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ANALYTIC TORSION VERSUS REIDEMEISTER TORSION ON

HYPERBOLIC 3-MANIFOLDS WITH CUSPS

JONATHAN PFAFF

Abstract. For a non-compact hyperbolic 3-manifold with cusps we prove an explicit for-
mula that relates the regularized analytic torsion associated to the even symmetric powers
of the standard representation of SL2(C) to the corresponding Reidemeister torsion. Our
proof rests on an expression of the analytic torsion in terms of special values of Ruelle
zeta functions as well as on recent work of Pere Menal-Ferrer and Joan Porti.

1. Introduction

Let X be a hyperbolic manifold with cusps of odd dimension d. Then X is not compact
but has finite volume. In a previous publication [MP2] we have introduced the analytic
torsion TX(ρ) with coefficients in the flat vector bundle Eρ which is obtained by restricting
a finite-dimensional complex representation ρ of G := Spin(d, 1) to the fundamental group
Γ ⊂ G of X . The aim of this paper is to relate the torsion TX(ρ) to the corresponding
Reidemeister torsion invariants for the case that X is 3-dimensional.

In order to motivate our results, let us first recall the situation on a closed odd-dimensional

Riemannian manifold (M, g). Let Γ denote the fundamental group of M and let M̃ be the
universal covering space of M . Let ρ be a finite-dimensional representation of Γ on a com-
plex vector space Vρ. Moreover assume that ρ is unimodular, which means that ρ satisfies

|det ρ(γ)| = 1 for all γ ∈ Γ. Let Eρ := M̃ ×ρ Vρ be the associated flat vector bundle over
M . Pick a Hermitian fibre metric h in Eρ. Then the analytic torsion TM (ρ) ∈ R+ is a
spectral invariant of Eρ which depends on the metrics on M and Eρ. It is defined as a
weighted product over the zeta-determinants of the Hodge-Laplace operators which act on
the Eρ-valued p-forms on M , see [Mü2, section 2]. There exists a combinatorial counter-
part of the analytic torsion, the so called Reidemeister torsion. The latter is constructed
in a combinatorial way out of a smooth triangulation of M . It depends on a choice of
bases in the homology groups H∗(M,Eρ) ofM with coefficients in the local system defined
by ρ. However, via the Hodge-DeRham isomorphism and Poincaré duality, the metrics
g and h canonically define such bases. In this way one obtains a combinatorial invariant
τM(ρ; h), the Reidemeister torsion associated to (M, g) and the Hermitian vector bundle
(Eρ, h), see [Mü2, section 1, section 2]. Now the analytic torsion and the Reidemeister
torsion are equal, i.e. one has TM(ρ; h) = τM(ρ; h). For the case that ρ is unitary, this was
proved independently by Cheeger [Che] and Müller [Mü1]. The extension to unimodular
representations is due to Müller [Mü2].
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Let us now turn to the actual setup of this paper. We let X be a hyperbolic 3-manifold
which is not compact but of finite volume. If G := SL2(C), K := SU(2), then X̃ :=
G/K can be identified with the hyperbolic 3-space and there exists a discrete, torsion free

subgroup Γ of G such that X = Γ\X̃ . One can identify Γ with the fundamental group
of X . Throughout this paper, we assume that Γ satisfies a certain condition, which is
formulated in equation (2.2) below. Let ρ be an irreducible finite-dimensional complex
representation of G. Restrict ρ to Γ and let Eρ be the associated flat vector-bundle over
X . One can equip Eρ with a canonical metric, called admissible metric. The associated
Laplace operator ∆p(ρ) on Eρ-valued p-forms has a continuous spectrum and therefore, the
heat operator exp(−t∆p(ρ)) is not trace class. So the usual zeta function regularization
can not be used to define the analytic torsion. However, picking up the concept of the
b-trace of Melrose, employed by Park in a similar context, in [MP2] we introduced the
regularized trace Trreg

(
e−t∆p(ρ)

)
of the operators e−t∆p(ρ) and in this way we extended the

definition of the analytic torsion to the non-compact manifold X . These definitions will be
reviewed in section 4 below. Let TX(ρ) denote the analytic torsion on X associated to ρ.

