction to the category of operator spaces from a point of view
advantageous to the goals of this paper. The immediate purpose is to give context to completely bounded
maps for use when we return to cohomology in the next subsection. Besides the standard monoraphs which
appeared after the beginning of the 21st century [68], [152],[160],[25],[90], there is quite a good bit of the
basic theory in the lecture notes of Runde [173]. Proofs of all the results in this subsection can be found in
one or more of these references.

7.2.1 Banach spaces

Why are normed spaces important? One answer is that Rn is a vector space with a norm, so you can take
derivatives and integrals. Thus, normed spaces are important because you can do calculus.

Why is completeness important? Three basic principles of functional analysis are based in some way on
completeness:

• Hahn-Banach theorem ( which depends on Zorn’s lemma)

• Open mapping theorem (which depends on Baire category)

• Uniform boundedness theorem (which depends on Baire category)

Some examples which will be of interest to us are:

• C[0, 1], Lp, ℓp, c0, C(Ω), L
p(Ω, µ), C0(Ω)

• B(X,Y ), Banach algebras, Operator algebras A ⊂ B(X)

• Operator spaces; C*-algebras, Ternary rings of operators

The Hahn-Banach theorem states that every bounded linear functional on a subspace of a Banach space
has a bounded extension to the larger space with the same norm.

Definition 7.7 A Banach space is injective if every bounded linear operator from a subspace of a Banach
space into it has a bounded extension to the larger space with the same norm.

Theorem 7.8 (Kelley 1952 [121]) A Banach space is injective if and only if it is isometric to C(Ω),
where Ω is extremely disconnected.

Injectivity in a category of Banach spaces is intimately related to contractive projections. Our first
example of this is the following easily verified fact.

Remark 7.9 A Banach space is injective if and only if there is an injective Banach space containing it and
a contractive projection of that space onto it.

7.2.2 Operator spaces

Every Banach space X is commutative, by which we mean that by the Hahn-Banach theorem, X ⊂ C(X∗
1 ),

a linear subspace of a commutative C*-algebra. Hence: C(Ω) is the “mother of all Banach spaces.”

Definition 7.10 An operator space (or noncommutative Banach space, or quantized Banach space) is a
linear subspace of a C*-algebra (or B(H)).

Hence: B(H) is the “mother of all operator spaces.”
An operator space may be viewed as a C*-algebra for which the multiplication and involution have been

ignored. You must replace these by some other structure. What should this structure be and what can you
do with it? The answer lies in the morphisms. In the category of Banach spaces, the morphisms are the
bounded linear maps. In the category of operator spaces, the morphisms are the completely bounded
maps.
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Operator spaces are intermediate between Banach spaces and C*-algebras. The advantage of operator
spaces over C*-algebras is that they allow the use of finite dimensional tools and isomorphic invariants (“local
theory”). C*-algebras are too rigid: morphisms are contractive, norms are unique. Operator space theory
opens the door to a massive transfer of technology coming from Banach space theory. This quantization
process has benefitted operator algebra theory mainly (as opposed to Banach space theory).

Theorem 7.11 (Arveson-Wittstock-Paulsen Hahn-Banach) B(H) is injective in the category of op-
erator spaces and completely contractive maps.

Our second example of the connection of contractive projections to injectivity is the following early
verified fact.

Remark 7.12 X ⊂ B(H) is injective if and only if there is a completely contractive projection P : B(H) →
B(H) with P (B(H)) = X.

7.2.3 Injective and mixed injective operator spaces

Theorem 7.13 An operator space is injective if and only if it is completely isometric to a corner of a
C*-algebra. In particular, it is completely isometric to a ternary ring of operators (TRO).

Theorem 7.14 Every operator space has an injective envelope.

There are also the related notions of ternary envelope and Shilov boundary, which are useful but are not
needed here. The following concept will appear later in part 3.

Definition 7.15 An operator space is a mixed injective if every completely contractive linear operator
from a subspace of an operator space into it has a bounded contractive extension to the larger space.

Remark 7.16 X ⊂ B(H) is a mixed injective if and only if there is a contractive projection P : B(H) →
B(H) with P (B(H)) = X.

7.2.4 Applications of operator space theory

The following theorems highlight the profound applications that operator space theory has had to operator
algebra theory.

• Similarity problems. The Halmos problem is solved in the following theorem. For progress on and
a description of the Kadison problem, see [159].

Theorem 7.17 (Pisier 1997 [157]) There exists a polynomially bounded operator which is not sim-
ilar to a contraction.

• Tensor products

Theorem 7.18 (Junge-Pisier 1995 [112]) B(H) is not a nuclear pair. That is, B(H)⊗B(H) does
not have a unique C*-norm.

To quote Pisier [158]: “This is a good case study. The proof is based on the solution to a problem which
would be studied for its own sake: whether the set of finite dimensional operator spaces is separable
(it is not).”

• Operator amenable groups. A well-known theorem of Johnson, which is false for the Fourier
algebra, states that a group is amenable if and only if its group algebra is an amenable Banach algebra
under convolution.
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Theorem 7.19 (Ruan 1995 [172]) A group is amenable if and only if its Fourier algebra is amenable
in the operator space formulation.

• Operator local reflexivity. A well known theorem of Lindenstrauss-Rosenthatl with many applications
states that every Banach space is locally reflexive (Finite dimensional subspaces of the second dual
can be approximated by finite dimensional subspaces of the space itself). One application occurs in
the proof that the second dual of a JB*-triple is a JB*-triple, with the consequence being the Gelfand-
Naimark for JB*-triples. Not all operator spaces are locally reflexive (in the appropriate operator space
sense). However, there is the following theorem.

Theorem 7.20 (Effros-Junge-Ruan 2000 [65]) The dual of a C*-algebra is a locally reflexive op-
erator space.

7.3 Completely bounded cohomology

We begin by recalling the relevant definitions.
Let A be a C*-algebra and let S be a von Neumann algebra, both acting on the same Hilbert space H

with A ⊂ S. We can view S as a dual normal A-module with A acting on S by left and right multiplication.
We now have

• completely bounded n-cochains Lncb(A,S)

• coboundary operators ∆n,

• completely bounded n-coboundaries Bncb,

• completely bounded n-cocycles Znbc

• completely bounded cohomology groups Hn
cb(A,S).

For a C*-algebra A and a von Neumann algebra S with A ⊂ S ⊂ B(H) we thus have two new cohomology
theories:

• the completely bounded theory Hn
cb

• the completely bounded normal theory Hn
cbw

By straightforward analogues of Theorems 7.1 and 7.2, the four cohomology groups

Hn
cb(A,S) , H

n
cbw(A,S) , H

n
cb(R,S) , H

n
cbw(R,S)

are mutually isomorphic, where R is the ultraweak closure of A.

Theorem 7.21 (Christensen-Effros-Sinclair 1987 [44]) Hn
cb(R,B(H)) = 0 ∀n ≥ 1 (R =any von Neu-

mann algebra acting on H)

Theorem 7.22 (Christensen-Sinclair 1987 [48]) Hn
cb(R,R) = 0 ∀n ≥ 1 (R =any von Neumann alge-

bra)

A noteworthy quote from [184] is the following: “Cohomology and complete boundedness have enjoyed
a symbiotic relationship where advances in one have triggered progress in the other.”

Theorems 7.23 and 7.24 are also due to Christensen-Effros-Sinclair [44].

Theorem 7.23 Hn
c (R,R) = 0 ∀n ≥ 1 (R = von Neumann algebra of type I, II∞, III, or of type II1 and

stable under tensoring with the hyperfinite factor)

Theorem 7.24 Hn
c (R,B(H)) = 0 ∀n ≥ 1 (R = von Neumann algebra of type I, II∞, III, or of type II1

and stable under tensoring with the hyperfinite factor, acting on a Hilbert space H)
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The following theorem is the culmination of earlier work in [161] and [45].

Theorem 7.25 (Sinclair-Smith,[183]) Hn
c (R,R) = 0 ∀n ≥ 1 (R = von Neumann algebra of type II1

with a Cartan subalgebra and a separable29 predual)

The following theorem was proved in [46] and [47] and was new only for n ≥ 3. For n = 1, the two cases
are in [113],[176] and [45], while for n = 2 one can refer to [48] and [43].

Theorem 7.26 (Christensen-Pop-Sinclair-Smith n ≥ 3 2003) Hn
c (R,R) = Hn

c (R,B(H)) = 0 ∀n ≥ 1
(R = von Neumann algebra factor of type II1 with property Γ, acting on a Hilbert space H)

We can now add a third problem to our previous two (Problems 7.5,7.6). A candidate for a counterexample
is the factor arising from the free group on 2 generators.

