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A NOTE ON COMMUTING FOLIATIONS

NGUYEN TIEN ZUNG

ABSTRACT. The aim of this note is to extend the notion of commuta-
tivity of vector fields to the category of singular foliations, using Nambu
structures, i.e. integrable multi-vector fields. We will show some basic
results about commuting Nambu structures.

1. INTRODUCTION

Foliations are often viewed as generalizations of dynamical systems. A
lot of natural notions can be extended from the world of dynamical systems
to the world of foliations. For example, many authors studied the entropy
of foliations (see, e.g., [9] and references therein, and also [11]). However,
to my knowledge, the general notions of commutativity and integrability,
which are very important for dynamical systems, have been given very little
attention so far in the world of foliations. The only explicit mentions of the
words “(non)commuting foliations” that I found in the literature are a paper
of Movshev [7] and some papers of Katok and his collaborators (see, e.g.,
[3]). The aim of this note is to attract attention to commuting foliations,
and to give some preliminary results about them, which are relatively simple
but nevertheless interesting in our view.

So what are commuting foliations? As V.I. Arnold said, a good definition
is five good examples. Instead of giving a formal definition, let us list here
some examples which could be considered as (singular) commuting folia-
tions. These examples are different but related to each other, and they all
generalize the notion of commuting vector fields:

- Commuting actions of Lie groups and Lie algebras. In particular, fo-
liations generated by commuting vector fields in an integrable dynamical
system.

- A pair of transverse foliations JFi, F» such that the holonomy of F; acts
trivially on Fy and vice versa (Movshev [7]).

- Almost direct products, i.e. constructions of the type (F} x F3)/G, where
F1 and F, are two manifolds, and G is a discrete group which acts on the
product Fy x F5 freely and diagonally, i.e. G acts on both F; and F5, and
the action of G on F; X Fy is composed of these two actions of G on £} and
F,. The two foliations on (F} x F5)/G are the “horizontal” foliation with
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leaves (Fy x {pt})/G and the “vertical” foliation with leaves ({pt} x F»)/G
respectively.

- Foliations generated by compatible Poisson structures, symplectic struc-
tures, Dirac structures, etc.

- Parallelizable webs (see, e.g., [1]).

- Commuting Nambu structures (see below).

There are many different ways to generate (singular) foliations. One of
the most general and convenient ways is via the so called Nambu structures,
i.e. multi-vector fields which are integrable a la Frobenius. In this note we
will also be mainly concerned with Nambu structures, We refer the reader to
Chapter 6 of [2] and also to [I2] for basic notions about Nambu structures
which will be used in this paper. We will use the following definition of
Nambu structures [12] which is a bit different from the original definition of
Takhtajan [8]: A Nambu structure (or tensor) of order ¢ on a manifold
M is a g-vector field A on M which satisfies the following condition: for
any point p € M such that II(p) # 0, there is a local coordinate system
(1,...,xy) in a neighborhood of p such that

0 0
(1.1) A= e A ey
in that neighborhood. Geometrically, a Nambu structure of order ¢ is noth-
ing but a singular g-dimensional foliation together with a contravariant
volume form (i.e. g-vector field) on its leaves: in the local normal form
A = 8%1 Ao A 6%(1 the foliation is generated by the commuting vector

fields 8%1, e 8%(1. A Nambu structure is called regular if it does not vanish
anywhere. In that case its foliation is also a regular foliation.

An advantage of multi-vector fields in the study of foliations is that we can
use the Schouten bracket in the calculus of multi-vector fields. In particular,
it would be natural to say that when two Nambu stuctures commute then
their Schouten bracket vanish. This definition, which was already mentioned
in [2], works well in the case when the sum of the orders of the two Nambu
structures does not exceed the dimension of the manifold (see Definition
211 and Proposition below). However, if Ay and Ay are two Nambu
structures of orders ¢; and g9 respectively on a n-dimensional manifold,
such that g1 + g2 > n, then the condition [A;,As] = 0 does not mean
much. (It means nothing at all when ¢; + g2 > n + 2, because the order of
[A1,A2] is g1 + g2 — 1 > n in that case so [Aj, Ag] is automatically zero).
In this note, we will give a meaningful definition of commutativity of two
Nambu structures A; and A in the case when ¢; + g2 > n, by replacing the
equation [A1, Ag] = 0 by an appropriate stronger condition (see Definition
and Proposition 2.7)).

