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Abstract

In a previous work we have introduced and studied the notion of
embedded Q-resolution, which essentially consists in allowing the fi-
nal ambient space to contain abelian quotient singularities. Here we
explicitly compute an embedded Q-resolution of a Yomdin-Lê surface
singularity (V, 0) in terms of a (global) embedded Q-resolution of their
tangent cone by means of just weighted blow-ups at points. The gen-
eralized A’Campo’s formula in this setting is applied so as to compute
the characteristic polynomial. As a consequence, an exceptional divi-
sor in the resolution of (V, 0), apart from the first one which might be
special, contributes to its complex monodromy if and only if so does
the corresponding divisor in the tangent cone. Thus the resolution ob-
tained is optimal in the sense that the weights can be chosen so that
every exceptional divisor in the Q-resolution of (V, 0), except perhaps
the first one, contributes to its monodromy.

Keywords: Quotient singularity, weighted blow-up, embedded Q-reso-
lution, Yomdin-Lê singularity, characteristic polynomial, monodromy.
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Introduction

Let (V, 0) ⊂ (C3, 0) be a germ of surface singularity in C3. By definition,
V is the zero set of a holomorphic function f : U → C, where U ⊂ C3 is a
small neighborhood of the origin and f(0) = 0. Denote also by f the germ
at the origin of this function; it is an element of the local ring C{x, y, z}.
∗Partially supported by the projects MTM2010-21740-C02-02, “E15 Grupo Consoli-

dado Geometŕıa” from the goverment of Aragón, FQM-333 from “Junta de Andalućıa”,
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Consider the decomposition of f into homogeneous parts,

f(x, y, z) = fm(x, y, z) + fm+1(x, y, z) + · · · ,

that is, fi is homogeneous of degree i and fm 6= 0. The integer m is the
multiplicity of the singularity and the order of the series f . Denote by
C := V (fm) ⊂ P2 the projective plane curve defined by the tangent cone
of the singularity. The following two families are considered in this work
separately:

1. Superisolated singularity (or, shortly, SIS): the local equation f satis-
fies Sing(C) ∩ V (fm+1) = ∅ as a subset in P2.

2. Yomdin-Lê singularity (YLS): the decomposition of f into homoge-
neous polynomials is of the form f = fm + fm+k + · · · , k ≥ 1, and the
condition Sing(C) ∩ V (fm+k) = ∅ holds in P2.

These singularities have been extensively studied by many authors, see
for instance the survey [3] where part of the theory of these singularities and
their applications including some new and recent developments are reviewed.
The SIS, i.e. k = 1, were introduced by Luengo and also appear in a paper
by Stevens, where the µ-constant stratum is considered, see [7] and [14].
Afterward Artal described in his PhD thesis [2] an embedded resolution of
such singularities using blow-ups at points and rational curves. However, no
embedded resolution is found in the literature for YLS with k ≥ 2.

In this paper, the new techniques developed in [4, 5, 9] are partially ap-
plied to study these two families of singularities. More precisely, we present
here a detailed explicit description of an embedded Q-resolution for YLS
in terms of a (global) embedded Q-resolution of their tangent cone. It is
proven that only weighted blow-ups at points are needed. By contrast, the
final total space produced has abelian quotient singularities.

The main result of this paper is a collection of several results that can
be summarized as follows, cf. Lemma 3.2, Proposition 3.9, Theorem 3.12 for
SIS and Lemma 6.1, Proposition 6.4, Theorem 6.6 for YLS.

Theorem 0.1. Let %P : Y P → (C2, P ) be an embedded Q-resolution of the
tangent cone (C, P ) for each P ∈ Sing(C). Assume that

(%P )∗(C, P ) = Ĉ +
∑

a∈S(ΓP+)

mP
a EPa

is the total transform of (C, P ), where EPa is the exceptional divisor of the
(pPa , q

P
a )-blow-up at a point Pa belonging to the locus of non-transversality.

Denote by νPa the (pPa , q
P
a )-multiplicity of C at Pa.
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Then, one can construct an embedded Q-resolution ρ : X → (C3, 0) of
the Yomdin-Lê singularity (V, 0) such that the total transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ k) ·mP
a

gcd(k,mP
a )

EPa ,

and EPa appears after the
(

k pPa
gcd(k,νPa )

, k qPa
gcd(k,νPa )

, νPa
gcd(k,νPa )

)
-blow-up at the point

Pa (the locus of non-transversality in dimension 2 and 3 are identified).

For k = 1, the main advantage compared with Artal’s resolution [2] is
that in the latter νPa (rather than just one) blow-ups at points and rational
curves at each step are needed to achieve a similar situation. On the other
hand, as it is said above, no embedded resolution for YLS with k ≥ 2
can be found in the literature. The main difficulty in computing a (usual)
embedded resolution of this kind of singularities is that after several blow-
ups at points and rational curves, following the ideas of [2], one eventually
obtains a branch of resolutions depending on k. Thus the study of this
singularities by using the classical tools does not seem to be very helpful.

The generalized A’Campo’s formula [9, Theorem 2.8] is applied and the
characteristic polynomial and the Milnor number are calculated as an ap-
plication, see Theorem 4.3 and Corollary 4.5 for SIS and Theorem 7.2 and
Corollary 7.3 for YLS. In particular, the formulas by D. Siersma [12] and
J. Stevens [14] for the characteristic polynomial of YLS can be obtained in
this way. Other more sophisticated invariants, including mixed Hodge struc-
ture of the cohomology of the Milnor fiber, are the subjects of our study for
the future.

As a consequence, we show that an exceptional divisor EPa in the resolu-
tion of (V, 0) contributes to the complex monodromy if and only if so does
the corresponding divisor EPa in the tangent cone, see Lemmas 4.1 and 7.1.
Thus the weights can be chosen so that every exceptional divisor in the
Q-resolution of (V, 0), except perhaps the first one E0, contributes to its
monodromy.

Although the proofs presented here are a bit technical, which involve a
lot of calculations with local equations on charts, the final construction is
very useful. In fact, this work can be considered as the first step in the
computation of the mixed Hodge structures together with the monodromy
action of YLS. Note that, following the ideas of [2], these tools can be used
in combination with the generalized Steenbrink’s spectral sequence of [10] to
find two YLS having the same characteristic polynomials, the same abstract
topologies, but different embedded topologies (it is enough to take a Zariski
pairs in the tangent cones). Besides, these techniques can be applied to
study superisolated singularities in higher dimension, see [8, §VI.4], and the
same applies to weighted Yomdin-Lê surface singularities, see [8, §VII.3].
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Although these two families can be studied simultaneously, for better
exposition they are presented and treated separately. The paper is organized
as follows. In §1, some well-known preliminaries about weighted blow-ups
and embedded Q-resolutions are presented. After recalling the step zero in
Artal’s resolution in §2, the full construction of the embedded Q-resolution
for SIS is given in §3 so as to prove the main theorem for this family. In §4,
the Euler characteristic of the strata needed for applying A’Campo’s formula
is calculated and the characteristic polynomial and the Milnor number are
obtained as an application. Finally, §5, §6, §7 are the analogous of §2, §3,
§4 for YLS showing the corresponding results mentioned above.
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1 Preliminaries

Let us sketch some definitions and properties about V -manifolds, weighted
projective spaces, and weighted blow-ups, see [4, 5, 8] for a more detailed
exposition. Also, the generalized A’Campo’s formula for embedded Q-
resolutions is recalled, see [9].

1.1 Embedded Q-resolutions and weighted blow-ups

Classically an embedded resolution of {f = 0} ⊂ Cn+1 is a proper analytic
map π : X → (Cn+1, 0) from a smooth variety X satisfying, among other
conditions, that π∗({f = 0}) is a normal crossing divisor. To weaken the
condition on the preimage of the singularity one studies the following notion.

Definition 1.1. Let H = {f = 0} ⊂ Cn+1. An embedded Q-resolution of
(H, 0) ⊂ (Cn+1, 0) is a proper analytic map π : X → (Cn+1, 0) such that:

1. X is a V -manifold with abelian quotient singularities.

2. π is an isomorphism over X \ π−1(Sing(H)).

3. π∗(H) is a hypersurface with Q-normal crossings on X.

To deal with these resolutions, some notation needs to be introduced.
Let G := µd0 × · · · × µdr be an arbitrary finite abelian group written as a
product of finite cyclic groups, that is, µdi is the cyclic group of di-th roots
of unity. Consider a matrix of weight vectors

A := (aij)i,j = [a0 | · · · |an] ∈Mat((r + 1)× (n+ 1),Z)
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and the action

(µd0 × · · · × µdr)× Cn+1 −→ Cn+1,
(
ξd,x

)
7→ (ξa00d0

· · · ξar0dr
x0, . . . , ξ

a0n
d0
· · · ξarndr

xn).

The set of all orbits Cn+1/G is called (cyclic) quotient space of type (d;A)
and it is denoted by

X(d;A) := X




d0 a00 · · · a0n
...

...
. . .

...
dr ar0 · · · arn


 .

The orbit of an element (x0, . . . , xn) under this action is denoted by
[(x0, . . . , xn)]. Condition 3 of the previous definition means the total trans-
form π−1(H) = (f ◦ π)−1(0) is locally given by a function of the form
xm0

0 · · ·xmkk : X(d;A) → C, see [13]. The previous numbers mi’s have no
intrinsic meaning unless µd induces a small action on GL(n + 1,C). This
motivates the following.

Definition 1.2. The type (d;A) is said to be normalized if the action is
free on (C∗)n+1 and µd is identified with a small subgroup of GL(n+ 1,C).

As a tool for finding embedded Q-resolutions one uses weighted blow-ups
with smooth center. Special attention is paid to the case of dimension 2 and
3 and blow-ups at points.

Example 1.3. Assume (d; a, b) is normalized and gcd(ω) = 1, ω := (p, q).
Then, the total space of the ω-blow-up at the origin of X(d; a, b),

π(d;a,b),ω : ̂X(d; a, b)ω −→ X(d; a, b), (1)

can be written as

Û1 ∪ Û2 = X

(
pd

e
; 1,
−q + βpb

e

)
∪X

(
qd

e
;
−p+ µqa

e
, 1

)

and the charts are given by

First chart X

(
pd

e
; 1,
−q + βpb

e

)
−→ Û1,

[
(xe, y)

]
7→
[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

.

Second chart X

(
qd

e
;
−p+ µqa

e
, 1

)
−→ Û2,

[
(x, ye)

]
7→
[
((xyp, yq), [x : 1]ω)

]
(d;a,b)

.

