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THOUGHTS ON EGGERT’S CONJECTURE

GEORGE M. BERGMAN

Abstract. Eggert’s Conjecture says that if R is a finite-dimensional nilpotent commutative algebra over
a perfect field F of characteristic p, and R(p) is the image of the p-th power map on R, then dimF R ≥

p dimF R(p). Whether this very elementary statement is true is not known.
We examine heuristic evidence for this conjecture, versions of the conjecture that are not limited to

positive characteristic and/or to commutative R, consequences the conjecture would have for semigroups,
and examples that give equality in the conjectured inequality.

We pose several related questions, and briefly survey the literature on the subject.

1. Introduction

If F is a field of characteristic p, and R is a commutative F -algebra, then the set R(p) of p-th powers of
elements of R is not only closed under multiplication, but also under addition, by the well-known identity

(1) (x+ y)p = xp + yp (x, y ∈ R).

Hence R(p) is a subring of R. If, moreover, F is a perfect field (meaning that every element of F is a p-th
power – as is true, in particular, if F is finite, or algebraically closed), then the subring R(p) is also closed
under multiplication by elements of F :

(2) a xp = (a1/px)p ∈ R(p) (a ∈ F, x ∈ R).

In this situation we can ask “how big” the subalgebra R(p) is compared with the algebra R, say in terms
of dimension over F.

If we take for R a polynomial algebra F [x] over a perfect field F, we see that R(p) = F [xp], so intuitively,
R(p) has a basis consisting of one out of every p of the basis elements of R. Of course, these bases are
infinite, so we can’t divide the cardinality of one by that of the other. But if we form finite-dimensional
truncations of this algebra, letting R = F [x]/(xN+1) for large integers N, then we see that the dimension of
R(p) is indeed about 1/p times the dimension of R. If we do similar constructions starting with polynomials
in d variables, we get R(p) having dimension about p−d times that of R.

Is the ratio dimR(p)/ dimR always small? No; a trivial counterexample is R = F ; a wider class of
examples is given by the group algebras R = F G of finite abelian groups G of orders relatively prime to p.
In G, every element is a p-th power, hence R(p) contains all elements of G, hence, being closed under
addition and under multiplication by members of F, it is all of R; so again dim R(p)/ dim R = 1.

In the above examples, the p-th power map eventually “carried things back to themselves”. A way to keep
this from happening is to assume the algebra R is nilpotent, i.e., that for some positive integer n, Rn = 0,
where Rn denotes the space of all sums of n-fold products of members of R. This leads us to

Conjecture 1 (Eggert’s Conjecture [9]). If R is a finite-dimensional nilpotent commutative algebra over a
perfect field F of characteristic p > 0, then

(3) dimF R ≥ p dimF R(p).
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Of course, a nonzero nilpotent algebra does not have a unit. Readers who like their algebras unital may
think of the R occurring above and throughout this note as the maximal ideal of a finite-dimensional local
unital F -algebra.

Let us set down some conventions.

Conventions 2. Throughout this note, F will be a field. The symbol “ dim” will always stand for “dimF ”,
i.e., dimension as an F -vector-space.

Except where the contrary is stated (in a few brief remarks and two examples), F -algebras will be assumed
associative, but not, in general, unital. (Most of the time, we will be considering commutative algebras,
but we will make commutativity explicit. When we simply write “associative algebra”, this will signal “not
necessarily commutative”.) Ideals of F -algebras mean ring-theoretic ideals which are also F -subspaces.

If R is an F -algebra, V an F -subspace of R, and n a positive integer, then V n will denote the
F -subspace of R spanned by all n-fold products of elements of V, while V (n) will denote the set of n-th
powers of elements of V.

Thus, if V is a subspace of a commutative algebra R over a perfect field F of characteristic p, then
V (p) will also be a subspace of R, but for a general base-field F, or for noncommutative R, this will not
be so. The map x 7→ xp on a commutative algebra R over a field of characteristic p is called the Frobenius
map.

We remark that the unital rings R = F [x]/(xN+1) that we discussed before bringing in nilpotence
generally fail to satisfy (3). Most obvious is the case N = 0, where R = F. More generally, writing
N = pk + r (0 ≤ r < p), so that the lowest and highest powers of x in the natural basis of R are x0 and
xpk+r , we find that dim R(p)/ dim R = (k + 1)/(pk + r + 1), which is > 1/p unless r = p− 1.

The corresponding nilpotent algebras are constructed from the “nonunital polynomial algebra”, i.e., the
algebra of polynomials with zero constant term, which we shall write

(4) [F ][x] = {
∑

i>0

aix
i } ⊆ F [x].

When we divide this by the ideal generated by xN+1, again with N = pk + r (0 ≤ r < p), we find that
dim R(p)/ dim R = k/(pk + r), which is always ≤ 1/p, with equality only when r = 0, i.e., when p |n.

As before, examples like R = [F ][x, y]/(xM , yN) give ratios dim R(p)/ dim R strictly lower than 1/p.
This suggests that generation by more than one element tends to lower that ratio, and that perhaps that
ratio can equal 1/p only for cyclic algebras. This is not the case, however. Indeed, it is easy to verify that
that ratio is multiplicative with respect to tensor products,

(5) dim (R⊗ S)(p)/ dim (R⊗ S) = (dim R(p)/ dim R) (dim S(p)/ dim S).

Hence if we tensor a nilpotent algebra R of the form [F ][x]/(xpk+1), for which we have seen that the ratio is
1/p, with a non-nilpotent algebra for which the ratio is 1 (for instance, a group algebra F G with p 6 | |G|),
we get further nilpotent examples for which the ratio is 1/p. Also, dim R and dim R(p) are both additive
with respect to direct products ; so any direct product of two nilpotent algebras for each of which the ratio is
1/p is another such algebra. In §5 we will discover further examples in which the ratio comes out exactly
1/p, for reasons that are less clear.