2. COMMUTING NAMBU TENSORS

2.1. The case ¢1 + ¢2 < n.
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Definition 2.1. Let A1 and Ay be Nambu tensors of orders g1 and qo respec-
tively on a manifold M of dimension n, such that q1+q2 < n and Ay AAs # 0
almost everywhere. Then we will say that A1 and Ay commute with each
other if their Schouten bracket vanishes:

(2.1) [Ar, As] = 0.

Proposition 2.2 ([2]). Let A; and Az be two commuting Nambu tensors of
orders q1 and qo respectively on a manifold M of dimension n, with g1 +qs <
n. Suppose that A1(O) A Aa(O) # 0 at a point O € M. Then Ay and Ay can
be put into the following simultaneous normal form with respect to a local

coordinate system (x1,...,%y) in a neighborhod of O:
_ 0 0
59 Al_a_xl/\"'/\amql’
27 Oz Dagytay

Proof. The above proposition was mentioned without proof in 2], so for the
completeness of exposition let us present here a proof.

Let us first consider the case n = ¢1 + ¢2. In this case, we have two
local transverse foliations near O, generated by A; and Ay respectively.

We can find a coordinate system (y1,...,Ygq,21,--.,2¢) near O such that
the foliation generated by Aj is {21 = const.,..., 24, = const.}, and the
foliation generated by A; is {y; = const.,...,y, = const.}. In other words,

A = fla%l A ﬁ and Ay = fg(%l AN %, where f; and fo are
some functions. The equality [Aq, Ag] = 0 implies that f; (resp. fa) does
not depend on the variables z1,...,24, (resp. ¥i,...,Yq ). One can then
find functions z1,...,z4, (resp. g4 +1,...,%,) which depend only on the
coordinates y1,...,yq (resp. 2zi,...,%g), such that A; and Ay have the
canonical form (2.2)) in the new coordinate system (z1,...,z,).

The case when n > ¢y + g2 can be reduced to a parametrized version of
the case with the dimension equal to ¢ + ¢2. The main point is to prove
that A1 A As is a Nambu structure. Locally we can write

A1:X1/\.../\Xq1,

2.3
( ) A2:Y1/\.../\Y;]2,

where the vector fields X1,...,X,,,Y1,...,Y,, are linearly independent can
can be competed by vector fields Z1,...,Z,,, where g3 = n — q1 — ¢2, to
become a basis field for the tangent bundle of M near O. The fact that A isa
Nambu structure means that X,..., X, satisfy the Frobenius integrability
condition, i.e. [Xj;, X;](x) lies in the linear span of Xi(x),..., Xq, (z) for any
x near O. The same holds for the vector fields Y7,...,Y,,. The equality

(24) 0=[An,A] =) ()M [X,VIAX I AL AXi g AKX A Xy,
i,
/\Yl/\.../\}/}_l/\}/}+1/\.../\}/;12)
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implies that [X;,Y;] must also lie in the span of Xi,...,Xq,Y1,...,Yq,,
because it cannot contain a component of the type Zj in its decomposition
in the basis (X;,Yj, Zy). It means that Xy,...,X,,,Y1,...,Y,, span an in-
tegrable distribution, which is tangent to a (g1 + ¢2)-dimensional foliation,
and A1 A Ag is a contravariant volume form on the leaves of this foliation,.

Thus A1 A Ay is a Nambu structure. O
Proposition 2.3. Let Aq,...,As be pairwise commuting Nambu tensors of
orders qi,...,qs respectively on a manifold M of dimension n, with ¢ +
...+ ¢qs < n. Suppose that A (O) A ... ANAs(O) # 0 at a point O € M.
Then Aq,...,As can be put into the following simultaneous normal form
with respect to a local coordinate system (x1,...,2,) in a neighborhod of O:
_ 0 o)
A= 8_:(:1/\"'/\8qu’
_ 0 0
(25) o =g Ao Ny
e ) )
As = O0Tqy 4. 4q,_1+1 A A 0Tqy +...4qs

