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ON CHARACTER OF POINTS IN THE HIGSON CORONA OF A METRIC SPACE

TARAS BANAKH, OSTAP CHERVAK, AND LUBOMYR ZDOMSKYY

Abstract. We prove that for an unbounded metric space X, the minimal character mχ(X̌) of a point of the

Higson corona X̌ of X is equal to u if X has asymptotically isolated balls and to max{u, d} otherwise. This
implies that under u < d a metric space X of bounded geometry is coarsely equivalent to the Cantor macro-cube
2<N if and only if dim(X̌) = 0 and mχ(X̌) = d. This contrasts with a result of Protasov saying that under CH
the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.

1. Introduction

In this paper we shall calculate the smallest character of a point in the corona X̌ of a metric space X and
using this information shall distinguish topologically the Higson coronas of some metric spaces of asymptotic
dimension zero. There are many ways of introducing the Higson corona of a metric space. We shall follow the
approach developed by I.V.Protasov in [16] and [17].

For an unbounded metric space X , let βXd be the Stone-Čech compactification of the space X endowed
with the discrete topology. The space βXd consists of all ultrafilters on X and carries the compact Hausdorff
topology generated by the sets Ā = {p ∈ βX : A ∈ p} where A runs over all subsets of X . In the space
βXd consider the closed subspace X♯ consisting of all ultrafilters that extend the filter F0 = {X \ B : B is
a bounded subset of X} of cobounded subsets of X . Two ultrafilters p, q ∈ X♯ are called parallel (denoted
by p ‖ q) if for some positive real number ε we get {Bε(P ) : P ∈ p} ⊂ q and {Bε(Q) : Q ∈ q} ⊂ p. Here
Bε(A) = {x ∈ X : dX(x,A) ≤ ε} denotes the ε-neighborhood of a subset A of a metric space (X, dX). The
corona X̌ of X is defined as the quotient space X♯/∼ of X♯ by the smallest closed equivalence relation ∼ on X♯

that contains the parallel relation ‖ on X♯. For an ultrafilter p ∈ X♯ by p̌ ∈ X̌ we shall denote its equivalence
class in the corona X̌ . For a subspace A ⊂ X we identify the corona Ǎ with the subspace {p̌ : A ∈ p ∈ X♯} of
X̌.

By Proposition 1 of [17], two ultrafilters p, q ∈ X♯ belong to the same equivalence class (which means
that p̌ = q̌) if and only if for any slowly oscillating function f : X → [0, 1] and its Stone-Čech extension
βf : βXd → [0, 1] we get βf(p) = βf(q). This allows us to define the corona X̌ of X using slowly oscillating
functions. Let us recall that a function f : X → R is slowly oscillating if for any ε > 0 and any δ < ∞ there
is a bounded subset B ⊂ X such that for each subset A ⊂ X \ B of diameter diamA ≤ δ the image f(A) has
diameter diamf(A) ≤ ε. It follows that for a proper metric space X the corona X̌ of X coincides with the
Higson corona ν(X) defined in [19]. Let us recall that a metric space X is proper if each closed bounded subset
of X is compact.

It is known that the coronas X̌ and Y̌ of two metric spaces (X, dX) and (Y, dY ) are homeomorphic if the
metric spaces X,Y are coarsely equivalent in the sense that there are two coarse functions f : X → Y and
g : Y → X such that

max{sup
y∈Y

dY (f ◦ g(y), y), sup
x∈X

dX(g ◦ f(x), x)} < ∞.

A function f : X → Y between two metric spaces (X, dX) and (Y, dY ) is called coarse if for any δ < ∞ there
is ε < ∞ such that for any points x, x′ ∈ X with dX(x, x′) ≤ δ we get dY (f(x), f(x

′)) ≤ ε.
The topological structure of the corona X̌ reflects certain asymptotic properties of the metric space X . In

particular, according to [10], [5, §5] for a proper metric space X of finite asymptotic dimension asdim(X), the
corona X̌ has topological dimension dim(X̌) = asdim(X). Let us recall that a metric space X has asymptotic
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dimension asdim(X) ≤ n if for any ε < ∞ there is a cover U of X such that supU∈U diam(U) < ∞ and each
ε-ball Bε(x), x ∈ X , meets at most (n+ 1) sets of the cover U . The finite or infinite number

asdim(X) = min{n ∈ N ∪ {∞} : asdim(X) ≤ n}

is called the asymptotic dimension of X , see [5].
It follows that for two proper metric spaces X,Y with different finite asymptotic dimensions the coronas

X̌ and Y̌ are not homeomorphic as they have different topological dimensions. On the other hand, for metric
spaces of asymptotic dimension zero I.V. Protasov [18] proved the following striking consistency result.

Theorem 1.1 (Protasov). Under Continuum Hypothesis the corona X̌ of any asymptotically zero-dimensional

unbounded separable metric space X is homeomorphic to the Stone-Čech remainder ω∗ = βω\ω of the countable

discrete space ω.

In a private communication with the first author, I.V.Protasov asked if his Theorem 1.1 remains true in ZFC.
In this paper we shall give a negative answer to this question of Protasov, calculating the minimal character
mχ(X̌) of the corona X̌ for a metric space X .

By definition, the minimal character mχ(X) of a topological space X is the smallest character min
x∈X

χ(x;X)

of a point x in X , where the character χ(x;X) of x in X is equal to the smallest cardinality of a neighborhood
base at x. The minimal character mχ(ω∗) of the Stone-Čech remainder ω∗ = βω \ ω is denoted by u and is
one of important small uncountable cardinals, see [9], [20], [7]. Another small uncountable cardinal that will
appear in our considerations is the dominating number d, equal to the cofinality of the partially ordered set
(ωω,≤), see [9], [20], [7].

The cardinals u and d both are equal to the continuum c under Continuum Hypothesis and more generally
under Martin’s Axiom, see [20], [13]. On the other hand, the strict inequalities u < d and u > d also are
consistent with ZFC, see [7, p.480].

Following [1], we shall say that a metric space (X, d) has asymptotically isolated balls if there is ε < ∞ such
that for any finite δ ≥ ε there is x ∈ X such that the ε-ball Bε(x) centered at x coincides with the δ-ball Bδ(x).

The principal result of this paper is the following theorem that shows that the conclusion of Protasov’s
Theorem 1.1 is not true under u < d:

Theorem 1.2. The corona X̌ of an unbounded metric space X has minimal character

mχ(X̌) =

{

u if X contains asymptotically isolated balls,

max{u, d} otherwise.

This theorem will be proved in Section 5. Now we shall derive from Theorem 1.2 a corona characterization
of the Cantor macro-cube.

The Cantor macro-cube 2<N is the metric space

2<N = {(xi)
∞
i=1 ∈ {0, 1}N : ∃n ∈ N ∀m ≥ n xm = 0}

endowed with the ultrametric
d
(

(xn), (yn)
)

= max
n∈N

2n|xn − yn|.

By [12], the Cantor macro-cube contains a coarse copy of each asymptotically zero-dimensional metric space
of bounded geometry. Let us recall that a metric space X has bounded geometry if there is ε < ∞ such that
for every δ < ∞ there is an integer number N ∈ N such that each δ-ball in X can be covered by ≤ N balls of
radius ε.

