
APERIODIC SEQUENCES AND APERIODIC GEODESICS

VIKTOR SCHROEDER AND STEFFEN WEIL

ABSTRACT. We introduce a quantitative condition on orbits of dynamical systems which
measures their aperiodicity. We show the existence of sequences in the Bernoulli-shift and
geodesics on closed hyperbolic manifolds which are as aperiodic as possible with respect
to this condition.

1. MAIN RESULTS.

In this section we state our main results in the case of sequences in a finite alphabet
and of geodesics in hyperbolic manifolds. Denote by N0 the natural numbers including 0
and let N = N \ {0}. Given a finite set A with k ≥ 2 elements, let Σ = AZ be the set
of biinfinite sequences in the alphabet A, which we call words. With [w(i) . . . w(i + l)]
denote the subword of w ∈ Σ starting at time i ∈ Z and of length l ∈ N0. For a word
w ∈ Σ define the recurrence time Ri

w : N0 → N ∪ {∞} at time i ∈ Z by

Ri
w(l) = min{s ≥ 1 : [w(i+ s) . . . w(i+ s+ l)] = [w(i) . . . w(i+ l)]},

(i.e. the first instant when the sub word [w(i) . . . w(i+ l)] of w is seen again), and by

Rw(l) := min{Ri
w(l) : i ∈ Z}.

For a periodic word w ∈ Σ with period p ∈ N, i.e. w(i) = w(i + p) for all i ∈ Z, we
have Rw(l) ≤ p for all l ∈ N0. Thus, if Rw is unbounded, then w is aperiodic and we view
the growth rate of Rw as a measure for the aperiodicity of the word w. Note that Rw is
nondecreasing and by a trivial counting argument we have Rw(l) ≤ kl+1 for every word
w, in particular

lim
l→∞

1

l
lnRw(l) ≤ ln(k).

One of our main results is the existence of words w such that the growth rate is as near as
possible to this bound.

Theorem 1.1. Let ϕ : N0 → [0,∞) be a non-decreasing function such that

lim
l→∞

1

l
ln(ϕ(l)) ≤ δ ln(k) (1.1)

for some 0 < δ < 1. Then there exist l0 = l0(ϕ, k, δ) ∈ N0 and a word w ∈ Σ such that,
for every l0 ≤ l ∈ N0, we have Rw(l) ≥ ϕ(l).

Now let M be a closed n-dimensional hyperbolic manifold, where n ≥ 2. Let iM > 0
denote the injectivity radius ofM and let d be the Riemannian distance function onM . For

Date: June 5, 2012.
2010 Mathematics Subject Classification. 37B10, 53D25, 37D40.
Key words and phrases. Recurrence, Bernoulli-shift, Geodesic Flow, Flow-invariant Sets, Symbolic

Dynamics.
The authors acknowledge the support by the Swiss National Science Foundation (Grant: 135091).

1

ar
X

iv
:1

20
6.

05
51

v1
  [

m
at

h.
D

S]
  4

 J
un

 2
01

2



APERIODIC SEQUENCES AND APERIODIC GEODESICS 2

a unit speed geodesic γ : R→M we define the recurrence timeRt0
γ : [0,∞)→ [iM/2,∞]

at time t0 ∈ R by

Rt0
γ (l) = inf{s > iM/2 : d(γ(t0 + t), γ(t0 + s+ t)) <

iM
2

for all 0 ≤ t ≤ l}.

and
Rγ(l) := inf{Rt0

γ (l) : t0 ∈ R}.
If γ is a periodic geodesic, then Rγ is bounded and again one can view the growth rate of
Rγ as a measure for the aperiodicity of γ.

Theorem 1.2. Let ϕ : [0,∞)→ [0,∞) be a non-decreasing function such that

lim
l→∞

1

l
ln(ϕ(l)) ≤ δ(n− 1) (1.2)

for some 0 < δ < 1. If iM > 2 ln(2) then there exist l0 = l0(ϕ, δ, n, iM) ≥ 0 and a unit
speed geodesic γ : R→M such that for all l ≥ l0, we have Rγ(l) ≥ ϕ(l).

The theorems will be shown in greater generality.

Remark. The bounds ln(k) and n − 1 equal the topological entropies of the respective
dynamical systems. Moreover, we believe that the assumption on the injectivity radius in
Theorem 1.2 is not necessary. A version of this theorem is also true if M is of strictly
negative curvature. However, for the sake of clarity of the paper we restrict to these as-
sumptions.

Organization of the paper. In Section 2 we will introduce the measure of aperiodcitiy
for general dynamical systems and deduce immediate properties. In Section 3 and 4 we
examine two examples and state the main results, namely of the Bernoulli-shift and the
geodesic flow on a closed hyperbolic manifold. These will be proven in Section 5.

Acknowledgement. We want to thank Shahar Mozes for helpful discussions. The second
author would like to thank Jean-Claude Picaud for many fruitful discussions and comments
and the University of Tours for its hospitality during his stay in January 2012.

2. F -APERIODIC POINTS.

Let (X, d) be a compact metric space and let T : X → X be a given continuous
transformation. For n ∈ N0 let T n be the n-times composition of T (where T 0 = idX)
and for a point x ∈ X let T nx be the point in the orbit T (x) := {T nx}n∈N0 of x at time n.
Let moreover µ be a finite Borel-measure on the Borel-σ-algebra B of (X, d) such that T
is measure-preserving; see [5].

A point x ∈ X is called periodic (with respect to T ) if there exists an integer p ∈ N,
called a period of x, such that T px = x. Denote by PT the T -invariant set of T -periodic
points of X . A point is called aperiodic, if it is not periodic.

A point x ∈ X is recurrent with respect to T , if for any ε > 0 there exists s =
s(x, ε) ∈ N such that d(T sx, x) < ε. Periodic points are obviously recurrent. The set RT

of recurrent points is nonempty (see [6]) and T -invariant. However s(T ix, ε) can differ
from s(x, ε) in general, unless T is an isometry on its orbit T (x); that is, d(T i+sx, T ix) =
d(T sx, x) for all i and s ∈ N0. We recall that by the Poincaré-recurrence theorem, µ-
almost every point is recurrent.



APERIODIC SEQUENCES AND APERIODIC GEODESICS 3

In this paper we give a quantitative version of recurrence and aperiodicity. Given a
point x ∈ X and a time i ∈ N0, we ask for a lower bound on the shift s such that T i+sx is
allowed to be ε-close to T ix:

Definition 2.1. For a non-increasing function F : (0,∞) → [0,∞) a point x ∈ X is
called F -aperiodic at time i ∈ N0 if for every ε > 0, whenever

d(T ix, T i+sx) < ε

for some s ∈ N, then s > F (ε). If x is F -aperiodic at every time i ∈ N0 then it is called
F -aperiodic.

We emphasize that although we called the condition ”F -aperiodic”, a periodic point x is
F -aperiodic for a suitable bounded function F . However, if the function F is unbounded,
an F -aperiodic point must be aperiodic. Moreover, if x is not recurrent, then it is easy to
find an unbounded function F such that x is F -aperiodic at least at time 0.

Let F : (0,∞) → [0,∞) be a given non-increasing function. Clearly, if a non-
increasing function F̄ satisfies F̄ (s) ≤ F (s) for all s ∈ (0,∞) then an F -aperiodic
point is also F̄ -aperiodic. On the other hand, using the upper box dimension dimB(X) for
metric spaces, we obtain an upper bound on the growth rate (as ε tends to 0) of functions
F such that an F -aperiodic point might exist. For ε > 0 let N(X, ε) denote the largest
number of disjoint metric balls of radius ε. Then the upper box dimension ([16]) is given
by

dimB(X) = lim sup
ε→0

ln(N(X, ε))

− ln(ε)
.

Lemma 2.2. Let x be an F -aperiodic point. Then lim supε→0
ln(F (ε))
ln(2/ε)

≤ dimB(X).

Proof. Let ε > 0. If B(T s1x, ε/2) ∩B(T s2x, ε/2) 6= ∅ for some 0 ≤ s1 < s2 ≤ F (ε), we
have d(T s1x, T s2x) < ε0 which is impossible since s2− s1 ≤ F (ε0). Therefore the metric
balls B(T sx, ε/2) must be disjoint for s ≤ F (ε). Hence we have F (ε) ≤ N(X, ε/2). �

Moreover, since F is independent of the time i ∈ N0, the set FT ⊂ X of F -aperiodic
points is T -invariant. In the case when (X,B, µ, T ) is ergodic, FT is either of full or
of zero µ-measure. When PT is nonempty, this question is related to the distribution of
periodic orbits. In fact, let x0 ∈ PT be of minimal period p0 and assume that F (ε) ≥ p0

for some εp0 > 0. In the case when F is continuous, we may choose εp0 := sup{ε > 0 :
F (ε) ≥ p0}. Define the critical neighborhood of x0 with respect to F and p0 by

Nx0 := B(x0, εp0/2) ∩ T−p0(B(x0, εp0/2)). (2.1)

Whenever x ∈ Nx0 we have by the triangle inequality that d(x, T p0x) < εp0 , but p0 ≤
F (εp0). Thus, no point in Nx0 can be F -aperiodic and we see that the orbit of an F -
aperiodic point must avoid the critical neighborhoods of periodic points. If in addition
µ(Nx0) > 0 then the set of F -aperiodic points cannot be of full and must therefore be of
zero µ-measure. Thus, we showed the following criterion.

Lemma 2.3. Assume PT 6= ∅ and let x0 be a periodic point of period p0 and F (ε) ≥ p0

for some ε > 0. If µ is ergodic and positive on Nx0 then the set FT has µ-measure 0.

In particular, this result is interesting for the systolic point x0 ∈ PT of systolic period
p0 ∈ N, that is, x0 has minimal period p0 and for every periodic point in X of period p we
have p ≥ p0.