The aim of the present article is to find a suitable generalization of the aforementioned
Cheeger-Müller theorems to the specific non-compact situation of the hyperbolic 3-manifold
X with cusps. For m ∈ 1

2
N we let ρ(m) denote the 2m-th symmetric power of the standard

representation of SL2(C). Let X be the Borel-Serre compactifcation of X . We recall that
X is a compact smooth manifold with boundary and that X is diffeomorphic to the interior
of X. Moreover, X and X are homotopy-equivalent. Thus, every representation ρ := ρ(m)
of G also defines a flat vector bundle Eρ over X . Now by our assumption (2.2) on Γ and
[MePo1, Proposition 2.8], the cohomology H∗(X, ρ) never vanishes. Thus in order to define
the Reidemeister torsion of Eρ, one needs to fix bases in the homology H∗(X, ρ). However,
by [MP2, Lemma 7.3] the bundle Eρ is L

2-acyclic and thus the metrics on X and Eρ do not
give such bases. This fact is a significant difference to the situation on a closed manifold
described above and causes additional difficulties. To overcome this problem, we use the
normalized Reidemeister torsion which was introduced by Menal-Ferrer and Porti [MePo2].
Recall that the boundary of X is a disjoint union of finitely many tori Ti. For each i fix a
non-trivial cycle θi ∈ H1(Ti;Z). By our assumption on the group Γ, it follows from [MePo2,
Proposition 2.2] that the {θi} can be used do define a base in the homology H∗(X ; ρ(m))
for each m ∈ 1

2
N. Denote the corresponding Reidemeister torsion by τX(ρ(m); {θi}). Then

by [MePo2, Proposition 2.2] for each m ∈ N the quotient

TX(ρ(m)) :=
|τX(ρ(m); {θi})|
|τX(ρ(2); {θi})|

(1.1)

is independent of the choice of the {θi}. As explained in [MePo2, section 1, section 2], it is
also independent of a given spin-structure onX . The number TX(ρ(m)) is called normalized
Reidemeister torsion of X associated to ρ(m). We remark that our parametrization of
the representations ρ(m) differs from the one used by Menal-Ferrer and Porti in [MePo2]
but is consistent with the notation of [MP1], [MP2] and [Pf]. Menal-Ferrer and Porti
expressed the normalized Reidemeister torsion in terms of special values of Ruelle zeta
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functions [MePo2, Theorem 5.8]. This relation generalizes a result obtained by Müller
for closed hyperbolic 3-manifolds, [Mü2, equation 8.7, equation 8.8] and is proved via a
Dehn-approximation of X by closed hyperbolic 3-manfiolds. Now, in analogy to (1.1), for
m ∈ N we define the normalized analytic torsion T an

X (ρ(m)) by

T an
X (ρ(m)) :=

TX(ρ(m))

TX(ρ(2))
.

Then our main result can be stated in the following theorem.

Theorem 1.1. For m ∈ N, m ≥ 2 we define

c(m) :=

∏m−1
j=1

√
(m+ 1)2 +m2 − j2 +m

∏m
j=1

√
(m+ 1)2 +m2 − j2 +m+ 1

( √
(m+ 1)2 +m2 +m√

(m+ 1)2 +m2 +m+ 1

) 1
2

.

Let κ(X) be the number of cusps of X. Then for m ∈ N, m ≥ 2 one has

T an
X (ρ(m)) =

(
c(m)

c(2)

)κ(X)

TX(ρ(m)).

We first remark that neither the normalized Reidemeister torsion nor the quotient of the
analytic torsions occuring in Theorem 1.1 are trivial. In fact, each of them is exponentially
growing as m → ∞. This follows for example from Theorem 1.2 below or from the more
general results of [MP2]. The constants c(m) are a defect caused by the non-compactness
of the manifold. They appear via the contribution of a certain non invariant distribution
to the geometric side of the Selberg trace formula.

In a furthcoming publication, Theorem 1.1 will be applied to study for fixed m ∈ N the
asymptotic behaviour of the torsion-growth in the cohomology H∗(Γi,Mρ(m)) for towers of
arithmetic groups Γi ⊂ SL2(C). Here Mρ(m) denotes a lattice in the representation space
Vρ(m) of ρ(m) which is stable under the Γi. In this way we will obtain a modified extension
of some results of Bergeron and Venkatesh [BV] to the noncompact case. More precisely, as
it was already observed by Bergeron and Venkatesh [BV, section 2] (see also [Che, equation
1.4]), the size of the torsion subgroups is closely related to the Reidemeister torsion . On
the other hand, the analytic torsion TX(ρ(m)) is accessible to compuations since it can be
computed in a rather explicit form via the Selberg trace formula.