Above, e = gcd(d, pb − qa) and βa ≡ µb ≡ 1 (mod d). Observe that the
origins of the two charts are cyclic quotient singularities; they are located
at the exceptional divisor E which is isomorphic to P1

ω
∼= P1.
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Example 1.4. Let πω : Ĉ3
ω → C3 be the ω-weighted blow-up at the origin

with ω = (p, q, r), gcd(ω) = 1. The new space is covered by three open sets

Ĉ3
ω = U1 ∪ U2 ∪ U3 = X(p;−1, q, r) ∪X(q; p,−1, r) ∪X(r; p, q,−1),

and the charts are given by

X(p;−1, q, r) −→ U1 : [(x, y, z)] 7→ ((xp, xqy, xrz), [1 : y : z]ω),

X(q; p,−1, r) −→ U2 : [(x, y, z)] 7→ ((xyp, yq, yrz), [x : 1 : z]ω),

X(r; p, q,−1) −→ U3 : [(x, y, z)] 7→ ((xzp, yzq, zr), [x : y : 1]ω).

(2)

In general Ĉ3
ω has three lines of (cyclic quotient) singular points located

at the three axes of the exceptional divisor π−1
ω (0) ' P2

ω. For instance, a
generic point in x = 0 is a cyclic point of type C×X(gcd(q, r); p,−1). Note
that although the quotient spaces are represented by normalized types, the
exceptional divisor can still be simplified:

P2(p, q, r) −→ P2

(
p

(p, r) · (p, q) ,
q

(q, p) · (q, r) ,
r

(r, p) · (r, q)

)
,

[x : y : z] 7→ [xgcd(q,r) : ygcd(p,r) : zgcd(p,q)].

(3)

However, this simplification may be not useful when working with the
whole ambient space because its charts are not compatible with Ĉ3

ω. Thus
the natural covering of the exceptional divisor is

P2
ω = V1 ∪ V2 ∪ V3 = X(p; q, r) ∪X(q; p, r) ∪X(r; p, q),

and the charts are given by the restrictions of the maps in (2) to x = 0,
y = 0, and z = 0 respectively.

Example 1.5. Assume (d; a, b, c) is normalized and gcd(ω) = 1, ω :=
(p, q, r). Then, the total space of the ω-blow-up at the origin of X(d; a, b, c),

π = π(d;a,b,c),ω : ̂X(d; a, b, c)ω −→ X(d; a, b, c)

can be covered by three open sets as

̂X(d; a, b, c)ω =
Ĉ3
ω

µd
=
U1 ∪ U2 ∪ U3

µd
= Û1 ∪ Û2 ∪ Û3,

where

Û1 =
U1

µd
=
X(p;−1, q, r)

µd
= X

(
p −1 q r
pd a pb− qa pc− ra

)
,

Û2 =
U2

µd
=
X(q; p,−1, r)

µd
= X

(
q p −1 r
qd qa− pb b qc− rb

)
,

Û3 =
U3

µd
=
X(r; p, q,−1)

µd
= X

(
r p q −1
rd ra− pc rb− qc c

)
.
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The charts are given by the induced maps on the corresponding quo-
tient spaces, see Equation (2). The exceptional divisor E = π−1

(d;a,b,c),ω(0) is
identified with the quotient

P2
ω(d; a, b, c) :=

P2
ω

µd
.

There are three lines of quotient singular points in E and outside E the map
π(d;a,b,c),ω is an isomorphism.

The expression of the quotient spaces can be modified as follows. Let α
and β be two integers such that αd+ βa = gcd(d, a), then one has that the

space X
(
p; −1 q r
pd; a pb−qa pc−ar

)
equals

X

(
pd (d, a) −q(d, a) + βpb −r(d, a) + βpc

(d, a) 0 b c

)
.

Note that in general the previous space is not represented by a normalized
type. To obtain its normalized one, follow the processes described in (I.1.3)
and (I.1.9) of [8].

1.2 Intersection theory on V-manifolds

The notion of Cartier and Weil Q-divisors coincide on V -manifolds and thus
a rational intersection theory can be developed for Q-Weil divisors using the
theory of line bundles. This intersection multiplicity was first introduced by
Mumford for normal surfaces, see [11]. Recently in [5] explicit formulas for
weighted blow-ups and weighted projective planes was calculated.

Proposition 1.6. Let π : X̂ → X be the (p, q)-blow-up at a point of type
(d; a, b) as in (1). Consider two Q-divisors C and D on X(d; a, b). Then,

(1) E · π∗(C) = 0, (4) E2 = − e2

dpq
,

(2) π∗(C) = Ĉ +
ν

e
E, (5) Ĉ · D̂ = C ·D − νµ

dpq
,

(3) E · Ĉ =
eν

dpq
, (6) D̂2 = D2 − µ2

dpq
(D compact),

where ν and µ denote the (p, q)-multiplicities of C and D at P , i.e. x
(resp. y) has (p, q)-multiplicity p (resp. q).

Proposition 1.7. Let us denote by m1, m2, m3 the determinants of the
three minors of order 2 of the matrix

( p q r
a b c

)
. Assume gcd(p, q, r) = 1

and denote e = gcd(d,m1,m2,m3). Consider P2
ω the weighted projective

plane with ω = (p, q, r). Then, the intersection number of two Q-divisors
on the quotient P2

ω(d; a, b, c) := P2
ω/µd is D1 ·D2 = e

dpqr degω(D1) degω(D2).

Moreover, if |D1| * |D2|, then D1 ·D2 =
∑

P∈|D1|∩|D2|(D1 ·D2)P .

7



Remark 1.8. To calculate (D1 ·D2)[(0,0)] the intersection multiplicity of two
Q-divisors on X(d; a, b), gcd(d, a, b) = 1, consider pr : C2 → X(d; a, b) and
apply the classical local pull-back formula. Denote by D̃i the pull-back
divisor of Di under the projection. Then, (D1 ·D2)[(0,0)] = 1

d(D̃1 · D̃2)(0,0).

Note that the exceptional divisor of the (p, q, r)-weighted blow-up at a
point of type (d; a, b, c) is naturally isomorphic to P2

ω(d; a, b, c). Hence this
result will help us describe embedded Q-resolutions for YLS.

1.3 A’Campo’s formula for embedded Q-resolutions

Let f : (Cn+1, 0)→ (C, 0) be a non-constant analytic function germ defining
an isolated singularity and let H = {f = 0}. Given π : X → (Cn+1, 0) an
embedded Q-resolution of (H, 0), consider E1, . . . , Es the irreducible com-
ponents of the exceptional divisor and Ĥ the strict transform.

One writes E0 = Ĥ and S = {0, 1, . . . , s} so that the stratification of X
associated with the Q-normal crossing divisor π−1(H) =

⋃
i∈S Ei is defined

by setting

E◦I :=
(
∩i∈I Ei

)
\
(
∪i/∈I Ei

)
,

for a given possibly empty set I ⊆ S.
Let X =

⊔
j∈J Qj be a finite stratification on X given by its quotient

singularities such that the local equation of g := f ◦ π at P ∈ E◦I ∩Qj is of
the form

xm0
0 · . . . · xmkk : X(d;A) := Cn+1/µd −→ C, (0 ≤ k ≤ n)

and the multiplicities mi’s and the action µd are the same along each stra-
tum E◦I ∩Qj , i.e. they do not depend on the chosen point P ∈ E◦I ∩Qj .
Definition 1.9. Using the previous notation the multiplicity of E◦{i} ∩ Qj
is defined as

m(E◦{i} ∩Qj) =
m

L
∈ N,

where L = lcm
(

d0
gcd(d0,a00) , . . . ,

dr
gcd(dr,ar0)

)
and xm0 : X(d;A) → C is the

equation of the exceptional divisor at any point P ∈ E◦{i} ∩Qj .
Let us denote Ěi,j := E◦{i}∩Qj and mi,j := m(Ěi,j). The following result

is nothing but the generalization of A’Campo’s formula in this setting [9].

Theorem 1.10. The characteristic polynomial of the complex monodromy
of (H, 0) ⊂ (Cn+1, 0) is (i = 1, . . . , s, j ∈ J)

∆(t) =


 1

t− 1

∏

i,j

(tmi,j − 1)χ(Ěi,j)




(−1)n

and thus the Milnor number is µ = (−1)n
[
− 1 +

∑

i,j

mi,j · χ(Ěi,j)
]
.
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2 Preparations for the Q-Resolution of SIS

These singularities have been introduced by Luengo and also appear in a
paper by Stevens, where the µ-constant stratum is studied, see [7] and [14]
respectively. Afterward Artal described in his PhD thesis [2] an embedded
resolution of such singularities using blow-ups at points and rational curves.

Here an embedded Q-resolution is given and particularly it is proven
that only weighted blow-ups at points are needed. By contrast, the final
ambient space obtained has abelian quotient singularities.

Let (V, 0) be a SIS in (C3, 0) defined by a holomorphic function f : U →
C. As above, denote by m the multiplicity of V , and C the tangent cone.
Let π0 : Û → U be the blow-up at the origin. Recall that the total transform
is the divisor π∗0(V ) = V̂ +mE0, where V̂ is the strict transform of V , and

E0 is the exceptional divisor of π0. The intersection V̂ ∩E0 is identified with
the tangent cone of the singularity, see Figure 1.

E0

V̂

C

π∗
0(V ) = V̂ +mE0

V̂ ∩ E0 = C
NT (π∗

0(V )) = Sing(C)

Figure 1: Step 0 in the embedded Q-resolution of (V, 0).

Let us consider P ∈ V̂ ∩ E0 = C. After linear change of coordinates we
can assume that P = ((0, 0, 0), [0 : 0 : 1]) ≡ [0 : 0 : 1] ∈ C. Take a chart of
Û around P where z = 0 is the equation of E0 and the blowing-up takes the
form

(x, y, z)
π07−→ (xz, yz, z).

Then the equation of V̂ is

V̂ : fm(x, y, 1) + z
[
fm+1(x, y, 1) + zfm+2(x, y, 1) + · · ·

]
= 0.

Two cases arise: if P is smooth in the tangent cone, then V̂ is also smooth
at P and the intersection with E0 at that point is transverse; otherwise, i.e
P ∈ Sing(C), the SIS condition Sing(C) ∩ V (fm+1) = ∅ implies that the
previous expression in brackets is a unit in the local ring C{x, y, z} and, in
particular, V̂ is still smooth. Now the order of fm(x, y, 1) is greater than or
equal to 2 and the intersection V̂ ∩ E0 is not transverse at P .

We summarize the previous discussion in the following result, which is
actually the step zero in the resolution of [2].

9



Lemma 2.1 (Step 0). Let P ∈ C be a point in the tangent cone. Then V̂
is smooth in a neighborhood of P .

Moreover, the surfaces V̂ and E0 intersect transversely at P if and only
if P is a smooth point in C. Otherwise, i.e. P ∈ Sing(C), there exist local
analytic coordinates around P such that the equations of the exceptional
divisor and the strict transform are of the form

E0 : z = 0 ;

V̂ : z + h(x, y) = 0 ,

where h(x, y) = 0 is an equation of C and its order is at least 2.

3 Construction of the Embedded Q-Resolution

Now we proceed to construct the full Q-resolution of (V, 0). By the preceding
lemma, the set of points where π∗0(V ) is not a normal crossing divisor is finite,
namely Sing(C). Therefore the next step in the resolution of (V, 0) is to blow
up those points. Let us fix P ∈ Sing(C) and consider local coordinates as in
Lemma 2.1. Even though many objects that appear in this section depend
on P , to simplify notation, it is omitted if no confusion seems likely to arise.