The Cantor macro-cube 2<N is an asymptotic counterpart of the Cantor cube 2ω. According to the classical
Brouwer characterization [14, 7.4], a topological space X is homeomorphic to the Cantor cube 2ω if and only
if X is a zero-dimensional compact metrizable space without isolated points. A similar characterization holds
also for the Cantor macro-cube [1]: a metric space X is coarsely equivalent to the Cantor macro-cube 2<N of

and only if X is an asymptotically zero-dimensonal space of bounded geometry without asymptotically isolated

balls.

This characterization, combined with Theorem 1.2, implies the following “corona” characterization of 2<N,
which will be proved in Section 6.

Theorem 1.3. Under u < d for a metric space X of bounded geometry the following conditions are equivalent:

(1) X is coarsely equivalent to 2<N;

(2) the corona X̌ of X is homeomorphic to the corona of 2<N;
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(3) dim X̌ = 0 and mχ(X̌) = d.

Another universal metric space is the Baire macro-space

ω<N = {(xi)
∞
i=1 ∈ ωN : ∃n ∈ N ∀m ≥ n xm = 0}

endowed with the ultrametric

d
(

(xn), (yn)
)

= max({0} ∪ {2n : xn 6= yn}).

The Baire macro-space contains a coarse copy of each separable metric space of asymptotic dimension zero.
Metric spaces that are coarsely equivalent to the Baire macro-space ω<N have been characterized in [2]. By
[18], under CH the coronas of the metric spaces 2<N and ω<N are homeomorphic to ω∗.

Problem 1.4. Can the coronas of the metric spaces 2<N and ω<N be homeomorphic under the negation of the

Continuum Hypothesis?

2. Preliminaries

In this section we collect some information that will be used in the next sections.
By a partial preorder on a set P we understand any reflexive transitive binary relation ≤ on P . A subset

A ⊂ P of a partially preordered space (P,≤) is called

• cofinal in (P,≤) if for each x ∈ X there is y ∈ A with x ≤ y;
• coinitial in (P,≤) if for each x ∈ X there is y ∈ A with y ≤ x.

The smallest cardinality of a cofinal (resp. coinitial) subset of (P,≤) is denoted by cof(P ) (resp. coin(P )) and
called the cofinality (resp. coinitiality) of (P,≤).

For example, the character χ(x,X) of a topological space X is equal to the coinitiality of the set Nx of all
neighborhoods of X , partially ordered by the inclusion relation ⊂.

We shall be interested in the cofinality and coinitiality of some function spaces on metric spaces.
A function f : X → Y between metric spaces is defined to be bounded-to-bounded if a subset B ⊂ X is

bounded in X if and only if its image f(B) is bounded in Y . We shall be especially interested in bounded-to-
bounded functions with values in the space ω of non-negative integers, endowed with the standard Euclidean
metric. Observe that a subset B ⊂ ω is bounded if and only if it is finite. So, a function φ : ω → ω is
bounded-to-bounded if and only if it is finite-to-one in the sense that for each n ∈ ω the preimage φ−1(n) is
finite.

The family of all bounded-to-bounded functions f : X → ω on a metric space X will be denoted by ω↑X .
The set ω↑X carries a natural partial order ≤ in which f ≤ g iff f(x) ≤ g(x) for all x ∈ X .

Lemma 2.1. For an unbounded metric space X the partially ordered set (ω↑X ,≤) has coinitiality

coin(ω↑X) ≤ d.

Proof. Choose any bounded-to-bounded function φ : X → ω. By definition of the cardinal d = cof(ω↑ω), there
exits a cofinal set F ⊂ ω↑ω of cardinality |F| = d.

For each function f ∈ F , consider the function f̄ ∈ ω↑ω defined by

f̄(n) = max
(

{0} ∪ {k ∈ ω : f(k) ≤ n}
)

.

We claim that the family E = {f̄ ◦ φ : f ∈ F} is coinitial in ω↑X and hence coin(ω↑X) ≤ |E| ≤ |F| = d.
Indeed, take any function g ∈ ω↑X and consider the function g̃ ∈ ω↑ω defined by

g̃(n) = min g
(

φ−1([n,∞))
)

for n ∈ ω.

Next, consider the function f̃ ∈ ω↑ω defined by

f̃(k) = min(g̃−1([k + 1,∞)) for k ∈ ω

and choose any function f ∈ F with f̃ ≤ f .
We claim that f̄ ◦ φ ≤ g. Take any point x ∈ X and consider the number n = φ(x). Then g̃(n) ≤ g(x). Let

k = g̃(n) and observe that

n ≤ max g̃−1(k) < min g̃−1([k + 1,∞)) = f̃(k) ≤ f(k).

Now the defintion of f̄(n) implies that

f̄ ◦ φ(x) = f̄(n) ≤ k = g̃(n) ≤ g(x).

�
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Now consider the space ω↑ω of bounded-to-bounded (=finite-to-one) functions on ω. Besides the coinitiality
of the partial order≤ on ω↑ω we shall be interested in the coinitiality of ω↑ω endowed with the linear preorder≤U

generated by an ultrafilter U ∈ ω∗. For two functions f, g ∈ ω↑ω we write f ≤U g if the set {n ∈ ω : f(n) ≤ g(x)}
belongs to the ultrafilter U . Following [4], we denote by q(U) = coin(ω↑ω,≤U) and d(U) = cof(ω↑ω,≤U) the
coinitiality and the cofinality of the linearly preordered space (ω↑ω,≤U). It is clear that max{q(U), d(U)} ≤ d.
In [8] M.Canjar constructed a ZFC-example of an ultrafilter U ∈ ω∗ with q(U) = d(U) = cf(d), which can be
consistently smaller than d.

The following lemma can be proved by analogy with Theorem 16 of [6], see also Theorem 9.4.6 of [4] or [3,
pp.82,85]. In this Lemma χ(U) denotes the character of an ultrafilter U ∈ ω∗ in the Stone-Čech compactification
β(ω) of ω.

Lemma 2.2. Any ultrafilter U ∈ ω∗ with character χ(U) < d has q(U) = d(U) = d. Consequently,

max{χ(U), q(U)} = max{χ(U), d(U)} = max{χ(U), d} ≥ max{u, d}

for any ultrafilter U ∈ ω∗.

We shall need to generalize the definition of a ball Bε(x) to allow the radius to take a function value.
Namely, for a function f : X → [0,∞) defined on a metric space X , a point x ∈ X and a subset A ⊂ X , let
B(x, f) = {y ∈ X : d(y, x) ≤ f(x)} = Bf(x)(x) and

B(A, f) =
⋃

a∈A

B(a, f).

The set B(A, f) is called the f -neighborhood of A in X . Sometimes for a real number ε ≥ 0 we shall use the
notation B(x, ε) instead of Bε(x) identifying ε with the constant function ε : X → {ε} ⊂ [0,∞).