As already indicated, our proof of Theorem 1.1 is based on an expression of the analytic
torsion in terms of special values of Ruelle zeta functions. Our method to establish such a
relation works for every representation ρ(m), m ∈ 1

2
Z. Thus for k ∈ 1

2
N we let σk be the

representation ofM := SO2(R) with highest weight ke2 as in section 2. Then we define the
Ruelle zeta function R(s, σk) as in equation (3.4). The infinite product in (3.4) converges
for s ∈ C with Re(s) > 2. We will prove the following theorem.

Theorem 1.2. Let m ∈ N. Then for m ≥ 3 one has

TX(ρ(m))

TX(ρ(2))
=

(
c(m)

c(2)

)κ(X)

exp

(
−1

π
vol (X)(m(m+ 1)− 6)

) m∏

k=3

|R(k, σk)| ,
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where the constants c(ρ(m)) and c(ρ(2)) are as in Theorem 1.1. Similarly, for each m ≥ 1
there exist constants c(m+ 1/2), defined in (7.23) such that for m ≥ 2 one has

TX(ρ(m+ 1
2
))

TX(ρ(
3
2
))

=

(
c(m+ 1

2
)

c(3
2
)

)κ(X)

exp

(
−1

π
vol (X)(m(m+ 2)− 3)

) m∏

k=2

∣∣∣∣R(k +
1

2
, σk+ 1

2
)

∣∣∣∣ .

If one combines the first statement of the previous Theorem with the corresponding
result of Menal-Ferrer and Porti [MePo2, Theorem 5.8], Theorem 1.1 follows immediately.

We note that one can not combine Theorem 1.2 and the corresponding result [MePo2,
Theorem 5.8] of Menal-Ferrer and Porti to deduce an analog of Theorem 1.1 for the rep-
resentations ρ(m + 1/2), m ∈ N, m ≥ 2. The problem is that in this case the normalized
Reidemeister torsion and the Ruelle zeta functions occuring in [MePo2, Theorem 5.8] are
defined with respect to an acylic spin-structure of X . In the setting of the present ar-
ticle, this means that one replaces the group Γ ⊂ G by a suitable group Γ′ ⊂ G which
has the same image in PSL2(C) as Γ. Clearly, for each k ∈ N the Ruelle zeta functions
R(s, σk) remain the same under this change of the group Γ since each representation σk,
k ∈ N descends to a representation of PSO2(R). However, this is no longer the case for
the representations σk, k ∈ Z − 1

2
Z. Furthermore, Theorem 1.2 can not be applied to a

group Γ′ corresponding to an acyclic spin-structure of X since by [MePo1, Lemma 2.4]
such a group never satisfies the assumption (2.2). This assmuption is yet needed for our
compuations involving the Selberg trace formula and in order to apply the results about
the meromorphic continuation of the zeta functions obtained in [Pf].

We shall now explain our method to prove Theorem 1.2. We first recall that on closed
odd-dimensional hyperbolic manifolds Fried [Fr] related the behaviour of the Ruelle zeta
function Rρ associated to a unitary representation ρ of Γ to the corresponding analytic
torsion TX(ρ). In particular, if ρ is acyclic, which means that the cohomology H∗(X,Eρ)
vanishes, he showed that the function Rρ is regular at 0 and that Rρ(0) = TX(ρ)

2. How-
ever, there is no obvious method of constructing non-trivial unitary representations of
(cocompact) hyperbolic lattices Γ. On the other hand, if X is a closed 2n+1-dimensional
hyperbolic manifold and if ρ is a representation of Spin(2n + 1, 1) which is not invariant
under the standard Cartan-involution θ, then the restriction of ρ to the fundamental group
Γ ⊂ Spin(2n+ 1, 1) of X is an acyclic unimodular representation. Generalizing Fried’s re-
sults, Bröcker [Br] and Wotzke [Wo] have shown that for such representations ρ the Ruelle
zeta function Rρ is regular at 0 and that one has Rρ(0) = TX(ρ)