Definition 3.1. Given a divisor D, the set of points where D is not a normal
crossing divisor is called the locus of non-transversality of D and it is denote
by NT (D).

In our case, the locus of non-transversality after the blowing-up at the
origin of (V, 0) is NT (π∗0(V )) = Sing(C).

The following result is the first step in a sequence of blow-ups. We adopt
the convention to write the exceptional divisors appearing in the tangent
cone in calligraphy letter, while normal letter is used for the divisors in the
resolution of (V, 0).

Also, the objects coming from the blowing-up at Pa 6= P (resp. P ) are
indexed by the corresponding subindex a (resp. the number 1). Finally,
recall that the strict transform of a divisor is denoted again by the same
letter as the own divisor.

Lemma 3.2 (Step 1). Let (p1, q1) ∈ N2 be two positive coprime numbers.
Let $1 be the weighted blow-up at P ∈ C with respect to (p1, q1). Denote by
E1 its exceptional divisor and by ν1 the (p1, q1)-multiplicity of C at P .

Consider π1 the (p1, q1, ν1)-weighted blow-up at P in dimension 3 and E1

the corresponding exceptional divisor. Then, the total transform of π∗0(V )
verifies:

1. π∗1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1,

2. NT (π∗1π
∗
0(V )) = NT ($∗1(C)).

10



Proof. Let us start by blowing up the point P ∈ C with respect to the weight
vector (p1, q1), gcd(p1, q1) = 1, in the tangent cone. Consider the local
coordinates of Lemma 2.1 around P so that the equation of C is h(x, y) = 0;
thus ν1 = ord(p1,q1) h(x, y).

The ambient space obtained has two cyclic quotient singular points corre-
sponding to the origin of each chart and located at the exceptional divisor E1.
The latter can be identified with the usual projective line P1(p1, q1) ' P1

under the map [x : y] 7→ [xq1 : xp1 ], and it has self-intersection −1
p1q1

by
Proposition 1.6. Using the charts described in Example 1.3,

1st chart X(p1;−1, q1) −→ Ĉ2(p1, q1),

[(x, y)] 7→
(
(xp1 , xq1y), [1 : y](p1,q1)

)
;

2nd chart X(q1; p1,−1) −→ Ĉ2(p1, q1),

[(x, y)] 7→
(
(xyp1 , yq1), [x : 1](p1,q1)

)
;

one obtains the following equations for the divisor $∗1(C) = C + ν1E1, see
Figure 2.

X(p1;−1, q1) ⊇
{
E1 : x = 0;

C : h1(x, y) = 0,

X(q1; p1,−1) ⊇
{
E1 : y = 0;

C : h2(x, y) = 0.

Note that h1(x, y) and h2(x, y) are not functions on the previous quotient
spaces but they define a zero set, since they satisfy

h1(ξ−1
p1 x, ξ

q1
p1y) = ξν1p1h1(x, y), h2(ξp1q1 x, ξ

−1
q1 y) = ξν1q1h2(x, y). (4)

(q1) (p1)

[0 : 1] [1 : 0][γi : 1]

E1
a = 0

b 6= 0

Figure 2: Step 1 in the embedded Q-resolution of (C, P ).

Also, if the sum h = hν1 +hν1+l+ · · · is the decomposition of h(x, y) into
(p1, q1)-homogeneous parts, then h1(0, y) = hν1(1, y), h2(x, 0) = hν1(x, 1),
and the (global) equation of C ∩ E1 ⊂ P1(p1, q1) is of the form

hν1(x, y) = xayb
∏

i

(xq1 − γq1i yp1)ei = 0.

Thus the intersection multiplicity of E1 and C at the point [γi : 1] is ei,
while it is a

q1
(resp. b

p1
), not necessarily an integer, at the singular point

[0 : 1] (resp. [1 : 0]), see Remark 3.3 below.
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Now describe the weighted blow-up at P with respect to (p1, q1, ν1) in
dimension 3. The new space has in general two (not three because p1 and q1

are coprime) cyclic quotient singular lines, each of them isomorphic to P1,
and located at the new exceptional divisor E1. They correspond to the lines
at infinity x = 0 and y = 0 of E1 = P2(p1, q1, ν1).

As an abstract space, E1 contains two singular points and it is isomorphic
to another weighted projective plane as the following expression shows, see
Equation (3),

P2(p1, q1, ν1) −→ P2
(

p1
(p1,ν1) ,

q1
(q1,ν1) ,

ν1
(p1,ν1)(q1,ν1)

)
,

[x : y : z] 7→ [x(q1,ν1) : y(p1,ν1) : z].

The multiplicity of E1 is the sum of the (p1, q1, ν1)-multiplicities, in
our local coordinates, of the components of the divisor π∗0(V ) that pass
through P , that is ν1m+ ν1 = (m+ 1)ν1. Hence the total transform is the
divisor

π∗1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1.

The equations in the three charts are given in the table below. Note
that the cyclic quotient spaces are represented by normalized types, since
gcd(p1, q1, ν1) = 1, see Example 1.4.

X(p1;−1, q1, ν1) X(q1; p1,−1, ν1)

(x, y, z)
π17−→ (xp1 , xq1y, xν1z) (xyp1 , yq1 , yν1z)

E0 z = 0 z = 0
E1 x = 0 y = 0

V̂ z + h1(x, y) = 0 z + h2(x, y) = 0

X(ν1; p1, q1,−1)

(x, y, z)
π17−→ (xzp1 , yzq1 , zν1)

E0 −
E1 z = 0

V̂ 1 + hν1(x, y) + zlhν1+l(x, y) + · · · = 0

Using the automorphism on X(p1;−1, q1, ν1) defined by [(x, y, z)] 7→
[(x, y, z + h1(x, y))], which is well defined due to (4), one sees that both
E0 and V̂ intersect transversely E1. The equations of these intersections are
given by

E0 ∩ E1 = {z = 0},
V̂ ∩ E1 = {z + hν1(x, y) = 0},

as projective subvarieties in E1 = P2(p1, q1, ν1).

12



By Proposition 1.7, these smooth projective curves are two sections of E1

with self-intersection ν1
p1q1

. They meet at #(C∩ E1) points with exactly the

same intersection number as in C∩E1, that is, for P ∈ C∩E1 ≡ V̂ ∩E0∩E1,
one has (

E0 ∩ E1, V̂ ∩ E1; E1

)
P

=
(
C, E1; Ĉ2

(p1,q1)

)
P
. (5)

On the other hand, the intersection of the total transform with E0 pro-
duces an identical situation to the tangent cone. All these statements follow
from the equations above. In Figure 3, we see the intersection of the divisor
π∗1π

∗
0(V ) with E0 and E1, respectively.

(ν1)

(q1) (p1)

x = 0 y = 0

E1

E0 ∩ E1

V̂ ∩ E1

[γi : 1 : 0]

[0 : 0 : 1]

(p1)

(q1)

E0

E1 ∩ E0

V̂ ∩ E0

[γi : 1]

Figure 3: Step 1 in the Q-resolution of (V, 0).

Finally, the triple points of the total transform in dimension 3 are iden-
tified with the points of C ∩ E1 and, by (5), the intersection at one of those
points is transverse if and only if so is it in dimension 2. This concludes the
proof.

Remark 3.3. To study the curves {z = 0} and {z + hν1(x, y) = 0} in
P2(p1, q1, ν1) at the point [0 : 1 : 0], one chooses the second chart of
the weighted projective plane and obtains the local equations z = 0 and
z + xa = 0 around the origin of X(q1; p1, ν1). The intersection multiplicity
at that point is a/q1, although the quotient space is not represented by a
normalized type, see Remark 1.8. Analogous considerations follow for the
points [γi : 1 : 0] and [1 : 0 : 0]. This fact was used to prove (5).

Remark 3.4. The curve V̂ ∩ E1 meets the line x = 0 (resp. y = 0) in
the projective plane P2(p1, q1, ν1) at exactly one point and the intersec-
tion is always transverse. If a = 0 (resp. b = 0), then gcd(q1, ν1) = q1

(resp. gcd(p1, ν1) = p1) and that point is different from the origins, see table
with the equations. This is important to obtain transversality in the next
steps of the resolution of (V, 0).

After the first blow-up a very similar situation to Lemma 2.1 is produced,
except that there is a new divisor to be considered and the points where the
total transform does not have normal crossings could be singular in the

13



ambient space. The main advantage compared with Artal’s resolution [2] is
that in the latter ν1 blow-ups at points and rational curves were needed to
achieve a similar situation.

The next result is the second step in the resolution of (V, 0) and it
corresponds to the second step in the resolution of (C, P ). Fix a point
Pa ∈ NT ($∗1(C)) and, to cover all cases, assume Pa is possibly not smooth
in the ambient space.

Lemma 3.5 (Step 2). Let (pa, qa) ∈ N2 be two positive coprime numbers.
Let $a be the weighted blow-up at Pa with respect to (pa, qa). Denote by Ea
its exceptional divisor, νa the (pa, qa)-multiplicity of C at Pa, and ma the
multiplicity of Ea.

Consider πa the (pa, qa, νa)-weighted blow-up at Pa in dimension 3 and let
Ea be the corresponding exceptional divisor. Then, the new total transforms
satisfy:

1. ma =
νa + paν1

gcd(p1, qa + paq1)
,

2. $∗a$
∗
1(C) = C + ν1E1 +maEa,

3. π∗aπ
∗
1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1 + (m+ 1)maEa,

4. NT (π∗aπ
∗
1π
∗
0(V )) = NT ($∗a$

∗
1(C)).

Proof. To fix ideas assume that Pa = [1 : 0] ∈ C∩E1. The other cases follow
analogously. Let us first describe the (pa, qa)-weighted blow-up at the point
Pa in the tangent cone. Consider local coordinates around Pa so that the
equation of $1(C) = C + ν1E1 is given by the well-defined function

xν1h1(x, y) : X(p1;−1, q1) −→ C,

where x = 0 is the exceptional divisor E1 and h1(x, y) = 0 is the strict
transform of the curve as in the proof of Lemma 2.1. Hence the order at Pa
is νa = ord(pa,qa) h1(x, y).

Also, take α1, β1 satisfying the Bézout’s identity α1p1 +β1q1 = 1 so that
X(p1;−1, q1) = X(p1;β1,−1) and thus xν1h1(x, y) also defines a function
on the latter quotient space.

Denote d := gcd(p1, qa + paq1). Two new cyclic quotient singularities of
orders p1pa

d and p1qa
d appear in the ambient space. They correspond to the

origin of each chart and thus located at the new exceptional divisor

Ea = P1
(pa,qa)

/
µp1 = P1

(pa,qa)(p1;−1, q1),

which has self-intersection −d2
p1paqa

, see Proposition 1.6.
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Let h1 = hνa +hνa+l + · · · be the decomposition of h1(x, y) into (pa, qa)-
homogeneous parts. Denote by g1(x, y) and g2(x, y) the unique polynomials
such that

h1(xpa , xqay) = xνag1(x, y), h1(xypa , yqa) = yνag2(x, y).