2. A first try at proving Eggert’s Conjecture

We have seen that for R a commutative algebra over a perfect field F of characteristic p > 0, the p-th
power map on R over F is “almost” linear; in particular, that its image is a vector subspace (in fact, a
subalgebra).

Pleasantly, we can even find a vector subspace V ⊆ R which that map sends bijectively to R(p). Namely,
take any F -basis B for R(p), let B′ be a set consisting of exactly one p-th root of each element of B, and
let V be the F -subspace of R spanned by B′. Since the p-th power map sends

∑
x∈B′ axx to

∑
x∈B′ apxx

p,

it hits each element of R(p) exactly once.
This suggests the following approach to Eggert’s Conjecture. Suppose we take such a subspace V, and

look at the subspaces V, V 2, . . . , V p (defined as in the last paragraph of Convention 2). Can we deduce
that each of them has dimension at least that of V (p) = R(p) (as the first and last certainly do), and conclude
that their sum within R has dimension at least pR(p) ?
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The answer is that yes, we can show that each has dimension at least that of R(p), but no, except under
special additional hypotheses, we cannot say that the dimension of their sum is the sum of their dimensions.

The first of these claims can be proved in a context that does not require positive characteristic, or
commutativity, or nilpotence. We will have to assume F algebraically closed; but we will subsequently see
that for commutative algebras over a perfect field of positive characteristic, the general case reduces to that
case.

Lemma 3. Let F be an algebraically closed field, R an associative F -algebra, V a finite-dimensional
subspace of R, and n a positive integer such that every nonzero element of V has nonzero n-th power.
Then for all positive integers i ≤ n we have

(6) dim V i ≥ dim V.

Proof. Let d = dim V, and let x1, . . . , xd be a basis for V over F. Suppose, by way of contradiction, that
for some i ≤ n we had dim V i = e < d. Then we claim that some nonzero v ∈ V must satisfy vi = 0.

Indeed, writing the general element of V as v = a1x1 + · · · + adxd (a1, . . . , ad ∈ F ), we see that
the condition vi = 0, expressed in terms of an e-element basis of V i, consists of e < d equations, each
homogeneous of positive degree (in fact, all of the same degree, i), in d unknowns a1, . . . , ad. But a system
of homogeneous equations of positive degrees with fewer equations than unknowns over an algebraically
closed field always has a nontrivial solution [15, p.65, Corollary 3*]; so, as claimed, there is a nonzero v ∈ V
with vi = 0.

Multiplying by vn−i if i < n, or leaving the equation unchanged if i = n, we see that vn = 0,
contradicting the hypothesis on V, and completing the proof. �

(We could even have generalized the above proof to nonassociative algebras, if we defined xi inductively
as, say, the right-bracketed product x(x(. . . x)), and V i similarly as V (V (. . . V )).)

Now if F is any perfect field of characteristic p, and n = p (or more generally, a power of p), and R
is commutative, then the n-th power map is, up to adjustment of scalars, a linear map of F -vector-spaces,
so the statement that it sends no nonzero element of V to 0 says it has trivial kernel; and this property is
preserved under extension of scalars to the algebraic closure of F, as are the dimensions of the various spaces
V i. Hence, as stated earlier, in this situation Lemma 3 implies the corresponding result with “algebraically
closed” weakened to “perfect”.

But unfortunately, we cannot say that dim R ≥
∑

i≤p dim V i unless we know that the sum of the V i is
direct. Here is a special case in which the latter condition clearly holds.

Corollary 4. Let R be a finite-dimensional commutative algebra over a perfect field F of characteristic
p > 0, and assume that R is graded by the positive integers, is generated by its homogeneous component R1

of degree 1, and satisfies (R2)
(p) = 0.

Then dim R1, . . . , dim Rp are all ≥ dim R(p), so dim R ≥ p dim R(p).

Proof. Since R is the direct sum of its subspaces Ri, its subalgebra R(p) will be the direct sum of its
subspaces (Ri)

(p) ⊆ Rip. Since R is generated by R1, we have Ri+1 = RiR1 for all i; hence (Ri+1)
(p) =

(Ri)
(p) (R1)

(p); hence as (R2)
(p) is zero, so are (R3)

(p), (R4)
(p), · · · . Hence R(p) = (R1)

(p).
Now let d = dim R(p) ⊆ Rp, and take a d-dimensional subspace V ⊆ R1 such that the p-th power

map carries V bijectively to R(p). By Lemma 3 and the discussion following it, we have dim V i ≥ d for
i = 1, . . . , p, hence

�(7) dim R =

∞∑

i=1

dim Ri ≥

p∑

i=1

dim V i ≥ p d = p (dim R(p)).

One might hope to get a similar result for ungraded nilpotent R by taking the filtration R ⊇ R2 ⊇
R3 ⊇ . . . , and studying the associated graded algebra, S =

⊕
i Si with Si = Ri/Ri+1. This will indeed be

generated by S1; but unfortunately, R
(p) will not in general be embedded in Sp, since an element that can

be written as a p-th power of one element may be expressible in another way as a product of more than p
factors (or a sum of such products), in which case it will have zero image in Sp = Rp/Rp+1. (What one can

easily deduce by this approach is that dimR ≥ p dim(R(p)/(R(p) ∩ Rp+1)). But that is much weaker than
Eggert’s conjecture.)
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Putting aside the question of whether we can reduce the ungraded case to the graded, let us ask whether,
assuming R graded and generated by R1, we can weaken the hypothesis (R2)

(p) = 0 of Lemma 3. Suppose
we instead assume (R3)

(p) = 0. Thus, R(p) = (R1)
(p) ⊕ (R2)

(p) ⊆ Rp ⊕ R2p.