Lemma 2.4. F -aperiodicity is a closed condition.
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Proof. Let {xn}n∈N be a sequence of F -aperiodic points in X converging to x ∈ X . Let i
and s ∈ N be fixed. For ε > 0 such that d(T ix, T i+sx) < ε let d := 1

2
(ε− d(T ix, T i+sx)).

Since T is continuous, there exists N = N(i, s, d) ∈ N0 such that for all n ≥ N we have
d(T ix, T ixn) < d and d(T i+sx, T i+sxn) < d. From the triangle inequality we obtain

d(T ixn, T
i+sxn) ≤ d(T ixn, T

ix) + d(T ix, T i+sx) + d(T i+sx, T i+sxn) < ε

for n ≥ N so that s > F (ε) since xn is F -aperiodic. Hence, x is also F -aperiodic. �

Finally, note that if T acts as an isometry on the orbit T (x) of a point x ∈ X , then x
is F -aperiodic as soon as it is F -aperiodic at a given time. For instance, we consider the
rotation on the circle as a motivating example:

Example 1. Let Z act on R by translations and let X = R/Z be the compact quotient
space with the induced metric d obtained from the Euclidean metric. Given an irrational
number 0 < α ∈ R \ Q, we let T = Tα : X → X be the automorphism induced by
the translation T̃ : R → R, T̃ (x) := x + α. For c > 0 we let Fc : (0,∞) → [0,∞),
Fc(t) = ct−1. In fact, since dimB(X) = 1, −1 is the optimal exponent due to Lemma 2.2.
The point [0] is Fc-aperiodic if and only if every point [x] is Fc-aperiodic and hence FT
is either empty or X itself. Moreover, since T is an isometry, [0] is Fc-aperiodic as soon
as it is Fc-aperiodic at time 0. The question for which c and α there exist Fc-aperiodic
points can be answered by classical Diophantine approximation; see for instance [1] for
the following well-known results: Let µ be the Lebesgue measure on R. For µ-almost
every α ∈ R \Q we have c0(α) = 0, where

c0(α) = inf{c > 0 : there exist infinitely many p ∈ Z, q ∈ N such that |α− p

q
| < c

q2
}.

However, there exists a set of Hausdorff-dimension one such that c0(α) is positive. Such
an α is called badly approximable. The supremum supα∈R\Q c0(α) of this set, called the
Hurwitz-constant, is equal to 1/

√
5 and attained at the golden ratio.

First, let α such that c0(α) = 0. Then for c > 0 we have for infinitely many p ∈ Z,
q ∈ N,

|T̃ q0− p| = |qα− p| = q|α− p

q
| < cq−1, (2.2)

hence q ≤ Fc(cq
−1) and we see that [0] is not Fc-aperiodic for any c > 0. Thus, FT is

empty. In particular, this shows that for c > 1/
√

5 the set FT is empty for every T = Tα,
α ∈ R \ Q irrational. However, for α a badly approximable number we have c0(α) > 0
and for c < c0(α) there are only finitely many p, q as in (2.2). Hence we can choose some
0 < c̄ ≤ c0(α) such that [0] is Fc̄-aperiodic and therefore FT = X .
If we conversely assume that [0] is Fc-aperiodic, then whenever |T̃ q0 − p| < ε for some
ε > 0 we have q > Fc(ε) = c/ε > c

q|α−p/q| . Thus, |α − p
q
| > c

q2 for every p ∈ Z, q ∈ N
and α is necessarily a badly approximable number.

In the following we are concerned with the examples of the Bernoulli-shift and the
geodesic flow on a closed hyperbolic manifold where the question of existence of F -
aperiodic points is more delicate.

Remark. A somewhat orthogonal problem has been studied by many authors. For instance,
[2] showed that the rate of recurrence can be quantified in the case when X has finite
Hausdorff-dimension. More precisely, assume that the α-dimensional Hausdorff-measure



APERIODIC SEQUENCES AND APERIODIC GEODESICS 5

Hα is σ-finite for some α > 0, then for µ-almost every point x ∈ X there exists a finite
constant c(x) ≥ 0 such that

lim inf
n→∞

n1/αd(x, T n(x)) ≤ c(x).

Assume that there exists a point x ∈ X which is F -aperiodic at time 0 for the function
F (ε) = c · ε−α for some c > 0 (compare with Lemma 2.2). Then it is not hard to show
that for every n > 0,

n1/αd(x, T nx) ≥ c1/α.

The main point in our paper is that we study the recurrence for every point of the orbit and
not only for the initial one.

3. SEQUENCES.

LetA be a finite set of k ≥ 2 elements which we call alphabet. Let Σ+ = {w : N→ A}
and Σ = {w : Z→ A} be the set two-sided sequences in symbols from A. The elements
of Σ are called words. Given words w and w̄ in Σ we let a(w, w̄) = max{i ≥ 0 : w(i) =
w̄(i) for |j| ≤ i} for w 6= w̄ and define d̄(w, w̄) := 2−a(w,w̄), and d̄(w,w) := 0 otherwise.
Let T denote the shift operator acting on Σ, with T (w) = w̄ where w̄(i) = w(i+1). Then,
(Σ, d̄) is a compact metric space such that T is a homeomorphism. Moreover, let B denote
the product σ-algebra of the power set P(A) of A which equals the Borel-σ-algebra of
(Σ, d̄). Let (the probability measure) µ =

∏
Z µA be the infinite product measure of B

where µA is a probability measure on (A,P(A)). Then the Bernoulli-shift (Σ,B, µ, T ) is
ergodic. For details we refer to [5].

Note that by definition of d̄, two words are close if and only if the length of their sub-
words around position 0 on which they agree is large. In particular, if w ∈ RT then, by
recurrence applied to the word T iw, for every length l ∈ N0 we can find an s = s(i, l) ∈ N
such that [w(i) . . . w(i + l)] = [w(i + s) . . . w(i + s + l)]. In the case of sequences it is
suitable to reformulate F -aperiodicity as follows (see Proposition 3.2).

Definition 3.1. For a non-decreasing function ϕ : N0 → [0,∞) a word w ∈ Σ is called
ϕ-aperiodic at time i ∈ Z, if for every length l ∈ N0, whenever

[w(i) . . . w(i+ l)] = [w(i+ s) . . . w(i+ s+ l)] (3.1)

for some shift s ∈ N, then s > ϕ(l). If w is ϕ-aperiodic at every time i ∈ Z it is called
ϕ-aperiodic.

A ϕ-aperiodic word w ∈ Σ is F -aperiodic for the following function F .

Proposition 3.2. A ϕ-aperiodic word w ∈ Σ is F -aperiodic for F (ε) = ϕ(−2dlog2(ε)e).
Conversely, an F -aperiodic word w is ϕ-aperiodic for ϕ(l) = F (2−(l/2−1)).

Proof. Let i ∈ Z and s ∈ N. For every l ∈ N0 such that d̄(T iw, T i+sw) ≤ 2−l we have
[w(i− l) . . . w(i+ l)] = [w(i− l + s) . . . w(i+ s+ l)]. Thus, for 2−l < ε ≤ 2−(l−1),

s > ϕ(2l) = ϕ(−2dlog2(ε)e) = F (ε).

Since F (ε̄) ≤ F (ε) for ε̄ ≥ ε, the first implication follows.
Conversely, if w is F -aperiodic, assume that [w(i) . . . w(i + l)] = [w(i + s) . . . w(i +

s + l)] for s ∈ N, l ∈ N0 and let l̄ = l/2 if l is even and l̄ = (l − 1)/2 if l is odd. Hence,
d̄(T i+l̄w, T i+l̄+sw) ≤ 2−l̄ and for every 2−l̄ < ε ≤ 2−(l̄−1) we have

s > F (ε) ≥ F (2−(l̄−1) ≥ F (2−(l−3)/2) = ϕ(l).

This finishes the proof. �
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If a ϕ-aperiodic word contains a periodic subword of infinite length then the function ϕ
is bounded, whereas if a word is ϕ-aperiodic for an unbounded function, the word must be
aperiodic. We want to give some examples in order to make the definition more familiar,
among them the prominent Morse-Thue-sequence:

Example 2. First, let a, b ∈ A. One checks that the (non-recurrent) words w1 =
. . . bbbaaa . . . and w2 = ..abaabaaabaaaab . . . are ϕ-aperiodic only for a function ϕ such
that 1 = s > ϕ(l) for all l ∈ N0. Both, the orbits of w1 and w2, come closer and closer
to the periodic word . . . aaa . . . with respect to the metric d̄. This is not the case for
ϕ-aperiodic words when ϕ is unbounded; see Proposition 3.4.

Consider the Morse-Thue recurrent sequence w ∈ {0, 1}Z which is determined as
follows: Let a0 = 0, b0 = 1. Then for n ∈ N0, let an+1 = anbn and bn+1 = bnan be finite
words of length 2n+1−1. Then w is defined such that it satisfies [w(0) . . . w(2n−2)] = an
and [w(−n)] = [w(n − 1)] for every n ∈ N. In particular, w contains the sub words
an+2 = anbnbnan. Hence for every length l = 2n − 1, w contains subwords of the form
WW where W has length l. A function ϕ such that w is ϕ-aperiodic must therefore be
bounded by ϕ(2n−1) ≤ 2n−1 for every n ∈ N. On the other hand there are no sub words
of the form WWa where a is the first letter of a sub word W (see [11]). In other words,
w is overlap-free (which means that there are no sub words of the form aWaWa for a
finite sub word W and a letter a), from which follows that there are even no sub words of
the form wWwWw for w and W finite subwords. Hence we may choose ϕ(l) ≥ l. We
conclude that w is at least ϕ-aperiodic for the function ϕ(l) = l, l ∈ N0.

The example shows that the set of ϕ-aperiodic words FT = FT (ϕ) is nonempty for the
unbounded function ϕ(l) = l and moreover, the Morse-Thue sequence gives an explicit
example of such a word. However, let a ∈ A such that µA({a}) > 0 and let w =
. . . aaa . . . be a periodic word which is of systolic period 1. Moreover, µ is positive on the
critical neighborhood of w and hence by Lemma 2.3, FT is of zero µ-measure unless ϕ is
strictly bounded by 1.