2.
We establish a generalization of the results of Bröcker and Wotzke to the non-compact

hyperbolic 3-manifoldX which is sufficient to prove Theorem 1.2 and thereby Theorem 1.1.
The first main problem ist that the Ruelle zeta function Rρ(m) is a priori defined only for
s ∈ C with Re(s) > 2. However, as a special case of our results obtained in [Pf], it follows
that Rρ(m) admits a meromorphic continuation to the entire complex plane. This is the
first step in the proof. The main technical issue of this paper is now to relate the behaviour
of Rρ(m) at zero to the regularized analytic torsion TX(ρ(m)). Let ρ(m)θ := ρ(m) ◦ θ. We
prove the following proposition.
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Proposition 1.3. For m ∈ N let the constant c(m) be as in Theorem 1.1. Then

TX(ρ(m))4

=c(m)4κ(X) C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rρ(m)(s)Rρ(m)θ (s)

C(m+ 1 : m− s)

C(m : m+ 1− s)
Γ−2κ(X)(s− 1)

)
.

Here the functions C(k : s) are meromorphic functions of s which are constructed out of

the scattering determinant associated to the representation σ of M with highest weight ke2
and a certain K-type. They are defined in section 6. For m ∈ 1

2
N, a similar formula holds.

Due to the presence of the scattering term and the Γ-factor, Proposition 1.3 does not
imply that the Ruelle zeta function Rρ(m) is regular at 0. However, from Proposition 1.3
one can deduce Theorem 1.2 which is much more explicit.

We remark that for odd-dimensional hyperbolic manifolds with cusps and for unitary
representatiosn of Γ, Park studied the relation between the behaviour of the Ruelle zeta
function at 0 and the analytic torsion [Pa]. However, his results can not be applied here
since the representations ρ(m) are not unitary. Moreover the paper [Pa] decisively uses
the results of the earlier paper of Gon and Park [GP] on Selberg and Ruelle zeta functions
and the results of this paper do not imply that the Ruelle zeta function Rρ(m) admits
a meromorphic continuation to C. Furthermore, in the 3-dimensional case, the paper
[GP] only covers the Selberg and Ruelle zeta functions associated to the fundamental
representations σ0, σ1 ofM and it is unclear whether the methods of Gon and Park can be
applied to other representations of M since among other things they use a special type of
a Paley-Wiener theorem which presently exists only for the fundamental representations
of K. The proof of our main results is yet based on the meromorphic continuation of the
Ruelle and Selberg zeta functions associated to any representation σk, k ∈ Z as well as on
their relation to geometric differential operators on X . These results have been established
in our preceding paper [Pf] in the more general context of odd-dimensional hyperbolic
manifolds with cusps. We want to point out that, as well as in the preceding paper [Pf], a
lot of the methods used in the present article had been developed by Bunke and Olbrich
[BO] for the closed case and are generalized here to the non-compact situation. This
generalization is made possible by the work of Hoffmann who proved an invariant trace
formula [Ho2] and who determined the Fourier transform of the associated weighted orbital
integral [Ho1].

To prove Proposition 1.3, we first express the analytic torsion TX(ρ(m)) as a weighted

product of graded determinants associated to differential operators A(σ) for certain σ ∈ M̂ .
Here the A(σ) are of Laplace type and act on graded locally homogeneous vector bundles
E(σ) over X . By the same argument as in the closed case [Wo], [Mü2] the product
Rρ(m)(s)Rρ(m)θ (s) can be expressed as a weighted product of Selberg zeta functions S(s, σ)

with shifted arguments for the same set of representations σ ∈ M̂ . To relate the analytic
torsion to the Ruelle zeta function, we first prove a determinant formula which expresses
the Selberg zeta function S(s, σ) by the graded determinant of A(σ) + s2. The prove is
based on an explicit evaluation of the Laplace-Mellin transform of each term occuring on
the geometric side of the Selberg trace formula applied to a particular test function hσt .
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However, in contrast to the closed case, the determinant formula can only be applied to
s ∈ C with Re(s) and Re(s2) sufficiently large. Thus to complete the proof of Proposition
1.3, we also need to establish a functional equation for the symmetric Selberg zeta functions.
Via the functional equations the scattering terms appear in Proposition 1.3.