Then, g1(x
1
d , y)|x=0 = g1(0, y) = hνa(1, y), and g2(x, y

1
d )|y=0 = g2(x, 0) =

hνa(x, 1). Hence the set of points C ∩ Ea is given by the (global) equation

{hνa(x, y) = 0} ⊂ P1
(pa,qa)(p1;−1, q1).

Note that hνa(x, y) is not a function on the previous quotient space but
it defines a zero set, since

hνa(ξ−1
p1 x, ξ

q1
p1y) = ξν1p1hνa(x, y),

hνa(ξβ1p1 x, ξ
−1
p1 y) = ξ−β1ν1p1 h1(x, y).

(6)

The multiplicity of the new exceptional divisor Ea is ma = νa+paν1
d . The

equations of the total transform $∗a$
∗
1(C) in the two charts are given in the

table below, see Example 1.3.

Equations of $∗a$
∗
1(C) Chart

Ea : x = 0
X
(
p1pa
d ;−1, qa+paq1

d

)
−→ Ĉ2(pa, qa)

/
µp1E1 : −

C : g1(x
1
d , y) = 0

[
(xd, y)

]
7→

[(
(xpa , xqay), [1 : y](pa,qa)

)]

Ea : y = 0
X
(
p1qa
d ; pa+β1qa

d ,−1
)
−→ Ĉ2(pa, qa)

/
µp1E1 : x = 0

C : g2(x, y
1
d ) = 0

[
(x, yd)

]
7→

[(
(xypa , yqa), [x : 1](pa,qa)

)]

Now let us see the behavior of the (pa, qa, νa)-weighted blow-up at the
point Pa in dimension 3. In our local coordinates around Pa = [1 : 0 : 0] ∈
(V̂ ∩E0)∩E1, the equation of the divisor π∗1π

∗
0(V ) = V̂ +mE0+(m+1)ν1E1

is given by the function

zmx(m+1)ν1(z + h1(x, y)) : X(p1;−1, q1, ν1) −→ C.

Note that X(p1;−1, q1, ν1) = X(p1;β1,−1,−β1ν1). Now we use the charts
described in Example 1.5.

The ambient space has two new lines of singular points corresponding to
the lines at infinity {x = 0} and {y = 0} of the exceptional divisor

Ea = P2
(pa,qa,νa)

/
µp1 = P2

(pa,qa,νa)(p1;−1, q1, ν1).

Recall that [0 : 0 : 1] ∈ Ea is a quotient singular point not necessarily cyclic.
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The multiplicity of Ea is the sum of the (pa, qa, νa)-multiplicities of the
components of the divisor π∗1π

∗
0(V ) that pass through Pa divided by d =

gcd(p1, qa + paq1), that is,

νam+ pa(m+ 1)ν1 + νa
d

=
(m+ 1)(νa + paν1)

d
= (m+ 1)ma.

To study the locus of non-transversality in a neighborhood of Ea, the
equations of the total transform are calculated in the following table. Note
that the third chart is not given in a normalized form but, as we shall see,
it is not needed for our purpose.

1st chart
Ea : x = 0

X

(
p1pa
d

;−1,
qa + paq1

d
,ma

)
E1 : −
E0 : z = 0

V̂ : z + g1(x
1
d , y) = 0

[
(xd, y, z)

]
7→

[(
(xpa , xqay, xνaz), [1 : y : z]

)]

2nd chart
Ea : y = 0

X

(
p1qa
d

;
pa + β1qa

d
,−1,

νa − β1ν1qa
d

)
E1 : x = 0
E0 : z = 0

V̂ : z + g2(x, y
1
d ) = 0

[
(x, yd, z)

]
7→

[(
(xypa , yqa , yνaz), [x : 1 : z]

)]

3rd chart
Ea : z = 0

X

(
νa pa qa −1
p1νa paν1 + νa qaν1 − q1νa −ν1

)
E1 : x = 0
E0 : −
V̂ : 1 + h1(xzpa ,yzqa )

zpa = 0
[
(x, y, z)

]
7→

[(
(xzpa , yzqa , zνa), [x : y : 1]

)]

The divisor mE0 +(m+1)ν1E1 +(m+1)maEa has clearly normal cross-

ings. Since the polynomial xν1ymag2(x, y
1
d ) defines a function on the quo-

tient space X(p1qad ; pa+β1qa
d ,−1), the following map is a well-defined auto-

morphism on the corresponding cyclic quotient space

X
(p1qa

d
;
pa + β1qa

d
,−1,

νa − β1ν1qa
d

)
, [(x, y, z)] 7−→ [(x, y, z + g2(x, y

1
d )]

and hence the divisor V̂ + (m + 1)ν1E1 + (m + 1)maEa has also normal
crossings.

Only the intersection V̂ ∩ E0 ∩ Ea has to be studied. To do so, we
consider the curves E0 ∩ Ea = {z = 0} and V̂ ∩ Ea = {z + hνa(x, y) = 0}
as subvarieties in Ea = P2

(pa,qa,νa)(p1;−1, q1, ν1). The first two charts of the
latter space are respectively isomorphic to

X
(p1pa

d
;
qa + paq1

d
,ma

)
, X

(p1qa
d

;
pa + β1qa

d
,
νa − β1ν1qa

d

)
.
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By Proposition 1.7, these smooth projective curves are two sections of
Ea with self-intersection number νad

p1paqa
; note that

gcd
(
p1, qa + paq1, νa + paν1, q1νa − ν1qa

)
= d,

which is the greatest common divisor needed in the proposition mentioned
above.

Now working as in Remark 3.3, see also Remark 1.8, one sees that they
meet at #(C∩ Ea) points with exactly the same intersection multiplicity as
in the latter, that is, for P ∈ C ∩ Ea ≡ V̂ ∩ E0 ∩ Ea, one has

(
E0 ∩ Ea, V̂ ∩ Ea; Ea

)
P

=
(
C, Ea; Ĉ2

(pa,qa)

/
µp1

)
P
. (7)

As in the first step, the intersection of the total transform with E0 pro-
duces an identical situation to the tangent cone. Also, note that Figures 2
and 3 can also be used to illustrate the general situation here. The main
difference is that the line at infinity {x = 0} ⊂ Ea coincides with E1 ∩ Ea
and thus the point [0 : 0 : 1] ∈ Ea belongs to two divisors.

Now, to finish, observe that the triple points V̂ ∩ E0 ∩ Ea of the total
transform in dimension 3 are identified with the points of C∩Ea and, by (7),
the intersection at one of those points is transverse if and only if so is it in
dimension 2.

Remark 3.6. Note that if xkg1(x, y) : X(e;−1, r) → C defines a function

and x - g1(x, y), then d := gcd(e, r) divides k and g1(x
1
d , y) is a polyno-

mial. This implies, in particular, that ma is an integer since the polynomial
xνa+paν1g1(x, y) defines a function on X(p1pa;−1, qa + paq1).

Remark 3.7. If y - hνa(x, y), or equivalently Ea 3 [1 : 0] /∈ C, then pa|νa and
p1|(ν1 + νa

pa
); consequently, gcd(p1pad ,ma) = p1pa

d .
Indeed, assume that hνa(x, y) = xe0ye∞

∏
i≥1(xqa − γiypa)ei . Then, its

order is νa = e0pa+e∞qa+paqa
∑

i ei. By (6), the following two expressions
are equal:

hνa(ξ−1
p1 x, ξ

q1
p1y) = ξ−e0+e∞q1

p1 xe0ye∞
∏

(ξ−qap1 xqa − ξq1pap1 γiy
pa)ei =

= ξ
−e0+e∞q1−qa

∑
i ei

p1 xe0ye∞
∏

(xqa − ξq1pa+qa
p1 γiy

pa)ei ,

ξν1p1hνa(x, y) = ξν1p1x
e0ye∞

∏
(xqa − γiypa)ei .

Hence p1 divides ν1 + e0 − e∞q1 + qa
∑

i ei. In the case e∞ = 0, the latter
number is ν1 + νa

pa
and the claim follows.

Anologously, if x - hνa(x, y) (⇔ Ea 3 [0 : 1] /∈ C⇔ e0 = 0), then one has
that qa|νa and p1|(νaqa − β1ν1); consequently, gcd(p1qad , pa+β1qa

d ) = p1qa
d .
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Remark 3.8. Although the third chart, say X3, is not in general a cyclic
quotient space, there are a couple of situations where it is.

• If gcd(ν1, νa) = 1, then the action given by the second row includes
the first one and thus X3 is just C3 under the second row action.

• Also if gcd(p1, ν1) = 1 and λ is the inverse of ν1 modulo p1, then
X(p1;−1, q1, ν1) can be written in the form X(p1;λ,−λq1,−1) and
thus X3 = X(p1νa; pa + λνa, qa − λq1νa,−1).

Let Γ and Γ+ be the dual graphs associated with the total transform and
the exceptional divisor, after having computed an embedded Q-resolution
of (C, P ), respectively. Denote by S(Γ) and S(Γ+) the sets of their vertices.
The classical partial order on S(Γ+) is denoted by 4.

The locus of non-transversality after the last blow-up in dimension 3 is
identified with the locus of non-transversality in the resolution of (C, P ).
Each of these points corresponds to a weighted blow-up in the resolution
of the tangent cone, that is, to a vertex of Γ+. Thus in the next step we
need to blow-up those points to produce a similar situation. Again the same
operation will be applied to the points where the total transform is not a
normal crossing divisor. These points will also be associated with vertices
of Γ+.

The following result is proven by induction on S(Γ+) using the rela-
tion 4. Lemma 3.2 is the first step in the induction. The proof of Lemma 3.5
tells us the way to show the general case. Let b ∈ S(Γ+) be a vertex such
that Pb belongs to the locus of non-transversality of the total transform. As
usual, denote by Eb the exceptional divisor appearing after blowing up the
point Pb.

Proposition 3.9 (Step b). Let $b be the (pb, qb)-weighted blow-up at Pb with
b ∈ S(Γ+). Denote by Eb its exceptional divisor, νb the (pb, qb)-multiplicity
of C ⊂ C2, and mb the multiplicity of Eb.

Consider πb the (pb, qb, νb)-weighted blow-up at Pb in dimension 3 and Eb
the corresponding exceptional divisor. Then, after blowing up the point Pb,
the new total transform verifies:

1. The exceptional divisor Eb is isomorphic to P2(pb, qb, νb)/µe and its
multiplicity equals (m+ 1)mb. In general, the lines at infinity {x = 0}
and {y = 0} are quotient singular in the ambient space and the point
[0 : 0 : 1] is the only one which may be non-cyclic. By contrast, the
stratum {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ Eb does not contain singular
points of the ambient space.