Our main result for sequences is the following. It will be proved in Section 5.

Theorem 3.3. Let ϕ : N0 → [0,∞) be a non-decreasing unbounded function such that
there exists c ∈ (1, k) satisfying

k − bϕ(0)c −
∞∑
l=1

bϕ(l)c − bϕ(l − 1)c
cl

≥ c, (3.2)

where b·c denotes the integer part. Then there exists a ϕ-aperiodic word in Σ.

Remark. The condition is satisfied for the following set of parameters:
(1) k ≥ 4, then ϕ(l) = l satisfies (3.2) for c = 2,
(2) k ≥ 5, then ϕ(l) = 2l satisfies (3.2) for c = 3,
(3) k ≥ 2, 0 < δ < 1 and kδ < c < k, then there exists l0 = l0(k, δ, c) ∈ N0 such that

ϕ(l) =

{
0, for l ≤ l0

kδl, for l > l0
(3.3)

satisfies (3.2).

Note that if a word w is ϕ-aperiodic thenRw(l) > ϕ(l) for every l ∈ N0 whereRw is the
recurrence time introduced in Paragraph 1. Theorem 1.1 is hence a corollary of Theorem
3.3.
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Proof of Theorem 1.1. By condition (1.1), for every ε0 > 0 there exists l1 = l1(ε0) ∈ N
such that for all l ≥ l1,

1

l
ln(ϕ(l)) ≤ δ ln(k)(1 + ε0).

Since δ < 1 we let ε0 > 0 such that δ̃ = (1 + ε0)δ < 1. Then, ϕ(l) ≤ kδ̃l for l ≥ l1. If
we take c := (k− kδ̃)/2 then by (3.3) there exists l2 = l2(k, δ̃) such that condition (3.2) is
satisfied for the function ϕ̄(l) := kδ̃l for l > l2 and ϕ̄(l) = 0 for l ≤ l2, l ∈ N0. Theorem
3.3 implies the existence of a ϕ̄-aperiodic wordw ∈ Σ. Thus, setting l0 := max{l1, l2}+1,
we have that ϕ̄(l) ≥ ϕ(l) for all l ≥ l0 and the claim follows. �

Remark. The critical function ϕ for which ϕ-aperiodic words cannot exist is the function
ϕ(l) = kl+1. The critical exponent ln(k) equals the topological entropy of the system
(Σ, d̄, T ) (see [20]) and is optimal. To see that there exists no w ∈ Σ which is ϕ-aperiodic
for a function ϕ such that ϕ(l) ≥ kl+1−1 for some l ∈ N0, fix a subword [w(1) . . . w(1+l)]
of any w ∈ Σ. Inductively one shows that at each step 1 ≤ s ≤ ϕ(l) one has at most
kl+1 − s possibilities to choose a sub word [w(1 + s) . . . w(1 + s + l)] such that w stays
ϕ-aperiodic. Then, at step s = kl+1, there is no choice left such that w is ϕ-aperiodic.

Remark. Let Σ+(m) = {w : {1, . . . ,m} → A} be the set of words of length m in A
and Wg(m) ⊂ Σ+(m) be the set of good words of length m which satisfy (3.1) for all
i, s ∈ N and l ∈ N0 such that i + s + l ≤ m. If ϕ satisfies (3.2) with respect to the
parameter c > 1 we will see in the proof of Theorem 3.3 (see Lemma 5.6) that the good
wordsWg(m) increase in m by the factor c. Thus, |Wg(m)| ≥ cm which is a lower bound
on the asymptotic growth of |Wg(m)|, where |·| denotes its cardinality.

We may reformulate the critical neighborhood of a periodic point given in (2.1) to the
setting of ϕ-aperiodicity. Moreover, since PT is dense in Σ we can also give a sufficient
condition on ϕ-aperiodicity in terms of periodic words. Therefore, for a non-decreasing
unbounded function ϕ : N0 → [0,∞), we define a discrete form of a right-inverse for ϕ
by ` : N→ N0,

`(s) = min{j ∈ N0 : ϕ(j) ≥ s}, (3.4)
which is also non-decreasing and unbounded.

Proposition 3.4. Let ϕ : N0 → [0,∞) be a non-decreasing unbounded function. If w ∈ Σ
is ϕ-aperiodic, then for every periodic word w̄ ∈ Σ of period s and for all i ∈ Z we have

d̄(T iw, w̄) > 2−(s+`(s))/2.

Conversely, if d̄(T iw, w̄) > 2−(s+`(s)−1)/2 for every periodic word w̄ of period s and all
i ∈ Z, then w is ϕ-aperiodic.

Proof. If w is ϕ-aperiodic, w is aperiodic and there exists m ∈ N0 such that
d̄(T iw, w̄) = 2−m where we assume 2m ≥ s (otherwise the first statement follows).
Hence, [w(i−m) . . . w(i+m)] = [w̄(−m) . . . w̄(m)] and we see that [w(i−m) . . . w(i−
m+s+(2m−s)] = [w(i−m+s) . . . w(i+m)]. Thus, s > ϕ(2m−s) andm < (s+`(s))/2
from (5.1).

Conversely, assume that [w(i) . . . w(i+l)] = [w(i+s) . . . w(i+s+l)] for s ∈ N, l ∈ N0

and let l̄ = (s+l)/2 if s+l even and l̄ = (s+l−1)/2 if s+l is odd. Moreover, let w̄ be the
periodic word of period s such that [w̄(i) . . . w̄(i+ s− 1)] = [w(i) . . . w(i+ s− 1)]. Thus,
2−l̄ ≥ d(T i+l̄w, T i+l̄w̄) > 2−(s+`(s)−1)/2 and we see that s + `(s) − 1 > 2l̄ ≥ s + l − 1.
Hence, l < `(s) and from (5.1) we have s > ϕ(l). �
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Remark. Consider the overlap-free recurrence time R̃0
w : N0 → N of the initial sub word,

R̃0
w(l) = min{s > l : [w(s) . . . w(s+ l)] = [w(0) . . . w(l)]}.

Clearly, Rw(l) ≤ R0
w(l) ≤ R̃0

w(l) for l ∈ N0. Then it follows from [12] that, since the
Bernoulli-shift is ergodic, for µ-almost all w ∈ Σ the limit

lim
l→∞

ln R̃0
w(l)

l

exists and equals the measure-entropy hµ(T ).

4. GEODESIC FLOW ON HYPERBOLIC MANIFOLDS

Let M be a closed n-dimensional hyperbolic manifold, that is a compact connected
Riemannian manifold without boundary of constant negative curvature −1, where n ≥ 2.
We denote by d the distance function on M and by iM > 0 the injectivity radius.

Let SM be the unit tangent bundle of M and dS the Sasaki-distance function on SM .
For v ∈ SM let γv : R → M be the unit speed geodesic such that γ′v(0) = v. The
geodesic flow φt : SM → SM , t ∈ R, acts on the compact metric space (SM, dS) by
diffeomorphisms, where φtv = γ′v(t). For details and background we refer to [4].

A vector v ∈ SM is periodic, if there exists a t > 0 such that φtv = v and v is recurrent
if for every ε > 0 there exists s > 0 such that dS(φsv, v) < ε. Denote by Pφ and Rφ the
flow-invariant sets of periodic respectively of recurrent vectors. Thus if v ∈ Rφ then for a
given t ∈ R, ε > 0, there exists s = s(t, ε) such that dS(φt+sv, φtv) < ε.

We now adjust the definitions of F -aperiodic and ϕ-aperiodic points to the setting of
the geodesic flow.

Definition 4.1. Let F : (0,∞) → [0,∞) be a non-increasing function and s0 > 0 be a
constant, called the minimal shift. A vector v ∈ SM is called F -aperiodic (with minimal
shift s0) at t0 ∈ R if for every ε > 0, whenever

dS(φt0v, φt0+sv) < ε

for some shift s > s0, then s > F (ε). If v is F -aperiodic at every time t0 then v is called
F -aperiodic (with minimal shift s0).

Note that in contrast to the discrete setting in Section 2 (where s ∈ N, i.e. s ≥ 1) we
now have to specify the additional parameter s0, since dS(φt0v, φt0+sv) = s for s small
enough.

We also have to generalize the notion of ϕ-aperiodicity. All geodesics will be assumed
to be unit speed. Note that as in the case of the Bernoulli-shift, two vectors in the Sasaki-
distance are very close if and only if the trajectories of the corresponding geodesics are
close (in the Riemannian distance) to each other for a long time. Thus we may reformulate
ϕ-aperiodicity in terms of the fellow traveller length.

Herefore we introduce a second parameter, the distance constant ε0 > 0.

Definition 4.2. Let ϕ : [0,∞) → [0,∞) be a non-decreasing function, let 0 < ε0 < iM
and s0 ≥ ε0. A geodesic γ : R → M is called ϕ-aperiodic at time t0 ∈ R if for every
length l > ε0, whenever

d(γ(t0 + t), γ(t0 + s+ t)) < ε0 for all 0 ≤ t ≤ l

for some shift s > s0, then s > ϕ(l). If γ is ϕ-aperiodic at every time t0, it is called
ϕ-aperiodic (with parameters (s0, ε0)).
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The geodesic flow on compact hyperbolic manifolds is ergodic with respect to the Li-
ouville measure µ (on the Borel-σ-algebra of SM ). A systole of M has length 2iM which
equals the systolic period. For a non-decreasing function ϕ letFφ be the set of ϕ-aperiodic
geodesics (with respect to (s0, ε0)), which is invariant under the geodesic flow φt. Since µ
is positive on open sets, one can show as in Lemma 2.3, that the setFφ is of zero µ-measure
if and only if ϕ is not bounded by either s0 or 2iM − ε0.