Problem 7.27 Hn
c (R,R)) = 0 ∀n ≥ 2? (R is a von Neumann algebra of type II1)

7.3.1 Another approach (Paulsen)

A different approach, which is popular among algebraists is taken in the paper [151]. We quote from the
review of this paper in Mathematical Reviews [169].

“Let A be a subalgebra in the algebra B(H) of bounded operators in a Hilbert space H, and X be a linear
subspace in B(H) such that AXA⊂X. Then X can be considered as an A-bimodule, and the Hochschild
cohomology groups for the pair (A,X) can be constructed in the usual way, but with the cocycles being
n-linear maps from A to X satisfying certain extra ‘complete boundedness’ conditions.”

“Continuing the study of A. Ya. Khelemskii [89], himself and others, Paulsen presents two new alterna-
tive presentations of these completely bounded Hochschild cohomologies, one of them as a relative Yoneda
cohomology, i.e. as equivalence classes of relatively split resolutions, and the second as a derived functor,
making it similar to EXT. These presentations make clear the importance of the notions of relative injectivity,
projectivity and amenability, which are introduced and studied.”

“Using the relative injectivity of von Neumann algebras, the author proves the triviality of completely
bounded Hochschild cohomologies for all von Neumann algebras. The Yoneda representation makes the
proofs of a number of classical results more transparent.”

7.4 Perturbation of Banach algebras

One of the most striking applications of the cohomology theory of Banach algebras lies in the area of
perturbation theory.

7.4.1 Theorem of Johnson and Raeburn-Taylor

Definition 7.28 A Banach algebra is stable if any other product making it into a Banach algebra, which
is sufficiently close to the original product gives rise to a Banach algebra which is topologically algebraically
isomorphic to the original Banach algebra..

Let’s make this more precise. If m is a Banach algebra multiplication on A, then its norm is defined by
‖m(x, y)‖ ≤ ‖m‖‖x‖‖y‖. The following theorem was proved simultaneously and independently by Johnson
[108] and the team of Raeburn and Taylor [162].

Theorem 7.29 For any Banach algebra A with multiplication m, if H2(A,A) = H3(A,A) = 0, then there
exists ǫ > 0 such that if m1 is another Banach algebra multiplication on A such that ‖m1 −m‖ < ǫ then
(A,m1) and (A,m) are topologically algebraically isomorphic.

For a stimulating discussion of this topic and many others, we recommend [89]. For a similar problem
on operator algebras one can look into [115].

29The separability assumption was removed in 2009 [37]
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7.4.2 Perturbation for nonassociative Banach algebras

The origin of perturbation theory for general non associative algebras is deformation theory. Let ckij be the

structure constants of a finite dimensional Lie algebra L. Let ckij(ǫ) → ckij Stability in this context means

(L, ckij(ǫ)) is isomorphic to (L, ckij) if ǫ is sufficiently small.

Theorem 7.30 (Gerstenhaber 1964 [78]) Finite dimensional semisimple Lie algebras are stable.

Perturbation results similar to Theorem 7.29 have been proved recently for some non associative Banach
algebras in [57].

Theorem 7.31 (Dosi 2009) If L is a Banach Lie algebra and H2(L,L) = H3(L,L) = 0, then L is a stable
Banach Lie algebra.

An entirely similar result for Banach Jordan algebras is also proved in [57]. However, the definition of
cohomology for Jordan algebras in [57] is made only in dimensions 3 or less.

8 Cohomology of triple systems

In this section we shall describe the results which the author learned about in preparing this mini course.
Since the author of this paper is not (yet) an expert in the purely algebraic side of cohomology theory, he is
going to rely on information obtained from reviews of these papers in Mathematical Reviews.

8.1 Cohomology of finite dimensional triple systems

8.1.1 Cohomology of Lie triple systems

The earliest work on cohomology of triple systems seems to be [85], of which the following description is
taken from its review in Mathematical Reviews [127]. Four decades later, the second paper on the subject
appeared [96].

A Lie triple system T is a subspace of a Lie algebra L closed under the ternary operation [xyz] = [x, [y, z]]
or, equivalently, it is the subspace of L consisting of those elements x such that σ(x) = −x, where σ is an
involution of L. A T -module M is a vector space such that the vector-space direct sum T ⊕M is itself a Lie
triple system in such a way that

1. T is a subsystem

2. [xyz] ∈M if any of x, y, z is in M

3. [xyz] = 0 if two of x, y, z are in M .

A universal Lie algebra Lu(T ) and an Lu(T )-module Ms can be constructed in such a way that both are
operated on by an involution σ and so that T and M consist of those elements of Lu(T ) and Ms which are
mapped into their negatives by σ.

Now suppose L is a Lie algebra with involution σ and N is an L-σ module. Then σ operates on Hn(L,N)
so that

Hn(L,N) = Hn
+(L,N)⊕Hn

−(L,N)

with both summands invariant under σ. The cohomology of the Lie triple system is defined by Hn(T,M) =
Hn

+(Lu(T ),Ms). Harris investigates these groups for n = 0, 1, 2.

1. H0(T,M) = 0 for all T and M

2. H1(T,M) = derivations of T into M modulo inner derivations

3. H2(T,M) = factor sets of T into M modulo trivial factor sets.
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Turning to the case of finite-dimensional simple T and ground field of characteristic 0, one has the
Whitehead lemmas H1(T,M) = 0 = H2(T,M) and Weyl’s theorem: Every finite-dimensional module is
semi-simple. Also, if in addition, the ground field Φ is algebraically closed, then H3(T,Φ) is 0 or not 0,
according as Lu(T ) is simple or not.

The following is the verbatim review [125] of [96].
“This is a study of representations of Lie triple systems, both ordinary and restricted. The theory is

based on the connection between Lie algebras and Lie triple systems. In addition, the authors begin the
study of the cohomology theory for Lie triple systems and their restricted versions. They also sketch some
future applications and developments of the theory.”

8.1.2 Cohomology of associative triple systems

The following is the verbatim review [180] of [38].
“A cohomology for associative triple systems is defined, with the main purpose to get quickly the coho-

mological triviality of finite-dimensional separable objects over fields of characteristic 6= 2, i.e., in particular
the Whitehead lemmas and the Wedderburn principal theorem.

This is achieved by embedding an associative triple system A in an associative algebra U(A) and associ-
ating with every trimodule M for A a bimodule Mu for U(A) such that the cohomology groups Hn(A,M)
are subgroups of the classical cohomology groups Hn(U(A),Mu).

Since U(A) is chosen sufficiently close to A, in order to inherit separability, the cohomological triviality
of separable A is an immediate consequence of the associative algebra theory.

The paper does not deal with functorialities, nor with the existence of a long exact cohomology sequence.”

8.1.3 Wedderburn decomposition

The classical Wedderburn decomposition is the following theorem, which we state in its Banach algebra form
from [18]. It has been generalized, not only to non associative algebras, see for example [104] and [105], but
to some classes of Banach algebras, see for example [54].

Theorem 8.1 Let A be a Banach algebra with radical R. If the dimension of A is finite, there is a subalgebra
B of A such that A = B +R and B ∩R = 0. Moreover, if A is commutative, then B is necessarily unique.

The following definition is the model to use in extending this concept to infinite dimensional triples.

Definition 8.2 If A is a Banach algebra with radical R, then A = B⊕R is a strong Wedderburn decompo-
sition of A if B is a closed subalgebra of A.

The author knows of only two papers dealing with this concept in the context of triple systems, namely,
[39] and [126].

The following, including Theorem 8.3 is the verbatim review [29] of [39].
The Wedderburn principal theorem, known for Lie triple systems, is proved for alternative triple systems

and pairs. If i is an involution of an alternative algebra B, then 〈xyz〉 := (x · i(y)) · z is an alternative triple
(x, y, z ∈ B). A polarisation of an alternative triple A is a direct sum of two submodules A1 ⊕A−1 with

〈A1A−1A1〉 ⊂ A1, 〈A−1A1A−1〉 ⊂ A−1

and

〈A1A1A1〉 = 〈A−1A−1A−1〉 = 〈A1A1A−1〉 = 〈A−1A−1A1〉 = 〈A−1A1A1〉 = 〈A1A−1A−1〉 = {0}.

An alternative pair is an alternative triple with a polarisation.

Theorem 8.3 If A is a finite-dimensional alternative triple system (or an alternative pair) over a field
K,R the radical and A/R separable, then A = B⊕R, where B is a semisimple subtriple (subpair) of A with
B = A/R.
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The following description of [126] is taken from the abstract and the review [188].
This paper summarizes some properties of Jordan pairs, states some results about some groups defined

by Jordan pairs, and constructs a Lie algebra to a Jordan pair. This construction is a generalization of the
well-known Koecher-Tits-construction. The radical of this Lie algebra is calculated in terms of the given
Jordan pair and a Wedderburn decomposition theorem for Jordan pairs (and triples) in the characteristic
zero case is proved.