Proof. By induction. Apply Proposition221to A7 and ITy = Ao A...AAg, we
get a coordinate system in which A; and Il; are normalized. The problem
is then reduced to (a parametrized version of) the problem of normalization
of the (s — 1)-tuple of Nambu structures Ag, ..., As. O

Ezample 2.4. Consider a non-identity linear automorphism ¢ from a torus
T"™ to itself, and denote by M its suspension: M is a torus fibration over
the circle S', with a “horizontal” vector field X which is a lifting of the
standard constant vector field on S! such that the Poincaré map of X on
a fiber of M is isomorphic to ¢. Denote by A the standard contravariant
volume form on the torus fibers of M. Then A is a Nambu structure on M
which is preserved by X. We can also view X as a Nambu structure of order
1 on M. Then A and X are two transverse commuting Nambu structures
on M. Notice that the holonomy of the foliation generated by X near the
closed orbits of X are not trivial on the tori (i.e. the leaves of A), i.e. we
have here two transverse foliations which are generated by two commuting
Nambu structures, but which do not satisfy Movshev’s holonomy condition
[7]. Nevertheless, this example is of almost direct product type, and it is
reasonable to consider almost direct products of manifolds as examples of
commuting foliations.

2.2. Reduction of Nambu structures. Before treating the case g1 +¢2 >
n, let us make a digression and discuss briefly about the reduction of Nambu
structure, because we will reduce the case with g1 + g2 > n, to the case with
g1+ g2 =n.

A vector field X is called a Nambu vector field with respect to a
Nambu structure A if X preserves A, ie. LxA = [X,A] = 0, where L
denotes the Lie derivation, and the bracket is the Schouten bracket. X is
called a Hamiltonian vector field with respect to A if there are ¢ — 1
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functions f1,..., fg—1 such that
(2.6) X=(WfiNn...NA dfq_l)JA.

Any Hamiltonian vector field is a Nambu vector field which is tangent to the
foliation generated by A. Conversely, a Nambu vector field which is tangent
to the foliation of the Nambu tensor A is a locally Hamiltonian vector field
near each non-singular point of A. More generally, if fi,..., f,—r are ¢ — k
functions, where 1 < k < ¢, and A is a Nambu tensor of order ¢, then the
k-vector field

(2.7) Hflv---qu—k = (df1 VANPAN dfk)_lA

is a Nambu structure of order & which will be called a Hamiltonian Nambu
structure with respect to A : the foliation of Iy, f,_. 18 tangent to the
foliation of A, and IIy, fo_n PrEserves” A in the sense that

(2-8) [Hflw--,quk’A] = 0.

Assume A is a given Nambu structure of order ¢, and II is a regular
Nambu structure of order k (1 > k < ¢) on a manifold M of dimension n,
with the following properties:

i) The leaf space M/F! of the regular foliation F'! of II in M is a Hausdorff
(n — k)-dimensional manifold.

ii) The foliation of II is tangent to the foliation of A, and [II, A] = 0. Then
there is a unique Nambu structure © of order ¢ — k on the quotient manifold
M/F (the leaf space of F!), which is the reduction of A by II in the
following sense: locally near each point z € M there is a coordinate system
(z1,...,2y) in which

(2.9) H:aigcl/\.../\a;zk7

the variables (zgy1, ..., Z,) are local coordinate system on the quotient man-
ifold M/ F!,

(2.10) A=TINO

and the expression of © involves only the variables (xg41,...,zy,). The above

reduction process is an imitation of the reduction of Poisson structures. It
can be done locally, i.e. we can talk about the local reduction of A by II
near any given regular point of II (without the need of the assumption that
IT is globally regular).