For a set A ⊂ X and a function f : X → [0,∞), the f -neighborhood B(A, f) ⊂ X determines the closed-
and-open set B̄(A, f) = {p ∈ X♯ : B(A, f) ∈ p} in the compact Hausdorff space X♯ ⊂ βX and the closed
subset B̌(A, f) = {p̌ : p ∈ B̄(A, f)} in the corona X̌ of X .

We shall use the following description of the topology X̌, mentioned in [18].

Lemma 2.3. For each ultrafilter p ∈ X♯ the family

{B̌(P, f) : P ∈ p, f ∈ ω↑X}

is a base of closed neighborhoods of p̌ in X̌.

This lemma implies an easy criterion for recognizing ultrafilters p, q ∈ X♯ with different images p̌, q̌. We
say that two subsets P,Q of a metric space (X, d) are asymptotically disjoint if for each real number ε > 0 the
intersection B(P, ε) ∩ B(Q, ε) is bounded in X . This is equivalent to the existence of a bounded-to-bounded
function f ∈ ω↑X such that the intersection B(P, f) ∩B(Q, f) is bounded.

The following fact was proved by I.V.Protasov in Lemma 4.2 of [16].

Lemma 2.4. For an unbounded metric space X two ultrafilters p, q ∈ X♯ have distinct images p̌ 6= q̌ in the

corona X̌ if and only if there are two asymptotically disjoint sets P,Q ⊂ X such that P ∈ p and Q ∈ q.

Proof. If p̌ 6= q̌, then we can choose two disjoint neighborhoods O(p̌) and O(q̌) of the points p̌, q̌ in the corona
X̌. By Lemma 2.3, we can assume that these neighborhoods are of the form O(p̌) = B̌(P, f), O(q̌) = B̌(Q, f)
for some sets P ∈ p, Q ∈ q and some bounded-to-bounded function f ∈ ω↑X . To see that the sets P,Q are
asymptotically disjoint, it suffices to check that the intersection B(P, f) ∩ B(Q, f) is bounded. Assuming the
opposite, we could find an ultrafilter r ∈ X♯ containing B(P, f) ∩ B(Q, f). Then ř ∈ B̌(P, f) ∩ B̌(Q, f) =
O(p̌)∩O(q̌), which is not possible as the sets O(p̌) and O(q̌) are disjoint. This proves the “only if” part of the
lemma.

To prove the “if” part, assume that two ultrafilters p, q ∈ X♯ contain asymptotically disjoint sets P ∈ p,
Q ∈ q. Choose a bounded-to-bounded function f ∈ ω↑X such that B(P, f)∩B(Q, f) is bounded. Then B̌(P, f)
and B̌(Q, f) are two disjoint neighborhoods of the points p̌ and q̌, which implies that p̌ 6= q̌. �

A subset A of a metric space X is called asymptotically isolated if A is asymptotically disjoint from its
complement X \A. This happens if and only if B(A, f) = A for some bounded-to-bounded function f ∈ ω↑X .
For a subset A ⊂ X let Ǎ = {p̌ : A ∈ p ∈ X♯}.

Lemma 2.5. A subset U ⊂ X̌ is closed-and-open in the corona X̌ if and only if U = Ǔ for some asymptotically

isolated subset U ⊂ X.
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Proof. Assume that U = Ǔ for some asymptotically isolated subset U ⊂ X . Then B(U, f) = U for some
bounded-to-bounded function f ∈ ω↑X . It follows from Lemma 2.3 that for each ultrafilter p ∈ X♯ with p̌ ∈ Ǔ
the set B̌(U, f) = Ǔ is a neighborhood of p̌, which means that Ǔ = U is open in X̌. The set Ǔ = U is closed
being a continuous image of the compact subset Ū = {p ∈ X♯ : U ∈ p}.

Now assume that a subset U ⊂ X̌ is closed-and-open in X̌. Fix any point x0 in the metric space X . Since
the set U is open in X̌, for each ultrafilter p ∈ X♯ with p̌ ∈ U , there is a set Pp ∈ p and a bounded-to-bounded

function fp ∈ ω↑X such that B̌(Pp, 3fp) ⊂ U . Replacing fp by a smaller function, if necessary, we can assume
that B(B(x, fp), fp) ⊂ B(x, 3fp) and fp(x) ≤

1
2d(x, x0) for each point x ∈ X .

By the compactness of U , the cover {B̌(Pp, fp) : p ∈ X♯, p̌ ∈ U} has a finite subcover {B̌(Pp, fp) : p ∈ F}
where F ⊂ X♯ is a finite set. Now consider the set U =

⋃

p∈F B(Pp, fp) and observe that Ǔ =
⋃

p∈F B̌(Pp, fp) =

U . Let f = min{fp : p ∈ F} and observe that

B̌(U, f) =
⋃

p∈F

⋃

x∈Pp

B(B(x, fp), f) ⊂
⋃

p∈F

⋃

x∈Pp

B(x, 3fp) =
⋃

p∈F

B(Pp, 3fp)

and hence

U = Ǔ ⊂ B̌(U, f) ⊂
⋃

p∈F

B̌(Pp, 3fp) ⊂ U .

The equality Ǔ = B̌(U, f) implies that the set B(U, f)\U is bounded. It follows from f(x) ≤ 1
2d(x, x0), x ∈ X ,

that the set D = {x ∈ X : B(x, f) ∩ (B(U, f) \ U) 6= ∅} is bounded in X . Now define a bounded-to-bounded
function f0 ∈ ω↑X letting f0|D ≡ 0 and f0|X \D = f |X \D.

We claim that B(U, f0) = U . Assuming the opposite, find a point x ∈ B(U, f0) \ U and a point u ∈ U with
x ∈ B(u, f0). The definition of the set D guarantees that u ∈ D and hence f0(u) = 0 and x = u ∈ U , which is a
contradiction. The equality U = B(U, f0) witnesses that the set U with Ǔ = U is asymptotically isolated. �

Balls B(x, f) with function radius f ∈ ω↑X can be used to prove the following characterization of coarse
maps in spirit of uniform continuity.

Lemma 2.6. A bounded-to-bounded function f : X → Y between metric spaces is coarse if and only if

∀ε ∈ ω↑Y ∃δ ∈ ω↑X ∀x ∈ X f(B(x, δ)) ⊂ B(f(x), ε).

Proof. To prove the “only if” part, assume that the bounded-to-bounded function f : X → Y is coarse. In this
case there is an increasing function ξ : ω → ω such that for any n ∈ ω and points x, x′ ∈ X with dX(x, x′) ≤ n
we get dY (f(x), f(x

′)) ≤ ξ(n). Consider the bounded-to-bounded function ζ : ω → ω, ζ : m 7→ max{n ∈ ω :
ξ(n) ≤ m} and observe that ξ ◦ ζ(m) ≤ m for each m ∈ ω.

Given any bounded-to-bounded function ε ∈ ω↑Y , consider the bounded-to-bounded function δ : X → ω,
δ(x) = ζ ◦ ε ◦ f(x), and observe that it has the required property: f(B(x, δ) ⊂ B(f(x), ε) for all x ∈ X .