The main result of this section is the following, which will be proved in the Section 5.

Theorem 4.3. Assume that iM > ln(2) and let ε0 > 0 such that ln(2) + ε0 < iM . Let

ϕδ(l) = eδ(n−1)l,

where 0 < δ < 1. Then there exists a minimal length l0 = l0(δ, iM , n, ε0) and a geodesic
γ : R→M which satisfies for every t0 ∈ R and all l ≥ l0, whenever

d(γ(t0 + t), γ(t0 + s+ t) < ε0 for all 0 ≤ t ≤ l (4.1)

for some shift s > ε0, then s > ϕδ(l).

Note that for ε0 = iM/2, if a geodesic γ : R → M satisfies (4.1) then Rγ(l) ≥ ϕδ(l)
for all l ≥ l0, where Rγ is the recurrence time introduced in Paragraph 1. Theorem 1.2 is
hence a corollary of Theorem 4.3.

Proof of Theorem 1.2. By (1.2) there exists for every τ > 0 some l1 = l1(τ) ≥ 0 such that
for all l ≥ l1 we have

ϕ(l) ≤ e(1+τ)(n−1)δl.

Since δ < 1 we let τ0 > 0 such that δ̄ := (1 + τ0)δ < 1. From Theorem 4.3 for
ε0 = iM/2, there exists an l2 = l2(δ̄, iM , n) and a geodesic geodesic γ : R→M such that
for every t0 ∈ R and l ≥ l2, whenever

d(γ(t0 + t), γ(t0 + s+ t)) <
iM
2

for all 0 ≤ t ≤ l,

for some shift s > iM/2, then s > eδ̄(n−1)l. If we set l0 := max{l1, l2} then s > eδ̄(n−1)l ≥
ϕ(l) whenever l ≥ l0 and the proof is finished. �

In order to prove Theorem 4.3 we discretize our geodesics. Therefore we need a third
parameter, the discretization constant r0 > 0. To a geodesic γ : R → M we consider the
discrete geodesic

γ̄ : Z→M, γ̄(i) := γ(i · r0).

Definition 4.4. (Discrete Definition) Let ϕ̄ : N0 → [0,∞) be a non-decreasing function
and let the parameters (s̄0, ε̄0, r0) be given where s̄0 ∈ N0, 0 < ε̄0 < iM and 0 < r0 < ε̄0.
A discrete geodesic γ̄ : Z→M is called ϕ̄-aperiodic at time i ∈ Z if for l ∈ N, whenever

d(γ̄(i+ j), γ̄(i+ s+ j)) < ε̄0 for all j ∈ {0, . . . , l} (4.2)

for some shift s > s̄0, then s > ϕ̄(l). γ̄ is called ϕ̄-aperiodic (with parameters (s̄0, ε̄0, r0))
if it is ϕ̄-aperiodic at every time i ∈ Z.

Note that, given a ϕ̄-aperiodic geodesic γ̄ : Z → M (with the parameters (s̄0, ε̄0, r0)),
the corresponding geodesic γ : R→M is continuously ϕ-aperiodic in the following way.
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Lemma 4.5. For a non-decreasing function ϕ̄ : [0,∞) → [0,∞) and the parameters
(s̄0, ε̄0, r0) let γ̄ : Z→M be a ϕ̄|N0-aperiodic geodesic. For r0 ≤ l ∈ R, define

ϕ(l) := r0 · ϕ̄(
l − r0

r0

)− r0.

Then γ is ϕ-aperiodic with respect to the minimal shift s0 = (s̄0 + 1)r0 and the distance
constant ε0 = ε̄0 − r0 > 0.

Conversely, if γ : R→M is ϕ-aperiodic with parameters (s0, ε0) then for r0 < ε0, let

ϕ̄(l) := ϕ(l · r0)/r0.

Then γ̄ : Z→M is ϕ̄-aperiodic with parameters (ds0/r0e, ε0, r0).

Proof. For t0 ∈ R, L ≥ r0 and s > (s̄0 + 1)r0 assume that d(γ(t0 + t), γ(t0 + s+ t)) < ε0

for all 0 ≤ t ≤ L. If we set i := d t0
r0
e and i + s̄ := d t0+s

r0
e whereas l := b L

r0
c, we

have i, l ≥ 1 and s̄ > s̄0. Then, since ε0 = ε̄0 − r0 < iM and the distance function
is locally convex, one checks by the triangle inequality that d(γ̄(i), γ̄(i + s̄)) < ε̄0 and
d(γ̄(i+ l), γ̄(i+ s̄+ l)) < ε̄0. In particular, d(γ̄(i+ j), γ̄(i+ s̄+ j)) < ε̄0 for all 0 ≤ j ≤ l.
Thus, s̄ > ϕ̄(l) so that

s ≥ (s̄− 1)r0 > (ϕ̄(l)− 1)r0 ≥
(
ϕ̄(
L

r0

− 1)− 1
)
r0 = ϕ(L)

since (l + 1)r0 ≥ L. This finishes the first part of the Lemma. The second part follows
analogously. �

In terms of Lemma 4.5 we are left with stating the existence theorem for discrete ϕ̄-
aperiodic geodesics. Recall that for an unbounded function ϕ̄ we defined its discrete right-
inverse ¯̀ : N→ N0 in (3.4) which is also non-decreasing and unbounded.

Theorem 4.6. Let ϕ̄ : N0 → [0,∞) be a non-decreasing, unbounded function. Assume
that ln(2) < r0 < ε̄0 < iM and s̄0 ∈ N0 such that for all l ≥ s̄0,

bϕ̄(l)c > l, and ¯̀(s̄0) ≥ 1, (4.3)

and moreover, that there exists a constant c ∈ (1, 2n−1) such that

2n−1 − c̄ ·
∞∑

l=¯̀(s̄0)

bϕ̄(l)c − bϕ̄(l − 1)c
cl

≥ c, (4.4)

where c̄ is an explicit constant depending only on n and iM . Then there exist a ϕ̄-aperiodic
geodesic γ : Z→M with the parameters (s̄0, ε̄0, r0).

Remark. Since ¯̀ is unbounded, condition (4.4) depends again essentially on the conver-
gence of the sum in (4.4). For instance, let δ ∈ (0, 1) and define ϕ̄(l) = 2δ(n−1)l and
let c ∈ (2δ(n−1), 2n−1). Then, since ¯̀(s) = d 1

δ(n−1) ln(2)
ln(s)e for s ≥ 0, there exists a

minimal shift s̄0 = s̄0(n, δ, c̄, c) such that (4.3) and (4.4) are satisfied.
The constant c̄ of condition (4.4) can in fact be sharped to be also dependent on s̄0, in

which case it is strictly decreasing in s̄0. It will be explicitly defined in the proof of claim
5.12. We may give a rough upper bound of c̄ which is independent of s̄0 by

c̄ ≤ d
(
3 cosh(iM)

√
n+ 1

)n−1ed
∫ 5iM+4 ln(

√
n+1/2)

0
sinh(t)n−1dt∫ iM/2

0
sinh(t)n−1dt

e. (4.5)

The lower bound ln(2) on the injectivity radius is necessary for the proof. However we
believe that the result should be valid without this bound. Moreover, a version of Theorem
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4.6 remains true forM a closed n-dimensional Riemannian manifold of negative sectional
curvature.

Remark. Again, the critical function ϕ such that ϕ-aperiodic geodesics might or might not
exist seems to be the function ϕ(s) = e(n−1)s and the critical exponent n − 1 equals the
topological entropy of (SM, φt).

Lemma 2.2 gives an upper bound on the growth rate of non-increasing functions F :
(0,∞) → (0,∞) for which F -aperiodic geodesics can exist. In fact, since SM is a
(2n − 1)-dimensional manifold, its box dimension is 2n − 1. Discretizing φt by the time
t0-map φt0 where t0 = t0(iM) > 0 is sufficiently small, gives the upper bound

lim sup
ε→0

ln(F (ε))

ln(2/ε)
≤ 2n− 1.

Remark. For a closed geodesic α : R→M , letNε0(α) be the (closed) ε0/2-neighborhood
of α in M , where ε0 > 0 sufficiently small. When a geodesic γ : R → M enters Nε0(α)
at time t0 let pα(γ, t0) be the penetration length of γ in α at time t0, that is, the maximal
length L ∈ [0,∞] of an interval I , t0 ∈ I , such that γ(t) ∈ Nε0(α) for all t ∈ I . Set
pα(γ, t0) = 0 if γ(t0) 6∈ Nε0(α). Then by [10], for µ-almost every v ∈ SM the limit

lim sup
t→∞

p(γv(t))

ln(t)
(4.6)

exists and equals 1/(n− 1).
Moreover, the penetration length reflects the depth in which γ enters the neighbor-

hood Nε0(α). The study of depths or penetration lengths in an adequate convex set of
negatively curved manifolds, such as the ε-neighborhood of totally geodesic embedded
submanifold or the cusp-neighborhood of a finite-volume hyperbolic manifold, leads to
the theory of diophantine approximation in negatively curved manifolds; see for instance
[7, 9, 10, 13, 14, 15, 17, 18] to give only a short and incomplete list. In general, a sequence
of depths or penetration lengths and times of γ in these convex sets reflects ”how well γ
is approximated”, where γ is called badly approximable if any such sequence is bounded;
see [9, 10].

Now, let γ be a ϕ-aperiodic geodesic (ϕ unbounded) with respect to the parameters s0

and ε0 and let α be any closed geodesic in M . Then, it can be seen that the penetra-
tion lengths of γ in Nε0(α) are bounded by a constant depending only on ϕ, ε0 and the
length of α (and s0 respectively). Therefore, the notion of ϕ-aperiodicty is linked to bad
approximation; recall also Example 1. In particular, the limit of (4.6) equals 0 for γ.