2. Let a be a vertex such that a ≺ b. Then, Ea ∩ Eb 6= ∅ if and only if
Pb ∈ Ea. In such a case, Ea∩Eb is one of the two lines at infinity of Eb
different from {z = 0}. If Pb ∈ Ea∩Ea′, a 6= a′, then the corresponding
lines are different and hence they meet at the point [0 : 0 : 1].
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3. The intersection of the rest of components with E0 produces an iden-
tical situation to the resolution of (C, P ), after blowing up the point
Pb. More precisely,

V̂ ∩ E0 = C,

Eb ∩ E0 = Eb,
Ea ∩ E0 = Ea, ∀a 4 b.

4. The curves E0∩Eb = {z = 0} and V̂ ∩Eb = {z+Hνb(x, y) = 0} are two(−E2b νb
d

)
-sections of Eb and the intersecting points can be identified with

C ∩ Eb. Moreover, the intersection multiplicity of these two sections
at one of those points is the same as in the latter, that is, for P ∈
C ∩ Eb ≡ V̂ ∩ E0 ∩ Eb, one has

(
E0 ∩ Eb, V̂ ∩ Eb; Eb

)
P

=
(
C, Eb; Ĉ2

(pb,qb)

/
µe

)
P
.

If Pb ∈ Ea, then Ea ∩Eb and V̂ ∩Eb always meet at exactly one point.
This point passes through E0 ∩Eb if and only if C∩ Ea ∩ Eb 6= ∅. This
is the case when there exist quadruple points.

5. The locus of non-transversality of the total transform in dimension 3
is identified with the one in the resolution of (C, P ). These points
belong to V̂ ∩E0 ∩Eb = C∩ Eb and they correspond to the ones where
the curves E0 ∩Eb and V̂ ∩Eb, or equivalently Eb and C, do not meet
transversely.

6. The strict transform V̂ never passes through [0 : 0 : 1] ∈ Eb. In
particular, V̂ only contains cyclic quotient singularities.

Proof. By induction on S(Γ+) with respect to4. Lemma 3.2 is base case. As
for the inductive step, one proceeds as in the proof of Lemma 3.5. Assume,
by induction, that the local equation of the total transform in the resolution
of the tangent cone around Pb is given by (gcd(e, r) = gcd(e, s) = 1)

xmayma′H(x, y) : X(e; r, s) −→ C, (8)

where C = {H(x, y) = 0} is the equation of the strict transform and the
others correspond to the divisors Ea and Ea′ (they may not appear if ma or
ma′ equals zero).

Also, the equation of the total transform around Pb in dimension 3 is
given by the function

x(m+1)ma · y(m+1)ma′ · zm
[
z +H(x, y)

]
: X(e; r, s, t) −→ C, (9)
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where V̂ = {z+H(x, y) = 0} is the strict transform, E0 = {z = 0}, and the
others are the divisors Ea and Ea′ (if they exist). Using that both (8) and
(9) are well-defined functions, one has

t+ma · r +ma′ · s ∈ (e).

The verification of the statement is very simple once the local equations
of the divisors appearing in the total transform are calculated. The main
ideas behind are contained in the proof of Lemmas 3.2 and 3.5. The details
are omitted to avoid repeating the same arguments; only the local equations
are given, see table below.

To do so, consider the following data and use the charts described in
Examples 1.3 and 1.5. As auxiliary results, Propositions 1.6 and 1.7 and
Remark 1.8 are also needed.

νb = ord(pb,qb)H(x, y) mb =
pb ·ma + qb ·ma′ + νb

d
d = gcd(e, pb · s− qb · r)

s′r + s ≡ 0 mod (e) r′s+ r ≡ 0 mod (e)

H1(x, y) =
H(xpb , xqby)

xνb
H2(x, y) =

H(xypb , yqb)

yνb

These are the equations in the resolution of the tangent cone C pre-
sented as zero sets in the corresponding (abelian) quotient space, cf. proof
of Lemma 3.5.

Equations Chart

Eb : x = 0
X

(
epb
d

;−1,
qb + s′pb

d

)
−→ Ĉ2(pb, qb)

/
µeEa : −

Ea′ y = 0

C : H1(x
1
d , y) = 0

[
(xd, y)

]
7→

[(
(xpb , xqby), [1 : y](pb,qb)

)]

Eb : y = 0
X

(
eqb
d

;
pb + r′qb

d
,−1

)
−→ Ĉ2(pb, qb)

/
µeEa : x = 0

Ea′ : −
C : H2(x, y

1
d ) = 0

[
(x, yd)

]
7→

[(
(xypb , yqb), [x : 1](pb,qb)

)]

In dimension 3, the local equations of the total transform are presented as
well-defined functions over the corresponding quotient spaces. The notation
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is self-explanatory to recognize the equation of each divisor.

1st chart X

(
epb
d

;−1,
qb + s′pb

d
,
νb + t′pb

d

)
−→ C

x(m+1)mb · y(m+1)ma′ · zm
[
z +H1(x

1
d , y)

]

2nd chart X

(
eqb
d

;
pb + r′qb

d
,−1,

νb + t′′qb
d

)
−→ C

x(m+1)ma · y(m+1)mb · zm
[
z +H2(x, y

1
d )
]

3rd chart X

(
νb pb qb −1
eνb rνb − tpb sνb − tqb t

)
−→ C

x(m+1)ma · y(m+1)ma′ · z(m+1)mb·d
[
1 + H(xzpb ,yzqb )

zνb

]

Here t′ and t′′ are taken so that t′r + t ≡ 0 and t′′s + t ≡ 0 mod-
ulo (e). The exceptional divisor Eb is identified with P2(pb, qb, νb)/µe where
the action is of type (e; r, s, t), i.e. Eb = P2

(pb,qb,νb)
(e; r, s, t).

Remark 3.10. Note that the equations after the blowing-up at Pb around
the points where the total transform is not a normal crossing divisor are of
the same form as in (8) and (9). Hence, by induction, this fact holds for
every stage of the resolution.

Remark 3.11. Let us write Hνb(x, y) = xe0ye∞
∏
i≥1(xqb − γiypb)ei . As in

Remark 3.7, if

y - Hνb(x, y)
(
⇐⇒ Eb 3 [1 : 0] /∈ C⇐⇒ e∞ = 0

)
,

then pb|νb and e|(νbpb +t′); consequently, gcd( epbd ,
νb+t

′pb
d ) = epb

d . Analogously,

e0 = 0 implies gcd( eqbd ,
vb+t

′′qb
d ) = eqb

d .

Theorem 3.12. Given an embedded Q-resolution of (C, P ) for all P ∈
Sing(C), one can construct an embedded Q-resolution of (V, 0), consisting
of weighted blow-ups at points. Each of these blow-ups corresponds to a
weighted blow-up in the resolution of (C, P ) for some P ∈ Sing(C), that is,
it corresponds to a vertex of ΓP+. �

We shall see later that an exceptional divisor EPa in the resolution
of (V, 0) obtained contributes to the monodromy if and only if so does the
corresponding divisor EPa in the tangent cone, see Lemma 4.1 and Theo-
rem 4.3. In particular, the weights can be chosen so that every exceptional
divisor in the embedded Q-resolution of (V, 0), except perhaps the first one
E0, contributes to its monodromy.
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4 The Characteristic Polynomial of SIS

Here we plan to apply Theorem 1.10 to compute the characteristic poly-
nomial of the monodromy and the Milnor number of (V, 0) in terms of its
tangent cone (C, P ). Some notation need to be introduced, concerning the
stratification of each irreducible component of the exceptional divisor in
terms of its quotient singularities.

Given a point P ∈ Sing(C), denote by %P : Y p → (C, P ) an embedded
Q-resolution of the tangent cone. Assume that the total transform is given
by

(%P )∗(C, P ) = C +
∑

a∈S(ΓP+)

mP
a EPa ,

where EPa is the exceptional divisor of the (pPa , q
P
a )-blow-up at a point Pa

belonging to the locus of non-transversality. Denote by νPa the (pPa , q
P
a )-

multiplicity of C at Pa.
Recall that EPa is naturally isomorphic to P1

(pPa ,q
P
a )
/µe. Using this identi-

fication, see Figure 4, define

EPa,1 = EPa \ {[0 : 1], [1 : 0]}, EPa,x = {[0 : 1]}, EPa,y = {[1 : 0]}.

The strata ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b 6=a EPb ∪C

))
for j = 1, x, y (see notation

just above Theorem 1.10) will be considered in Lemma 4.1.

Let us see the situation in the superisolated singularity (V, 0). Denote
by ρ : X → (V, 0) the embedded Q-resolution obtained following Proposi-
tion 3.9. Then, the total transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

and EPa appears after the (pPa , q
P
a , ν

P
a )-blow-up at the point Pa (recall that

the locus of non-transversality in dimension 2 and 3 are identified).
The divisor EPa is naturally isomorphic to P2

(pPa ,q
P
a ,ν

P
a )
/µe. Using this

identification, see Figure 4, define

EPa,1 = EPa \ {xy = 0}, EPa,x = {x = 0} \ {[0 : 1 : 0], [0 : 0 : 1]},
EPa,y = {y = 0} \ {[1 : 0 : 0], [0 : 0 : 1]}, EPa,xy = {[0 : 0 : 1}.

Analogously, one considers EPa,xz and EPa,yz so that EPa =
⊔
j E

P
a,j really

defines a stratification of EPa . However, these two strata belong to more
than one irreducible divisor in the total transform and hence they do not
contribute to the characteristic polynomial. As for E0, according to its
quotient singularities, no stratification need to be considered (it is smooth).
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The Euler characteristic of Ě0 and ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b 6=aE

P
b ∪ V̂

))

for j = 1, x, y, xy (see notation just above Theorem 1.10) as well as its
multiplicity are calculated in Lemma 4.1.

x = 0 y = 0

EP
a

E0 ∩ EP
a

V̂ ∩ EP
a

[γi : 1 : 0]

[0 : 0 : 1]

[0 : 1] [1 : 0][γi : 1]

EP
a

C

Figure 4: Stratification of EPa and EPa .

Lemma 4.1. Using the previous notation, the Euler characteristic and the
multiplicity of Ě0 are

χ(Ě0) = χ(P2 \C), m(Ě0) = m.

For the rest of strata of ĚPa , let us fix a point P ∈ Sing(C). Then, one
has that

χ(ĚPa,j) =





1 a = 1, j = xy

0 a 6= 1, j = xy

−χ(ĚPa,j) ∀a, j = 1, x, y ;

χ(ĚPa,j) 6= 0 =⇒ m(ĚPa,j) =

{
m+ 1 a = 1, j = xy

m(ĚPa,j) · (m+ 1) ∀a, j = 1, x, y.

In fact, ∀a ∈ S(ΓP+), a 6= 1, the stratum ĚPa,xy is empty and, in particular,
its Euler characteristic is zero.

Proof. Let E be an irreducible component of the exceptional divisor of ρ.
Let us travel back in the history of the resolution until the time when E
first appears. Consider the space defined by E minus the intersections with
the other components at that moment.

Since all the weighted blow-ups have center in that intersections, this
space is naturally isomorphic to Ě. Using these arguments, we will per-
form the calculations of the Euler characteristics at the moment when the
component appears in the history of the resolution.