In addition to our subspace V ⊆ R1 which is mapped bijectively to (R1)
(p) by the p-th power map, we

can choose a subspace W ⊆ R2 that is mapped bijectively to (R2)
(p). Letting d1 = dim (R1)

(p) = dim V
and d2 = dim (R2)

(p) = dim W, we can deduce from Lemma 3 that dim R1, dim R2, . . . , dim Rp are
all ≥ d1 and that dim R2, dim R4, . . . , dim R2p are all ≥ d2. The trouble is, these two lists overlap in
{R2, R4, . . . , R2⌊p/2⌋}, while we know nothing about the sizes of the Ri for odd i between p + 1 and
2p. If we could prove that they, like the Ri for even i in that range, all had dimensions at least d2, we
would be in good shape: With Ri at least d1-dimensional for i = 1, . . . , p and at least d2-dimensional for
i = p+ 1, . . . , 2p, we would have total dimension at least p (dim(R1)

(p) + dim(R2)
(p)) = p dim R(p).

One might imagine that since dim Ri is at least dim R
(p)
2 for all even i ≤ 2p, those dimensions could not

perversely come out smaller for i odd. However, the following example, though involving a noncommutative
ring, challenges this intuition.

Example 5. For any positive integer d and any field F, there exists an associative graded F -algebra R,
generated by R1, such that the dimension of the component Rn is 2d for every odd n > 2, but is d2 + 1
for every even n > 2.

Construction. Let R be presented by d + 1 generators x, y, z1, . . . , zd−1 of degree 1, subject to the
relations saying that xx = yy = 0, and that every 3-letter word in the generators that does not contain
the substring xy is likewise 0. It is easy to verify that the nonzero words of length > 2 are precisely those
strings consisting of a “core” (xy)m for some m ≥ 1, possibly preceded by some letter other than x, and/or
followed by some letter other than y. One can deduce that for m ≥ 1, the nonzero words of odd length
2m + 1 are of two forms, (xy)m a and a (xy)m for some letter a, and that for each of these forms there
are d choices for a, giving 2d words altogether; while for words of even length 2m+ 2 there are also two
forms, a (xy)m b and (xy)m+1, leading to d2 + 1 words. �

Even for commutative R, we can get a certain amount of irregular behavior:

Example 6. For any field F there exists a commutative graded F -algebra R, generated by R1, such that
the dimensions of R1, R2, R3, R4 are respectively 4, 3, 4, 3.

Construction. First, let S be the commutative algebra presented by generators x, y, z1, z2 in degree 1,
and relations saying that z1 and z2 have zero product with all four generators. We see that for all n > 1 we
have dimSn = n+ 1, as in the polynomial ring [F ][x, y], so S1, . . . , S4 have dimensions 4, 3, 4, 5. If we
now impose an arbitrary pair of independent relations homogeneous of degree 4, we get a graded algebra R
whose dimension in that degree is 3 rather than 5, without changing the dimensions in lower degrees. �

As we shall note in §6, much of the work towards proving Eggert’s Conjecture in the literature has involved
showing that such misbehavior in the sequence of dimensions is, in fact, restricted.

(Incidentally, if we take F in Example 6 to be perfect of characteristic 3, and divide out by R4, we do
not get a counterexample to Eggert’s Conjecture, since (R1)

(3) is a proper subspace of R3.)

3. Relations with semigroups

The examples we began with in §1 were “essentially” semigroup algebras of abelian semigroups.
To make this precise, recall that a zero element in a semigroup S means an element z (necessarily

unique) such that sz = zs = z for all s ∈ S. If S is a semigroup with zero, and F a field, then the
contracted semigroup algebra of S, denoted F0 S, is the F -algebra with basis S − {z}, and multiplication
which agrees on this basis with the multiplication of S whenever the latter gives nonzero values, while when
the product of two elements of S−{z} is z in S, it is taken to be 0 in this algebra [7, §5.2, p.160]. So, for
example, the algebra [F ][x]/(xN+1) of §1 is the contracted semigroup algebra of the semigroup-with-zero
presented as such by one generator x, and the one relation xN+1 = z. (Calling this a presentation as a
semigroup-with-zero means that we also assume the relations making the products of all elements with z
equal to z.)
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Above (following [7]) I have written z rather than 0 in S, so as to be able to talk clearly about the
relationship between the zero element of S and that of F0 S. But since these are identified in the construction
of the latter algebra, we shall, for the remainder of this section, write 0 for both, as noted in

Conventions 7. In this section, semigroups with zero will be written multiplicatively, and their zero elements
written 0.

If X is a subset of a semigroup S (with or without zero) and n a positive integer, then Xn will denote
the set of all n-fold products of elements of X, while X(n) will denote the set of all n-th powers of elements
of X. A semigroup S with zero will be called nilpotent if Sn = {0} for some positive integer n.

Clearly, F0 S is nilpotent as an algebra if and only if S is nilpotent as a semigroup.
If we could prove Eggert’s Conjecture, I claim that we could deduce

Conjecture 8 (semigroup version of Eggert’s Conjecture). If S is a finite nilpotent commutative semigroup
with zero, then for every positive integer n,

(8) card(S−{0}) ≥ n card(S(n)−{0}).

Let us prove the asserted implication.

Lemma 9. If Conjecture 1 is true, then so is Conjecture 8.