5. PROOFS

Let ϕ : N0 → [0,∞) be a non-decreasing unbounded function. Recall the definition of
the function ` : N→ N0 given by

`(s) = min{j ∈ N0 : ϕ(j) ≥ s},

see (3.4). The following properties hold: ` is non-decrasing and for s and l ∈ N0, we have

ϕ(`(s)) ≥ s,

l < `(s) ⇐⇒ ϕ(l) < s,

l ≥ `(s) ⇐⇒ ϕ(l) ≥ s.

(5.1)
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Proof. For the first property, clearly ϕ(min{j : ϕ(j) ≥ s}) ≥ s. Let l < `(s) and assume
s ≤ ϕ(l). Then `(s) = min{j : ϕ(j) ≥ s} ≤ l; a contradiction. If s > ϕ(l) then
`(s) = min{j : ϕ(j) ≥ s} > l and if ϕ(l) ≥ s then `(j) = min{j : ϕ(j) ≥ s} ≤ l. Also,
if l ≥ `(s) then ϕ(l) ≥ ϕ(`(s)) ≥ s. �

5.1. Proof of Theorem 3.3. Recall that Σ+(m) = {w : {1, . . . ,m} → A} is the set of
words of length m − 1. We consider Σ+(m) to be a subset of Σ+ = AN (for example,
by extending an element w ∈ Σ+(m) to an element w̄ ∈ Σ+ by setting w̄(i) = a for all
i > m, where a ∈ A is fixed).

Definition 5.1. Let m ∈ N. w ∈ Σ+(m) is called ϕ-aperiodic if for all i, s ∈ N and
l ∈ N0 such that i+ s+ l ≤ m whenever

[w(i) . . . w(i+ l)] = [w(i+ s) . . . (w(i+ s+ l)]

we have s > ϕ(l).

Let l0 := min{j ∈ N0 ∪ {−1} : ϕ(j + 1) 6= 0} and note that `(s) > l0 for all s ∈ N.
For m ∈ N, define the admissible set by

A(m) := {(i, s) ∈ N× N : i+ s+ `(s) = m},
if m ≥ m0 := 2 + `(1) > 2 + l0 and let A(m) be empty for m < m0. Then, for
(i, s) ∈ A(m) where m ≥ m0, we define the sets

Cis := {w ∈ Σ+(m) : [w(i) . . . w(i+ `(s))] 6= [w(i+ s) . . . w(i+ s+ `(s))]},
called conditions.

Remark. Note that s > ϕ(`(s) − 1) for `(s) > 0 but s ≤ ϕ(`(s)). Therefore `(s)
determines the critical length of a given shift s with respect to ϕ.

For w ∈ Σ+(m) and 1 ≤ n ≤ m let w|n:= [w(1) . . . w(n)] ∈ Σ+(n). This leads to the
reformulation of ϕ-aperiodic words:

Lemma 5.2. For m < m0 every word w ∈ Σ+(m) is ϕ-aperiodic. For m ≥ m0, a word
w ∈ Σ+(m) is ϕ-aperiodic if and only if for all n ≤ m and all (i, s) ∈ A(n) we have
w|n∈ Cis.

Proof. First, letm < m0. Then for every i,s ∈ N, l ∈ N0 such that i+s+l ≤ m < 2+`(1)
we have in particular l < `(1). Equivalently, ϕ(l) < 1 so that s > ϕ(l) and every word
[w(1) . . . w(m)] follows to be ϕ-aperiodic.

Now let m ≥ m0. Let w be ϕ-aperiodic and assume w|n 6∈ Cis for some i and s in N
such that i+ s+ `(j) = n ≤ m. Then

[w(i) . . . w(i+ `(s))] = [w(i+ s) . . . w(i+ s+ `(s))]

and by (3.1), we have s > ϕ(`(s)); a contradiction to ϕ(`(s)) ≥ s.
Conversely, assume that w is not ϕ-aperiodic. Then there are i, s ∈ N and l ∈ N0 such

that i+ s+ l ≤ m and

[w(i) . . . w(i+ l)] = [w(i+ s) . . . w(i+ s+ l)]

with s ≤ ϕ(l). This implies that `(s) ≤ l and in particular

[w(i) . . . w(i+ `(s))] = [w(i+ s) . . . w(i+ s+ `(s))].

Hence, it follows that w|n 6∈ Cis since i+ s+ `(s) = n ≤ m so that (i, s) ∈ A(n). �
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Note that by the same arguments as in the previous proof, a word w ∈ Σ+ is ϕ-aperiodic
if and only if for all n ≥ m0 and all (i, s) ∈ A(n) we have w|n∈ Cis.

For m ∈ N such that m ≥ m0 the set of good words of length m is therefore given by

Wg(m) = {w ∈ Σ+(m) : w|n∈ Cis for all (i, s) ∈ A(n) where n ≤ m},
and byWg(m) = Σ+(m) otherwise. Let

Cm = {Cis : (i, s) ∈ A(m)}
be the set of conditions at place m which is empty if and only if m < m0. Clearly, if
w ∈ Wg(m) then w|n∈ Wg(n) for n ≤ m.

Lemma 5.3. For m ∈ N,

|Wg(m+ 1)| ≥ k · |Wg(m)| −
∑

Cis∈Cm+1

|Wg(i+ s− 1)|

Proof. If m+ 1 < m0 then Cm+1 is empty and the claim follows. Hence let m+ 1 ≥ m0.
Set L = {w ∈ Σ+(m+ 1) : w|m∈ Wg(m)}. Then

Wg(m+ 1) = L ∩
( ⋂
Cis∈Cm+1

Cis
)

= L \
( ⋃
Cis∈Cm+1

(L ∩ CC
is)
)
,

where CC
is denotes the complement of Cis. Fix some condition Cis ∈ Cm+1. Since |L| =

k · |Wg(m)| the Lemma follows from the following claim. �

Claim 5.4. |L ∩ CC
is | ≤ |Wg(i+ s− 1)|.

Proof. If Q := {w|i+s−1∈ Σ+(i + s − 1) : w ∈ L} then clearly |Q| ≤ |Wg(i + s − 1)|.
Decompose L into L = ∪q∈QLq where Lq = {w ∈ L : w|i+s−1= q}. By definition,
different elements in Lq have different subwords [w(i+ s) . . . w(m+ 1)] and moreover

L ∩ CC
is = {w ∈ L : [w(i) . . . w(i+ `(s)] = [w(i+ s) . . . w(m+ 1)]}.

Hence, if s > `(s) then an element w of Lq, which is also in CC
is , is uniquely determined

by q, that means, w is of the form w|i+s−1= q and

[w(i+ s) . . . w(m+ 1)] = [q(i) . . . q(i+ `(s))].

If s ≤ `(s) then one inductively checks that a wordw in Lq∩CC
is is of the formw|i+s−1= q,

[w(i+ js) . . . w(i+ (j + 1)s− 1)] = [w(i+ (j − 1)j) . . . w(i+ js− 1)] = . . . =
= [w(i) . . . w(i+ s− 1)] = [q(i) . . . q(i+ s− 1)]

for 1 ≤ j ≤ j0 where j0 is the maximal j such that i+ (j + 1)s− 1 ≤ m+ 1, and

[w(i+ (j0 + 1)j) . . . w(m+ 1)] = [q(i) . . . q(m+ 1− (i+ (j0 + 1)s))],

if i + (j0 + 1)s < m + 1. Again, w is uniquely determined by q. Hence in both cases,
|Lq ∩ CC

is |≤ 1 and therefore

|L ∩ CC
is | ≤ |Q| ≤ |Wg(i+ s− 1)|

which proves the claim. �

The above Lemma yields the following crucial estimate:

Lemma 5.5. For m ∈ N,

|Wg(m+ 1)| ≥
(
k−bϕ(0)c

)
|Wg(m)| −

m∑
j=1

(
bϕ(j)c− bϕ(j− 1)c

)
|Wg(m− j)|. (5.2)
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Proof. For 0 ≤ j ≤ m let

Hj = {Cis ∈ Cm+1 : i+ s− 1 = m− j}, (5.3)

possibly empty. If Cis ∈ Hj then i + s + `(s) = m + 1 and i + s − 1 = m − j; hence
`(s) = j. Therefore, |Hj| ≤ |{s : `(s) = j}|. We have `(s) ≤ j if and only if s ≤ ϕ(j)
and thus

|{s : `(s) ≤ j}| = |{s : s ≤ ϕ(j)}| = bϕ(j)c.
For j ≥ 1 this implies that

|Hj| ≤ |{s : `(s) = j}| = |{s : `(s) ≤ j} \ {s : `(s) ≤ j − 1}|
= bϕ(j)c − bϕ(j − 1)c.

Moreover,
|{s : `(s) = 0}| = |{s ∈ N0 : ϕ(0) ≥ s}| = bϕ(0)c.

Lemma 5.3 concludes the proof. �

Finally we show the existence of a ϕ-aperiodic word in Σ+.

Lemma 5.6. If condition (3.2) is satisfied, then |Wg(m)| ≥ cm. In particular, there exists
a ϕ-aperiodic word in Σ+.