To prove the “if” part, choose any bounded-to-bounded function ε ∈ ↑X and assume that there exists
δ ∈ ω↑X such that f(B(x, δ)) ⊂ B(f(x), ε) for all x ∈ X . To show that f is coarse, for each real number r we
need to find a real number R such that f(Br(x)) ⊂ B(f(x), R). Since the function δ : X → ω is bounded-to-
bounded, the set ∆ = δ−1([0, r)) is bounded in X and so is its r-neighborhood Br(∆) =

⋃

x∈∆B(x, r). Since
the functions f and ε are bounded-to-bounded, the set f(Br(∆)) is bounded in Y and ε◦f(Br(∆)) is bounded
in ω. It can be shown that the number

R = max
{

ε(r), diam
(

ε ◦ f(Br(∆))
)}

has the required property: f(Br(x)) ⊂ BR(f(x)) for each x ∈ X . �

A function φ : X → Y between two metric spaces is called boundedly oscillating if there is a real number
D such that for any real number ε there is a bounded set B ⊂ X such that for each point x ∈ X \ B the
set φ(Bε(x)) has diameter diamφ(Bε(x)) ≤ D. It is clear that each slowly oscillating function is boundedly
oscillating.

The following characterization of boundedly oscillating functions easily follows from the definition.

Lemma 2.7. A function φ : X → Y between metric spaces is boundedly oscillating if and only if there is a

bounded-to-bounded function ε ∈ ω↑X such that supx∈X diamφ(B(x, ε)) < ∞.

Using Lemma 2.7 it is quite easy to construct boundedly oscillating functions f : X → ω with values in ω.

Lemma 2.8. For each metric space X there is a boundedly oscillating bounded-to-bounded function φ : X → ω.
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Proof. Fix any point x0 ∈ X and choose an increasing sequence of real numbers (rn)n∈ω such that r0 < 0 and
limn→∞ rn+1 − rn = ∞. Then the function φ : X → ω defined by φ−1(n) = Brn+1

(x0) \ Brn(x0) for n ∈ ω is
boundedly oscillating and bounded-to-bounded. �

Lemma 2.9. For any boundedly oscillating bounded-to-bounded function φ : X → ω on an unbounded metric

space there is a bounded-to-bounded function ε̃ ∈ ω↑ω such that supx∈X diamφ(B(x, ε̃ ◦ φ)) < ∞.

Proof. By Lemma 2.7, there is a bounded-to-bounded function ε ∈ ω↑X such that

D = sup
x∈X

diamφ(B(x, ε)) < ∞.

Since the map φ : X → ω is bounded-to-bounded, there is a bounded-to-bounded function ε̃ ∈ ω↑ω such that
ε̃ ◦ φ ≤ ε. Such function ε̃ can be defined by the formula

ε̃(n) = min ε(φ−1([n,∞)) for n ∈ ω.

The inequality ε̃ ◦ φ ≤ ε implies

sup
x∈X

diamφ(B(x, ε̃ ◦ φ)) ≤ sup
x∈X

diamφ(B(x, ε)) < ∞.

�

Observe that for a bounded-to-bounded function φ : X → ω defined on an unbounded metric space X and
an ultrafilter p ∈ X♯ its image βφ(p) = {A ⊂ ω : φ−1(A) ∈ p} lies in the set ω♯ = ω∗ ⊂ βω. To shorten
notations, we shall denote the image βφ(p) of the ultrafilter p by φ(p).

3. Dimension of the corona

By [10], for each proper metric spaceX of finite asymptotic dimension asdim(X) the corona X̌ has topological
dimension dim(X̌) = asdim(X). However it is not known if the asymptotic dimension asdim(X) is finite
provided that the topological dimension dim(X̌) of the corona X̌ is finite (cf. [5, §5]). In this section we give
an affirmative answer to this problem for metric spaces X with zero-dimensional corona. We shall apply a
characterization of asymptotic dimension zero in terms of ε-chains.

Let ε ≥ 0 be a real number. By an ε-chain in a metric space (X, d) we understand any sequence of points
x0, . . . , xn of X such that d(xi−1, xi) ≤ ε for all positive i ≤ n. For a point x ∈ X its ε-component Cε(x) is the
set of all points y ∈ X , which can be linked with x by an ε-chain x = x0, x1, . . . , xn = y.

Theorem 3.1. For an unbounded metric space X the following conditions are equivalent:

(1) X has asymptotic dimension zero;

(2) supx∈X diamCε(x) < ∞ for each ε < ∞;

(3) the corona X̌ has topological dimension zero.

Proof. (1) ⇒ (2). Assume that X has asymptotic dimension zero. Then for each ε < ∞ there is a cover U of
X such that supU∈U diam(U) < ∞ and each ε-ball Bε(x), x ∈ X , meets a unique set U ∈ U . Then for each
point x ∈ X its ε-component Cε(x) lies in a unique set U ∈ U , which implies that

sup
x∈X

diamCε(x) ≤ sup
U∈U

diam(U) < ∞.

The implication (2) ⇒ (1) trivially follows from the fact that for each ε < ∞, U = {Cε(x) : x ∈ X} is a
disjoint cover of X such that each ε-ball Bε(x), x ∈ X , meets a unique set U ∈ U (which is equal to Cε(x)).

(2) ⇒ (3) Assume that for each ε ≥ 0 the number γ(ε) = supx∈X diamCε(x) is finite. Since the space X is
unbounded, the function γ : [0,∞) → [0,∞) is bounded-to-bounded.

To show that the corona X̌ ofX has topological dimension zero, fix any ultrafilter p ∈ X♯ and a neighborhood
U ⊂ X̌ of its equivalence class p̌. By Lemma 2.3, we can assume that U is of the form U = B̌(P, f) where
P ∈ p and f : X → ω is a bounded-to-bounded function.

Fix any point x0 ∈ X and put ‖x‖ = d(x, x0) for any point x ∈ X . Replacing f by a smaller function,
if necessary, we can assume that f(x) ≤ 1

2‖x‖. This condition guarantees that for any point x ∈ X and
y ∈ B(x, f) we get

‖y‖ = d(y, x0) ≤ d(y, x) + d(x, x0) ≤ f(x) + d(x, x0) ≤
1

2
‖x‖+ ‖x‖ =

3

2
‖x‖
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and

‖x‖ = d(x, x0) ≤ d(x, y) + d(y, x0) ≤ f(x) + ‖y‖ ≤
1

2
‖x‖+ ‖y‖,

which implies 1
2‖x‖ ≤ ‖y‖. Consequently,

(1)
2

3
‖y‖ ≤ ‖x‖ ≤ 2‖y‖ for any points x ∈ X and y ∈ B(x, f).

Consider the bounded-to-bounded function ε : X → [0,∞) defined by

ε(x) =
1

2
sup{ε ≥ 0 : γ(ε) ≤ f(x)} for x ∈ X,

and observe that Cε(x)(x) ⊂ B(x, f(x)) for all x ∈ X . Using the inequalities (1), one can check that the
function

δ : X → [0,∞), δ : x 7→ inf{ε(y) : x ∈ Cε(y)(y)},

is bounded-to-bounded. So, we can choose a bounded-to-bounded function f̃ : X → ω such that f̃(x) ≤ δ(x)
for all x ∈ X .