Proof. Observe that for any two positive integers n1 and n2, and any semigroup S, we have (S(n1))(n2) =
S(n1 n2). Hence, given n1 and n2, if (8) holds for all semigroups S whenever n is taken to be n1 or n2,
then it is also true for all S whenever n is taken to be n1n2. Indeed, in that situation we have

(9) card(S−{0}) ≥ n1 card(S(n1)−{0}) ≥ n1n2 card(S(n1 n2)−{0}).

Since (8) is trivial for n = 1, it will therefore suffice to establish (8) when n is a prime p. In that case,
let F be any perfect field of characteristic p. From (1) and (2) we see that (F0 S)

(p) = F0(S
(p)), and by

construction, dimF F0 S = card(S − {0}). Applying Conjecture 1 to F0 S, we thus get (8) for n = p, as
required. �

A strange proof, since to obtain the result for an n with k distinct prime factors, we must work succes-
sively with semigroup algebras over k different fields!

So much for what we could prove if we knew Eggert’s Conjecture. What can we conclude about semigroups
using what we have proved? By the same trick of passing to contracted semigroup algebras, Lemma 3 yields

Corollary 10 (to Lemma 3). Let S be a commutative semigroup with zero, let p be a prime, and let X
be a finite subset of S such that the p-th power map is one-to-one on X, and takes no nonzero element of
X to 0. Then

(10) card(X i−{0}) ≥ card(X−{0}) for 1 ≤ i ≤ p. �

Note that in Corollary 10, we have to assume S commutative and p a prime, in order to call on (1) and
conclude that (F0X)(p) = F0 (X

(p)), even though Lemma 3 was proved for not necessarily commutative R
and for exponentiation by an arbitrary integer n.

(Incidentally, the same proof gives us the corresponding result for semigroups S without zero, with (10)
simplified by removal of the two “−{0} ”s. However, this result is an immediate consequence of the present
form of Corollary 10, since given any semigroup S and subset X ⊆ S, we can apply that corollary to X
within the semigroup with zero S ∪ {0}; and in that case, the symbols “−{0} ” in (10) have no effect, and
may be dropped. Inversely, a proof of Corollary 10 from the version for semigroups without zero is possible,
though not as straightforward.)

I see no way of proving the analog of Corollary 10 with a general integer n replacing the prime p. (One
can get it for prime-power values, by noting that (1) and hence Lemma 3 work for exponentiation by pk. I
have not so stated those results only for simplicity of presentation.) We make this

Question 11. Let S be a commutative semigroup with zero, let n be a positive integer, and let X be a
finite subset of S such that the n-th power map is one-to-one on X, and takes no nonzero element of X to
0. Must card(X i−{0}) ≥ card(X−{0}) for 1 ≤ i ≤ n ?
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4. Some plausible and some impossible generalizations

The hypothesis on Corollary 10 concerns card(X(p)−{0}), while the conclusion is about card(X i−{0}).
It is natural to ask whether we can make the hypothesis and the conclusion more parallel, either by replacing
X i by X(i) in the latter (in which case the inequality in the analog of (10) would become equality, since
X(i) − {0} can’t be larger than X − {0}), or by replacing X(p) by Xp in the former.

But both of these generalizations are false, as shown by the next two examples.

Example 12. For any prime p > 2, and any i with 1 < i < p, there exists a commutative semigroup S
with zero, and a subset X such that the p-th power map is one-to-one on X and does not take any nonzero
element of X to 0, but such that card(X(i)−{0}) < card(X−{0}).

Construction. Given p and i, form the direct product of the nilpotent semigroup {x, x2, . . . , xp, 0} and
the cyclic group {1, y, . . . , yi−1} of order i, and let X be the subset {x} × {1, y, . . . , yi−1}. Then the p-th
power map from X to X(p) (which is also Xp) is bijective, the common cardinality of these sets being i;
but X(i) = {xi}×{1} has cardinality 1. To make this construction a semigroup with zero, we may identify
the ideal {0} × {1, y, . . . , yi−1} to a single element. �

Example 13. For any prime p > 2 there exist a commutative semigroup S with zero, and a subset X ⊆ S,
such that card(X − {0}) = card(Xp − {0}), but such that for all i with 1 < i < p, card(X i − {0}) <
card(X − {0}).

Construction. Let S be the abelian semigroup with zero presented by p+ 1 generators, x, y, z1, . . . , zp−1,
and relations saying that each zi has zero product with every generator. Thus, S consists of the elements
of the free abelian semigroup on x and y, together with the p elements 0, z1, . . . , zp−1.

Let X be our generating set {x, y, z1, . . . , zp−1}. Then we see that for every i > 1, the set X i − {0}
has i + 1 elements, xi, xi−1y, . . . , yi. Hence card(Xp − {0}) = p+ 1 = card(X − {0}); but for 1 < i < p,
card(X i − {0}) = i+ 1 < p+ 1. (We can make this semigroup finite by collapsing the ideal Xp+1 ∪ {0} to
a single element.) �

(In the above examples, the case p = 2 was excluded because in that case, there are no i with 1 < i < p.
However, one has the corresponding constructions with any prime power pr > 2 in place of p, including
powers of 2, as long as one adds to the statement corresponding to Example 12 the condition that i be
relatively prime to p.)

From the construction of Example 12, we can also obtain a counterexample to a statement which, if it
were true, would, with the help of Lemma 3, lead to an easy affirmative answer to Question 11:

Example 14. There exists a commutative semigroup S with zero, a finite subset X ⊆ S, and an integer
n > 0, such that the n-th power map is one-to-one on X and does not take any nonzero element of X to 0,
but such that for some field F, the n-th power map on the span FX of X in F0S does take some nonzero
element to 0.