Proof. For m + 1 < m0 we have that |Wg(m + 1)| = km+1 ≥ cm+1. For m + 1 ≥ m0

assume that |Wg(n)| ≥ c · |Wg(n− 1)| for all n ≤ m. Then, by the previous Lemma,

|Wg(m+ 1)| ≥ (k − bϕ(0)c)|Wg(m)| −
∑m

j=1(bϕ(j)c − bϕ(j − 1)c)|Wg(m− j)|
≥ (k − bϕ(0)c)|Wg(m)| −

∑m
j=1

bϕ(j)c−bϕ(j−1)c
cj

|Wg(m)|

≥
(
k − bϕ(0)c −

∑∞
j=1

bϕ(j)c−bϕ(j−1)c
cj

)
|Wg(m)| ≥ c · |Wg(m)|,

(5.4)
where we used condition (3.2) in the last inequality. Now Lemma 5.2 implies the existence
of a ϕ-aperiodic word in Σ+. �

Given a ϕ-aperiodic word w ∈ Σ+ and a letter a ∈ A, extend w to a word . . . aaaw =:
w̄ ∈ Σ (in the obvious way). Consider the sequence {T nw̄}n∈N in the compact space Σ and
let w0 be an accumulation point. Note that from the definition of the metric d̄, a sequence
wn in Σ converges to a word w0 ∈ Σ if and only if for every l ∈ N0 there exists N ∈ N
such that [wn(−l) . . . wn(l)] = [w0(−l) . . . w0(l)] for every n ≥ N . It therefore follows
that ϕ-aperiodicity is a closed condition (as showed similarly in Lemma 2.4). Since every
T nw̄ is ϕ-aperiodic starting at time −(n− 1), w0 is a ϕ-aperiodic word in Σ. This proves
Theorem 3.3.

5.2. Proof of Theorem 4.6. Recall that M is a closed hyperbolic manifold of dimension
n ≥ 2 and we have ln(2) < r0 < ε̄0 < iM . Moreover ϕ̄ : N0 → [0,∞) is a non-decreasing
unbounded function for which conditions (4.3) and (4.4) are satisfied with respect to the
given minimal shift s̄0 ∈ N0.

A reference for the following is given by [4, 19]. Let Hn be the n-dimensional hyper-
bolic upper half-space model where d denotes the hyperbolic distance function on Hn. Let
Γ be the discrete, torsion-free subgroup of the isometry group of Hn identified with the
fundamental group π1(M) of M acting cocompactly on Hn such that the manifold Γ\Hn

with the induced smooth and metric structure is isometric toM . Let π : Hn → Γ\Hn ∼= M
be the projection map. Assume all geodesic segments, rays or lines to be parametrized by
arc length and identify their images with their point sets in Hn. Let ∂∞Hn be the set of
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equivalence classes of asymptotic rays in Hn which we identify with the set Rn−1 ∪ {∞},
where H̄n − {∞} = Hn ∪ Rn−1 is equipped with the induced Euclidean topology. If γ is
a ray in Hn we will simply write γ(∞) for the corresponding point in ∂∞Hn. For any two
points p and q in H̄n denote by [p, q] the geodesic segment, ray or line in Hn - depending
on if p, q ∈ Hn, p ∈ Hn and q ∈ ∂∞Hn, or p, q ∈ ∂∞Hn respectively - connecting p and q.

For t ∈ R let Ht := Rn−1 × {e−t} ⊂ Hn. This equals the horosphere based at ∞
through the point γ(t) of the unit speed geodesic γ(t) = (0, e−t). Let ht be the induced
length metric on Ht with respect to d . The geometry of horospheres in the hyperbolic
space is well-known; see for instance [8] for the following facts. (Ht, ht) is a complete
and flat metric space, isometric to the (n−1)-dimensional Euclidean space. If γi : R→ Hn

with γi(0) ∈ H0 , i = 1, 2, are two geodesic lines in Hn with γ1(−∞) = γ2(−∞) = ∞
and γ1(0), γ2(0) in the same horosphere, let µ(t) := ht(γ1(t), γ2(t)). Then, for t ≥ 0,

µ(t) = etµ(0). (5.5)

Moreover, for two points p, q in the same horosphere Ht we have

ht(p, q) = 2 sinh(d(p, q)/2). (5.6)

Now let τ > 0 such that the discretization constant satisfies r0 = ln 2 + τ . Let R > 0
be a fixed length, say R = 1. Define Q to be an isometric copy of a closed (n − 1)-
dimensional cube [−R/2, R/2]n−1 of edge lengths R in the Euclidean space En−1 and
contained in the horosphere H0. Starting with the cube Q as a reference, we inductively
shed shadows in the horospheres Hmr0 , m ∈ N, as follows:

Definition 5.7. Given two disjoint sets S and S ′ in H̄n, the set S(S;S ′) := {q ∈ S ′ :
S ∩ [∞, q] 6= ∅} is called the shadow of S in S ′ (with respect to∞).

By (5.5), the shadow S(Q;Hr0) of Q is an isometric copy of a closed (n−1)-dimensional
cube of edge lengths er0R = (2 + eτ )R, contained in Hr0 . Hence, there exist 2n−1 disjoint
isometric copies Qj , j ∈ {1, . . . , 2n−1}, of Q in S(Q;Hr0); see Figure 5.2.

H

H

r

R

R

(m+1)r

mr

R
R

Figure 5.2: n = 3.

For m ≥ 1, let the closed disjoint cubes Qi1...im in Hmr0 be already defined. Fix a cube
Qi1...im , then, as above, the shadow

S(Qi1...im ;H(m+1)r0) ⊂ H(m+1)r0

contains 2n−1 disjoint isometric copies Qi1...imj of Q, j ∈ {1, . . . , 2n−1}. Hence, for an
alphabetA = {1, . . . , 2n−1}, we associate a finite word [w(1) . . . w(m+ 1)] ∈ Σ+(m+ 1)
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to the cubeQi1...im+1 inH(m+1)r0 wherew(n) = in for all n ∈ {1, . . . ,m+1}. In particular,
we obtain a bijection of finite words Σ+(m) of length m with the set of cubes

Q(m) := {Qi1...im ⊂ Hmr0 : in ∈ {1, . . . , 2n−1} for 1 ≤ n ≤ m}.

We denote the closed cubes Qi1...im obtained in this way by q(1) . . . q(m) where q(n) ∈
{1, . . . , 2n−1} for n ∈ {1, . . . ,m}. Every sequence of cubes {q(1)q(2) . . . q(m)}m∈N,
successively shadowed from the previous ones, determines a unique point

η :=
⋂
m∈N

S(q(1) . . . q(m);Rn−1) ∈ Rn−1,

since S(q(1) . . . q(m);Rn−1), m ∈ N, is a sequence of closed nested subsets of Rn−1

with diameters converging to 0. Define η =: q(1)q(2) . . . in Rn−1. By construction, the
geodesic line [∞, η] runs through every cube q(1) . . . q(m), m ∈ N, of the particular se-
quence. Hence, we obtain a bijection of infinite sequences q(1)q(2) . . . of cubes and words
w =: [w(1)w(2) . . .] in Σ+.

Notation. Given a cube q(1) . . . q(m) inQ(m) and an integer n ≤ m, let q(1) . . . q(m)|n∈
Q(n) be the unique cube such that q(1) . . . q(m) lies in the shadow of q(1) . . . q(m)|n.
Moreover, for ξ ∈ Rn we denote the geodesic subsegment [i, j](ξ) by

[i, j](ξ) := [∞, ξ]|[ir0,jr0]: [ir0, jr0]→ Hn,

where we assume that [∞, ξ](0) ∈ H0 and that i, j ∈ N0 with i ≤ j, which connects the
horospheresHir0 toHjr0 and is orthogonal to both. If i = j, then we write [i](ξ) := [i, i](ξ)
which is the orthogonal projection of ξ on the horosphere Hir0 .

We again define the admissible set

A(m) := {(i, s) ∈ N× N : i+ s+ ¯̀(s) = m, s > s̄0},

if m ≥ m0 := 2 + s̄0 + ¯̀(s̄0 + 1) and set A(m) to be empty for m < m0.

Definition 5.8. Let ψ ∈ Γ be an isometry and let i, s ∈ N, l ∈ N0. If ξ ∈ Rn−1 such that
d(ψ([i](ξ)), [i+ s](ξ)) < ε̄0 and also d(ψ([i+ l](ξ)), [i+ s+ l](ξ)) < ε̄0 we write

ψ
(
[i, i+ l](ξ)

)
∼ε̄0 [i+ s, i+ s+ l](ξ).

In particular, by convexity of the distance function, we have for all j ∈ {0, . . . , l},

d(ψ
(
[i, i+ j](ξ)

)
, [i+ s, i+ s+ j](ξ)) < ε̄0. (5.7)

We are now able to translate the proof of Theorem 3.3 for the existence of ϕ-aperiodic
words into the existence of ϕ-aperiodic geodesics by counting good cubes:

Definition 5.9. Let m ∈ N. A cube q(1) . . . q(m) in Q(m) is called good if for every
ξ ∈ S(q(1) . . . q(m);Rn−1), every ψ ∈ Γ and every i ∈ N, l ∈ N0, whenever

ψ
(
[i, i+ l](ξ)

)
∼ε̄0 [i+ s, i+ s+ l](ξ) (5.8)

for some shift s > s̄0 such that i + s + l ≤ m, then s > ϕ̄(l). Otherwise q(1) . . . q(m) is
called bad.

If the cube q(1) . . . q(m) is good, then, since ε̄0 < iM , for every x ∈ q(1) . . . q(m) the
projection of the geodesic segment [∞, x]|[r0,mr0] into M is ϕ̄-aperiodic, up to length mr0,
with respect to condition (4.2) (see the proof Lemma 5.10 (2)).



APERIODIC SEQUENCES AND APERIODIC GEODESICS 17

Analogously to the proof of Theorem 3.3, for (i, s) ∈ A(m) and m ≥ m0, define

Cis := {q(1) . . . q(m) ∈ Q(m) : for all ξ ∈ S(q(1) . . . q(m);Rn−1) and ψ ∈ Γ,

ψ
(
[i, i+ ¯̀(s)](ξ)

)
6∼ε̄0 [i+ s,m](ξ)}

and let Cm be the set of all Cij for (i, j) ∈ A(m). Note that Cm is empty if m < m0.
With respect to these definitions, the relationship between Definitions 4.4 and 5.9 re-

spectively and the sets Cis is given by the following Lemma:

Lemma 5.10. (1) For m < m0 every cube q(1) . . . q(m) ∈ Q(m) is good. For m ≥ m0,
the cube q(1) . . . q(m) ∈ Q(m) is good if q(1) . . . q(m)|n∈ Cis for all n ≤ m and (i, s) ∈
A(n).