The choice of the function ε guarantees that the set P̃ =
⋃

x∈P Cε(x)(x) belongs to the ultrafilter p and lies

in the f -neighborhood B(P, f) of the set P . Moreover, B(P̃ , f̃) = P̃ . Indeed, for each point x ∈ P̃ we can

find a point y ∈ P with x ∈ Cε(y)(y). Then definition of the function δ guarantees that f̃(x) ≤ δ(x) ≤ ε(y),

which implies that B(x, f̃ ) ⊂ Cε(y)(y) ⊂ P̃ . So, B(P̃ , f̃) = P̃ , which implies that B̌(P̃ , f̃) ⊂ B̌(P, f) is a

closed-and-open neighborhood of p̌ in X̌ .

(3) ⇒ (2) To derive a contradiction, assume that dim(X̌) = 0 but there is ε < ∞ such that supx∈X diamCε(x) =
∞. For two subsets A,B ⊂ X put dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. Fix any point θ ∈ X .

Claim 3.2. There is a sequence (Cn)n∈ω of bounded ε-connected subsets of X such that diamCn > n and

dist(Cn, C<n) ≥ n where C<n = Bn(θ) ∪
⋃

k<n Ck.

Proof. The sets Cn, n ∈ ω, will be constructed by induction. Assume that for some number n ∈ ω bounded
ε-connected sets C0, . . . , Cn−1 have been constructed. Consider the bounded set C<n = Bn(θ) ∪

⋃

k<n Ck and
its n-neighborhood B = Bn(C<n) =

⋃

c∈C<n
Bn(c).

Now we consider two cases.
(i) D = supx∈B diamCε(x) < ∞. Since supx∈X Cε(x) = ∞, we can choose a point x ∈ X such that

diamCε(x) > 2max{n,D}. It follows that x /∈ B and moreover, Cε(x) ∩ B = ∅ (in the opposite case, for a
point y ∈ B ∩ Cε(x), its ε-connected component Cε(y) = Cε(x) has diameter diamCε(y) > 2D ≥ D, which
contradicts the definition of D). So, Cε(x) ∩B = ∅.

Since diamCε(x) > 2n, we can choose a point y ∈ Cε(x) such that d(y, x) > n. By the definition of the set
Cε(x), the points x, y ∈ Cε(x) can be linked by an ε-chain x = x0, . . . , xm = y. Then Cn = {x0, . . . , xm} is a
required bounded ε-connected subset of X that has diameter diamCn ≥ d(x, y) > n and

dist(Cn, C<n) ≥ dist(Cε(x), C<n) ≥ dist(X \B,C<n) ≥ n.

(ii) The second case happens when supx∈B diamCε(x) = ∞. In this case we can choose a point y ∈ B such
that diamCε(y) > 2(diam(B) + n+ ε). Then there is a point x ∈ Cε(y) with d(x, y) > diam(B) + n+ ε, which
can be linked with y by an ε-chain x = x0, . . . , xm = y. Since d(x0, xm) = d(x, y) > diam(B) + n+ ε, we can
choose the smallest number k ≤ m such that d(x0, xk) > n. Then d(x0, xi) ≤ n for every i < k and hence

d(xi, B) ≥ d(xi, y)− diam(B) ≥ d(x0, y)− d(x0, xi)− diam(B) > diam(B) + n+ ε− n− diam(B) = ε.

Also d(xk, B) ≥ d(xk−1, B) − d(xk−1, xk) > ε − ε = 0. Consequently, the bounded ε-connected set Cn =
{x0, . . . , xk} has diameter diam(Cn) ≥ d(x0, xk) > n and is disjoint with the set B = Bn(C<n), which implies
that dist(Cn, C<n) ≥ n. This completes the inductive construction. �

Claim 3.2 yields a sequence (Cn)n∈ω of ε-connected sets such that diam(Cn) > n and dist(Cn, C<n) ≥ n for
each n ∈ ω. For every n ∈ ω choose two points xn, yn ∈ Cn on distance d(xn, yn) > n. The choice of the sets
Cn ⊂ X \Bn(θ), n > 0, implies that the sequences ~x = (xn)n∈ω and ~y = (yn)n∈ω tend to infinity and the sets
P = {xn}n∈ω and Q = {yn}n∈ω are unbounded and asymptotically disjoint.

The sequences ~x and ~y can be thought as functions ~x : ω → X and ~y : ω → Y and so have the Stone-Čech
extensions β~x : βω → βXd and β~y : βω → βXd. Since the sequences ~x and ~y tend to infinity, β~x(ω∗)∪β~y(ω∗) ⊂
X♯. Take any free ultrafilter F ∈ ω∗ and consider its images p = β~x(F) ∈ X♯ and q = β~y(F) ∈ X♯. Since the
sets ~x(ω) ∈ p and ~y(ω) ∈ q are asymptotically disjoint, p̌ 6= q̌ according to Lemma 2.4.
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Since the space X̌ has topological dimension zero, there are disjoint open-and-closed sets U ,V ⊂ X̌ such
that p̌ ∈ U and q̌ ∈ V . By Lemma 2.5 there are asymptotically isolated sets U, V ⊂ X such that U = Ǔ and
V = V̌ . Since U, V are asymptotically isolated in X , there is a bounded-to-bounded function f ∈ ω↑X such
that B(U, f) = U and B(V, f) = V .

It follows from Ǔ ∩ V̌ = U ∩ V = ∅ that the intersection U ∩ V is bounded. Choose n ∈ ω so large that

• the n-ball Bn(θ) contains the bounded set U ∩ V , and
• f(x) > ε for each x ∈ X \Bn(θ).

It follows from p̌ ∈ U = Ǔ and q̌ ∈ V = V̌ that U ∈ p = β~x(F) and V ∈ q = ~y(F). Consider the (infinite) set
F = ~x−1(U \Bn(θ))∩~y−1(V \Bn(θ)) ∈ F . Choose any numberm ∈ F with m > n and consider the ε-connected
set Cm. By Claim 3.2, Cm ∩ Bn(θ) ⊂ Cm ∩ Bm(θ) = ∅. Choose an ε-chain xm = z0, . . . , zk = ym linking the
points xm in ym of the set Cm. Observe that z0 = xm ∈ U \Bn(θ) and zk = ym ∈ V \Bn(θ) ⊂ X \U . So, the
largest number l ≤ k such that zl ∈ U is not equal to k. It follows from zl ∈ Cm ⊂ X \ Bm(θ) ⊂ X \ Bn(θ)
and the choice of the number n that f(zl) > ε.

Then zl+1 ∈ Bε(zl) ⊂ Bf(zl)(zl) = B(zl, f) ⊂ B(U, f) = U , which contradicts the definition of l. �

4. Evaluating the character of a point in the corona

In this section, for an unbounded metric space (X, d) and an ultrafilter p ∈ X♯ we shall evaluate the character
χ(p̌, X̌) of the point p̌ in the corona X̌ of X .

First we derive an upper bound on χ(p̌, X̌) from Lemmas 2.1 and 2.3.

Lemma 4.1. For each ultrafilter p ∈ X♯ the point p̌ ∈ X̌ has character

χ(p̌, X̌) ≤ max{χ(p,X♯), d}.