Construction. Let us first note that though we assumed in Example 12 that p was a prime to emphasize
the relationship with Corollary 10, all we needed was that p and i be relatively prime. For the present
example, let us repeat that construction with any integer n > 2 (possibly, but not necessarily, prime) in
place of the p of that construction, while using a prime p < n, not dividing n, in place of our earlier i.
Thus, the n-th power map is one-to-one on X, but the p-th power map is not.

Now let F be any algebraically closed field of characteristic p. Then on the subspace FX ⊆ F0S, the
p-th power map is (up to adjustment of scalars) an F -linear map to the space FX(p) of smaller dimension;
hence it has nontrivial kernel. (For the particular construction used in Example 12, that kernel contains
x− xy.) But any element annihilated by the p-th power map necessarily also has n-th power 0. �

The use of a field F of positive characteristic in the above construction suggests the following question,
an affirmative answer to which would indeed, with Lemma 3, imply an affirmative answer to Question 11.

Question 15. Suppose X is a finite subset of a commutative semigroup S with zero, n a positive integer
such that the n-th power map is one-to-one on X and does not take any nonzero element of X to 0, and
F a field of characteristic 0. Must every nonzero element of the span FX of X in F0S have nonzero n-th
power?
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In a different direction, Lemma 3 leads us to wonder whether there may be generalizations of Eggert’s
Conjecture independent of the characteristic.

As a first try, we might consider a nilpotent algebra R over any field F, and for an arbitrary positive
integer n ask whether dim(span(R(n)))/ dim R ≤ 1/n, where span(R(n)) denotes the F -subspace of R
spanned by R(n). But this is nowhere near true. Indeed, if the characteristic of F is either 0 or > n, then
span(R(n)) = Rn, and taking R = [F ][x]/(xN+1) for N > n, we see that Rn has basis {xn, xn+1, . . . , xN};
so dimRn/ dim R = (N − n+ 1)/N, which for large N is close to 1, not to 1/n.

However, something nearer to the spirit of Lemma 3, with a chance of having a positive answer, is

Question 16. Let R be a finite-dimensional nilpotent commutative algebra over an algebraically closed field
F, let V be a subspace of R, and let n be a positive integer such that every nonzero element of V has
nonzero n-th power. Must dim R ≥ n dim V ?

For instance, if R = [F ][x]/(xN+1), then the obvious subspace V every nonzero element of which has
nonzero n-th power is the span of x, x2, . . . , x⌊N/n⌋, which satisfies the indicated inequality.

In Question 16, V is a subspace of R, but in the absence of (1), we can’t expect V (n) to simultaneously
be one. In the next question, we turn the tables, and make the target of the n-th power map a subspace.

Question 17. Let R be a finite-dimensional nilpotent commutative algebra over an algebraically closed field
F, let W be a subspace of R, and let n be a positive integer such that every element of W is an n-th power
in R. Must dim R ≥ n dim W ?

What happens here for R = [F ][x]/(xN+1) ? In that algebra, if n is not divisible by the characteristic of
F, then n-th powers are fairly plentiful; they are precisely the elements whose lowest-degree term has degree
divisible by n. In particular, all elements of the form xn+(higher degree terms) are n-th powers, and these
form an (N−n)-dimensional affine subspace of R. But it is not a vector subspace! If W is a vector subspace
all of whose elements are n-th powers, and if for each xm which appears as the lowest degree term of a
member of W, we choose a wm ∈W with that lowest degree term, it is not hard to see that the wm form
a basis of W. Since the m’s that occur are multiples of n, the number of such terms must be ≤ ⌊N/n⌋,
showing that for this R the answer to Question 17 is affirmative.

Can the two preceding questions be made the m = 1 and m = n cases of a question statable for all
1 ≤ m ≤ n ? Yes. The formulation is less elegant than for those two cases, but I include it for completeness.

Question 18. Let R be a finite-dimensional nilpotent commutative algebra over an algebraically closed field
F, let U be a subspace of R, and let 1 ≤ m ≤ n be integers such that every nonzero element of U has an
m-th root in R whose n-th power is nonzero. Must dim R ≥ n dim U ?

Early on, in thinking about Eggert’s Conjecture, I convinced myself that the noncommutative analog was
false. But the analog I considered was based on replacing R(p) by span(R(p)) so that one could talk about its
dimension. However, the generalizations considered in Questions 16-18 are also plausible for noncommutative
rings.

I also assumed in Questions 16-18 that F was algebraically closed, because that hypothesis was essential
to the proof of Lemma 3, and is the condition under which solution-sets of algebraic equations behave most
nicely. However, I don’t have examples showing that the results asked for are false without it. So let us be
bold, and ask

Question 19. If Conjecture 8, or any of Questions 11, 15, 16, 17 or 18 has an affirmative answer, does it
remain affirmative if the commutativity hypothesis is dropped, and/or, in the case of Questions 16-18, if the
assumption that F be algebraically closed is dropped (or perhaps weakened to “infinite”)?

If we go further, and drop not only the characteristic p assumption and the algebraic closedness of F,
but also the associativity of R, then there is an easy counterexample to the analog of Eggert’s Conjecture.

Example 20. For every positive integer d, there exists a graded nilpotent commutative nonassociative
algebra over the field R of real numbers, R = R1 ⊕ R2 ⊕ R3, generated by R1, in which the respective
dimensions of the three homogeneous components are d, 1, d, and in which the “cubing” operation r 7→ r(rr)
gives a bijection from R1 to R3.