More precisely, an observation of Koecher that the theorem of Levi for Lie algebras of characteristic
0 implies the Wedderburn principal theorem for Jordan algebras is extended to Jordan pairs (and Jordan
triples) V over a field of characteristic 0. In addition, the authors show that any two Wedderburn splittings
of V are conjugate under a certain normal subgroup of the automorphism group of V.

8.1.4 Cohomology of algebras and triple systems

The reader may be wondering about the cohomology of Jordan triple systems. As noted in 6.3, there is a
hint of this in the paper of McCrimmon [139]. Building on the 1 and 2 dimensional cohomology for quadratic
Jordan algebras, [139] broaches the analogous construction for Jordan triple systems.

There is also a more general approach in the paper of Seibt [179]. The following is from the introduction
to [179].

“The classical cohomologies of unital associative algebras and of Lie algebras have both a double algebraic
character: They are embedded in all of the machinery of derived functors, and they allow full extension
theoretic interpretations (Yoneda-interpretation) of the higher cohomology groups—which seems natural
since the coefficient category for cohomology is actually definable in terms of singular extension theory.

If one wants to define a uniform cohomology theory for (linear) nonassociative algebras and triple systems
which ”generalizes” these two classical cohomologies one may proceed either via derived functors [19] or via
singular extension theory [77], [80]

The purpose of this paper which adopts the first point of view is to discuss compatibility questions with
the second one.”

8.2 Cohomology of Banach triple systems—Prospectus

In this subsection we propose, albeit quite vaguely and briefly, some places to look for extending some of the
preceding material to infinite dimensional Banach triples of various kinds. Also included, with or without
comment, are some papers related to topics discussed in this survey which the author has downloaded and
thinks might be worth exploring.

8.2.1 Lie derivations into a module; automatic continuity

The main challenge in this area is to attack the automatic continuity questions noted in subsection 2.3.

With reference to subsection 2.3, a search for “Lie derivation” in the “review text” option in MathSciNet
turns up 148 entries. A good number of these concern Lie derivations on nonselfadjoint operator algebras,
for example nest algebras, reflexive algebras, CSL algebras, UHF -algebras. We quote only the latest one.

Theorem 8.4 (Ji and Qi 2011 Corollary 2.1 in [106]) Let N be an arbitrary nest on a Hilbert space
H of dimension greater than 2, and AlgN be the associated nest algebra. Let δ be a linear mapping on AlgN
which satisfies the Lie derivation property on commutators [a, b] with ab = 0. Then there exists an operator
r ∈ AlgN and a linear center valued map τ vainshing on such commutators such that δ(a) = ra− ar+ τ(a).

It is worth mentioning in connection with section 7, that there are corresponding results for the cohomol-
ogy of nonselfadjoint operator algebras. See references [14]-[17],[38],[39] in [167] as well as the recent papers
[98] and [99]

We also mention two papers concerning Lie derivations on von Neumann algebras.

Theorem 8.5 (Zhuraev 2011 [199]) For a von Neumann algebra M on a Hilbert space H denote by
S(M) the unital ∗-algebra of all measurable operators affiliated withM . IfM is a homogeneous von Neumann
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algebra of type In, then very Lie derivation on S(M) can be uniquely decomposed into the sum of a derivation
and a centre-valued trace.

Let M be a von Neumann algebra of operators on a Hilbert space. An n-Lie derivation on M is a linear
mapping L on M such that, for every element a ∈M of the form a := [· · · [a0, a1], · · · , an−1], the image L(a)
is the sum over j of elements [· · · [a0, a1], · · · , L(aj)], · · ·] (j = 0, · · · , n− 1), where [u, v] = uv − vu.

Theorem 8.6 (Abdullaev 1992 [1]) Every n-Lie derivation L on some von Neumann algebra M (or on
its skew-adjoint part) can be decomposed as L = D + E, where D is an ordinary derivation on M and E is
a linear map from M into its center which annihilates the Lie products.

8.2.2 Cohomology of commutative JB*-triples and TROs

The first three cohomology groups of a commutative C∗-algebra with values in a Banach module were studied
in the pioneering paper [116]. The cohomology groups of a finite dimensional associative triple system with
values in the relevant module were studied in the [38]. By some combination of the techniques in these
two papers, it should be possible to develop the cohomology of a commutative JB∗-triple with values in a
module.

More generally, the cohomology of an arbitrary TRO (ternary ring of operators) should be pursued. Once
this has been worked out for TROs, the author feels that the enveloping TRO of a JC∗-triple, discussed in
section 11 may be helpful in working out the theory for JC∗-triples, as it seems to be for working out the
K-theory of JB∗-triples, studied in [31].

8.2.3 Local derivations on JB∗-triples

Linear maps which agree with a derivation at each point are called local derivations. These have been studied
in the Banach setting by Kadison [114], Johnson [110], Ajupov et. al [16],[17],[6], among others. Kadison
proved that a continuous local derivation from a von Neumann algebra into a Banach module is a derivation.

Michael Mackey gave a talk on this topic at the conference in honor of Cho-Ho Chu’s 65th birthday in
May 2012 in Hong Kong. He proved that every continuous local derivation on a JBW ∗-triple is a derivation,
and he suggested some problems, among them whether every local derivation on a JB∗-triple into itself or
into a Banach module is automatically continuous, and if so, whether it is a derivation. There are other
problems in this area, some involving nonlinear maps.

8.2.4 Some other avenues to pursue

• Wedderburn decompositions for JB*-triples (Kühn-Rosendahl [126])

• Low dimensional cohomology for JBW*-triples and algebras-perturbation (Dosi [57], McCrimmon
[139])

• Structure group of JB*-triple (McCrimmon [139], Meyberg [140])

• Alternative Banach triples (Carlsson [39], Braun [33])

• Completely bounded triple cohomology (Bunce-Feely-Timoney [35], Bunce-Timoney [36], Christensen-
Effros-Sinclair [44])

• Lie algebraic techniques. Applications of the Koecher-Kantor-Tits construction([49])
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Part III

Quantum functional analysis

9 Hilbertian operator spaces

We are going to quote some definitions and theorems from [160]. Operator space theory may also be
considered as noncommutative Banach space theory. Although the subject had its genesis in the papers
[187] and [13] (announcement in [14]), the first impetus appeared in the thesis of Ruan [170]. An operator
space is a Banach space together with an isometric embedding in B(H). While the objects of this category
are Banach spaces, it is the morphisms, namely, the completely bounded maps, which are more important.

An operator space is a subspace X of B(H). Its operator space structure is given by the sequence of norms
on the set of matrices Mn(X) with entries from X , determined by the identification Mn(X) ⊂Mn(B(H)) =
B(H ⊕H ⊕ · · ·⊕H). A linear mapping ϕ : X → Y between two operator spaces is completely bounded if the
induced mappings ϕn :Mn(X) → Mn(Y ) defined by ϕn([xij ]) = [ϕ(xij)] satisfy ‖ϕ‖cb := supn ‖ϕn‖ <∞.

Some simple examples of completely bounded maps are restrictions of ∗-homomorphisms and multiplica-
tion operators.

Theorem 9.1 Every completely bounded map is the product of the above two mentioned maps.

Some special types of completely bounded maps which we will define and consider are complete contrac-
tions, complete isometries, complete isomorphisms, complete semi-isometries

Remark 9.2 The space of completely bounded maps with the completely bounded norm CB(X,Y ), ‖ · ‖cb
is a Banach space.

Definition 9.3 The completely bounded Banach-Mazur distance is defined by

dcb(E,F ) = inf{‖u‖cb · ‖u−1‖cb : u : E → F complete isomorphism }.

Besides the pioneering work of Stinespring and Arveson mentioned above, many tools were developed
in the 1970s and 1980s by a number of operator algebraists. As noted above, an abstract framework was
developed in 1988 in the thesis of Ruan. Besides [160] we have already mentioned four other monographs
on the subject ([68],[152],[25],[90]).

9.1 Classical operator spaces

“Neoclassical” and “modern” operator spaces will appear later.
Two important examples of Hilbertian operator spaces (:= operator spaces isometric to Hilbert space)

are the row and column spaces R, C, and their finite-dimensional versions Rn, Cn. In B(ℓ2), column Hilbert
space C := sp{ei1 : i ≥ 1} and row Hilbert space R := sp{e1j : j ≥ 1}. R and C are Banach isometric, but
not completely isomorphic. (dcb(R,C) = ∞) Rn and Cn are completely isomorphic, but not completely
isometric. dcb(Rn, Cn) = n

R, C, Rn, Cn are examples of homogeneous operator spaces, that is, operator spaces E for which
∀u : E → E, ‖u‖cb = ‖u‖. Another important example of an Hilbertian homogeneous operator space
is Φ(I). Φ(I) = sp{Vi : i ∈ I}, where the Vi are bounded operators on a Hilbert space satisfying the
canonical anti-commutation relations. In some special cases, the notations Φn := Φ({1, 2, . . . , n}), and
Φ = Φ({1, 2, . . .}) are used.

