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REMARKS ON THE EXTENSION OF THE RICCI FLOW

FEI HE

Abstract. We present two new conditions to extend the Ricci flow on a com-
pact manifold over a finite time, which are improvements of some known ex-
tension theorems.

1. Introduction

We say that g(t) is a Ricci flow solution if it satisfies the following equation
defined by Richard Hamilton [5] :

(1.1)
∂

∂t
g(t) = −2Ric(t).

In the following Rm(t), Ric(t) and R(t) denote the Riemann, Ricci and scalar cur-
vature tensors of g(t) respectively, and |Rm(t)|, |Ric(t)| denote the corresponding
norms.

The Ricci flow equation (1.1) has been studied extensively. Short time existence
of solutions was first established by R. Hamilton in [5]. Convergence of solutions
to Einstein metrics is proved possible for initial metrics with special curvature
conditions. In general, the Ricci flow solution will develop singularities in finite
or infinite time. Therefore an important topic in the theory is the behavior of
curvature tensors at a singular time.

R. Hamilton showed that if T <∞ is a finite singular time, we have

lim sup
t→T

sup
M

|Rm(t)| = +∞.

In other words, if the sectional curvature is uniformly bounded on a finite time
interval, then the flow can be extended ([5]). The proof is by establishing Bernstein-
Bando type smoothing estimates using the maximum principle. Hamilton’s theorem
has been improved by Natasa Sesum who showed that if

sup
M×[0,T )

|Ric(t)| <∞,

then the Ricci flow can be extended past time T < ∞ ([16]). These results are
known as extension theorems for the Ricci flow.

A natural question is: what is the weakest curvature condition to extend the
Ricci flow? There is a conjecture that in a finite time singularity of the Ricci flow,
the supremum of the scalar curvature will blow up. This conjecture is confirmed for
Type I singularities ([4], [19]) and for the Kähler Ricci flow ([25]). But the general
case is still open. The best result in this direction is the following theorem of B.
Wang [22]:
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Theorem 1.1 (B. Wang). Suppose (M, g(t)), 0 ≤ t < T < ∞, is a Ricci flow
solution on a closed manifold. If

∫ T

0

sup
M

|Ric(t)|dt < +∞.

Then the flow can be extended past time T .

B. Wang’s theorem tells that supM |Ric(t)| not only blows up at a finite singular
time, but also has to grow fast enough so that its integral on the maximal existence
time interval is infinite. This clearly recovers previous results mentioned above.

Our first theorem is a further improvement in this direction. The new idea is to
explore the optimal Sobolev constant and apply a related rigidity theorem.

Theorem 1.2. Suppose(M, g(t)), 0 ≤ t < T, is a Ricci flow solution on a closed

manifold, T < ∞. If the function F (x) :=
∫ T
0 |Ric(x, t)|dt is continuous on M,

then the flow can be extended past time T .

Remark 1. Note that if
∫ T
0 supM |Ric(t)|dt <∞, the dominated convergence theo-

rem implies the continuity of
∫ T
0 |Ric(x, t)|dt, and we recover B. Wang’s result.

The proof of Theorem 1.2 uses a blow-up argument. Recall that by Hamilton’s
compactness theorem ([7]) and Perelman’s no-local-collapsing theorem ([15]), we
can choose a sequence of times and points (xi, ti) ∈ M × [0, T ), i = 1, 2, ..., where
ti → T , such that the sequence of dilated pointed solutions (M, gi(t), xi) with gi(t)
defined by

gi(t) := |Rm(xi, ti)|g(ti +
t

|Rm(xi, ti)|
)

converges in the pointed Cheeger-Gromov sense to a complete limit solution (M∞,
g∞(t), x∞), t ∈ (−∞, ω), where ω is a positive number or ∞. It’s important
that this limit solution is non-flat when T is a finite singular time, in particular
|Rm(x∞, 0)| = 1. This compactness result is very useful in studying the behavior
of the Ricci flow at a singular time. For example, recall that ([16]) Natasa Sesum
studied the volume growth of geodesic balls in (M∞, g∞(0)), and used the rigidity
part of the volume comparison theorem to conclude that, if |Ric(t)| is uniformly
bounded for t ∈ [0, T ), then (M∞, g∞(0)) is isometric to the Euclidean space, hence
contradicting with the non-flatness.