Hence, writing R(3) for {r(rr) | r ∈ R} = R3, we have dimR(3)/ dimR = d/(2d + 1), which is > 1/3
if d > 1.
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Construction. Let W be a real inner product space of dimension d, let A = W ⊕ R, made an R-algebra
by letting elements of R ⊆ A act on A on either side by scalar multiplication, and letting the product of
two elements of W be their inner product in R. Note that W, W 2, W 3 are respectively W, R, W, and
that on W, the operation w 7→ w(ww) takes every element to itself times the square of its norm, hence is
a bijection W →W.

For the above A, let us form A ⊗R [R][x]/(x4), which is clearly nilpotent; let V be its subspace Wx;
and let R be the subalgebra generated by V ; namely, (Wx)⊕(Rx2)⊕(Wx3). Then the asserted properties
are clear. �

The parenthetical comment following Lemma 3 shows, however, that over an algebraically closed base
field F, there is no example with the corresponding properties.

If in Example 20 we let B be an orthonormal basis of W, then on closing Bx ⊆ R under the multiplication
of R (but not under addition or scalar multiplication), we get a 2d+2-element structure (a “nonassociative
semigroup”, often called a “magma”) which is a counterexample to the nonassociative analogs of Conjecture 8,
Corollary 10 and Question 11.

I will end this section by recording, for completeness, a positive-characteristic version of Example 20
(though the characteristic will not be the exponent whose behavior the example involves). Before stating
it, let us recall that a nonassociative algebra is called power-associative if every 1-generator subalgebra is
associative; equivalently, if the closure of every singleton {x} under the multiplication (intuitively, the set
of “powers” of x) is in fact a semigroup. Let us call a graded nonassociative algebra homogeneous-power-
associative if the subalgebra generated by every homogeneous element is associative. Example 20 above is
easily seen to be homogeneous-power-associative. The same property in the next example will allow us to
avoid having to specify the bracketing of the power operation we refer to.

Example 21. For every prime p, there exists a graded nilpotent commutative nonassociative, but
homogeneous-power-associative algebra R = R1 ⊕ · · · ⊕ Rp+1 over a non-perfect field F of characteris-
tic p, such that R is generated by R1, the p+1-st power operation gives a surjection R1 → Rp+1 taking
no nonzero element to zero, and dimRi = p for i = 1, . . . , p− 1 and p+ 1; but dimRp = 1.

Hence, dimR(p+1)/ dimR = p/(p2 + 1) > 1/(p+ 1).

Sketch of construction. Given p, let F be any field of characteristic p having a proper purely inseparable
extension F ′ = F (u1/p), such that every element of F ′ has a p+1-st root in F ′. (We can get such F and
F ′ starting with an algebraically closed field k of characteristic p, and any subgroup G of the additive
group Q of rational numbers which is p+1-divisible but not p-divisible. Note that p−1G ⊆ Q will have the
form G+ p−1hZ for any h ∈ G− pG. Take a group isomorphic to G but written multiplicatively, tG, and

its overgroup tp
−1G, and let F and F ′ be the Mal’cev-Neumann power series fields k((tG)) and k((tp

−1G))
[8, §2.4], [6]; and let u ∈ F be the element th. The asserted properties are easily verified.)

Let us now form the (commutative, associative) truncated polynomial algebra [F ′][x]/(xp+2), graded
by degree ins x, and let R be the F -subspace of this algebra consisting of those elements for which the
coefficient of xp lies in the subfield F of F ′ (all other coefficients being unrestricted). We make R a graded
F -algebra using the multiplication of [F ′][x]/(xp+2) on all pairs of homogeneous components except those
having degrees summing to p, and defining the multiplication in that case by fixing an F -linear retraction
ψ : F ′ → F, and taking the product of a xi and b xp−i (0 < i < p, a, b ∈ F ′) to be ψ(ab)xp.

We claim that R is homogeneous-power-associative; in fact, that powers of homogeneous elements of R,
however bracketed, agree with the values of these same powers in the associative algebra [F ′][x]/(xp+2). Note
first that the evaluations of powers of elements homogeneous of degrees other than 1 never pass through
Rp, so they certainly come out as in [F ′][x]/(xp+2). For an element a x of degree 1 (a ∈ F ′), the same
reasoning holds for powers less than the p-th. In the case of the p-th power, the last stage in the evaluation
of any bracketing of (a x)p takes the form (a x)i · (a x)p−i = ψ(ai ap−i)xp; but ai ap−i = ap ∈ F, which is
fixed by ψ, so the result again comes out as in [F ′][x]/(xp+2). Knowing this, it is easy to verify likewise
that all computations of the p+1-st power of a x ∈ R1 agree with its value in [F ′][x]/(xp+2).

The other asserted properties are now straightforward. In particular the p+1-st power map R1 →
Rp+1 is surjective, and sends no nonzero element to 0, because these statements are true in [F ′][x]/(xp+2)
(surjectivity holding by our assumption on p+1-st roots in F ′). �
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5. Some attempts at counterexamples to Eggert’s Conjecture for semigroups

Since Eggert’s Conjecture implies the semigroup-theoretic Conjecture 8, a counterexample to the latter
would disprove the former. We saw in §1 that for certain sorts of truncated polynomial algebras over a
field F of characteristic p, the ratio dim R(p)/ dim R was exactly 1/p; i.e., as high as Eggert’s Conjecture
allows. Those algebras are contracted semigroup algebras F0 S, where S is a semigroup with zero presented
by one generator x and one relation xpk+1 = 0; so these semigroups have equality in Conjecture 8. It is
natural to try to see whether, by some modification of this semigroup construction, we can push the ratio
card(S(p)−{0})/card(S−{0}) just a little above 1/p.