If E0 ⊂ B(H0) and E1 ⊂ B(H1) are operator spaces whose underlying Banach spaces form a compatible
pair in the sense of interpolation theory, then the Banach space E0 ∩ E1, with the norm

‖x‖E0∩E1
= max(‖x‖E0

, ‖x‖E1
)

equipped with the operator space structure given by the embedding E0 ∩ E1 ∋ x 7→ (x, x) ∈ E0 ⊕ E1 ⊂
B(H0 ⊕H1) is called the intersection of E0 and E1 and is denoted by E0 ∩ E1 Examples are R ∩ C, Φ =
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∩∞
0 H

m,L
∞ , Φn = ∩n1Hk

n . The definition of intersection extends easily to arbitrary families of compatible
operator spaces

We already noted that R, C, Rn, Cn are homogenous operator spaces. So are min(E) and max(E)
and Φ(I), where min(E) is defined by E ⊂ C(T ) ⊂ B(H), ‖(aij)‖Mn(min(E)) = supξ∈BE∗

‖(ξ(aij))‖Mn

and max(E) is defined by ‖(aij)‖Mn(max(E)) = sup{‖(u(aij))‖Mn(B(Hu)) : u : E → B(Hu), ‖u‖ ≤ 1}. In

the following diagram, the identity map is completely contractive F
u−→ min(E) → E → max(E)

v−→ G,
(‖u‖cb = ‖u‖, ‖v‖cb = ‖v‖)

The following is an application of the Russo-Dye theorem [174]

Proposition 9.4 Let E be a Hilbertian operator space. Then E is homogeneous if and only if ‖U‖cb = 1
∀ unitary U : E → E.

The following are considered to be among the “classical” Banach spaces ℓp, c0, Lp, C(K). A “second
generation” of such spaces would contain Orlicz , Sobolev, and Hardy spaces, the disk algebra, and the
Schatten p-classes. By analogy, some classical operator spaces are R, C, min(ℓ2), max(ℓ2), OH, Φ and
their finite dimensional versions Rn, Cn, min(ℓn2 ), max(ℓn2 ), OHn, Φn. Note that the classical operator
spaces are all Hilbertian.

Proposition 9.5 The classical operator spaces are mutually completely non-isomorphic. If En, Fn are n-
dimensional version, then dcb(En, Fn) → ∞

9.2 Neoclassical operator spaces

The “neoclassical” operator spaces Hk
n appeared in [145] (announcement in [144]), from which the following

three theorems were taken.

Theorem 9.6 There is a family of 1-mixed injective Hilbertian operator spaces Hk
n, 1 ≤ k ≤ n, of finite

dimension n, with the following properties:

(a) Hk
n is a subtriple of the Cartan factor of type 1 consisting of all

(

n
k

)

by
(

n
n−k+1

)

complex matrices.

(b) Let Y be a JW ∗-triple of rank 1 (necessarily atomic ).

(i) If Y is of finite dimension n then it is isometrically completely contractive to some Hk
n.

(ii) If Y is infinite dimensional then it is isometrically completely contractive to B(H,C) or B(C,K).

(c) Hn
n (resp. H1

n) coincides with Rn (resp. Cn).

(d) For 1 < k < n, Hk
n is not completely semi-isometric to Rn or Cn.

Example 1: H2
3 is the subtriple of B(C3) consisting of all matrices of the form





0 a −b
−a 0 c
b −c 0





and hence in this case Y is actually completely semi-isometric to the Cartan factor A(C3) of 3 by 3 anti-
symmetric complex matrices.

Example 2: H3
4 is the subtriple of B(C6,C4) consisting of all matrices of the form









0 0 0 −d c −b
0 d −c 0 0 a

−d 0 b 0 −a 0
c −b 0 a 0 0









.

Theorem 9.7 Let X be a 1-mixed injective operator space which is atomic. Then X is completely semi-
isometric to a direct sum of Cartan factors of types 1 to 4 and the spaces Hk

n.
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Theorem 9.8 Let Y be an atomic w∗-closed JW ∗-subtriple of a W ∗-algebra.

(a) If Y is irreducible and of rank at least 2, then it is completely isometric to a Cartan factor of type 1–4
or the space
Diag (B(H,K), B(K,H)).

(b) If Y is of finite dimension n and of rank 1, then it is completely isometric to
Diag (Hk1

n , . . . , Hkm
n ), for appropriately chosen bases, and where k1 > k2 > · · · > km.

(c) Y is completely semi-isometric to a direct sum of the spaces in (a) and (b). If Y has no infinite
dimensional rank 1 summand, then it is completely isometric to a direct sum of the spaces in (a) and
(b).

We now describe a more detailed description of the spaces Hk
n , including the next two theorems from

[147].
A frequently mentioned result of Friedman and Russo states that if a subspace X of a C*-algebra A is the

range of a contractive projection on A, then X is isometric to a JC*-triple, that is, a norm closed subspace
of B(H,K) stable under the triple product ab∗c + cb∗a. If X is atomic (in particular, finite-dimensional),
then it is isometric to a direct sum of Cartan factors of types 1 to 4. This latter result fails, as it stands, in
the category of operator spaces.

Nevertheless, there exists a family of n-dimensional Hilbertian operator spaces Hk
n, 1 ≤ k ≤ n, gener-

alizing the row and column Hilbert spaces Rn and Cn such that, in the above result, if X is atomic, the
word “isometric” can be replaced by “completely semi-isometric,” provided the spaces Hk

n are allowed as
summands along with the Cartan factors. The space Hk

n is contractively complemented in some B(K),
and for 1 < k < n, is not completely (semi-)isometric to either of the Cartan factors B(C,Cn) = H1

n or
B(Cn,C) = Hn

n . These spaces appeared in a slightly different form and context in a memoir of Arazy and
Friedman [10].

The construction of Hk
n is as follows. Let I denote a subset of {1, 2, . . . , n} of cardinality |I| = k − 1.

The number of such I is q :=
(

n
k−1

)

. Let J denote a subset of {1, 2, . . . , n} of cardinality |J | = n − k. The

number of such J is p :=
(

n
n−k

)

. The space Hk
n is the linear span of matrices bn,ki , 1 ≤ i ≤ n, given by

bn,ki =
∑

I∩J=∅,(I∪J)c={i}

ǫ(I, i, J)eJ,I ,

where eJ,I = eJ ⊗ eI = eJe
t
I ∈ Mp,q(C) = B(Cq,Cp), and ǫ(I, i, J) is the signature of the permutation

taking (i1, . . . , ik−1, i, j1, . . . , jn−k) to (1, . . . , n). Since the bn,ki are the image under a triple isomorphism
(actually ternary isomorphism) of a rectangular grid in a JC*-triple of rank one, they form an orthonormal
basis for Hk

n .

Theorem 9.9 Hk
n is a homogeneous operator space.

Theorem 9.10 dcb(H
k
n , H

1
n) =

√

kn
n−k+1 , for 1 ≤ k ≤ n.

The latter theorem is proved using the relation with creation operators. Let Cn,kh denote the wedge (or
creation) operator from ∧k−1Cn to ∧kCn given by

Cn,kh (h1 ∧ · · · ∧ hk−1) = h ∧ h1 ∧ · · · ∧ hk−1.

Letting Cn,k denote the space sp{Cn,kei
}, we have the following.

Proposition 9.11 Hk
n is completely isometric to Cn,k.

Proof. There exist unitaries such that

Wn
k U

n
n−kb

n,k
i = V nk C

n,k
ei
Unk−1.
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Cq
b
n,k

i−→ Cp

Unk−1 ↓ ↓ Unn−k

∧k−1Cn ∧n−kCn

Cn,kei
↓ ↓Wn

k

∧kCn V n
k−→ ∧n−kCn

• Unk−1(eI) = ei1 ∧ · · · ∧ eik−1
, where I = {i1 < · · · < ik−1}. Unn−k is similar.

• V nk (ei1 ∧ · · · ∧ eik) = ej1 ∧ · · · ∧ ejn−k
, where {j1 < · · · < jn−k} is the complement of {i1 < · · · < ik}.

• Wn
k (ej1 ∧ · · · ∧ ejn−k

) = ǫ(i, I)ǫ(I, i, J)ej1 ∧ · · · ∧ ejn−k
for any i and I such that I ∩ J = ∅ and

(I ∪ J)c = {i} (which is independent of the choice of i or I).

The following properties of creation operators are used in the proof of Theorem 9.10.