Under the assumption of Theorem 1.2, we can establish an optimal Euclidean
Sobolev inequality on (M∞, g∞(0)), then apply the following rigidity theorem of
M. Ledoux to show that (M∞, g∞(0)) is isometric to the Euclidean space.

Theorem 1.3 (M. Ledoux,[13]). Let (M, g) be a smooth, complete n-dimensional
Riemannian manifold with nonnegative Ricci curvature. Suppose that for some
q ∈ [0, n), the Sobolev inequality

(∫

M

|u|pdµ

)q/p
≤ K(n, q)q

∫

M

|∇u|qdµ

is valid for ∀u ∈ C∞

0 (M), where 1/p = 1/q − 1/n, K(n, q) is the optimal Sobolev
constant for the Euclidean space. Then (M, g) is isometric to (Rn, gflat).

Remark 2. The value K(n, q) is computed in [20].
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Optimal constants in Sobolev inequalities have been studied by many authors,
and one can refer to [8] for a comprehensive exposition. In the proof we need a
theorem of T. Aubin [1]:

Theorem 1.4 (T. Aubin). Let (M,g) be a smooth, compact Riemannian n−manifold.
For any ǫ > 0 and any q ∈ [1, n) real, there exists B ∈ R such that for any
u ∈ Hq

1 (M),

(∫

M

|u|pdµ

)q/p
≤ (K(n, q)q + ǫ)

∫

M

|∇u|qdµ+B

∫

M

uqdµ

where 1/p = 1/q−1/n and K(n, q) is the optimal Sobolev constant for the Euclidean
space.

Remark 3. T. Aubin’s theorem has been improved by E. Hebey and M.Vaugon ([9],
[10], ) who showed that the ǫ in Theorem 1.4 can be removed, in both compact and
complete settings.

Remark 4. T. Aubin’s theorem implies that for any ǫ > 0, we have a family of
Sobolev inequalities in the form

(∫

M

|u|2n/(n−2)dµ(t)

)(n−2)/n

≤ (K(n, 2)2+ ǫ)

∫

M

|∇u|2g(t)dµ(t)+B(t)

∫

M

u2dµ(t),

along the flow. The proof of Theorem 1.2 implies that B(t) must blow up at a finite
singular time. It will be very interesting to get an upper bound estimate of B(t)
explicitly in terms of curvature, however such an estimate is not yet available to
our knowledge.

Space-time integral bounds on the curvature have also been considered by many
authors. In [21] B. Wang proved that if

(1.2)

∫ T

0

∫

M

|Rm|pdµdt <∞, p ≥
n

2
+ 1,

then the Ricci flow can be extended past time T . Similar results are also proved
in [23] by R. Ye and in [14] by L. Ma and L. Cheng. Note that the power n

2 + 1
is critical, which makes the integral scaling invariant. If p < n

2 + 1, the integral
in (1.2) can be bounded even when T is a singular time, as demonstrated by the
shrinking sphere (See Example 2.1 in [21]).

For the mean curvature flow, the same extension problem has also been studied.
The supremum and certain scaling invariant space-time integrals of the norm of the
second fundamental form are known to blow up at a finite singular time ([11], [17],
[18], [24]). Moreover, the surprising fact that a subcritical integral quantity has to
blow up was proved by N. Le in [12]:

Theorem 1.5 (N.Le). Let A(t) be the second fundamental form of a n−dimensional
compact hyper-surface without boundaryMt in R

n+1 evolving by the mean curvature
flow. If

∫ T

0

∫

Mt

|A|n+2

log(1 + |A|)
dµdt <∞,

then the flow can be extended past time T .
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Note that n+ 2 is the critical power in the mean curvature flow case, and that
the integral quantity in N. Le’s theorem is sub-scaling invariant.

One of the key elements in the proof is the Michael-Simon inequality, which one
uses to establish a Sobolev inequality, then applying Nash-Moser iteration to prove
the following mean-value type inequality:

(1.3) sup
Mt

|A(t)| ≤ C(M0)

(
1 +

∫ T

0

∫

Mt

|A|n+3

)
.