2.3. The case g1 + g2 > n. When ¢; + g2 > n + 2 then we always have
[A1,A2] = 0 for any gi-vector field A; and go-vector field Ag, and we have
to change the definition of commutativity in this case in order for it to be
meaningful. When ¢; + g2 = n + 1 then the condition is non-trivial, but
not sufficient to imply that A; and Ay can be put into a constant form
simultaneously near a non-singular point. The best that we can have when
¢1 + g2 = n + 1 under the condition [Aj, As] = 0 is the following:
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Proposition 2.5. Let A1 and Ay be two Nambu tensors of orders g1 and g
respectively on a manifold M of dimension n, such that g1 +q2 =n+1 and
[A1,A2] = 0. A1(O) A Ay(O) # 0 at a point O € M. Then in a neighborhood
of O there exists a vector field X which is locally Hamiltonian with respect to
both A1 and Ay. Conversely, if A1 and Ay are two Nambu tensors of orders
q1 and gy respectively on a manifold M of dimension n = q1 + g2 — 1, which
admit a common Hamiltonian vector field X, then [A1,Ag] = 0.

Proof. Denote by F; and JF> the foliations of Ay and As respectively. Then
the intersection of F; with F5 near O is a regular 1-dimensional foliation.
Let X be a local vector field which is tangent to this intersection foliation,
ie. X is tangent to both Ay and Ay : X A A = X A Ay = 0. Since X
is tangent to A, we have [X,A;] = aA; for some function a. By putting
X = fX, where f is a local solution of the ordinary differential equation
X(f) = af, we get [X,A] =0, i.e. X is a locally Hamiltonian vector field
of Ai. Locally near O we can write A; = X AIlj, and also Ay = X A Ily,
where II; and II; are Nambu structures and II; is invariant with respect to
X. The equality 0 = [A1, Ag] = £[X, Ag] ATy implies that [ X, As] = 0, i.e.
X is also a local Hamiltonian vector field with respect to As. O

Remark that, in the above proposition, even though we can choose X, II;
and Iy such that A; = X All;, Ay = X Ally, and II; and I are two Nambu
tensors invariant with respect to X, we cannot arrange so that [IIy,1I3] =0
in general. A way to define commutativity of two Nambu structures whose
total rank is greater than the dimension of the manifold is as follows:

Definition 2.6. Let A1 and As be two Nambu structures of orders q; and g
respectively on a manifold M of dimension n, such that ¢ +q2 —n =k > 0.
Then we say that A1 commutes with As if in a neighborhood of any point
O € M such that the foliations generated by A1 and Ay are transverse to

each other near O, there is a local coordinate system (x1,...,x,) such that
_ 0 o]
Al = o1 VANPAN E,
(2.11) A= D p AN O A D
1= 321 T oxy, 8xq1+1 e 0Ty *

Another equivalent definition of commutativity of Nambu structures in
the case q1 + g2 > n is given by the following proposition and by induction
on qi + gz — n:

Proposition 2.7. Ay commutes with Ay if and only if near any point O
such that Ay and Ao are transverse at O, there is a vector field X such that
X(0) # 0, X is Hamiltonian with respect to both Ay and A, and the local
reductions of A1 and Ao with respect to X commute with each other.

The proof is straightforward and by induction on ¢ + g2 — n.

In Definition 2Tl for the case with ¢1+q2 < n, we assumed that A;AAy # 0.
The case when A1 A Ag is identically zero is a degenerate case, and in that
case the definition of commutativity has to be changed as follows to make
sense:
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Definition 2.8. Let A1 and Ay be two Nambu structures of order g1 and g
respectively on a manifold M, and k > 0 is a constant, such that dim(T,F1N
T.F2) = k for almost every z € M, where F1 and F2 denote the foliations of
A1 and Ay respectively. Then we will say that A1 commutes with Ay if near
any point z € M such that dim(T,F; NT,F2) = k there is a local coordinate
system (x1,...,2Ty) such that

A =2 A A2

Ox1 0Tq, ’
(2.12) 5 3" o P
Al:a_ml/\”'/\a_-’ﬂk/\a-’ﬂq1+1/\”'/\7822(11+q2,k'

Ezxample 2.9. Given an action of a Lie algebra g on a manifold M, i.e. a
Lie morphism g — X' (M) from g to the Lie algebras of vector fields on M,
such that its general orbits have dimension equal to g, we can construct a
family of Nambu structure as follows: for each element & € Alg, denote by
A¢ the image of £ via the natural extension Alg — AYX(M) of the map
g — X (M). Then A¢ is a Nambu structure of order ¢ on M for any &, and is
¢ is chosen well enough then almost all the regular orbits of the action of g
on M are also the regular leaves of the foliation of A¢. Now if there are two
commuting actions of two Lie algebras g; and go on M, and two elements
&1 € ANT'gy and & € A%%gy, then the two associated Nambu structures Ag,
and A¢, will commute with each other. We will leave the verification of this
fact as a simple exercise to the reader.