• Cn,k∗h Cn,kh (h1 ∧ · · · ∧ hk−1) =

(h|h)h1 ∧ · · · ∧ hk−1 −(h1|h)h ∧ h2 ∧ · · · ∧ hk−1

+ · · · ± (hk−1|h)h ∧ h1 ∧ · · · ∧ hk−2. (7)

• Cn,kh Cn,k∗h (h1 ∧ · · · ∧ hk) =
∑k
j=1 (hj |h)h1 ∧ · · · ∧ h′j ∧ · · · ∧ hk (h′j = h).

In particular, Cn,1h Cn,1∗h = h⊗ h, for h ∈ Cn.

• tr(Cn,k∗h Cn,kh ) =
(

n−1
k−1

)

‖h‖2.

In particular, Cn,1∗h Cn,1h = ‖h‖2.

• The eigenvalues of
∑m

i=1 C
n,k
hi
Cn,k∗hi

are sums of k eigenvalues of
∑m

i=1 C
n,1
hi
Cn,1∗hi

.

9.3 Modern operator spaces

The following problems were considered in [143] and leads to our notion of modern operator space. This
subsection is a description of the results of [143].

• Classify all infinite dimensional rank 1 JC*-triples up to complete isometry (algebraic)
ANSWER: Φ, Hm,R

∞ , Hm,L
∞ , Hm,R

∞ ∩Hm,L
∞

• Give a suitable “classification” of all Hilbertian operator spaces which are contractively complemented
in a C*-algebra or normally contractively complemented in a W*-algebra (analytic)
ANSWER: Φ, C, R, C ∩R

It is known that R and C are the only completely contractively complemented Hilbertian operator
spaces [168].
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9.3.1 Rank one JC*-triples

In order to attack the structure theory of rank 1 JC*-triples, let us first review some of the basic concepts
about them, as well as those concerning ternary rings of operators (TROs).

A JC∗-triple is a norm closed complex linear subspace of B(H,K) (equivalently, of a C∗-algebra) which
is closed under the operation a 7→ aa∗a. JC∗-triples were defined and studied (using the name J∗-algebra)
as a generalization of C∗-algebras by Harris [86] in connection with function theory on infinite dimensional
bounded symmetric domains. By a polarization identity (involving

√
−1), any JC∗-triple is closed under

the triple product

(a, b, c) 7→ {abc} :=
1

2
(ab∗c+ cb∗a), (8)

under which it becomes a Jordan triple system. A linear map which preserves the triple product (8) will be
called a triple homomorphism. Cartan factors are examples of JC∗-triples, as are C∗-algebras, and Jordan
C∗-algebras. We shall only make use of Cartan factors of type 1, that is, spaces of the form B(H,K) where
H and K are complex Hilbert spaces.

A special case of a JC∗-triple is a ternary algebra, that is, a subspace of B(H,K) closed under the ternary
product (a, b, c) 7→ ab∗c. A ternary homomorphism is a linear map φ satisfying φ(ab∗c) = φ(a)φ(b)∗φ(c).
These spaces are also called ternary rings of operators and abbreviated TRO. TROs have come to play a key
role in operator space theory, serving as the algebraic model in the category. The algebraic models for the
categories of order-unit spaces, operator systems, and Banach spaces, are respectively Jordan C∗-algebras,
C∗-algebras, and JB∗-triples. For TROs, a ternary isomorphism is the same as a complete isometry.

Every JW ∗-triple of rank one is isometric to a Hilbert space and every maximal collinear family of partial
isometries corresponds to an orthonormal basis. Conversely, every Hilbert space with the abstract triple
product {xyz} := ((x|y)z+(z|y)x)/2 can be realized as a JC∗-triple of rank one in which every orthonormal
basis forms a maximal family of mutually collinear minimal partial isometries. Collinear means:

vv∗w + wv∗v = w and ww∗v + vw∗w = v

9.3.2 Operator space structure of Hilbertian JC*-triples

We shall now outline the proof from [143] of the classification of infinite dimensional Hilbertian operator
spaces up to complete isometry .

• The general setting: Y is a JC∗-subtriple of B(H) which is Hilbertian in the operator space structure
arising from B(H), and {ui : i ∈ Ω} is an orthonormal basis consisting of a maximal family of mutually
collinear partial isometries of Y .

• We let T and A denote the TRO and the C∗-algebra respectively generated by Y . For any subset
G ⊂ Ω, (uu∗)G :=

∏

i∈G uiu
∗
i and (u∗u)G :=

∏

i∈G u
∗
iui. The elements (uu∗)G and (u∗u)G lie in the

weak closure of A and more generally in the left and right linking von Neumann algebras of T .

Fix m ≥ 0. To construct Hm,R
∞ we make a temporary assumption on the ternary envelope of Y .

• Assume (u∗u)G 6= 0 for |G| ≤ m+ 1 and (u∗u)G = 0 for |G| ≥ m+ 2.

• Define elements which are indexed by an arbitrary pair of subsets I, J of Ω satisfying

|Ω− I| = m+ 1, |J | = m, (9)

as follows:

uIJ = (uu∗)I−Juc1u
∗
d1
uc2u

∗
d2

· · ·ucsu∗dsucs+1
(u∗u)J−I , where

I ∩ J = {d1, . . . , ds} and (I ∪ J)c = {c1, . . . , cs+1}.
• In the special case where I ∩ J = ∅, uI,J has the form

uI,J = (uu∗)Iuc(u
∗u)J ,

where I∪J ∪{c} = Ω is a partition of Ω. We call such an element a “one”, and denote it also by uI,c,J .
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• Lemma 9.12 Fix m ≥ 0. Assume (u∗u)G 6= 0 for |G| ≤ m+ 1 and (u∗u)G = 0 for |G| ≥ m+ 2. For
any c ∈ Ω,

uc =
∑

I,J

uI,J =
∑

I,J

uI,c,J (10)

where the sum is taken over all disjoint I, J satisfying (9) and not containing c, and converges weakly
in the weak closure of T .

• The family {ǫ(IJ)uI,J} forms a rectangular grid which satisfies the extra property

ǫ(IJ)uIJ [ǫ(IJ
′)uIJ′ ]∗ǫ(I ′J ′)uI′J′ = ǫ(I ′J)uI′J . (11)

• The map ǫ(IJ)uIJ → EJI is a ternary isomorphism (and hence complete isometry) from the norm
closure of spC uIJ to the norm closure of spC {EJI}, where EJI denotes an elementary matrix, whose
rows and columns are indexed by the sets J and I, with a 1 in the (J, I)-position.

• This map can be extended to a ternary isomorphism from the w*-closure of spC uIJ onto the Cartan
factor of type I consisting of all ℵ0 by ℵ0 complex matrices which act as bounded operators on ℓ2. By
restriction to Y and (10), Y is completely isometric to a subtriple Ỹ , of this Cartan factor of type 1.

• Definition 9.13 We shall denote the space Ỹ above by Hm,R
∞ .

Explicitly, Hm,R
∞ = spC{bmi : i ∈ N}, where

bmi =
∑

I∩J=∅,(I∪J)c={i},|J|=m

ǫ(I, i, J)eJ,I .

• An entirely symmetric argument (with J infinite and I finite) under an entirely symmetric assumption
on Y defines the space Hm,L

∞ .

• Explicitly, Hm,L
∞ = spC{b̃mi : i ∈ N}, where

b̃mi =
∑

I∩J=∅,(I∪J)c={i},|I|=m

ǫ(I, i, J)eJ,I ,

with ǫ(I, i, J) defined in the obvious analogous way with I finite instead of J .

• Having constructed the spaces Hm,R
∞ and Hm,L

∞ , we now assume that Y is an arbitrary rank-one
JC*-subtriple of B(H)

Our analysis will consider the following three mutually exhaustive and mutually exclusive possibilities
(in each case, the set F is allowed to be empty):

Case 1 (uu∗)Ω−F 6= 0 for some finite set F ⊂ Ω;

Case 2 (u∗u)Ω−F 6= 0 for some finite set F ⊂ Ω;

Case 3 (uu∗)Ω−F = (u∗u)Ω−F = 0 for all finite subsets F of Ω.

• In case 1,

Y is completely isometric to an intersection Y1 ∩ Y2 such that Y1 is completely isometric to a space
Hm,R

∞ , and Y2 is a Hilbertian JC∗-triple.

• In case 2,

Y is completely isometric to an intersection Y1 ∩ Y2 such that Y1 is completely isometric to a space
Hm,L

∞ , and Y2 is an Hilbertian JC∗-triple.
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• In case 3,

Y is completely isometric to Φ.

Theorem 9.14 Let Y be a JC∗-subtriple of B(H) which is a separable infinite dimensional Hilbertian
operator space. Then Y is completely isometric to one of the following spaces:

Φ, Hm,R
∞ , Hm,L

∞ , Hm,R
∞ ∩Hn,L

∞ .