Theorem 1.5 then follows an elementary calculus method.
Our second result is a Ricci flow version of N. Le’s theorem.

Theorem 1.6. Let (M, g(t)), t ∈ [0, T ) be a Ricci flow solution. If
∫ T

0

∫

M

|Rm|n/2+1

log(1 + |Rm|)
dµdt <∞,

Then the flow can be extended past time T .

In the Ricci flow case, we can use a blow-up argument and apply the ‘doubling-
time estimate’ (Corollary 7.5 in [2]) to establish an inequality similar to (1.3), then
use the same calculus method to prove Theorem 1.6.

2. Proof of Theorem 1.2

Proof of Theorem 1.2. We claim that under the assumption of the theorem, the
sectional curvature |Rm| is bounded, hence the flow can be extended by Hamilton’s
result (Theorem 14.1 in [5]).

If the claim is not true, we can choose a sequence of times and points (xi, ti) ∈
M × [0, T ), i = 1, 2, ..., such that Qi := |Rm(xi, ti)| → ∞ and ti → T as i → ∞,
and the sequence of dilated pointed solutions (M, gi(t), xi) with gi(t) defined by

gi(t) := Qig(ti +
t

Qi
)

converges in the pointed Cheeger-Gromov sense to a non-flat limit solution (M∞, g∞,
x∞) (See Chapter 8 of [2]). In the following we use φi, i = 1, 2, ... to denote the
diffeomorphisms in the pointed Cheeger-Gromov limit ( See Chapter 3 of [3] for a
detailed definition). Also, we use R+ and R− to denote the positive and negative
parts of the scalar curvature, and λ is the negative part of the smallest eigenvalue
of the Ricci curvature.

We first prove that (M∞, g∞) has nonnegative Ricci curvature (We actually

prove it is Ricci-flat). By the continuity assumption on F (x) :=
∫ T
0
|Ric(x, t)|dt

and the compactness of M , we can use elementary arguments to prove that

lim
s→T

∫ T

s

|Ric(x, t)|dt = 0 uniformly for ∀x ∈M.

Then we compute
∫ 0

−1

|Ricg∞(t)|(x)dt = lim
i→∞

∫ 0

−1

|Ricφ∗

i
gi(t)|(x)dt

= lim
i→∞

∫ 0

−1

|Ricgi(t)|(φi(x))dt
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= lim
i→∞

∫ ti

ti−1/Qi

|Ricg(t)|(φi(x))dt

≤ lim
i→∞

∫ ti

ti−1/Qi

|Ricg(t)|(φi(x))dt

≤ lim
i→∞

∫ T

ti−1/Qi

|Ricg(t)|(φi(x))dt

= 0.

Which implies |Ricg∞(t)|(x) = 0, ∀x ∈M∞, ∀t ∈ [−1, 0].
Next we establish a Sobolev inequality on M∞. Observe that

d

dt
|∇u|2g(t)(x) = 2Ric(t)(∇u,∇u),

and
d

dt
dµg(t)(x) = −R(x, t)dµg(t)(x).

These imply that

|∇u|2(x, t0) ≤ |∇u|2(x, t1)e
2
∫ t1
t0
λ(x,t)dt,

and

e−
∫

t1
t0
R+(x,t)dtdµ(x, t0) ≤ dµ(x, t1) ≤ e

∫
t1
t0
R−(x,t)dtdµ(x, t0).

Now we need the continuity of F (x) :=
∫ T
0
|Ric(x, t)|dt and the compactness

of M again. For any ǫ > 0, by elementary analysis we can find t0(ǫ) such that
∀t2 > t1 ≥ t0, we have

0 ≤

∫ t2

t1

R−(x, t)dt ≤ n

∫ t2

t1

|Ric(x, t)|dt < ǫ;

0 ≤

∫ t2

t1

R+(x, t)dt ≤ n

∫ t2

t1

|Ric(x, t)|dt < ǫ;

0 ≤

∫ t2

t1

λ(x, t)dt ≤

∫ t2

t1

|Ric(x, t)|dt < ǫ;

for all x ∈M .
Theorem 1.4 implies that we have a Sobolev inequality at the time t0:

(∫

M

|u|2n/(n−2)dµ(t0)

)(n−2)/n

≤ (K(n, 2)2+ǫ)

∫

M

|∇u|2g(t0)dµ(t0)+B(t0)

∫

M

u2dµ(t0),

for any u ∈ H2
1 (M). Then the above observation implies that for any t1 ∈ [t0, T ),

(M, g(t1)) has a Sobolev inequality:

(∫

M

|u|2n/(n−2)dµ(t1)

)(n−2)/n

≤ (K(n, 2)2 + ǫ)e(3−2/n)ǫ

∫

M

|∇u|2g(t1)dµ(t1)

+B(t0)e
(2−2/n)ǫ

∫

M

u2dµ(t1),

for any u ∈ H2
1 (M).

Now we pick any u ∈ C∞

0 (M∞), and suppose u is supported on a compact
domain V . The idea is to push u forward by φi to a function on (M, g(ti)) for each
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i s.t. ti > t0, apply the Sobolev inequality, then pull back to (M∞, g∞(0)) and take
the limit in i. We compute:

(∫

M∞

|u|2n/(n−2)dµg∞(0)

)(n−2)/n

= lim
i→∞

(∫

V

|u|2n/(n−2)dµφ∗

i
gi(0)

)(n−2)/n

= lim
i→∞

(
Q
n/2
i

∫

φi(V )

|u ◦ φ−1
i |2n/(n−2)dµg(ti)

)(n−2)/n

≤ lim
i→∞

Q
(n−2)/n
i

[
(K(n, 2)2 + ǫ)e(3−2/n)ǫ

∫

φi(V )

|∇(u ◦ φ−1
i )|2g(ti)dµg(ti)

+B(t0)e
(2−2/n)ǫ

∫

φi(V )

u2dµg(ti)

]

= lim
i→∞

[
(K(n, 2)2 + ǫ)e(3−2/n)ǫ

∫

φi(V )

|∇(u ◦ φ−1
i )|2gi(0)dµgi(0)

+
B(t0)e

(2−2/n)ǫ

Qi

∫

φi(V )

u2dµgi(0)

]

= (K(n, 2)2 + ǫ)e(3−2/n)ǫ

∫

M∞

|∇u|2g∞(0)dµg∞(0).

Since ǫ is arbitrary, we can let it go to zero. Then we establish the optimal Euclidean
Sobolev inequality

(∫

M∞

|u|2n/(n−2)dµg∞(0)

)(n−2)/n

≤ K(n, 2)2
∫

M∞

|∇u|2g∞(0)dµg∞(0)

on (M∞, g∞(0)).
By Theorem 1.3, (M∞, g∞(0)) is isometric to the Euclidean space, contradicting

the non-flatness of g∞(0).
�

3. Proof of Theorem 1.6

To prove Theorem 1.6, we first establish a similar inequality to (1.3) by a com-
pactness argument. We need the following ‘doubling-time estimate’, which is Corol-
lary 7.5 in [2]:

Lemma 3.1 (Doubling-time estimate). There exists c(n) depending only on n,
such that if (M, g(t), t ∈ [0, T )) is a Ricci flow solution on a compact manifold of
dimension n, then

sup
M

|Rm(t)| ≤ 2 sup
M

|Rm(0)| for all times t ∈ [0,
c(n)

supM |Rm(0)|
).

Lemma 3.2. Let M = {g(t)|t ∈ [0, 1], g(t) has non-collapsing constant
κ, supM |Rm(0)| ≤ C0} be a set of nonsingular Ricci flow solutions on a closed
n-dimensional manifold M . There exists a constant C(n, κ, C0) such that for any
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g(t) ∈ M

sup
M×[0,1]

|Rm| ≤ C

∫ 1

0

∫

M

|Rm|n/2+2dµdt+ 2C0.