This paper is organized as follows. In section 2 we fix notations and recall some basic
facts about hyperbolic 3-manifolds. In section 3 we briefly recall the definition of the
Ruelle and Selberg zeta functions. The definition of the regularized traces and the analytic
torsion are reviewed in section 4. In sections 5 and 6 we establish the determinant formula
respectively the functional equations of the symmetric Selberg zeta functions. The proof
of our main results is completed in the final section 7.

Acknowledgement. This paper contains parts of the author’s PhD thesis. He would
like to thank his supervisor Prof. Werner Müller for his constant support and for helpful
suggestions.

2. Hyperbolic 3-manifolds with cusps

Let H3 denote the hyperbolic 3-space equipped with the hyperbolic metric of constant
curvature −1. Let G = SL2(C), regarded as a real Lie group, and let K = SU(2). Then
K is a maximal compact subgroup of G. The groups G and K can be identified with
the groups Spin(3, 1) and Spin(3) and there is a canonical isomorphism H3 ∼= G/K. The

quotient G/K will also be denoted by X̃ in the sequel. Let g and k be the Lie algebras
of G and K. We let θ be the standard Cartan involution of g. The lift of θ to G will be
denoted by the same latter. Let g = k ⊕ p be the corresponding Cartan decomposition.
Then the Killing form B of g defines an inner product on p. We consider the inner product

〈·, ·〉 on p which is given by 1
4
B. The tangent space of X̃ at 1K can be identified with p

and therefore the inner product 〈·, ·〉 defines an invariant metric on X̃ . This metric is the
metric of constant curvature −1.

Now we let Γ be a discrete, torsion free subgroup of G with vol(Γ\G) <∞ and we let

X = Γ\X̃.

We equip X with the Riemannian metric induced from X̃ . Let P be a fixed set of repre-
sentatives of Γ-nonequivalent proper cuspidal parabolic subgroups of G. Then P is finite.
Throughout this paper we assume that for every P ∈ P with Langlands decomposition
P =MPAPNP one has

Γ ∩ P = Γ ∩NP .(2.2)

This condition is satisfied for example if Γ is “neat”, which means that the group generated
by the eigenvalues of any γ ∈ Γ contains no roots of unity 6= 1. It also holds for many
groups Γ which are of arithmetic significance. Let κ(X) := #P. The geometric shape
of X can be described as follows, see for example [MP2]. There exists a Y0 > 0 and for
every Y ≥ Y0 a compact manifold X(Y ) with smooth boundary such that X admits a
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decomposition as

X = X(Y ) ∪
⊔

P∈P
FP,Y(2.3)

with X(Y )∩FP,Y = ∂X(Y ) = ∂FP,Y and FP,Y ∩FP ′,Y = ∅ if P 6= P ′. Here the FP,Y are the
cusps of X . They satisfy FP,Y

∼= [Y,∞)× T 2, where T 2 denotes the flat 2-torus. Moreover

the restriction of the metric of X to FP,Y is given as a warped product y−2 d2

dy2
+ y−2g0,

where g0 denotes the suitably normalized standard-metric of T 2.
We let P0 := MAN be the standard parabolic subgroup of G. Then we have M =

SO2(R). By m, a and n we denote the Lie algebras of M , A and N . Then h := a ⊕ m is
a Cartan subalgebra of g and m is a Cartan subalgebra of k. We let e1 ∈ a∗ denote the
restricted root which is implicit in the choice of n and we fix e2 ∈ im∗ such that positive
roots ∆+(gC, hC) can be defined by ∆+(gC, hC) := {e1 + e2, e1 − e2}, see [MP1, section 2].
We let H1 ∈ a be such that e1(H1) = 1.

By M̂ and K̂ we denote the equivalence classes of finite-dimensional irreducible repre-
sentations of M respectively K. For ν ∈ K̂, σ ∈ M̂ we denote the multiplicity of σ in
ν|M by [ν : σ]. Then every representation in M̂ is one-dimensional and the elements of M̂
will be parametrized as σj , j ∈ 1

2
Z. Here σj denotes the representation of M with highest

weight je2. For l ∈ 1
2
N we let νl be the representation of K with highest weight le2. Then

K̂ is parametrized by the elements νl, l ∈ 1
2
N. Our parametrization is different from the

one used in [Mü3] but consistend with the notation of [MP1], [MP2]. For k ∈ 1
2
Z we define

a representation w0σk ofM by w0σk := σ−k, see [MP1, section 2]. The representation rings
ofM and K will be denoted by R(M) respectively R(K). Then the following lemma holds.