Proof. Let ≡ denote “completely isometric to.”

1. Y ≡ Φ, or Y = Y1 ∩ Z, where
Y1 ≡ Hm,R

∞ or Hk,L
∞ .

2. Y1 ≡ Hm1,R
∞ ⇒ Y = R∩ Z, where R = ∩Hmj ,R

∞ , mj ↑ (finite or infinite).

3. Z ≡ Φ, or Z = Z1 ∩W , where Z1 ≡ Hk,L
∞ .

4. Z = L ∩W , where L = ∩jHkj ,L
∞ , kj ↑. Hence Y = R∩ L ∩ Φ.

5. Hm′,L
∞ → Hm,L

∞ is a complete contraction when m′ > m (and similarly for Hk,R
∞ ).

6. Φ is completely isometric to ∩∞
m=0H

m,L
∞ and to ∩∞

m=1H
m,R
∞ and to ∩∞

j=1H
nj ,L
∞ for any sequence nj → ∞.

9.3.3 Further properties of Hm,R
∞ and Hm,L

∞

We now describe, from [143] the relation of these spaces with Fock space and compute some completely
bounded Banach-Mazur distances.

If H is a separable Hilbert space, lm(h) : H∧m → H∧m+1 is the creation operator lm(h)x = h ∧ x.
Creation operators form a linear space Cm = sp{lm(ei)}, where {ei} is an orthonormal basis, and inherit an
operator space structure from B(H∧m, H∧m+1). Annihilation operators Am consists of the adjoints of the
creation operators on H∧m−1.

Lemma 9.15 Hm,R
∞ is completely isometric to Am+1 and Hm,L

∞ is completely isometric to Cm.

Remark 9.16 Every finite or infinite dimensional separable Hilbertian JC*-subtriple Y is completely iso-
metric to a finite or infinite intersection of spaces of creation and annihilation operators, as follows

(a) If Y is infinite dimensional, then it is completely isometric to one of Am, Cm, Am ∩ Ck, ∩∞
k=1Ck

(b) If Y is of dimension n, then Y is completely isometric to ∩mj=1Ckj , where n ≥ k1 > · · · > km ≥ 1

Theorem 9.17 For m, k ≥ 1,

(a) dcb(H
m,R
∞ , Hk,R

∞ ) = dcb(H
m,L
∞ , Hk,L

∞ ) =
√

m+1
k+1 when m ≥ k

(b) dcb(H
m,R
∞ , Hk,L

∞ ) = ∞

(c) dcb(H
m,R
∞ ,Φ) = dcb(H

m,L
∞ ,Φ) = ∞

9.3.4 Contractively complemented Hilbertian operator spaces

Theorem 9.18 Suppose Y is a separable infinite dimensional Hilbertian operator space which is contractively
complemented (resp. normally contractively complemented) in a C∗-algebra A (resp. W*-algebra A) by a
projection P .

Then,

(a) {Y,A∗∗, P ∗∗} (resp. {Y,A, P}) is an expansion of its support {H,A∗∗, Q} (resp. {H,A∗∗, Q}, which is
essential)
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(b) H is contractively complemented in A∗∗ (resp. A) by Q and is completely isometric to either R, C,
R ∩C, or Φ.

Theorem 9.19 (Converse) The operator spaces R,C,R∩C, and Φ are each essentially normally contrac-
tively complemented in a von Neumann algebra.

10 Quantum operator algebras

10.1 Operator space characterization of TROs

In the category of operator spaces, that is, subspaces of the bounded linear operators B(H) on a complex
Hilbert space H together with the induced matricial operator norm structure, objects are equivalent if
they are completely isometric, i.e. if there is a linear isomorphism between the spaces which preserves this
matricial norm structure. Since operator algebras, that is, subalgebras of B(H), are motivating examples
for much of operator space theory, it is natural to ask if one can characterize which operator spaces are
operator algebras. One satisfying answer was given by Blecher, Ruan and Sinclair in [27], where it was
shown that among operator spaces A with a (unital but not necessarily associative) Banach algebra product,
those which are completely isometric to operator algebras are precisely the ones whose multiplication is
completely contractive with respect to the Haagerup norm on A⊗ A (For a completely bounded version of
this result, see [23]).

A natural object to characterize in this context are the so called ternary rings of operators (TRO’s). These
are subspaces of B(H) which are closed under the ternary product xy∗z. This class includes C*-algebras.
TRO’s, like C*-algebras, carry a natural operator space structure. In fact, every TRO is (completely)
isometric to a corner pA(1 − p) of a C*-algebra A. TRO’s are important because, as shown by Ruan [171],
the injectives in the category of operator spaces are TRO’s (corners of injective C*-algebras) and not, in
general, operator algebras (For the dual version of this result see [66]). Injective envelopes of operator
systems and of operator spaces ([83],[171]) have proven to be important tools, see for example [26]. The
characterization of TRO’s among operator spaces is the subject of this subsection.

Closely related to TRO’s are the so called JC*-triples, norm closed subspaces of B(H) which are closed
under the triple product (xy∗z + zy∗x)/2. These generalize the class of TRO’s and have the property, as
shown by Harris in [86], that isometries coincide with algebraic isomorphisms. It is not hard to see this
implies that the algebraic isomorphisms in the class of TRO’s are complete isometries, since for each TRO
A, Mn(A) is a JC*-triple (For the converse of this, see [84, Proposition 2.1]). As a consequence, if an
operator space X is completely isometric to a TRO, then the induced ternary product on X is unique, i.e.,
independent of the TRO.

Building on the pioneering work of Arveson ([13],[15]) on noncommutative analogs of the Choquet and
Shilov boundaries, Hamana (see [84]) proved that every operator space A has a unique enveloping TRO
T (A) which is an invariant of complete isometry and has the property that for any TRO B generated by a
realization of A, there exists a homomorphism of B onto T (A). The space T (A) is also called the Hilbert
C*-envelope of A. The work in [24] suggests that the Hilbert C*-envelope is an appropriate noncommutative
generalization to operator spaces of the classical theory of Shilov boundary of function spaces.

It is also true that a commutative TRO (xy∗z = zy∗x) is an associative JC*-triple and hence by [71,
Theorem 2], is isometric (actually completely isometric) to a complex Chom-space, that is, the space of
weak*-continuous functions on the set of extreme points of the unit ball of the dual of a Banach space which
are homogeneous with respect to the natural action of the circle group, see [71]. Hence, if one views operator
spaces as noncommutative Banach spaces, and C*-algebras as noncommutative C(Ω)’s, then TRO’s and
JC*-triples can be viewed as noncommutative Chom-spaces.

As noted above, injective operator spaces, i.e., those which are the range of a completely contractive
projection on some B(H), are completely isometrically TRO’s; the so called mixed injective operator spaces,
those which are the range of a contrative projection on some B(H), are isometrically JC*-triples. The oper-
ator space classification of mixed injectives was begun in [145] and is described in the preceding subsection.

Relevant to this subsection is another property shared by all JC*-triples (and hence all TRO’s). For any
Banach space X , we denote by X0 its open unit ball: {x ∈ X : ‖x‖ < 1}. The open unit ball of every
JC*-triple is a bounded symmetric domain. This is equivalent to saying that it has a transitive group of

48



biholomorphic automorphisms. It was shown by Koecher in finite dimensions (see [133]) and Kaup [118] in
the general case that this is a defining property for the slightly larger class of JB*-triples. The only illustrative
basic examples of JB*-triples which are not JC*-triples are the space H3(O) of 3 x 3 hermitian matrices
over the octonians and a certain subtriple of H3(O). These are called exceptional triples, and they cannot be
represented as a JC*-triple. This holomorphic characterization has been useful as it gives an elegant proof,
due to Kaup [119], that the range of a contractive projection on a JB*-triple is isometric to another JB*-
triple. The same statement holds for JC*-triples, as proven earlier by Friedman and Russo in [73]. Youngson
proved in [197] that the range of a completely contractive projection on a C*-algebra is completely isometric
to a TRO. These results, as well as those of [10] and [67], are rooted in the fundamental result of Choi-Effros
[41] for completely positive projections on C*-algebras and the classical result ([129],[70, Theorem 5]) that
the range of a contractive projection on C(Ω) is isometric to a Cσ-space, hence a Chom-space.

Motivated by this characterization for JB*-triples, a holomorphic characterization of TRO’s up to com-
plete isometry is given in [146] and stated below. As a consequence, a holomorphic operator space character-
ization of C*-algebras is obtained as well. It should be mentioned that Upmeier (for the category of Banach
spaces) in [192] and El Amin-Campoy-Palacios (for the category of Banach algebras) in [2], gave different but
still holomorphic characterizations of C*-algebras up to isometry. We note in passing that injective operator
spaces satisfy the hypothesis of Theorem 10.1, so it follows that they are (completely isometrically) TRO’s
based on deep results about JB*-triples rather than the deep result of Choi-Effros.