In scratchwork on such examples, it is convenient to write the infinite cyclic semigroup not as
{x, x2, x3, . . . }, but additively, as {1, 2, 3, . . . }. Since in additive notation, 0 generally denotes an iden-
tity element, it is best to denote a “zero” element by ∞. So in this section we shall reverse Convention 7,
and follow this additive notation. In particular, the sort of nilpotent cyclic semigroup with zero that gives
equality in the statement of Conjecture 8 is

(11) {1, 2, . . . , N, ∞} (N a multiple of n).

For S a finite nilpotent abelian semigroup with zero, the semigroup version of Eggert’s conjecture can be
written as saying that the integer

(12) n card(S(n)−{∞}) − card(S−{∞})

is always nonpositive. (We continue to write S(n) for what in our additive notation is now {nx | x ∈ S}.)
What kind of modifications can we apply to (11) in the search for variant examples? We might impose a

relation; but it turns out that this won’t give anything new. E.g., if for i < j in {1, 2, . . . , N} we impose
on (11) the relation i = j, then this implies i+1 = j+1, and so forth; and this process eventually identifies
some h ≤ N with an integer > N, which, in (11), equals ∞. So h and all integers ≥ h fall together with
∞; and if we follow up the consequences, we eventually find that every integer ≥ i is identified with ∞.
This gives a semigroup just like (11), but with i− 1 rather than N as the last finite value.

So let us instead pass to a subsemigroup of (11). The smallest change we can make is to drop 1, getting
the subsemigroup generated by 2 and 3, which we shall now denote S. Then card(S−{∞}) has gone down
by 1, pushing the value of (12) up by 1; but the integer n has ceased to belong to S(n), decreasing (12) by
n. So in our attempt to find a counterexample, we have “lost ground”, decreasing (12) from 0 to −n+ 1.

However, now that 1 /∈ S, we can regain some ground by passing to a homomorphic image. Suppose
that we impose on S the relation that identifies N − 1 either (a) with N or (b) with ∞. If we add any
member of S (loosely speaking, any integer ≥ 2) to both sides of either relation, we get ∞ = ∞, so no
additional identifications are implied. Since we are assuming N is divisible by n, the integer N − 1 is not;
so we have again decreased the right-hand term of (12), this time without decreasing the left-hand term;
and thus brought the total value to −n+ 2. In particular, if n = 2, we have returned to the value 0; but
not improved on it.

I have experimented with more complicated examples of the same sort, and gotten very similar results.
Needless to say, I have not found one that made the value of (12) positive; but surprisingly often, it was
possible to arrange things so that for n = 2, that value was 0. Let me show a “typical” example.

We start with the additive subsemigroup of the natural numbers generated by 4 and 5. I will show it by
listing an initial string of the positive integers, with the members of our subsemigroup underlined:

(13) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . . .

Assume this to be truncated at some large integer N which is a multiple of n, all larger integers being
collapsed into ∞. If we combine the effects on the two terms of (12) of having dropped the six integers
1, 2, 3, 6, 7, 11 from (11), we find that, assuming N ≥ 11n, (12) is now 6(−n+ 1).

Now suppose we impose the relation i = i+1 for some i such that i and i+1 both lie in (13). Adding
4 and 5 to both sides of this equation, we get i + 4 = i + 5 = i + 6; adding 4 and 5 again we get
i+8 = i+9 = i+10 = i+11. At the next two rounds, we get strings of equalities that overlap one another;
and all subsequent strings likewise overlap. So everything from i + 12 on falls together with N + 1 and
hence with ∞; so we may as well assume

(14) N + 1 = i+ 12.
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What effect has imposing the relation i = i + 1 had on (12)? The amalgamations of the three strings
of integers described decrease card(S−{∞}) by 1, 2 and 3 respectively, so in that way, we have gained
ground, bringing (12) up from 6(−n+ 1) to possibly 6(−n+ 2). But have we decreased card(S(n)−{∞}),
and so lost ground, in the process?

If n > 2, then even if there has been no such loss, the value 6(−n + 2) is negative; so let us assume
n = 2. If we are to avoid bringing (12) below 0, we must make sure that none of the sets that were fused
into single elements,

(15) {i, i+ 1}, {i+ 4, i+ 5, i+ 6}, {i+ 8, i+ 9, i+ 10, i+ 11},

contained more than one member of S(2). For the first of these sets, that is no problem; and for the second,
the desired conclusion can be achieved by taking i odd, so that of the three elements of that set, only i+5
is even. For the last it is more difficult – the set will contain two even values, and if i is large, these will
both belong to S(2).

However, suppose we take i not so large; say we choose it so that the smaller of the two even values in
that set is the largest even integer that does not belong to S(2). That is 22, since 11 is the largest integer
not in (13). Then the above considerations show that we do get a semigroup for which (12) is zero.

The above choice of i makes i + 9 (the smallest even value in the last subset in (15)) equal to 22 (the
largest even integer not in S(2)), so i = 13, so by (14), N + 1 = 25. Let us form the contracted semigroup
algebras of this, and of the simpler constructions described earlier.

Example 22. Let F be a perfect field of characteristic 2. Then the following nilpotent algebras have equality
in the inequality of Eggert’s Conjecture.

(16) R = [F ][x2, x3] / (xN−1 − xN , xN+1, xN+2) for every even N > 2,

(17) R = [F ][x2, x3] / (xN−1, xN+1, xN+2) for every even N > 2,

(18) R = [F ][x4, x5] / (x13 − x14, x25, . . . , x28).