Proof. Let κ = max{χ(p,X♯), d}. Since χ(p,X♯) ≤ κ, there is a family P ⊂ p of cardinality |P| = χ(p,X♯) ≤ κ
such that for each set P ∈ p there is a set Q ∈ P with Q̄ ⊂ P̄ , where Q̄ = {q ∈ X♯ : Q ∈ q}. We claim that
the complement Q \ P is bounded. In the other case, there is an ultrafilter q ∈ X♯ such that Q \ P ∈ p. Then
q ∈ Q̄ \ P̄ , which is a contradiction.

Fix any point θ ∈ X and consider the enriched family P ′ = {P \Bn(θ) : P ∈ P , n ∈ ω} ⊂ p. It is clear that
|P ′| ≤ ℵ0 · |P| ≤ κ and for each set P ∈ p there is a set P ′ ∈ P ′ with P ′ ⊂ P .

By Lemma 2.1, the partially ordered set (ω↑ω,≤) has coinitiality coin(ω↑X) ≤ d. So, we can find a coinitial
set F ⊂ ω↑X of cardinality |F| ≤ d.

It follows that for each set P ∈ p and a function g ∈ ω↑X there is a set P ′ ∈ P ′ and a function f ∈ F such
that P ′ ⊂ P and f ≤ g. Then p ∈ B̄(P ′, f) ⊂ B̄(P, g) and hence p̌ ∈ B̌(P ′, f) ⊂ B̌(P, g), which implies that
{B̌(P, f) : P ∈ P ′, f ∈ F} is a neighborhood base at p̌ and χ(p̌, X̌) ≤ |P ′| · |F| ≤ κ. �

Lemma 4.2. If φ : X → ω is a boundedly oscillating bounded-to-bounded function, then for each ultrafilter

p ∈ X♯ the point p̌ ∈ X̌ has character

χ(p̌, X̌) ≥ χ(φ(p), ω∗).

Proof. Assume conversely that the cardinal κ = χ(p̌, X̌) is smaller that χ(φ(p), ω∗). Using Lemma 2.3, choose
a transfinite sequence of pairs (Pα, fα) ∈ p× ω↑X , α < κ, such that for each pair (P, f) ∈ p× ω↑X there is an
ordinal α < κ with B̌(Pα, fα) ⊂ B̌(P, f).

By Lemma 2.9, there is a function f̃ ∈ ω↑ω such that

D = sup
x∈X

diamφ
(

B(x, f̃ ◦ φ)
)

< ∞.

Let f = f̃ ◦ φ and choose any natural number l > 2D.

Since φ(p) is an ultrafilter on ω =
⋃l−1

i=0 lω + i, there is a non-negative integer number i < d such that the
set lω + i = {ln+ i : n ∈ ω} belongs to φ(p).

For every α < κ consider the set Qα = (lω + i) ∩ φ(Pα) ∈ φ(p). Since the family {Qα}α<κ has cardinality
≤ κ < χ(φ(p), ω∗), there exists a set Q ∈ φ(p) such that Qα \Q is infinite for all α < κ.

Let P = φ−1(Q ∩ (lω + i)) and for the neighborhood B̌(P, g) of p̌ in X̌ find an ordinal α < κ such that
B̌(Pα, fα) ⊂ B̌(P, f). By the choice of the set Q, the complement Qα \Q is infinite. Then we can construct a
sequence of points (ak)k∈ω such that φ(ak) ∈ Qα \Q and φ(ak+1) > φ(ak) for every k ∈ ω.

The set A = {ak}k∈ω is not bounded because it has infinite image φ(A) ⊂ ω under the bounded-to-bounded
function φ.
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We claim that the sets A and B(P, f) are asymptotically disjoint. This will follow as soon as we check that

d(ak, B(P, f)) ≥ f(ak) = f̃ ◦ φ(ak).

Assume conversely that d(ak, x) < f(ak) for some x ∈ B(P, f) and find a point y ∈ P such that x ∈ B(y, f).

The choice of the function f = f̃ ◦φ guarantees that |φ(ak)−φ(x)| ≤ diamφ(B(ak, f)) ≤ D and |φ(x)−φ(y)| ≤
diamφ(B(y, f)) ≤ D. Taking into account that φ(ak) ∈ Qα ⊂ lω + i and φ(y) ∈ φ(P ) ⊂ lω + i, we conclude
that φ(ak)− φ(y) ∈ lZ. This fact combined with the upper bound

|φ(ak)− φ(y)| ≤ |φ(ak)− φ(x)| + |φ(x) − φ(y)| ≤ D +D < l

implies that φ(ak) = φ(y), which is not possible as φ(y) ∈ Q and φ(ak) ∈ Qα \Q.
This contradiction shows that the sets A and B(P, f) are asymptotically disjoint. Therefore, there exists

q ∈ A♯ such that q̌ /∈ B̌(P, f) according to Lemma 2.4. On the other hand, A ⊂ Pα ⊂ B(Pα, fα) implies
q̌ ∈ B̌(Pα, fα) ⊂ B̌(P, f). This contradiction completes the proof. �

Lemma 4.3. If the space X has no asymptotically isolated balls, then for each boundedly oscillating bounded-

to-bounded function φ : X → ω and each ultrafilter p ∈ X♯ the point p̌ ∈ X̌ has character χ(p̌, X̌) ≥ q(φ(p)).

Proof. Given any ultrafilter p ∈ X♯, we need to check that χ(p̌) ≥ q(φ(p)). To derive a contradiction, assume
that the cardinal κ = χ(p̌) is smaller than q(φ(p)).

Using Lemma 2.3, choose a transfinite sequence of pairs {(Pα, fα)}α<κ ⊂ p × ω↑X such that for each
(P, f) ∈ p× ω↑X there is α < χ(p̌) such that B̌(Pα, fα) ⊂ B̌(P, f).

For every α < κ choose a bounded-to-bounded function f̃α : ω → ω such that f̃α◦φ ≤ fα. Such a function f̃α
can be defined by the formula f̃α(n) = min fα

(

φ−1([n,∞))
)

for n ∈ ω. Since κ < q(φ(p)) = coin(ω↑ω,≤φ(p)),

there exists a non-decreasing function f̃ ∈ ω↑ω such that f̃ ≤φ(p) f̃α for all α < κ.

Since the function φ : X → ω is boundedly oscillating and bounded-to-bounded we can replace f̃ by a
smaller function, if necessary and assume additionally that

D = sup
x∈X

diamφ(B(x, f̃ ◦ φ)) < ∞,

see Lemma 2.9. Let f = f̃ ◦ φ ∈ ω↑X and choose an integer number l > 3D.
Since X has no asymptotically isolated balls, there exists a non-decreasing function ρ ∈ ω↑ω such that

ρ(n) ≥ n and B(x, ρ(n)) 6⊂ B(x, n) for all n ∈ ω and x ∈ X . Let n0 ≥ D be an integer number such that

f̃(n0) ≥ 4ρ(0). For every n < n0 put g(n) = 0 and for every n ≥ n0 let g̃(n) be the largest number m ∈ ω such

that ρ(6m) ≤ 1
4 f̃(n). In this way we define a non-decreasing bounded-to-bounded function g̃ : ω → ω such

that

6g̃(n) ≤ ρ(6g̃(n)) ≤ 1
4 f̃(n) for all n ≥ n0.