For E0, the space Ě0 is isomorphic to E0 \ (V̂ ∩ E0) which is identi-
fied with P2 \ C; its multiplicity is m, see Figure 1 and discussion before
Lemma 2.1.
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For the rest of the proof the cases j = 1, x, y, xy are treated separately.
Let us fix a point P ∈ Sing(C) and omit the index “P” to simplify the
notation.

Recall that Ea = P2
(pa,qa,νa)/µe, see Proposition 3.9(1). Also Figure 4

will be useful.

• j = xy :

The stratum Ea,xy is the point [0 : 0 : 1] ∈ Ea. By Proposition 3.9, it
belongs to just one divisor if and only if a 6= 1, see Lemma 3.2 and its proof.
This implies that χ(Ě1,xy) = 1 and that

χ(Ěa,xy) = 0, ∀a ∈ S(Γ+) \ {1}.

Following Definition 1.9, the multiplicity of Ě1,xy is (m+1)ν1
ν1

, since the origin
[0 : 0 : 1] ∈ E1 is a cyclic quotient singular point of order ν1, see Lemma 3.2.

• j = x :

The stratum Ea,x is the line {x = 0} ⊂ Ea. If there is another component
of the divisor that passes through Ea,x = [0 : 1] ∈ Ea, then one has Ěa,x = ∅,
and either Ěa,x = Ea,x \ {2 points} or Ěa,x = ∅. Otherwise, Ěa,x = [0 : 1]
and Ěa,x = Ea,x \ {3 points}, see second part of Proposition 3.9(4). In the
case when the Euler characteristic is different from zero, by Remark 3.11,
the multiplicity is

m(Ěb,x) =
(m+ 1)mb

gcd( eqbd ,
νb+t′′qb

d )
=

(m+ 1)mb
eqb
d

= (m+ 1)m(Ěb,x).

The case j = y is exactly the same as j = x.

• j = 1 :

Consider the projection of Ea \ Ea,xy onto the line {z = 0} ≡ Ea. This
map is identified with the morphism

τ : P2
(pa,qa,νa)(e; r, s, t) \ {[0 : 0 : 1]} −→ P1

(pa,qa)(e; r, s),

[x : y : z] 7→ [x : y].

Note that the restriction τ | : Ěa,1 → Ěa,1 is a fibration with fiber isomorphic
to C \ {2 points} and hence χ(fiber) = −1.

The multiplicity of the smooth part is (m + 1)ma in the superisolated
singularity while it is ma in the tangent cone.

To finish observe that in any case, one has that χ(Ěa,j) = −χ(Ěa,j) and,
if they are different from zero, m(Ěa,j) = (m+ 1)m(Ěa,j). Now the proof is
complete.
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Remark 4.2. The Euler characteristic of the complement of a projective
plane curve in P2 is known to be

χ(P2 \C) = (m2 − 3m+ 3)−
∑

P∈Sing(C)

µP ,

see [6], or [1] for an elementary proof based on the additivity of the Euler
characteristic.

Theorem 4.3. The characteristic polynomial of the complex monodromy of
(V, 0) is

∆(V,0)(t) =
(tm − 1)χ(P2\C)

t− 1

∏

P∈Sing(C)

∆(C,P )(t
m+1),

where ∆(C,P )(t) denotes the characteristic polynomial of the local complex
monodromy of (C, P ).

Proof. Given a point P ∈ Sing(C), let us compute the characteristic poly-
nomial of (C, P ). Its total transform is

(%P )∗(C, P ) = Ĉ +
∑

a∈S(ΓP+)

mP
a EPa ,

and the stratification associated with each exceptional divisor needed for ap-
plying A’Campo’s formula is Ěa = Ěa,1tĚa,xtĚa,y. Then, by Theorem 1.10,

∆(C,P )(t) = (t− 1)
∏

a∈S(ΓP+)
j=1, x, y

(tm(ĚPa,j) − 1)−χ(ĚPa,j). (10)

Let us see the situation in the superisolated singularity (V, 0). The total
transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

and the corresponding stratification is ĚPa = ĚPa,1 t ĚPa,x t ĚPa,y t ĚPa,xy.
By Theorem 1.10, the characteristic polynomial of (V, 0) is

∆(V,0)(t) =
1

t− 1
(tm(Ě0) − 1)χ(Ě0)

∏

P∈Sing(C)

a∈S(ΓP+)
j=1, x, y, xy

(tm(ĚPa,j) − 1)χ(ĚPa,j). (11)

From Lemma 4.1, m(Ě0) = m and χ(Ě0) = χ(P2 \C), and the latter can
be computed combinatorially as indicated in the statement. Let us calculate
the contribution of the preceding product for a given point P ∈ Sing(C).
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Again using Lemma 4.1 and, in particular, the fact that a 6= 1 implies
χ(ĚPa,xy) = 0, one has that

∏

a∈S(ΓP+)
j=1, x, y, xy

(
tm(ĚPa,j) − 1

)χ(ĚPa,j)
=

=
(
tm(ĚP1,xy) − 1

)χ(ĚP1,xy)

︸ ︷︷ ︸
a=1, j=xy

∏

a∈S(ΓP+)
j=1, x, y

(
tm(ĚPa,j) − 1

)χ(ĚPa,j)

=
(
tm+1 − 1

)1 ∏

a∈S(ΓP+)
j=1, x, y

(
t(m+1)m(ĚPa,j) − 1

)−χ(ĚPa,j)
.

By (10), the last expression is equal to ∆(C,P )(t
m+1) and hence (11) is

exactly the formula of the statement.

Remark 4.4. Note that the first part of ∆(t) is closely related to the zeta
function of the tangent cone fm(x, y, z) regarded as an function on C3. In
fact, Z(fm : C3 → C; t) = (1− tm)χ(P2\C). This is a consequence of the fact
that the monodromy zeta function of a homogeneous polynomial of degree
d is Z(t) = (1− td)χ(F )/d, where F is the corresponding Milnor fiber.

Corollary 4.5. The Milnor number of a SIS can be expressed in terms of
the Milnor numbers of the singular points of the tangent cone, namely

µ(V, 0) = (m− 1)3 +
∑

P∈Sing(C)

µ(C, P ).

Proof. The Milnor number coincides with the degree of the characteristic
polynomial. Then,

deg ∆(t) = m
(
m2 − 3m+ 3−

∑

P

µP
)
− 1 +

∑

P

deg ∆P (t)︸ ︷︷ ︸
µP

(m+ 1)

= m3 − 3m2 + 3m−m
∑

P

µP − 1 + (m+ 1)
∑

P

µP

= (m− 1)3 +
∑

P

µP .

Above, the sums are taken over P ∈ Sing(C).

5 Yomdin-Lê Surface Singularities

The family of singularities studied above can be generalized as follows. Let
f = fm+fm+k+ · · · ∈ C{x, y, z} be the decomposition of f into its homoge-
neous parts, k ≥ 1. Denote V := V (f) ⊂ C3 and C := V (fm) ⊂ P2. Then,
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the germ (V, 0) is said to be a Yomdin-Lê surface singularity (YLS) if the
condition Sing(C) ∩ V (fm+k) = ∅ holds in P2.

The main difficulty in finding a (usual) embedded resolution of this kind
of singularities is that after several blow-ups at points and rational curves,
following the ideas of [2], one eventually obtains a branch of resolutions
depending on k. Thus the study of this singularities by using these tools
seem to be very long and tedious.

However, an embedded Q-resolution of (V, 0) can be computed exactly
as for SIS, i.e. by means of weighted blow-ups at points. In fact, this is the
main purpose of Section 6. As an application, the characteristic polynomial
and the Milnor number are calculated using Theorem 1.10. Again, the
weights at each step can be chosen so that every exceptional divisor in the
Q-resolution, except perhaps the first one E0, contributes to its monodromy.

In order not to repeat the same arguments, the proofs of this section
are sketched, commented, or simply omitted. Moreover, they are presented
following the same structure as in previous sections so that one can easily
compares the corresponding results with the SIS. In the discussion, one usual
thinks that k 6= 1, since otherwise (V, 0) is a SIS.

We start the embedded Q-resolution of (V, 0) with the usual blow-up
at the origin π0 : Ĉ3 → C3. The total transform is the divisor π∗0(V ) =

V̂ +mE0, where V̂ is the strict transform and E0 is the exceptional divisor.
The intersection V̂ ∩E0 is identified with the tangent cone of the singularity,
see Figure 5.

E0

V̂

C

π∗
0(V ) = V̂ +mE0

V̂ ∩ E0 = C
NT (π∗

0(V )) = Sing(C)

Figure 5: Step 0 in the embedded Q-resolution of (V, 0).

Let us consider P ∈ V̂ ∩ E0 = C. After linear change of coordinates we
can assume that P = ((0, 0, 0), [0 : 0 : 1]) ≡ [0 : 0 : 1] ∈ C. Take a chart of
Ĉ3 around P where z = 0 is the equation of E0 and the blowing-up takes
the form

(x, y, z)
π07−→ (xz, yz, z).

Then, the equation of V̂ is

V̂ : fm(x, y, 1) + zk
[
fm+k(x, y, 1) + zfm+k+1(x, y, 1) + · · ·

]
= 0.
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Two cases arise: if P is smooth in the tangent cone, then V̂ is also smooth
at P and the intersection with E0 at that point is transverse; otherwise,
i.e. P ∈ Sing(C), the YLS condition Sing(C) ∩ V (fm+k) = ∅ implies that
the previous expression in brackets is a unit in the local ring C{x, y, z} and
V̂ is not smooth at P (unless k = 1). Now the order of fm(x, y, 1) is greater
than or equal to 2 and the intersection V̂ ∩ E0 is not transverse at P .

We summarize the previous discussion in the following result, which is
the step zero in our Q-resolution of (V, 0).

Lemma 5.1 (Step 0). Let P ∈ C. The surfaces V̂ and E0 intersect
transversely at P if and only if P is a smooth point in C. Otherwise,
i.e. P ∈ Sing(C), there exist local analytic coordinates around P such that
the equations of the exceptional divisor and the strict transform are

E0 : z = 0 ;

V̂ : zk + h(x, y) = 0 ,

where h(x, y) = 0 is an equation of C and its order is at least 2.

Remark 5.2. Observe that the main difference at this stage is that V̂ is not
smooth at the singular points of the tangent cone and its equation at those
points has zk as one of its terms.

6 Embedded Q-Resolution for YLS

After the step zero NT (π∗0(V )) is identified with Sing(C). The next step in
the Q-resolution of (V, 0) is to blow up those points. Let us fix P ∈ Sing(C)
and consider local coordinates as in Lemma 5.1. The idea is to choose
suitable weights so that the strict transform of V̂ has again an equation of
the same form, namely zk +H(x, y) = 0.

Given an exceptional divisor in the tangent cone Ea, a ∈ S(Γ+), and ma

its multiplicity, denote ka := gcd(k,ma). When a = 1, then m1 = ν1 and
thus k1 = gcd(k, ν1).