Proof. If not, we can find a sequence gi(t), i = 1, 2, ... in M, such that

sup
M×[0,1]

|Rmi| ≥ Pi

∫ 1

0

∫

M

|Rmi|
n/2+2dµidt+ 2C0,

where Pi → +∞ as i→ ∞. Let Qi = supM×[0,1] |Rmi| for each i, then we can find

(xi, ti) such that Qi = |Rmi(xi, ti)|. Note that Qi > 2C0, Lemma 3.1 implies that
ti ≥ c(n)/C0, hence Qiti ≥ 2c(n). Dilate this sequence

g̃i(t) = Qigi(ti + t/Qi),−tiQi ≤ t ≤ (1 − ti)Qi, i = 1, 2, ...

The dilated solutions (M, g̃i(t), xi) has a common existence interval [−2C0, 0], a uni-
form bound on the curvature and an injectivity radius lower bound by the assump-
tion on the non-collapsing constant κ. Hence they converge in the pointed Cheeger-

Gromov sense to a limit solution (M∞, g̃(t), x∞), t ∈ [−2C0, 0], with |R̃m|(x∞, 0) =
1. But we can compute on any x∞ ∈ Ω ⊂M∞

∫ 0

−2C0

∫

Ω

|R̃m|n/2+2dµ̃dt

= lim
i→∞

1/Qi

∫ ti

ti−2c(n)/Qi

∫

φi(Ω)

|Rmi|
n/2+2dµidt

≤ lim
i→∞

(
1

Qi

Qi − 2C0

Pi

)

= 0.

Which implies that |R̃m|(x∞, 0) = 0, contradiction! �

Lemma 3.3 (Mean Value Inequality). For a Ricci flow solution (M, g(t)), t ∈
[0, T ), T <∞, there exists constants C0(n, κ, supM |Rm(0)|) and
C1 = T max{2 supM |Rm(0)|, 2 supM |Rm(0)|2/c(n)}, where c(n) is the constant in
the ‘doubling-time estimate’, such that for any t ∈ [0, T )

sup
M×[0,t]

|Rm| ≤ C0

∫ t

0

∫

M

|Rm(x, s)|n/2+2dµds+ C1.

Proof. We only need to prove the lemma for non-trivial solutions. Without loss of
generality let T = 1.

For t ∈ [0, c(n)/ supM |Rm(0)|) it’s clearly true by Lemma 3.1.
For any t ∈ [c(n)/ supM |Rm(0)|, 1), define

g̃(s) =
1

t
g(ts), s ∈ [0, 1].

Then

|R̃m(0)| ≤ t|Rm(0)| ≤ |Rm(0)|.

Note that the non-collapsing constant κ is scaling invariant. Lemma 3.2 implies

sup
M×[0,t]

|R̃m| ≤ C0

∫ t

0

∫

M

|R̃m(x, s)|n/2+2dµ̃ds+ 2 sup
M

|Rm(0)|.
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Then we scale it back to the original metric g(t). Since the scaling factor t is now
bounded below by c(n)/ supM |Rm(0)|, we get

sup
M×[0,t]

|Rm| ≤ C0

∫ t

0

∫

M

|Rm(x, s)|n/2+2dµds+ 2 sup
M

|Rm(0)|2/c(n).

�

Now we can use the same method as in [12] to prove Theorem 1.6.

Proof of Theorem 1.6. Let

f(t) = sup
M

|Rm(t)|,

G(t) =

∫

M

|Rm|n/2+1

log(1 + |Rm|)
dµ(t),

and

ψ(s) = s log(1 + s).

Then ψ is an increasing function when s ≥ 0. By Lemma 3.3, for any t ∈ [0, T )

f(t) ≤ C

∫ t

0

∫

M

ψ(|Rm|)
|Rm|n/2+1

log(1 + |Rm|)
dµds+ C1

≤ C

∫ t

0

ψ(f(s))G(s)ds + C1

=: h(t).

h′(t) = Cψ(f(t))G(t) ≤ Cψ(h(t))G(t) since ψ is nondecreasing. Then we have
∫ h(t)

h(0)

1

ψ(s)
ds =

∫ t

0

CG(t)dt

≤ C

∫ t

0

∫

M

|Rm|n/2+1

log(1 + |Rm|)
dµdt

< ∞.

Since
∫
∞

1
1

ψ(s)ds = ∞, we deduce that sup[0,T ) h(t) < ∞, hence sup[0,T ) f(t) <

∞. Therefore the flow can be extended by Theorem 14.1 in [5]. �
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