(2) Let q(1)q(2) . . . be an infinite sequence of cubes and let η ∈ Rn−1 be the unique
corresponding limit point. The discrete geodesic π ◦ [r0,∞)(η) in M is ϕ̄-aperiodic at
every time i ∈ N if for all m ∈ N and (i, s) ∈ A(m) the cube q(1) . . . q(m) in Q(m) of
the sequence q(1)q(2) . . . belongs to Cis.

Proof. For (1), let first m < m0. Let i, s ∈ N, l ∈ N0 such that s > s̄0 and i + s + l ≤
m < 2 + s̄0 + ¯̀(s̄0 + 1). In particular, l < ¯̀(s̄0 + 1) so that ϕ(l) < s̄0 + 1 ≤ s and every
cube q(1) . . . q(m) follows to be good.

Now let m ≥ m0. Assume by absurd that q(1) . . . q(m) is not good and let ξ ∈
S(q(1) . . . q(m);Rn−1) and ψ ∈ Γ such that for some i ∈ N, l ∈ N0, we have

ψ
(
[i, i+ l](ξ)

)
∼ε̄0 [i+ s, i+ s+ l](ξ),

where s > s̄0 with i+ s+ l ≤ m and s ≤ ϕ̄(l). Hence, ¯̀(s) ≤ l and for n := i+ s+ ¯̀(s)
we have in particular by (5.7),

ψ
(
[i, i+ ¯̀(s)](ξ)

)
∼ε̄0 [i+ s, n](ξ).

Hence, we see that q(1) . . . q(m)|n 6∈ Cis where (i, s) ∈ A(n) for n ≤ m; a contradiction.
For (2), assume that γ̄ := π ◦ [r0,∞)(η) is not ϕ̄-aperiodic at time i ∈ N. Then there

must be a shift s ∈ N with s > s̄0, and l ∈ N0 such that

d(γ̄(i+ j), γ̄(i+ s+ j)) < ε̄0 for all j ∈ {0, . . . , l},

where s ≤ ϕ̄(l). Since ε̄0 < iM and the distance function is convex, we also have d(γ((i+
t)r0), γ((i + s + t)r0) < ε̄0 for all 0 ≤ t ≤ l for the corresponding extended geodesic
γ : R→ M . By discreteness of Γ, there exist finitely many isometries ψ1,. . . ,ψq ∈ Γ and
a subdivision of the interval [ir0, (i + l)r0] into [l0r0, l1r0], [l1r0, l2r0], . . . , [lq−1r0, lqr0]
where l0 = i and lq = i+ l and lj ∈ R, such that (with analogous notation as above)

ψj+1

(
[lj, lj+1](η)

)
∼ε̄0 [s+ lj, s+ lj+1](η), j = 0, . . . , q − 1.

We thus have d(ψj+1

(
[lj+1](η)

)
, [s+lj+1](η)) < ε̄0 and d(ψj+2

(
[lj+1](η)

)
, [s+lj+1](η)) <

ε̄0. Since ε̄0 < iM and every orbit of Γ is 2iM -separated (that is, for ψ, ψ̄ ∈ Γ we
have d(ψx, ψ̄x) ≥ 2iM for any x ∈ Hn) it follows from the triangle inequality that
ψj+1

(
[lj+1](η)

)
= ψj+2

(
[lj+1](η)

)
; hence ψj+1 = ψj+2 for all j = 0, . . . , q − 2 since

Γ acts freely. Therefore, we have an isometry ψ ∈ Γ such that

ψ
(
[i, i+ l](η)

)
∼ε̄0 [i+ s, i+ s+ l](η)

where s ≤ ϕ̄(l). The proof is now finished analogously to the case of (1). �
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In view of Lemma 5.10, let for m ≥ m0,

Qg(m) = {q(1) . . . q(m) ∈ Q(m) : q(1) . . . q(m)|n∈ Cis for all (i, s) ∈ A(n), n ≤ m},
and Qg(m) = Q(m) for m < m0, which is a subset of all good cubes at step m.

Lemma 5.11. Assume that condition (4.3) is satisfied. Then, for m ∈ N,

|Qg(m+ 1)| ≥ k|Qg(m)| − c̄ ·
∑

Cis∈Cm+1

|Qg(i+ s− 1)|, (5.9)

where c̄ is a constant depending only on n, iM and s̄0, and is strictly decreasing in s̄0.

Proof. If m+ 1 < m0 then Cm+1 is empty and the claim follows. Hence assume m+ 1 ≥
m0. Let

L = {q(1) . . . q(m+ 1) ∈ Q(m+ 1) : q(1) . . . q(m+ 1)|m∈ Qg(m)}
and note that |L| = k|Qg(m)|. Then

Qg(m+ 1) = L ∩ (
⋂

Cis∈Cm+1

Cis) = L \ (
⋃

Cis∈Cm+1

(L ∩ CC
is)),

where CC
is is the complement of Cis. Fix some C = Cis ∈ Cm+1. Define

Q = {q(1) . . . q(m+ 1)|i+s−1∈ Q(i+ s− 1) : q(1) . . . q(m+ 1) ∈ L},
One checks that |Q| ≤ |Qg(i+ s− 1)|. Let L = ∪q∈QLq where

Lq = {q(1) . . . q(m+ 1) ∈ L : q(1) . . . q(m)|i+s−1= q}.
It remains to show that each Lq ∩ CC contains at most c̄ cubes; in this case,

|L ∩ CC | ≤ c̄ · |Q| ≤ c̄ · |Qg(i+ s− 1)|.
The following claim concludes the proof. �

Claim 5.12. |Lq ∩ CC | ≤ c̄ · |Qg(i+ s− 1)|.

For the proof of the claim note that if (4.4) is satisfied, then for all l ≥ s̄0,

bϕ̄(l)c > l,

which implies that for all s > s̄0,
¯̀(s) < s. (5.10)

To see this, assume ¯̀(s) ≥ s for some s > s̄0. Then, by definition of ¯̀, ϕ̄(j) < s for
all s > j ∈ N0. In particular, for s̄0 < s we have ϕ̄(s̄0) ≥ bϕ̄(s̄0)c; a contradiction to
bϕ̄(s̄0)c > s̄0.

Proof of the Claim 5.12. Lq consists of cubes of the form q · q(i + s) . . . q(m + 1) ∈
Q(m + 1). Hence, consider the point set W of all geodesic segments [i, i + ¯̀(s)](ξ)
where ξ ∈ S(q,Rn−1); see Figure 5.2. Since s > s̄0 we have ¯̀(s) < s by (5.10), and
therefore s − 1 − ¯̀(s) ≥ 0. Moreover, by definition, the cube q in H(i+s−1)r0 has h-edge
lengths R. Thus from (5.5), the subset Hi+¯̀(s) ∩W is isometric to an Euclidean cube with
h-edge length

e−(i+s−1)r0+(i+¯̀(s))r0R = e−(s−1−¯̀(s))r0R ≤ R.

Since an Euclidean cube in En−1 of edge length L has diameter at most
√
n− 1L, we

obtain from (5.6) that the d-diameter of Hi+¯̀(s) ∩W is bounded above by

2 arcsinh(e−(s−1−¯̀(s))r0
√
n− 1R/2). (5.11)
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In the same way, the h-edge length of Hir0 ∩W is given by

e−(s−1)r0R. (5.12)

Now, by definition, for every q · q(i + s) . . . q(m + 1) ∈ Lq ∩ CC there exists ψ ∈ Γ
such that ψ

(
[i, i+ ¯̀(s)](ξ)

)
∼ε̄0 [i+ s,m+ 1](ξ) for some ξ ∈ S(q,Rn−1). In particular,

x := [m + 1](ξ) must belong to the ε̄0-neighborhood of ψ(W ∩ Hi+s+¯̀(s)). Thus, we
want to estimate the maximal number of cubes in Q(m + 1) which intersect with the
ε̄0-neighborhood of ψ(W ∩ Hi+s+¯̀(s)). Let therefore also y ∈ H(m+1)r0 belong to the
ε̄0-neighborhood of ψ(W ∩Hi+s+¯̀(s)). By the triangle inequality and by (5.11), we have

d(x, y) ≤ 2ε̄0 + 2 arcsinh(e−(s−1−¯̀(s))r0
√
n− 1R/2).

Therefore, again from (5.6), the h-diameter of the intersection of the ε̄0-neighborhood of
ψ(W ∩Hi+s+¯̀(s)) with H(m+1)r0 is bounded above by

r̄1(s) := 2 sinh(ε̄0 + arcsinh(e−(s−1−¯̀(s))r0
√
n− 1R/2)).

On the other hand, the cubes q · q(i + s) . . . q(m + 1) ∈ Q(m + 1) are disjoint and have
Euclidean volume Rn−1. Therefore, we set

c̄1(s) := d(r̄1(s) +
√
n− 1R)n−1

Rn−1
e.

Hence, the ε̄0-neighborhood of ψ(W ∩ Hi+s+¯̀(s)) can intersect at most c̄1(s) qubes in
Q(m+1). Since q(1) . . . q(m) is good for every q(1) . . . q(m+1) ∈ Lq, we conclude that,
with respect to ψ, at most c̄1(s) cubes can become bad in Lq ∩ CC .

W

Wψ

i

m+1

i+l

i+s−1

i+s

q

Figure 5.2: n = 2.

Now, let ȳ be the center ofW ∩Hir0 , which is isometric to a cube in the Euclidean space
of edge length e−(s−1)r0R by (5.12) and contained in the cube q|i. From (5.6), W ∩ Hir0

must be contained in the hyperbolic ball Bd(ȳ, r̄2(s)), where

r̄2(s) = 2 arcsinh(e−(s−1)r0
√
n− 1R/4).