Lemma 6.1 (Step 1). Let (p1, q1) ∈ N2 be two positive coprime numbers.
Let $1 be the (p1, q1)-weighted blow-up at P ∈ C. Denote by E1 its excep-
tional divisor and by ν1 the (p1, q1)-multiplicity of C at P .

Consider π1 the
(kp1
k1
, kq1k1 ,

ν1
k1

)
-weighted blow-up at P in dimension 3

and E1 the corresponding exceptional divisor. Then, the total transforms
verify:

1. $∗1(C) = C + ν1E1,

2. π∗1π
∗
0(V ) = V̂ +mE0 + (m+ k)

ν1

k1
E1,

3. NT (π∗1π
∗
0(V )) = NT ($∗1(C)).
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Proof. The weighted blow-up at P in the tangent cone is described in detail
in the first part of the proof of Lemma 3.2. Thus we only consider here the
weighted blow-up at P with respect to

(kp1
k1
, kq1k1 ,

ν1
k1

)
in dimension 3.

The new space has in general three cyclic quotient singular lines, see
Remark 6.2(1) below, each of them isomorphic to P1, and located at the
new exceptional divisor E1. They correspond to the three lines at infinity
of E1 = P2

(kp1
k1
, kq1k1 ,

ν1
k1

)
.

The multiplicity of E1 is the sum of the multiplicities, in our local coor-
dinates, of the components of the divisor π∗0(V ) that pass through P , that
is, m ν1

k1
+ k ν1k1 = (m+ k) ν1k1 .

Hence the total transform is the divisor

π∗1π
∗
0(V ) = V̂ +mE0 + (m+ k)

ν1

k1
E1.

To study the locus of non-transversality, the equations in the three charts
are calculated in the table below. Note that the cyclic quotient spaces
are represented by their normalized types, since gcd

(kp1
k1
, kq1k1 ,

ν1
k1

)
= 1, see

Example 1.4.

X

(
kp1

k1
;−1,

kq1

k1
,
ν1

k1

)
X

(
kq1

k1
;
kp1

k1
,−1,

ν1

k1

)

(x, y, z)
π17−→ (x

kp1
k1 , x

kq1
k1 y, x

ν1
k1 z) (xy

kp1
k1 , y

kq1
k1 , y

ν1
k1 z)

E0 z = 0 z = 0
E1 x = 0 y = 0

V̂ zk + h1(x
k
k1 , y) = 0 zk + h2(x, y

k
k1 ) = 0

X

(
ν1

k1
;
kp1

k1
,
kq1

k1
,−1

)

(x, y, z)
π17−→ (xz

kp1
k1 , yz

kq1
k1 , z

ν1
k1 )

E0 −
E1 z = 0

V̂ 1 + hν1(x, y) + z
kl
k1 hν1+l(x, y) + · · · = 0

Clearly E1 and E0 intersect transversely. The strict transform V̂ also
cuts E1 transversely except perhaps at {z = 0} ⊂ E1. The equations of
these intersections are given by

E0 ∩ E1 = {z = 0},
V̂ ∩ E1 = {zk + hν1(x, y) = 0},

as projective subvarieties in E1 = P2
(kp1
k1
, kq1k1 ,

ν1
k1

)
.
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By Proposition 1.7, these smooth projective curves have self-intersection
numbers k1ν1

k2p1q1
and k1ν1

p1q1
respectively. They meet at #(C ∩ E1) points with

intersection number k1/k times the intersection number in C ∩ E1, that is,
for P ∈ C ∩ E1 ≡ V̂ ∩ E0 ∩ E1, one has

(
V̂ ∩ E1, E0 ∩ E1; E1

)
P

=
k1

k
·
(
C, E1; Ĉ2

(p1,q1)

)
P
. (12)

On the other hand, the intersection of the total transform with E0 pro-
duces an identical situation to the tangent cone, see Remark 6.2(2) for a
more detailed explanation.

(
ν1
k1

)

(kq1k1 )

(kp1k1 )

x = 0

y = 0

E1

E0 ∩ E1

V̂ ∩ E1

(
k
k1

)

[0 : 0 : 1]

(
kp1
k1

)

(
kq1
k1

)

E0

E1 ∩ E0

V̂ ∩ E0

[γi : 1] gcd(k, ν1q1 )

Figure 6: Step 1 in the embedded Q-resolution of (V, 0).

All these statements follow from the equations above. In Figure 6, we
see the intersection of the divisor π∗1π

∗
0(V ) with E0 and E1, respectively.

See also Figure 2 for the situation in C. Finally, the triple points of the
total transform in dimension 3 are identified with the points of C ∩ E1 and,
by (12), the intersection at one of those points is transverse if and only if so
is it in dimension 2. This concludes the proof.

Remark 6.2. Just to emphasize, we collect below the main differences with
the embedded Q-resolution for SIS at this stage, cf. Lemma 3.2 and its proof.

1. The stratum {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ E1 contains singular
points of the ambient space. In fact, the group acting on these points
is of type

(
k
k1

;−1, 0, ν1k1

)
, see Figure 6.

2. In principle, the intersection of E0 with the rest of components seem
to be different from the situation in the tangent cone, because in the
first chart E1 ∩ E0 = {x = 0} and V̂ ∩ E0 = {h1(xk/k1 , y) = 0}
on X

(kp1
k1

;−1, kq1k1

)
. After normalizing the latter type, one finds the

equation of E1 and C on X(p1;−1, q1), cf. 6.3.

3. Write hν1(x, y) = xayb
∏
i(x

q1−γq1i yp1)ei = 0. If a = 0, or equivalently

E1 3 [0 : 1] /∈ C, then {x = 0} ⊂ E1 cuts V̂ ∩E1 = {zk+hν1(x, y) = 0}
in exactly gcd(k, ν1q1 ) points different from the origins of E1. Analo-
gously, {y = 0} ⊂ E1 intersects in gcd(k, ν1p1 ) points if b = 0. This can
be checked directly or applying Bézout’s Theorem on E1.
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Let Γ and Γ+ be the dual graphs associated with the total transform and
the exceptional divisor, after having computed an embedded Q-resolution
of (C, P ), respectively. Denote by S(Γ) and S(Γ+) the sets of their vertices.
The classical partial order on S(Γ+) is denoted by 4.

The locus of non-transversality after the last blow-up in dimension 3 is
identified with the locus of non-transversality in the resolution of (C, P ).
Each of these points corresponds to a weighted blow-up in the resolution
of the tangent cone, that is, to a vertex of Γ+. Thus in the next step we
need to blow-up those points to produce a similar situation. Again the same
operation will be applied to the points where the total transform is not a
normal crossing divisor. These points will be associated with vertices of Γ+

too.

Before describing a generic step, blowing up the point Pb as in Propo-
sition 3.9, let us clarify the justification for working with non-normalized
spaces.

6.3. After the first blow-up the local equation of the total transform of
(C, P ) is given by xν1h1(x, y) : X(p1;−1, q1)→ C, see proof of Lemma 3.2.
The situation in dimension 3 is provided by

x
(m+k)

ν1
k1︸ ︷︷ ︸

E1

· zm︸︷︷︸
E0

·
[
zk + h1(x

k
k1 , y)

]
︸ ︷︷ ︸

V̂

: X

(
kp1

k1
;−1,

kq1

k1
,
ν1

k1

)
−→ C,

as we have just seen in the proof of Lemma 6.1. The divisors E1 and E1 are
both represented by x = 0.

However, the equation of the strict transform of C and V̂ do not corre-
spond to each other directly. This obstruction can be solved working with
non-normalized types, since the function

x
kν1
k1 h1(x

k
k1 , y) : X

(
kp1

k1
;−1,

kq1

k1

)
−→ C

also gives rise to the total transform of C on a space represented by a non-
normalized type.

On the other hand, the embedded Q-resolution of a Yomdin-Lê surface
singularity will contain in general non-cyclic quotient singularities. Hence
providing normalized types is long and tedious. Motivated by this fact and
for better understanding of the relationship between C and (V, 0), we present
the embedded Q-resolution without explicitly giving the normalized type of
each quotient space.

The following result is proven by induction on S(Γ+) using the rela-
tion 4. Lemma 6.1 and 6.3 just above is the first step in the induction. Let
b ∈ S(Γ+) be a vertex such that Pb belongs to the locus of non-transversality
of the total transform. As usual, denote by Eb the exceptional divisor ap-
pearing after blowing up the point Pb.

31



Proposition 6.4 (Step b). Let $b be the (pb, qb)-weighted blow-up at Pb with
b ∈ S(Γ+). Denote by Eb its exceptional divisor, νb the (pb, qb)-multiplicity
of C ⊂ C2, and mb the multiplicity of Eb. Assume, if necessary, that k|pb
and k|qb so that k|νb too.

Consider πb the (pb, qb,
νb
k )-weighted blow-up at Pb in dimension 3 and Eb

the corresponding exceptional divisor. Then, after blowing up the point Pb,
the new total transform verifies:

1. The exceptional divisor Eb is isomorphic to P2(pb, qb,
νb
k )/µe and its

multiplicity equals (m+ k)mbkb . In general, their three lines at infinity
are quotient singular in the ambient space.

2. Let a be a vertex such that a ≺ b. Then, Ea ∩ Eb 6= ∅ if and only if
Pb ∈ Ea. In such a case, the curve Ea ∩ Eb is one of the two lines at
infinity of Eb different from {z = 0}. If Pb ∈ Ea ∩ Ea′, a 6= a′, then
the corresponding lines are different and hence they meet at the point
[0 : 0 : 1].

3. The intersection of the rest of components with E0 produces an iden-
tical situation to the resolution of (C, P ), after blowing up the point
Pb. More precisely,

V̂ ∩ E0 = C,

Eb ∩ E0 = Eb,
Ea ∩ E0 = Ea, ∀a 4 b.

4. The curves E0 ∩ Eb = {z = 0} and V̂ ∩ Eb = {zk + Hνb(x, y) = 0}
have self-intersection numbers

−E2b νbkb
k2`

and
−E2b νbkb

` respectively, and
the intersecting points can be identified with C ∩ Eb.
Moreover, the intersection multiplicity of these two curve at those
points can be computed as follows. Let P ∈ V̂ ∩E0∩Eb ≡ C∩Eb, then
one has

(
V̂ ∩ Eb, E0 ∩ Eb; Eb

)
P

=
1

O(Eb,z)
·
(
C, Eb; Ĉ2

(pb,qb)

/
µe

)
P
,

where O(Eb,z) denotes the order of the group acting on the natural
stratum Eb,z := {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ Eb.
Let Pb ∈ Ea (a ≺ b) and assume e.g. Ea ∩ Eb = {x = 0} ⊂ Eb.
If C ∩ Ea ∩ Eb = ∅, then Ea ∩ Eb and V̂ ∩ Eb meet transversely at
exactly gcd(k,m(Ěb,x)) points different from the origins of Eb. Other-
wise, i.e. C ∩ Ea ∩ Eb 6= ∅, the letter curves only meet at one point,
which besides passes through E0∩Eb. This is the case when there exist
quadruple points.
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5. The locus of non-transversality of the total transform in dimension 3
is identified with the one in the resolution of (C, P ). These points
belong to V̂ ∩E0 ∩Eb ≡ C∩ Eb and they correspond to the ones where
the curves E0 ∩Eb and V̂ ∩Eb, or equivalently Eb and C, do not meet
transversely.