3. ALMOST DIRECT PRODUCTS

The almost direct product example mentioned in the introduction of this
note is in fact a general consruction of foliations which are transverse to
each other and have complementary dimensions. More precisely, we have
the following simple proposition:

Proposition 3.1. Let F; and F> be two foliations on a connected compact
manifold M, such that T,M = T,F, & T,Fs for any x € M. Then the triple
(M, Fr,F2) is isomorphic to an almost direct product model

(3.1) (F1 x F»)/G,

where Fy and Fy are two connected manifolds (which are not necessarily
compact), G is a discrete group which acts on the product Fy X Fy freely and
diagonally.

The about result seems to be folkloric, but unfortunately I don’t have an
exact reference for it. So for the sake of completeness, let us give here a
proof of it.

Proof. First notice that, due to the fact that /7 and F3 are transverse and
have complementary dimensions, F creates a locally flat parallel transport
among the leaves of F» and vice versa: given any two paths ~; tangent to JF;
and 2 tangent to Fy such that 41 (0) = 72(0), there is a unique natural way
to transport v; along o such that v; remains always tangent to Fi. This
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locally flat parallel transport exists locally even if the manifold M is not
compact. The theorem still holds if we replace the compactness condition
by the following weaker completeness condition: the parallel transport exists
not only locally, but also globally, i.e. given any two paths ~; tangent to
F1 and v tangent to Fo such that ~1(0) = 42(0), there is a unique natural
way to transport y; (resp. 72) along 7o (resp. 1) such that v; (resp. 72)
remains always tangent to Fp (resp. Fa).

Take a point z € M. Denote by Fi(z) (resp. Fa(z)) the leaf of F; (resp.
F3) passing through z. Let v be any loop in M starting at z. We can ap-
proximate v by a zig-zag piecewise horizontal-vertical loop (also starting at
20) which is homotopic to 7. Using the parallel transport to commute verti-
cal pieces with horizontal pieces, one sees easily that v is homotopic to the
concatenation vy, + 2 where 1 : [0,1/2] — Fi(2) and 72 : [1/2,1] — Fa(z)
are two paths lying in Fi(z) and F2(z) respectively such that v;(0) = y2(1)
and the end point of 7; is the starting point of v5. We will denote this
point by [v].z2 = 71(1/2) = 72(1/2). Observe that [y].z € Fi(z) N Fa(z), and
it depends only on the homotopy class [y] of 4 in the fundamental group
1 (M , 2 ) .

Fix a point zy € M. Denote by I' € m1 (M, zp) the set of elements « in the
fundamental group 71 (M, zp) such that for any z € M, any path p from zg
to z we have m,(«).z = z, where 7,(a) denotes the image of « in m1(M, 2)
via the natural isomorphism ¢, from (M, z) to 7 (M, z) generated by
the path p. One verifies easily that I' is a normal subgroup of 71 (M, zp),
i.e. the quotient G = w1 (M, 2z9)/T" is a group. The group I" also satisfies the
following remarkable property: if [y; + 2] € T', where 77 is a loop tangent
to F1 and 7, is a loop tangent to Fa, then [y1],[y2] € T

Denote by M the normal covering of M associated to I', i.e. (M) =T,
G = m (M, 2)/T acts freely on M, and M /G = M. The foliations F; and F2
can be lifted naturally to M. We will denote the lifted foliations on M by Fy
and F, respectively. Since (M, Fi, Fy) satisfies the completeness condition,
(M, Fy, F3) also satifies this condition. We want to show that (M, Fi, Fa)
has direct product type. Due to the completeness condition, it is enough to
verify that if [} is a leaf of Fy and F, is a leaf of ]:'2, then I intesects with
F, at exactly one point.