Theorem 10.1 Let A ⊂ B(H) be an operator space and suppose that Mn(A)0 is a bounded symmetric
domain for all n ≥ 2, then A is ternary isomorphic and completely isometric to a TRO.

Theorem 10.2 Let A ⊂ B(H) be an operator space and suppose that Mn(A)0 is a bounded symmetric
domain for all n ≥ 2 and A0 is of tube type. Then A is completely isometric to a C*-algebra.

10.2 Holomorphic characterization of operator algebras

If an operator space A (i.e., a closed linear subspace of B(H)) is also a unital (not necessarily associative)
Banach algebra with respect to a product which is completely contractive, then according to [27], it is
completely isometric and algebraically isomorphic to an operator algebra (i.e., an associative subalgebra
of some B(K)). The main result of [149] drops the algebra assumption on A in favor of a holomorphic
assumption. Using only natural conditions on holomorphic vector fields on Banach spaces, an algebra
product is constructed on A which is completely contractive and unital, so that the result of [27] can be
applied.

We state this result as Theorem 10.3. In this theorem, for any element v in the symmetric part (recalled
below) of a Banach space X , hv denotes the corresponding complete holomorphic vector field on the open
unit ball of X .

Theorem 10.3 An operator space A is completely isometric to a unital operator algebra if and only there
exists an element v in the completely symmetric part of A such that:

1. hv(x+ v)− hv(x) − hv(v) + v = −2x for all x ∈ A

2. For all X ∈Mn(A), ‖V − hV (X)‖ ≤ ‖X‖2.

This result is thus an instance where the consideration of a ternary product, called the partial triple
product, which arises from the holomorphic structure via the symmetric part of the Banach space, leads to
results for binary products. Examples of this phenomenon occurred in [8], [12] where this technique is used
to describe the algebraic properties of isometries of certain operator algebras. The technique was also used
in [120] to show that Banach spaces with holomorphically equivalent unit balls are linearly isometric (see [7]
for an exposition of [120]).

Suppose that X is a TRO (i.e., a closed subspace of B(H) closed under the ternary product ab∗c) which
contains an element v satisfying xv∗v = vv∗x = x for all x ∈ X . Then it is trivial that X becomes a
unital C∗-algebra for the product xv∗y, involution vx∗v, and unit v. By comparison, the above result starts
only with an operator space X containing a distinguished element v in the completely symmetric part of X
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(defined below) having a unit-like property. This is to be expected since the result of [27] fails in the absence
of a unit element.

The main technique in the proof of this result is to use a variety of elementary isometries on n by n
matrices over A (most of the time, n = 2) and to exploit the fact that isometries of arbitrary Banach spaces
preserve the partial triple product. The first occurrence of this technique appears in the construction, for
each n, of a contractive projection Pn on K⊗A (K= compact operators on separable infinite dimensional
Hilbert space) with range Mn(A) as a convex combination of isometries. The completely symmetric part
of A is defined to be the intersection of A (embedded in K⊗A) and the symmetric part of K⊗A. It is the
image under P1 of the symmetric part of K⊗A. It follows from [146] that the completely symmetric part of
A is a TRO, which is a crucial tool in this work.

The completely symmetric part of an arbritary operator space A is defined below. The binary product
x · y on A is constructed using properties of isometries on 2 by 2 matrices over A and it is shown that the
symmetrized product can be expressed in terms of the partial Jordan triple product on A.

According to [28], “The one-sided multipliers of an operator space X are a key to the ‘latent operator
algebraic structure’ in X .” The unified approach through multiplier operator algebras developed in [28] leads
to simplifications of known results and applications to quantum M -ideal theory. They also state “With the
extra structure consisting of the additional matrix norms on an operator algebra, one might expect to not
have to rely as heavily on other structure, such as the product.” Our result is certainly in the spirit of this
statement.

Another approach to operator algebras is [117], in which the set of operator algebra products on an
operator space is shown to be in bijective correspondence with the space of norm one quasi-multipliers on
the operator space.

10.2.1 Symmetric part of a Banach space

We review the construction and properties of the partial Jordan triple product in an arbitrary Banach space.
Let X be a complex Banach space with open unit ball X0. Every holomorphic function h : X0 → X , also
called a holomorphic vector field, is locally integrable, that is, the initial value problem

∂

∂t
ϕ(t, z) = h(ϕ(t, z)) , ϕ(0, z) = z,

has a unique solution for every z ∈ X0 for t in a maximal open interval Jz containing 0. A complete
holomorphic vector field is one for which Jz = (−∞,∞) for every z ∈ X0.

It is a fact that every complete holomorphic vector field is the sum of the restriction of a skew-Hermitian
bounded linear operator A on X and a function ha of the form ha(z) = a−Qa(z), where Qa is a quadratic
homogeneous polynomial on X .

The symmetric part of X is the orbit of 0 under the set of complete holomorphic vector fields, and is
denoted by S(X). It is a closed subspace of X and is equal to X precisely when X has the structure of a
JB∗-triple (by [118]).

If a ∈ S(X), we can obtain a symmetric bilinear form on X , also denoted by Qa via the polarization
formula

Qa(x, y) =
1

2
(Qa(x+ y)−Qa(x)−Qa(y))

and then the partial Jordan triple product {·, ·, ·} : X × S(X)×X → X is defined by {x, a, z} = Qa(x, z).
The space S(X) becomes a JB∗-triple in this triple product.

It is also true that the “main identity” (4) holds whenever a, y, b ∈ S(X) and x, z ∈ X . The following
lemma is an elementary consequence of the definitions.

Lemma 10.4 If ψ is a linear isometry of a Banach space X onto itself, then

(a) For every complete holomorphic vector field h on X0, ψ ◦h ◦ψ−1 is a complete holomorphic vector field.
In particular, for a ∈ S(X), ψ ◦ ha ◦ ψ−1 = hψ(a).

(b) ψ(S(X)) = S(X) and ψ preserves the partial Jordan triple product:

ψ{x, a, y} = {ψ(x), ψ(a), ψ(y)} for a ∈ S(X), x, y ∈ X.
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The symmetric part of a Banach space behaves well under contractive projections (see [7, 5.2,5.3]).

Theorem 10.5 (Stacho [186]) If P is a contractive projection on a Banach space X and h is a complete
holomorphic vector field on X0, then P ◦ h|P (X)0 is a complete holomorphic vector field on P (X)0. In
addition P (S(X)) ⊂ S(X) and the partial triple product on P (S(X)) is given by {x, y, z} = P{x, y, z} for
x, z ∈ P (X) and y ∈ P (S(X)).

10.2.2 Completely symmetric part of an operator space

Let A ⊂ B(H) be an operator space. We let K denote the compact operators on a separable infinite
dimensional Hilbert space, say ℓ2. Then K = ∪∞

n=1Mn(C) and thus

K⊗A = ∪∞
n=1Mn ⊗A = ∪∞

n=1Mn(A)

By an abuse of notation, we shall use K ⊗ A to denote ∪∞
n=1Mn(A). We tacitly assume the embeddings

Mn(A) ⊂Mn+1(A) ⊂ K⊗A induced by adding zeros.

The completely symmetric part of A is defined by CS(A) = A ∩ S(K⊗A). More precisely, if ψ : A →
M1(A) denotes the complete isometry identification, then CS(A) = ψ−1(ψ(A) ∩ S(K⊗A)).

For 1 ≤ m < N let ψN1,m : MN(A) → MN(A) and ψN2,m : MN(A) → MN(A) be the isometries of order
two defined by

ψNj,m :

[

Mm(A) Mm,N−m(A)
MN−m,m(A) MN−m(A)

]

→
[

Mm(A) Mm,N−m(A)
MN−m,m(A) MN−m(A)

]

and

ψN1,m :

[

a b
c d

]

→
[

a −b
−c d

]

and

ψN2,m :

[

a b
c d

]

→
[

a −b
c −d

]

.

These two isometries give rise in an obvious way to two isometries ψ̃1,m and ψ̃2,m on K⊗A, which extend
to isometries ψ1,m, ψ2,m of K⊗A onto itself, of order 2 and fixing elementwise Mm(A). The same analysis
applies to the isometries defined by, for example,

[

a b
c d

]

→
[

a b
−c −d

]

,

[

−a −b
c d

]

,

[

−a b
c −d

]

.

We then can define a projection P̃m on K ⊗A with range Mm(A) via

P̃mx =
ψ̃2,m

(

ψ̃1,m(x)+x
2

)

+
ψ̃1,m(x)+x

2

2
.