Note that if there is some point p ∈ W ∩ Hir0 and some ψ ∈ Γ such that d(ψp, q̄) < ε̄0,
where q̄ := S(q,H(i+s)r0), then d(ψȳ, q̄) < ε̄0 + r̄2(s). In particular, for every cube
q · q(i+ s) . . . q(m+ 1) ∈ Lq ∩CC there exists such an isometry ψ. But since the orbit Γȳ
is 2iM -separated, the open metric balls B(ψȳ, iM), ψ ∈ Γ, are disjoint and there can only
be finitely many, say c̄2(j), intersecting the max{ε̄0 + r̄2(s) − iM , 0}-neighborhood of q̄.
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In fact, from (5.5) and (5.6), the h-diameter of q̄ is bounded above by er0
√
n− 1R and

q̄ must be contained in a hyperbolic ball of radius 2 arcsinh(er0
√
n− 1R/4). Therefore,

c̄2(s) is bounded above by

d
vol(B

(
2 arcsinh(er0

√
n− 1R/4) + 2 arcsinh(e−(s−1)r0

√
n− 1R/4) + ε̄0

)
)

vol(B(iM/2))
e.

Since both, c̄1(s) and c̄2(s) are non-increasing in s, we conclude the claim by setting
c̄ := c̄1(s̄0 + 1)c̄2(s̄0 + 1). �

Analogously to the proof of Lemma 5.5, the previous Lemma yields the following.

Lemma 5.13. Assume that condition (5.10) is satisfied. Then, for m ∈ N,

|Qg(m+ 1)| ≥
(
k − 1{¯̀(s̄0+1)=0}c̄bϕ̄(0)c

)
|Qg(m)|

− c̄ ·
∑m

j=max(¯̀(s̄0+1),1)(bϕ̄(j)c − bϕ̄(j − 1)c)|Qg(m− j)|.

Proof. Recall the definition of the set Hj = {Cis ∈ Cm+1 : i + s − 1 = m − j} in (5.3).
Since ¯̀ is non-decreasing we have j = m+ 1− (i+ s) = ¯̀(s) ≥ ¯̀(s̄0 + 1) if s > s̄0. �

Finally, if moreover condition (4.4) is satisfied, then the same inductive proof as in
Lemma 5.6 shows that the number of good cubes in Qg(m + 1) increases in m + 1 by
the factor c > 1; see (5.4). Lemma 5.10.(2) then shows the existence of a ϕ̄-aperiodic
geodesic γ̄ : N→M . Thus, we have shown the following.

Lemma 5.14. Assume that conditions (4.3) and (4.4) are satisfied. Then, for m ∈ N,
|Qg(m)| ≥ cm. In particular, there exists a ϕ̄-aperiodic geodesic γ̄ : N → M with
parameters (s̄0, ε̄0, r0).

Now, let γ̄ : N → M be a ϕ̄-aperiodic geodesic (with parameters (s̄0, ε̄0, r0) and let
γ : R → M be the corresponding extended geodesic. Consider the sequence vn :=
φnγ′(r0), n ∈ N, in the compact space SM and let γ0 be an accumulation point. The space
of unit speed geodesics (identified with SM ) is endowed with the topology of uniform
convergence on bounded sets. Therefore note that a sequence vn converges to v in SM
if and only if for every l ≥ 0 and every τ > 0 there exists N ∈ N such that for every
n ≥ N , d(γvn(t), γv(t)) < τ for every t ∈ [−l, l]. Therefore ϕ̄-aperiodicity can be shown
to be a closed condition (similarly as in Lemma 2.4). Since γ̄vn is ϕ̄-aperiodic beginning
at tn ≥ −(n− 1) (with parameters (s̄0, ε̄0, r0)), it follows that γ̄0 : Z→M is ϕ̄-aperiodic.
This completes the proof of Theorem 4.6.

5.3. Proof of Theorem 4.3. For δ ∈ (0, 1) choose δ̄ ∈ [δ, 1) such that for r0 = ln(3− δ̄)
we have ln(3 − δ̄) + ε0 < iM . Note that δ̃ = δ̄ ln(2)/ ln(3 − δ̄) → 1 as δ̄ → 1 and
assume therefore that δ̃ > δ. For l ≥ 0 let ψ̄(l) = 2δ̄(n−1)l so that its right inverse
d 1
δ̄(n−1) ln(2)

ln(s)e is an unbounded function. Then, for c = 1
2
(2n−1 + 2δ̄(n−1)), we have

that for sufficiently large s̄0 = s̄0(δ̄, n, iM , ε0) ∈ N0 the conditions (4.3) and (4.4) are
satisfied. Thus, from Theorem 4.6 there exists a discrete geodesic γ̄ : Z → M which is
ψ̄-aperiodic with respect to (s̄0, r0 + ε0, r0). From Lemma 4.5 we obtain that γ : R→M
is continuously ψ-aperiodic with parameters s0 = (s̄0 + 1)r0 and ε0, where for l ≥ r0,

ψ(l) = ln(3− δ̄) · ψ̄( l
ln(3−δ̄) − 1)− ln(3− δ̄)

= ln(3−δ̄)
2δ̄(n−1) e

δ̄ ln(2)

ln(3−δ̄) (n−1)l − ln(3− δ̄)
=

( ln(3−δ̄)
2δ̄(n−1) −

ln(3−δ̄)
eδ̃(n−1)l

)
eδ̃(n−1)l

=: c(δ̃, l) · eδ̃(n−1)l = c(δ̃, l)ϕδ̃(l).
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Note that c(δ̃, l) is increasing in l and we restrict ψ to the interval [l1,∞) for some l1 >
ln(3− δ̄) such that c(δ̃, l1) > 0.

We now translate the minimal shift s0 into the minimal length l0. Let to this end N :=
d s0

2iM
e. Assume that for some t0 we have d(γ(t0 + t), γ(t0 + s + t) < ε0 for all 0 ≤ t ≤ l

where l ≥ max{l1, 3Ns0 + 2iM} =: l0.
First, we assume that s ≤ s0. Note that the function t 7→ d(γ(t0 + t), γ(t0 + s + t)

is not only convex but decreases and increases exponentially (see [3]) so that we have
d(γ(t0 + t), γ(t0 + s + t) < ε0/4 for all s′ ≤ t ≤ l − s′ where s′ is sufficiently large, say
s′ = 2iM . The closing lemma implies the existence of a closed geodesic nearby; in fact,
we will prove the following Lemma.

Lemma 5.15. In this setting, there exists a closed geodesic α of period p ≤ s+ ε0/4 such
that (up to parametrization of α),

d(α(t), γ(t0 + s′ + t)) < ε0/2 for all 0 ≤ t ≤ s+ l − 2s′ − ε0.

LetN ′ = ds0/pe ∈ N be the smallest integer such thatN ′p > s̄0 and note that 2Ns ≥ N ′p.
We then have by the triangle inequality,

d(γ(t0 + s′ + t), γ(t0 + s′ +N ′p+ t))

≤ d(γ(t0 + s′ + t), α(t)) + d(γ(t0 + s′ +N ′p+ t), α(t)) < ε0

for all 0 ≤ t ≤ l − 2s′ −N ′p+ s and in particular for all 0 ≤ t ≤ l − 2s′ − 2Ns0. Thus,

2Ns ≥ N ′p > c(δ̃, l1)ϕδ̃(l − 2s′ − 2Ns0)) =
c(δ̃, l1)

eδ̃(n−1)(2s′+2Ns̄0)
ϕδ̃(l),

and we can find a positive constant c0 = c0(δ̃, iM , n, ε0) such that s > c0ϕδ̃(l).
In the case when s > s0, we have

s > c(δ̃, l1)ϕδ̃(l) ≥ c0ϕδ̃(l).

Finally, since δ < δ̃, we restrict if necessary to l̃0 ≥ l0 such that c0ϕδ̃(l) ≥ ϕδ(l) for all
l ≥ l̃0. The proof of Theorem 4.3 is finished by the proof of Lemma 5.15.

Proof of Lemma 5.15. We consider the setting of the proof of Theorem 4.6. Let now dM
be the distance function on M and recall that we have dM(γ(t0 + t), γ(t0 + s+ t) < ε0/4
for all s′ ≤ t ≤ l − s′, where s′ = 2iM > 2 ln(2). We denote a lift of the segment γ on
[t0 + s′, t0 + l − s′] by β and let the endpoints of β be x1 and x2. Since ε0 < iM , there
exists an isometry ψ ∈ Γ such that d(β, ψ(β(t))) < ε0/4 for all t ∈ [t0 + s′, t0 + l − s′]
and in particular, d(xi, ψxi) < ε0/4 for i = 1, 2. Let α̃ be the axis of ψ and denote by
d1 = d(α̃, x1) and d2 = d(α̃, x2). We first show that d1 is close to d2 in the following
sense. Namely, the displacement function dψ(·) = d(ψ·, ·) grows at least linearly in the
distance to α̃. Since s − ε0/4 ≤ dψ(xi) ≤ s + ε0/4 for i = 1, 2 we see that |d1 − d2| is
bounded by a constant depending only on ψ, s and ε0.

Now, if we show that di < ε0/2 for i = 1, 2, then the proof follows by convexity of the
distance function. We show this for d1. Since d1 is close to d2 and l is large, the distance
function t 7→ d(β(t), α̃(t)) decreases exponentially on [0, s′], where α̃ is parametrized
such that α̃(0) equals the orthogonal projection x̄1 of x1 on the convex set α̃. Moreover, s′

is large and thus d(α̃, β(s′)) < d1/2. The orthogonal projection of ψ(x1) on α̃ is given by
ψ(x̄1). Hence, d(ψ(x1), α̃(s′)) ≥ d(ψ(x1), ψ(x̄1)) = d1. On the other hand, we have by
the triangle inequality d(ψ(x1), α̃(s′)) ≤ d(ψ(x1), β(s′))+d(β(s′), α̃(s′)) < d1/2+ε0/4.
Thus, d1 < d1/2 + ε0/4 and the claim follows. �
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