Assume to the contrary that yg,y1 € F1 N Fy, yo # y1. Then there is a
loop v = 71 + 72 such that v; (resp. 72) starts at yg (resp. yi), ends at
y1 (resp. yo) and is tangent to Fy (resp. Fb). Denote the projection map
from M to M by the hat, e.g. §o € M is the image of v, 41 is the image of
41 by the projection M — M. By construction, [§] = [41 + 2] € I, which
implies that §1 = o, which in turns implies that [§;] € T'. But since 7; is a
lifting of ~, the fact that 41 € I implies that y; = yg by construction of M,
which is a contradiction. Thus any leaf of Fi intersects with any leaf of F
at exactly one point, and (M ,fl,fg) has direct product type. The rest of
the proof is straightforward. O
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In Proposition B.I], a-priori there are no Nambu structures. But of course,

if /1 and Fy are generated by two commuting Nambu structures, then we
will have volume forms on the manifolds F7, F5 in the almost direct product
model, and the action of G on F; and Fj will be volume-preserving. Propo-
sition [3.I] can be naturally extended to the case of k foliations F1, ..., Fg,
where £ > 2. But in the case k > 2, the transversality condition T, M =
@le T, F; is far from being sufficient for the decomposition of the picture
in to a semi-direct product (Fj X ... X Fy)/G, and we really need some more
meaningful commutativity condition. Fortunately, the commutativity of k
regular Nambu structures Aq,..., Ay which generate Fi,...,F; will do the
job.
Proposition 3.2. Let Fi,...,F2 be k foliations on a connected compact
manifold M, generated by k reqular pairwise commuting commuting Nambu
structures Aq,..., A, respectively, such that T,M = Eszl T, F; for any
x € M. Then the multi-foliation (M, F,...,F) is isomorphic to an almost
direct product model

(3.2) (Fl X ... X Fk)/G,

where Fy, ..., Fy are connected manifolds with (contravariant) volume forms,
G is a discrete group which acts on the product Fy X Fs freely and diagonally,
and the action of G on each F; is volume-preserving.

The proof of Proposition is absolutely similar to Proposition B.1], and
it can also be deduced from the proof of Proposition B.1] by induction on k.
(Notice that, for example, Aj A Ag is again a regular Numbu structure which
commutes with the other A;).

Proposition is reminiscent of other almost direct product theorems,
in particular the clasical theorem about the almost direct product decom-
position of reductive algebraic groups (see e.g. [0]), and also the topological
decomposition theorem for nondegenerate singularities of integrable Hamil-
tonian systems [10]. A particular case of the above theorem is when the
foliations JF; are one-dimensional, i.e. the Nambu tensors A; are commuting
vector fields. In this case the manifold M is a k-dimensional torus, G is
(in the generic case) isomorphic to Z*, and one recovers the classical Liou-
ville’s theorem about quasi-periodicity of motion of integrable systems [4].
Inspired by this, one can extend the notion of integrability of dynamical
systems to the case of foliations as follows:

Definition 3.3. A foliation F of dimension q on a manifold M will be
called integrable if it can be represented by a Nambu structure A = Ay or
order q, and there are Nambu structures Ao, ..., As and functions Fy, ..., F,
such that: q1 + ...+ qs+7r =n, F; are first integrals of A;, the A; commute
pairwise, and Ay A ... AN Ag #£ 0 almost everywhere.

Proposition B2 or rather a parametrized version of it which involves
also first integrals, can then be viewed as a generalization of the classical
Lioville’s theorem to the case of integrable foliations.
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4. SOME FINAL REMARKS AND QUESTIONS

In this note, I considered only the regular case. But what about the
singular case, when, for example, two foliations are regular but together they
have have singularities, or at least one of the two foliations is singular ? One
should be able to develop a normal form theory for such singular commuting
foliations, at least in the case when the singularities are nondegenerate or
generic in some sense.

What about differential forms which are invariants ? Apparently, those
forms must be analogous to basic differential forms of fibrations. (In particu-
lar, the contraction of the form with any vector field tangent to the foliation
must vanish, i.e. they are transverse forms, or more generally, one can talk
about invariant transverse structures). Will they play a role in a generalized
theory of integrability of foliations . And what about a Galoisian theory of
obstructions to the integrability of singular foliations ?
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