The projection P̃m on K ⊗A extends to a projection Pm on K⊗A, with range Mm(A) given by

Pmx =
ψ2,m

(

ψ1,m(x)+x
2

)

+
ψ1,m(x)+x

2

2
,

or

Pm =
1

4
(ψ2,mψ1,m + ψ2,m + ψ1,m + Id).

Proposition 10.6 With the above notation,

(a) Pn(S(K⊗A)) =Mn(CS(A))
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(b) 30 Mn(CS(A)) is a JB*-subtriple of S(K⊗A), that is,

{Mn(CS(A)),Mn(CS(A)),Mn(CS(A))} ⊂Mn(CS(A));

Moreover,
{Mn(A),Mn(CS(A)),Mn(A)} ⊂Mn(A).

(c) CS(A) is completely isometric to a TRO.

Corollary 10.7 CS(A) =M1(CS(A)) = P1(S(K⊗A)) and CS(A) ⊂ S(A).

Definition 10.8 Let us now define a product y · x by
[

y · x 0
0 0

]

= 2{
[

x 0
0 0

] [

0 v
0 0

] [

0 y
0 0

]

}

and denote the corresponding matrix product by X ·Y . That is, if X = [xij ] and Y = [yij ], then X ·Y = [zij ]
where

zij =
∑

k

xik · ykj .

It follows that

{xvy} =
1

2
(y · x+ x · y).

With these tools at hand, the proof of Theorem 10.3 can be completed.

11 Universal Enveloping TROs and C*-algebras

11.1 Operator space structure of JC∗-triples and TROs

The paper [35], together with its sequel [36], initiates a systematic investigation of the operator space
structure of JC∗-triples via a study of the TROs they generate. The approach is through the introduction
and development of a variety of universal objects (TROs and C∗-algebras). Explicit descriptions of operator
space structures of Cartan factors of arbitrary dimension are obtained as a consequence. Much of this
subsection is taken literally from the introduction to [35].

It should be noted that Theorem 11.1 and its corollary, as well as the computation of the universal
enveloping TROs of all Cartan factors of finite dimension, were also obtained roughly around the same time
in [30].

It is necessary to widen the definition of JC∗-triple to include any complex Banach space with a sur-
jective isometry onto a subspace of a TRO, which is closed under the (Jordan) triple product {a, b, c} =
(ab∗c+ cb∗a)/2. A counteractively complemented subspace of B(H) is an example of such a JC∗-triple, not
necessarily a JC∗-subtriple of B(H). In the reflexive case, operator space structure of JC∗-triples of this
kind has been investigated in [145], [147], and [143].

The aim of [35] is to explore the operator space structures of an arbitrary JC∗-triple, and, quoting the
authors of [35], “to place the ground-breaking results of [145], [147], [143] in the general setting of a full
theory.” This new device (universal TRO of a JC∗-triple) facilitates a general inquiry into the operator
space structure of JC∗-triples.

Theorem 11.1 (Theorem 3.1 of [35]) Let E be a JC∗-triple. Then there is a unique pair (C∗(E), αE)
where C∗(E) is a C∗-algebra and αE : E → C∗(E) is an injective triple homomorphism, with the following
properties:

(a) αE(E) generates C∗(E) as a C∗-algebra;
(b) for each triple homomorphism π : E → A, where A is a C∗-algebra, there is a unique ∗-homomorphism

π̃ : C∗(E) → A with π̃ ◦ αE = π.

30note that in the first displayed formula of (b), the triple product is the one on the JB*-triple Mn(CS(A)), namely,
{xyz}Mn(CS(A)) = Pn({xyz}S(K⊗A)

), which, it turns out, is actually the restriction of the triple product of S(K⊗A): whereas

in the second displayed formula, the triple product is the partial triple product on K⊗A
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Corollary 11.2 (Corollary 3.2 of [35]) Let E be a JC∗-triple. Then there is a unique pair (T ∗(E), αE)
where T ∗(E) is a TRO and αE : E → T ∗(E) is an injective triple homomorphism, with the following
properties:

(a) αE(E) generates T ∗(E) as a TRO;
(b) for each triple homomorphism π : E → T , where T is aTRO, there is a unique TRO-homomorphism

π̃ : T ∗(E) → T with π̃ ◦ αE = π.

In a technical tour de force, T ∗(E) is explicitly calculated for the Cartan factors of any dimension:
Hilbert space [35, Theorem 5.1], spin factor [35, Lemma 5.2], rectangular of rank 2 or more [35, Theorem
5.4], symmetric and antisymmetric [35, Theorem 5.5]. The corresponding references in [30] to these results,
but only for the finite dimensional cases as noted above, are: Hilbert space [30, Theorem 3.15], spin factor
[30, Theorem 3.5], rectangular of rank 2 or more [30, Theorem 3.13], symmetric and antisymmetric [30,
Theorem 3.6]).

As a technical aid of possibly independent interest, the notion of a reversible JC∗-triple is also introduced
in [35]. and the universal reversibility (or not) of all Cartan factors, is also determined. Building on the
definition of reversibility for Jordan algebras leads to the following definition.

Definition 11.3 (Definition 4.1 of [35]) A JC∗-subtriple E of a TRO T is said to be reversible in T if

a1a
∗
2a3 · · · a∗2na2n+1 + a2n+1a

∗
2n · · ·a∗2a1 ∈ E

whenever a1, . . . a2n+1 ∈ E. A JC∗-triple E is universally reversible if αE(E) is reversible in T ∗(E).

Theorem 11.4 (Theorem 5.6 of [35]) Spin factors of dimension greater than 4 and Hilbert spaces of
dimension greater than 2 are not universally reversible. All other Cartan factors are universally reversible.

In the next theorem, operator space structures of JC∗-triples arising from concrete triple embeddings
in C∗-algebras are considered, making use of universal TROs and establishing links with injective envelopes
and triple envelopes, and concentrating on Cartan factors. It is necessary first to refine the definition of
operator space structure.

Definition 11.5 (Definition 6.1 of [35]) A JC-operator space structure on a JC∗-triple E is an operator
space structure determined by a linear isometry from E onto a JC∗-subtriple of B(H).

Another important definition is that of an operator space ideal. This is a norm closed ideal I of T ∗(E)
for which I ∩ αE(E) = {0}. For each operator space ideal I, we have the JC-operator space structure EI

on E determined by the isometric embedding E 7→ T ∗(E)/I given by x 7→ αE(x) + I.

Theorem 11.6 (Theorem 6.8 of [35]) Let E be a Cartan factor which is not a Hilbert space. Then
I ↔ EI is a bijective correspondence between the operator space ideals of T ∗(E) and the JC-operator space
structures of E.

The case of a Hilbert space, excluded from Theorem 11.6 is covered in [36, Theorem 2.7]. It follows from
this that the triple envelope, in the sense of [84], of a JC∗-triple E which is isometric to a Cartan factor
is identified with the TRO generated by E. The following theorem shows that distinct JC-operator space
structures on a Hilbert space cannot be completely isometric.

Theorem 11.7 (Theorem 2.6 of [36]) For a Hilbert space E and operator space ideals I and J of T (E),
the following are equivalent:

(a) EI = EJ

(b) I = J
(c) EI and EJ are completely isometric.

It is also shown in [36, Theorem 3.4] how infinite-dimensional Hilbertian JC-operator spaces are deter-
mined explicitly by their finite-dimensional subspaces, and that, in turn, they impose very rigid constraints
upon the operator space structure of their finite-dimensional subspaces. Finally, the operator space ideals of
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the universal TRO of a Hilbert space are identified [36, Theorem 3.7], as well as the corresponding injective
envelopes [36, Theorem 4.4].

Finally we make four remarks about the paper [30]. First, the methods for computing the universal
enveloping TROs of the Cartan factors (in finite dimensions only) are different from those of [35] in that
they use grids and depend strongly on the results on grids in [145].

Second, because the paper [30] works in the slightly more general context of JB∗-triples, they are able
to obtain a new proof of a version of the Gelfand-Naimark theorem for JB∗-triples ([75, Theorem 2].

Corollary 11.8 (Corollary 2.6 of [30]) Any JB∗-triple Z contains a unique purely exceptional ideal J ,
such that Z/J is JB∗-triple isomorphic to a JC∗-triple.

Third, they define a radical for universally reversible JC∗-triples and use it to give the structure of the
universal enveloping TRO of a universally reversible TRO in a C∗-algebra with a TRO antiautomorphism
of order 2, generalizing [35, Corollary 4.5].

Finally, the results of [30] are used in [31] to show that the classification of the symmetric spaces, derived
initially from Lie theory and then from Jordan theory, can be achieved by K-theoretic methods. This in
spite of the fact that JB∗-triples do not, in general, behave well under the formation of tensor products.
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