The function g̃ induces a bounded-to-bounded function g = g̃ ◦ φ : X → ω.
For every n ∈ ω using Zorn’s Lemma, choose a maximal subset Sn ⊂ φ−1(n), which is f̃(n)-separated in the

sense that d(x, y) ≥ f̃(n) for any distinct points x, y ∈ Sn.
For every i < l, consider the set Xi = φ−1(lω + i) ⊂ X where lω + i = {ln+ i : n ∈ ω}. Divide each set Xi

into two subsets

Bi = Xi ∩
⋃

n∈lω+i

B(Sn, 2g) and Ai = Xi \Bi.

Since p is an ultrafilter, there is a set P ∈ p such that P = Ai or P = Bi for some 0 ≤ i < l. By Lemma 2.3,
the set B̌(P, g) is a neighborhood of p̌ in X̌, so we can find an ordinal α < κ such that B̌(Pα, fα) ⊂ B̌(P, g).

By the choice of the function f̃ , the set Q̃α = {n ∈ ω : f̃(n) ≤ f̃α(n)} belongs to the ultrafilter φ(p). Then
the set

Qα = P ∩ Pα ∩ φ−1
(

Q̃α ∩ (lω + i)
)

belongs to the ultrafilter p and hence is unbounded. This allows us to choose a sequence of points (ak)k∈ω in
Qα such that φ(ak+1) > φ(ak) + 2 > n0 + 2 for every k ∈ ω.

Now we consider two cases.

1) P = Ai. For every k ∈ ω the maximality of the f̃(φ(ak))-separated set Sφ(ak) ⊂ φ−1(φ(ak)) ⊂ Xi yields

a point sk ∈ Sφ(ak) such that d(ak, sk) < f̃(φ(ak)) = f(ak). Since φ(sk) = φ(ak) → ∞, the set Σ = {sk}k∈ω is

unbounded and hence belongs to some ultrafilter q ∈ X♯.
We claim that q̌ ∈ B̌(Pα, fα) \ B̌(P, g), which will contradict the choice of α.
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To see that q̌ ∈ B̌(Pα, fα), observe that for every k ∈ ω we get φ(ak) ∈ Q̃α and hence f̃ ◦φ(ak) ≤ f̃α◦φ(ak) ≤
fα(ak). This implies

sk ∈ B(ak, f̃ ◦ φ̃(ak)) ⊂ B(ak, fα) ⊂ B(Pα, fα)

and Σ ⊂ B(Pα, fα).
Lemma 2.4 will imply that q̌ /∈ B̌(P, g) as soon as we show that the sets Σ = {sk}k∈ω and B(P, g) are

asymptotically disjoint. This will follow as soon as we check that d(sk, B(P, g)) ≥ g(sk) for every k ∈ ω. Assume

conversely that d(sk, x) < g(sk) for some x ∈ B(P, g). Since d(sk, x) < g(sk) = g̃ ◦ φ(sk) ≤ f̃ ◦ φ(sk) = f(sk),

the choice of the function f̃ guarantees that |φ(x) − φ(sk)| ≤ diamφ
(

B(sk, f)
)

≤ D.
Since x ∈ B(P, g), there is a point y ∈ P with d(x, y) ≤ g(y). The inequality d(x, y) ≤ g(y) = g̃ ◦ φ(y) ≤

f̃ ◦ φ(y) implies that |φ(x) − φ(y)| ≤ l. It follows from φ(sk)− φ(y) ∈ (lω + i)− (lω + i) = lZ and

|φ(sk)− φ(y)| ≤ |φ(sk)− φ(x)| + |φ(x) − φ(y)| ≤ D +D < l

that φ(sk) = φ(y) = n for some number n ∈ ω. Taking into account that y ∈ P = Ai = Xi \ Bi ⊂
Xi \B(sk, 2g̃(n)), we conclude that d(y, sk) > 2g̃(n) and hence

d(x, sk) ≥ d(y, sk)− d(x, y) > 2g̃(n)− g(φ(y)) = 2g̃(n)− g̃(n) = g̃(n) = g(sk),

which contradicts our assumption. So, the sets Σ and B(P, g) are asymptotically disjoint and q̌ /∈ B̌(P, g).

2) Now consider the second case P = Bi. By the choice of the function ρ, for every k ∈ ω there is a point

bk ∈ B(ak, ρ(6g(ak))) \ B(ak, 6g(ak)). Since d(bk, ak) ≤ ρ(6g(ak)) = ρ(6g̃ ◦ φ(ak)) ≤ f̃ ◦ φ(ak), the choice of

the number D and the function f̃ guarantees that |φ(bk) − φ(ak)| ≤ D. Since the sequence (φ(ak))k∈ω tends
to infinity, so does the sequence (φ(bk))k∈ω , which implies that the set Σ = {bk}k∈ω is unbounded. So we can
find an ultrafilter q ∈ X♯ with Σ ∈ q.

We claim that q̌ ∈ B̌(Pα, fα). Indeed, for every k ∈ ω we get φ(ak) ∈ Q̃α and hence

bk ∈ B
(

ak, ρ(6g(ak))
)

⊂ B(ak, f̃ ◦ φ(ak)) ⊂ B(ak, fα(ak)) ⊂ B(Pα, fα).

Consequently, Σ ⊂ B(Pα, fα) and q̌ ∈ B̌(Pα, fα).
Next, we show that q̌ /∈ B̌(P, g). By Lemma 2.4, it suffices to show that the sets Σ and B(P, g) are

asymptotically disjoint. Since g̃(φ(bk)−D) → ∞, this will follow as soon as we check that

d(bk, B(P, g)) ≥ g̃(φ(bk)−D) for every k ∈ ω.

Assuming the converse, find a point x ∈ B(P, g) such that d(bk, x) < g̃(φ(bk)−D).
Since

d(ak, bk) ≤ ρ(6g̃(φ(ak))) ≤ f̃ ◦ φ(ak),

the choice of the number D guarantees that |φ(ak)− φ(bk)| ≤ D. Taking into account that ak ∈ P = Bi, find
a point sk ∈ Sφ(ak) such that ak ∈ B(sk, 2g) and φ(ak) = φ(sk) ∈ lω + i.

Since

d(bk, x) < g̃(φ(bk)−D) ≤ g̃(φ(bk)) ≤ f̃(φ(bk)),

the choice of the number D guarantees that |φ(bk) − φ(x)| ≤ diamφ(B(bk, f)) ≤ D. Since x ∈ B(P, g), there
is a point y ∈ P such that x ∈ B(y, g) ⊂ B(y, f) and hence |φ(x) − φ(y)| ≤ D. Since y ∈ P = Bi, there is a
point s ∈ Sφ(y) such that y ∈ B(s, 2g) and φ(s) = φ(y) ∈ lω + i.