More precisely, in both (16) and (17) dim R = N − 2, and dim R(2) = (N − 2)/2, while in (18),
dim R = 18, and dim R(2) = 9. �

Many examples behave like these. (A few more, if my calculations are correct, are

(19) [F ][x2, x5]/(x10−x11, x15, . . . ), [F ][x3, x7]/(x13−x14, x25, . . . ), [F ][x3, x7]/(x14−x15, x26, . . . ),

where “ . . . ” means “and all higher powers of x ”; though in each case, only finitely many are needed.)
Perhaps Eggert’s Conjecture is true, and these examples “run up against the wall” that it asserts. Or –

who knows – perhaps if one pushed this sort of exploration further, to homomorphic images of semigroups
generated by families of three or more integers, and starting farther from 0, one would get counterexamples.

For values of n greater than 2, I don’t know any examples of this flavor that even bring (12) as high as
zero. (But a class of examples of a different sort, which does, was noted in the last paragraph of §1.)

Incidentally, observe that in the semigroup-theoretic context that led to (16) and (17), we had the choice
of imposing either the relation N − 1 = N or the relation N − 1 = ∞. However, in the development that
gave (18), setting a semigroup element equal to ∞ would not have done the same job as setting two such
elements equal. If we set i = ∞, then, for example, i + 4 and i + 5 would each become ∞, so looking
at the latter two elements, we would lose one from S(2) as well as one not in S(2). Above, we instead set
i = i+1, and the resulting pair of equalities i+4 = i+5 = i+6 turned a family consisting of two elements
not in S(2) and one in S(2) into a single element of S(2).

Turning back to Eggert’s ring-theoretic conjecture, it might be worthwhile to experiment with imposing
on subalgebras of [F ][x] relations “close to” those of the sort used above, but not expressible in purely
semigroup-theoretic terms; for instance, xi + xi+1 + xi+2 = 0, or xi − 2xi+1 + xi+2 = 0.

6. Sketch of the literature

The main positive results in the literature on Eggert’s Conjecture concern two kinds of cases: where
dim(R(p)) (or some related invariant) is quite small, and where R is graded.

N.H. Eggert [9], after making the conjecture, in connection with the study of groups that can appear as
the group of units of a finite unital ring A (the nonunital ring R to which the conjecture would be applied
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being the Jacobson radical of A), proved it for dim(R(p)) ≤ 2. That result was extended to dim(R(p)) ≤ 3
by R.Bautista [5], both results were re-proved more simply by C. Stack [16], [17], and most recently pushed
up to dim(R(p)) ≤ 4 by B.Amberg and L.Kazarin [2]. Amberg and Kazarin also prove in [1] some similar
results over an arbitrary field, in the spirit of our Questions 16 and 17, and they show in [3] that, at least
when the values dim(Ri/Ri+1) are small, these give a nonincreasing function of i. In [3] they given an
extensive survey of results on this subject and related group-theoretic questions.

K.R.McLean [13], [14] has obtained strong positive results in the case where R is graded and generated
by its homogeneous component of degree 1. In particular, in [13] he proves Eggert’s Conjecture in that case if
(R3)

(p) = 0 (recall that in Corollary 4 we could not get beyond the case (R2)
(p) = 0), or if R(p) is generated

by two elements; moreover, without either assumption (but still assuming R graded and generated in degree
1), he proves that dim R(p)/ dim R ≤ 1/(p−1). His technique involves taking a subspace V ⊆ R1 as at
the start of §2 above, and constructing recursively a family of direct-sum decompositions of V, each new
summand arising as a vector-space complement of the kernel of multiplication by an element obtained using
the previous steps of the construction. He also shows in [13] that Eggert’s Conjecture holds for the radicals
of group algebras of finite abelian groups over perfect fields F of nonzero characteristic.

S.Kim and J. Park [11] prove Eggert’s Conjecture when R is a commutative nilpotent monomial algebra,
i.e., an algebra with a presentation in which all relators are monomials in the given generators.

M.Korbelář [12] has recently shown that Eggert’s Conjecture holds whenever R(p) can be generated as
an F -algebra by two elements. (So a counterexample in the spirit of the preceding section would require at
least 3 generators.) [12] ends with a generalization of Eggert’s conjecture, which is equivalent to the case
of Question 16 above in which F is a field of positive characteristic p and n = p, but F is not assumed
perfect.

(In [10], a full proof of Eggert’s Conjecture was claimed, but the argument was flawed. The claim in the
erratum to that paper, that the proof is at least valid for the graded case, was also incorrect.)

There is considerable variation in notation and language in these papers. E.g., what I have written R(p)

is denoted R(1) in Amberg and Kazarin’s papers, R(p) in Stack’s and Korbelář’s, and R[p] in McLean’s
(modulo differences in the letter used for the algebra R). McLean, nonstandardly, takes the statement that
R is graded to include the condition that it is generated by its degree 1 component.

Though I do not discuss this above, I have, also examined the behavior of the sequence of dimensions
of quotients Ri/Ri+1 for a commutative algebra R. Most of my results seem to be subsumed by those of
Amberg and Kazarin, but I will record here a question which that line of thought suggested, which seems
of independent interest for its simplicity. Given two subspaces V and W of a commutative algebra, let
AnnV W denote the subspace {x ∈ V | xW = {0}} ⊆ V.

Question 23. If R is a commutative algebra over a field F, V a finite-dimensional subspace of R, and
n a positive integer, must

(20) dim(V/AnnV V
n) ≤ dim V n ?

I believe I have proved (20) for dim V n ≤ 4; the arguments become more intricate with each succeeding
value 1, 2, 3, 4.

I am indebted to Cora Stack for bringing Eggert’s Conjecture to my attention and providing a packet of
relevant literature, and to Martin Olsson for pointing me to the result in [15] used in the proof of Lemma 3.
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