6. The strict transform V̂ never passes through [0 : 0 : 1] ∈ Eb.

Proof. By induction on S(Γ+) with respect to the order 4. The base case
is Lemma 6.1 together with its modification explained in 6.3. As for the
inductive step, one proceeds as in the proof of Lemma 3.5. Assume, by
induction, that the local equation of the total transform in the resolution of
the tangent cone around Pb is given by the function

xnayna′H(x, y) : X(e; r, s) −→ C,

where C = {H(x, y) = 0} is the equation of the strict transform and the
others correspond to the divisors Ea and Ea′ (they may not appear if na or na′

equals zero). In principle, the type (e; r, s) is not assumed to be normalized.
Hence na and na′ are not the multiplicities of Ea and Ea′ .

Also, the equation of the total transform around Pb in dimension 3 is
given by the function

x
(m+k)na

k · y
(m+k)na′

k · zm ·
[
zk +H(x, y)

]
: X(e; r, s, t) −→ C,

where V̂ = {zk+H(x, y) = 0} is the strict transform, E0 = {z = 0}, and the
others are the divisors Ea and Ea′ (if they exist). Using that both equations
are well-defined functions on the corresponding quotient spaces, one has

na
k
· r +

na′

k
· s + t ≡ 0 (mod e). (13)

The verification of the statement is very simple once the local equations
of the divisors appearing in the total transform are calculated. The main
ideas behind are contained in the proof of Lemma 6.1 and 6.3. The details are
omitted to avoid repeating the same arguments; only the local equations are
given, see below. To do so, consider the following data and use the charts
described in Examples 1.3 and 1.5. As auxiliary results Propositions 1.6
and 1.7 and Remark 1.8 are also needed.

νb := ord(pb,qb)H(x, y) nb := pb · na + qb · na′ + νb

H1(x, y) := H(xpb ,xqby)
xνb H2(x, y) := H(xypb ,yqb )

yνb

Note that if QC
1 denotes the quotient space of the first chart in the

tangent cone (see below) and (QC
1 , [(0, 1)]) ∼= (C2, (0, 1)), [(x, y)] 7→ (x`, y)

defines an isomorphism of germs, then the multiplicity of the new exceptional
divisor Eb is mb = nb

` .
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These are the equations in the resolution of the tangent cone. They are
presented as zero sets omitting their multiplicities.

Equations Chart

Eb : x = 0
X

(
pb −1 qb
pbe r pbs− qbr

)
−→ Ĉ2(pb, qb)

/
µeEa : −

Ea′ y = 0
C : H1(x, y) = 0

[
(x, y)

]
7→

[(
(xpb , xqby), [1 : y](pb,qb)

)]

Eb : y = 0
X

(
qb pb −1
qbe qbr− pbs s

)
−→ Ĉ2(pb, qb)

/
µeEa : x = 0

Ea′ : −
C : H2(x, y) = 0

[
(x, y)

]
7→

[(
(xypb , yqb), [x : 1](pb,qb)

)]

In dimension 3, the local equations of the total transform are presented as
well-defined functions over the corresponding quotient spaces. The notation
is self-explanatory to recognize the equation of each divisor. In the first
chart, however, it is indicated the divisor corresponding to each equation.
Note that, for instance, the polynomial in the first chart has been obtained

after performing the substitution (x, y, z) 7→ (xpb , xqby, x
νb
k z).

1st chart X

(
pb −1 qb

νb
k

pbe r pbs− qbr pbt− νb
k r

)
−→ C

x
(m+k)nb

k︸ ︷︷ ︸
Eb

· y
(m+k)na′

k︸ ︷︷ ︸
Ea′

· zm︸︷︷︸
E0

·
[
zk +H1(x, y)

]
︸ ︷︷ ︸

V̂

2nd chart X

(
qb pb −1 νb

k
qbe qbr− pbs s qbt− νb

k s

)
−→ C

x
(m+k)na

k · y
(m+k)nb

k · zm ·
[
zk +H2(x, y)

]

3rd chart X

( νb
k pb qb −1
νb
k e νb

k r− pbt νb
k s− qbt t

)
−→ C

x
(m+k)na

k · y
(m+k)na′

k · z
(m+k)nb

k ·
[
1 + H(xzpb ,yzqb )

zνb

]

Note that if QV
1 denotes the quotient space of the first chart in dimen-

sion 3 (see above) and (QV
1 , [(0, 1, 1)]) ∼= (C3, (0, 1, 1)), [(x, y, z)] 7→ (xL, y, z)

defines an isomorphism of germs, then the multiplicity of the new exceptional
divisor Eb is (m+k)nb

kL .
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Remark 6.5. Observe that the columns of the new spaces satisfy a condition
analogous to (13). For example, using (13), it can be checked that

nb
k
·
(
−1
r

)
+
na′

k
·
(

qb
pbs− qbr

)
+

( νb
k

pbt− νb
k r

)
≡
(

0
0

)
, mod

(
pb
pbe

)
.

In other words, the third column is a linear combination of the first two ones,
modulo the order of the corresponding group. This can be used to prove
that L = gcd(`, nbk ) and hence the multiplicity of Eb is (m+k)·mb

gcd(k,mb)
indeed.

Theorem 6.6. Given an embedded Q-resolution of (C, P ) for all P ∈
Sing(C), one can construct an embedded Q-resolution of (V, 0), consisting
of weighted blow-ups at points. Each of these blow-ups corresponds to a
weighted blow-up in the resolution of (C, P ) for some P ∈ Sing(C), that is,
it corresponds to a vertex of ΓP+. �

By Lemma 7.1 and Theorem 7.2, an exceptional divisor EPa in the Q-
resolution of (V, 0) contributes to the monodromy if and only if so does the
corresponding divisor EPa in (C, P ). Hence the weights can be chosen so
that every exceptional divisor, except perhaps the first one E0, contributes
to its monodromy.

7 The Characteristic Polynomial of YLS

Here we plan to apply Theorem 1.10 to compute the characteristic poly-
nomial of the monodromy and the Milnor number of (V, 0) in terms of its
tangent cone (C, P ). Some notation need to be introduced, concerning the
stratification of each irreducible component of the exceptional divisor in
terms of its quotient singularities.

Given a point P ∈ Sing(C), denote by %P : Y p → (C, P ) an embedded
Q-resolution of the tangent cone. Assume that the total transform is given
by

(%P )∗(C, P ) = C +
∑

a∈S(ΓP+)

mP
a EPa ,

where EPa is the exceptional divisor of the (pPa , q
P
a )-blow-up at a point Pa

belonging to the locus of non-transversality. Denote by νPa the (pPa , q
P
a )-

multiplicity of C at Pa.
Recall that EPa is naturally isomorphic to P1

(pPa ,q
P
a )
/µe. Using this iden-

tification, see Figure 7, define

EPa,1 = EPa \ {[0 : 1], [1 : 0]}, EPa,x = {[0 : 1]}, EPa,y = {[1 : 0]}.

The strata ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b 6=a EPb ∪C

))
for j = 1, x, y (see notation

just above Theorem 1.10) will be considered in Lemma 7.1.

35



Let us see the situation in the Yomdin-Lê singularity (V, 0). Denote by ρ :
X → (V, 0) the embedded Q-resolution obtained following Proposition 6.4.
Then, the total transform is (recall kPa := gcd(k,mP

a ))

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ k)
mP
a

kPa
EPa ,

and EPa appears after the blow-up at the point Pa with suitable weights (re-
call that the locus of non-transversality in dimension 2 and 3 are identified).

The divisor EPa is naturally isomorphic to P2
ω/µe. Using this identifica-

tion, see Figure 7, define

EPa,1 = EPa \ {xyz = 0}, EPa,x = {x = 0} \ {[0 : 1 : 0], [0 : 0 : 1]},
EPa,y = {y = 0} \ {[1 : 0 : 0], [0 : 0 : 1]}, EPa,xy = {[0 : 0 : 1}.

Analogously, one considers EPa,z, E
P
a,xz, and EPa,yz so that EPa =

⊔
j E

P
a,j

really defines a stratification. However, these three strata belong to more
than one irreducible divisor in the total transform and hence they do not
contribute to the characteristic polynomial.

As for E0, according to its quotient singularities, no stratification need
to be considered (it is smooth).

The Euler characteristic of Ě0 and ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b6=aE

P
b ∪ V̂

))

for j = 1, x, y, xy (see notation just above Theorem 1.10) as well as its
multiplicity are calculated in Lemma 7.1.

E0 ∩ EP
a

[0 : 1] [1 : 0][γi : 1]

EP
a

C

x = 0

y = 0

EP
a

V̂ ∩ EP
a

[0 : 0 : 1]

[γi : 1 : 0]

Figure 7: Stratification of EPa and EPa .

The following three results are presented without their proofs because
they do not provide any new idea. They are the analogous of Lemma 4.1,
Theorem 4.3, and Corollary 4.5, respectively. Anyway, recall that the Euler
characteristic of P2 \C is m2 − 3m+ 3−∑P∈Sing(P ) µP .

Lemma 7.1. Using the previous notation, the Euler characteristic and the
multiplicity of Ě0 are

χ(Ě0) = χ(P2 \C), m(Ě0) = m.
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For the rest of strata of ĚPa , let us fix a point P ∈ Sing(C). Then, one
has that

χ(ĚPa,j) =





1 a = 1, j = xy

0 a 6= 1, j = xy

− gcd
(
k,m(ĚPa,j)

)
· χ(ĚPa,j) ∀a, j = 1, x, y ;

χ(ĚPa,j) 6= 0 =⇒ m(ĚPa,j) =





m+ k a = 1, j = xy

(m+ k) ·m(ĚPa,j)
gcd

(
k,m(ĚPa,j)

) ∀a, j = 1, x, y.

In fact, ∀a ∈ S(ΓP+), a 6= 1, the stratum ĚPa,xy is empty and, in particular,
its Euler characteristic is zero. �

Theorem 7.2. The characteristic polynomial of the complex monodromy of
(V, 0) is

∆(V,0)(t) =
(tm − 1)χ(P2\C)

t− 1

∏

P∈Sing(C)

∆k
(C,P )(t

m+k),

where ∆(C,P )(t) denotes the characteristic polynomial of the local complex

monodromy of (C, P ) and if ∆(t) =
∏
i(t

mi − 1)ai, then ∆k(t) denotes

∆k(t) =
∏

i

(
t

mi
gcd(mi,k) − 1

)gcd(mi,k)ai
. �

Corollary 7.3. The Milnor number of a Yomdin-Lê surface singularity can
be expressed in terms of the Milnor numbers of the singular points of the
tangent cone, namely

µ(V, 0) = (m− 1)3 + k
∑

P∈Sing(C)

µ(C, P ). �
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