Taking into account that φ(s) − φ(sk) ∈ (lω + i)− (lω + i) = lZ and

|φ(s)−φ(sk)| ≤ |φ(s)−φ(y)|+|φ(y)−φ(x)|+|φ(x)−φ(bk)|+|φ(bk)−φ(ak)|+|φ(ak)−φ(sk)| ≤ 0+D+D+D+0< l,

we conclude that φ(s) = φ(sk). Let n = φ(s) = φ(sk) = φ(ak) = φ(y).
If s = sk, then

d(bk, x) ≥ d(bk, ak)− d(ak, sk)− d(sk, s)− d(s, y)− d(x, y) ≥

≥ 6g(ak)− 2g(sk)− 0− 2g(s)− g(y) = 6g̃(φ(ak))− 2g̃(φ(sk))− 2g̃(φ(s)) − g(̃(y)) =

= 6g̃(n)− 2g̃(n)− 2g̃(n)− g̃(n) = g̃(n) = g̃(φ(ak)) ≥ g̃(φ(bk)−D),

which contradicts the choice of the point x.
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If s 6= sk, then d(s, sk) ≥ f̃(n) by the choice of the f̃(n)-separated set Sn and then

d(bk, x) ≥ d(sk, s)− d(sk, ak)− d(ak, bk)− d(x, y) − d(y, s) ≥

≥ f̃(n)− 2g(sk)− ρ(6g(ak))− g(y)− 2g(s) =

= f̃(n)− 2g̃(n)− ρ(6g̃(n))− g̃(n)− 2g̃(n) =

= f̃(n)− ρ(6g̃(n)) − 6g̃(n) ≥ f̃(n)− ρ(6g̃(n)) − ρ(6g̃(n)) ≥

≥ f̃(n)− 2ρ(6g̃(n)) ≥ f̃(n)−
1

2
f̃(n) =

1

2
f̃(n) ≥ g̃(n) = g̃(φ(ak)) ≥ g̃(φ(bk)−D).

Therefore d(bk, B(P, g)) ≥ g̃(φ(bk) − D) → ∞, which implies that the sets B = {bk}k∈ω and B(P, g) are
asymptotically disjoint and q̌ /∈ B̌(P, g). �

Lemma 4.4. If an unbounded metric space X has asymptotically isolated balls, then its corona X̌ contains a

closed-and-open subset, homeomorphic to ω∗ and hence mχ(X̌) ≤ mχ(ω∗) = u.

Proof. Since X has asymptotically isolated balls, there is ε > 0 such that for each finite δ ≥ ε there is an
ε-ball Bε(x) equal to the δ-ball Bδ(x). In particular, for the number δ0 = 2ε, we can find a point x0 ∈ X such
that Bε(x0) = Bδ0(x0). By induction we shall construct an increasing sequence of real numbers (δn)

∞
n=1 and a

sequence of points (xn)n∈ω in X the such that for every n ∈ N the following conditions are satisfied:

(1) δn ≥ (n+ 2)ε;
(2) Bδn−ε(xk) 6⊂ B2ε(xk) for all k < n;
(3) Bδn(xn) = Bε(xn).

These conditions imply that for every k < n we get dX(xk, xn) ≥ δn. Assuming the opposite, we get xk ∈
Bδn(xn) = Bε(xn) and hence dX(xk, xn) < ε and

Bδn−ε(xk) ⊂ Bδn(xn) = Bε(xn) ⊂ B2ε(xk),

which contradicts the condition (2).
Consider the subspace D = {xn}n∈ω ⊂ X and its ε-neighborhood

Dε =
⋃

n∈ω

Bε(xn) =
⋃

n∈ω

Bδn(xn).

It follows that the characteristic function f : X → {0, 1} of the set Dε is slowly oscillating. It induces a
continuous map f̌ : X̌ → {0, 1} such that the preimage f̌−1(1) is a clopen subset of X̌ that coincides with the
corona Ďε of the set Dε.

It is easy to check that the identity embedding e : D → Dε is a coarse equivalence, which induces a
homeomorphism ě : Ď → Ďε. Since each function on D is slowly oscillating, the corona Ď of D coincides with
the Stone-Čech remainder D♯ = βD \D of the discrete space D. Consequently, the corona X̌ contains a clopen
subset Ďε, which is homeomorphic to ω∗ = βω \ ω and hence mχ(X̌) ≤ mχ(Ď) = mχ(ω∗) = u. �

Lemmas 4.1, 4.2, 4.3 and 2.2 imply the following theorem, which is the main result of this section.

Theorem 4.5. Let X be an unbounded metric space and φ : X → ω be a boundedly oscillating bounded-to-

bounded function. For each ultrafilter p ∈ X♯ the point p̌ ∈ X̌ has character

(1) χ(p̌, X̌) ≤ max{χ(p,X♯), d};
(2) χ(p̌, X̌) ≥ χ(φ(p), ω∗) ≥ u;

(3) χ(p̌, X̌) ≥ max{χ(φ(p), ω∗), q(φ(p))} ≥ max{u, d} if the space X has no asymptotically isolated balls.

5. Proof of Theorem 1.2

We need to prove that for an unbounded metric space X its corona X̌ has minimal character

• mχ(X̌) = u if X has asymptotically isolated balls and
• mχ(X̌) = max{u, d}, otherwise.

If X has asymptotically isolated balls, then the corona X̌ has minimal character mχ(X̌) ≤ u by Lemma 4.4.
The inequality mχ(X̌) ≥ u follows from Theorem 4.5(2).

If X does not have asymptotically isolated balls, then mχ(X̌) ≥ max{u, d} by Theorem 4.5(3). To prove the
reverse inequality, take any injective function f : ω → X such that limn→∞ d(f(n), f(0)) = ∞. Choose any
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ultrafilter U ∈ ω∗ with χ(U , ω∗) = u and consider its image p = βf(U) ∈ βX . The choice of the function f
guarantees that p ∈ X♯. It follows that χ(p,X♯) = χ(U , ω∗) = u and then

mχ(X̌) ≤ χ(p̌, X̌) ≤ max{χ(p,X♯), d} = max{u, d}

according to Theorem 4.5(1).

6. Proof of Theorem 1.3

It is easy to see that the Cantor macro-cube C = 2<N has no asymptotically isolated balls. Consequently,
mχ(Č) = max{u, d} = d by Theorem 1.2. By [10], dim(Č) = asdim(C) = 0. Now we are ready to prove the
implications (1) ⇒ (2) ⇒ (3) ⇒ (1) of Theorem 1.3. Let (X, dX) be a metric space of bounded geometry.

(1) ⇒ (2). If X is coarsely homeomorphic to the Cantor macro-cube C = 2<N, then the coronas of X and
C are homeomorphic according to [19, 2.42].

(2) ⇒ (3) If the coronas X̌ and Č are homeomorphic, then dim(X̌) = dim(Č) = asdim(C) = 0 and
mχ(X̌) = mχ(Č) = d.

(3) ⇒ (1) Assume that dim(X̌) = 0 and mχ(X̌) = d > u. By Proposition 3.1 and Theorem 1.2(1), the
metric space X has asymptotic dimension zero and has no asymptotically isolated balls. Since X has bounded
geometry, the characterization theorem [1] implies that the metric space X is coarsely equivalent to the Cantor
macro-cube 2<N.
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