Lemma 2.1. Let ν = νl, l ∈ N. Then for σ ∈ M̂ one has [ν : σ] = 1 if σ = σk, k ∈ Z,

|k| ≤ l and [ν : σ] = 0 otherwise. Let σ = σk, k ∈ Z − {0}. For ν ∈ K̂, ν = ν|k| let
mν(σ) = 1. For ν = ν|k|−1 let mν(σ) = −1. Finally, for ν /∈ {ν|k|, ν|k|−1} let mν(σ) = 0.
Then in R(M) one has σ + w0σ =

∑
ν∈K̂ mν(σ)ν|M .

Proof. This follows from [Mü3, equations 4.1, 4.2], taking the different parametrizations
into account. �

For m ∈ 1
2
N we let ρ(m) denote the 2m-th symmetric power of the standard representa-

tion of G = SL2(C) over Vρ(m) := Sym2m
C2. Then in the notations of [MP1], [MP2], ρ(m)

corresponds to the representation with highest weight Λ(ρ(m)) := me1 +me2. By [MP1,
equation 2.9] we have ρ(m) 6= ρ(m)θ for each m, where ρθ := ρ ◦ θ for a representation ρ of
G. For q = 0, 1, 2 let µq : MA → GL(Λqn∗

C
) be the q-th exterior power of the adjoint rep-

resentation of MA on n∗
C
. For λ ∈ C and a ∈ A, a = exp(Y ), Y ∈ a we let ξλ(a) := eλe1(Y ).

Then the restriction ρ(m)|MA of ρ(m) to MA has the following property.

Lemma 2.2. In the representation ring of MA one has

2∑

q=0

(−1)qqµq ⊗ ρ(m)|MA = σm ⊗ ξm+1 − σm+1 ⊗ ξm + σ−m ⊗ ξ−(m+1) − σ−(m+1) ⊗ ξ−m.
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Proof. This Lemma is a special case of [MP1, Corollary 2.6]. It can also be checked by a
direct computation. �

Remark 2.3. If for k ∈ {0, 1} the representations σρ(m),k ∈ M̂ and the λρ(m),k ∈ R are as in
[MP2, section 8], then σρ(m),0 = σm, λρ(m),0 = m+ 1 and σρ(m),1 = σm+1, λρ(m),1 = m.

3. Selberg and Ruelle zeta functions

In this section we briefly recall the definition and some properties of the Selberg and
Ruelle zeta functions. For further details we refer to [Pf, section 3].
We let C(Γ)s denote the semisimple conjugacy classes of Γ. If γ ∈ Γ is semisimple and
nontrivial, there exists a unique ℓ(γ) > 0 and amγ ∈M , which is unique up to conjugation
in M , such that γ is conjugate to exp (ℓ(γ)H1)mγ. The number ℓ(γ) is the length of the
closed geodesic associated to the conjugacy class [γ]. Moreover the centralizer Z(γ) of γ in
Γ is an infinite cyclic group. The conjugacy class [γ] is called prime if γ is a generator of
Z(γ) or equivalently if the closed geodesic corresponding to [γ] is a prime geodesic. Now

for σ ∈ M̂ the Selberg zeta function Z(s, σ) is defined as

Z(s, σ) =
∏

[γ]∈C(Γ)s−[1]
[γ] prime

∞∏

k=0

det
(
Id−σ(mγ)⊗ Sk Ad(mγ exp(ℓ(γ)H1))|n̄e−(s+n)ℓ(γ)

)
.

By [Pf, section 3] the infinite product converges for Re(s) > 2 and by [Pf, Theorem 1] the
function Z(s, σ) admits a meromorphic continuation to C.

Next for σ ∈ M̂ we define the twisted Ruelle zeta function R(s, σ) by

R(s, σ) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

det
(
Id−σ(mγ)e

−sℓ(γ)
)
.(3.4)

The infinite product in (3.4) converges absolutely for Re(s) > 2, see [Pf, section 3]. Fur-
thermore, if ρ is a finite-dimensional irreducible complex representation of G, we define the
associated Ruelle zeta function Rρ(s) by

Rρ(s) :=
∏

[γ]∈C(Γ)s−[1]
[γ] prime

det
(
Id−ρ(γ)e−sℓ(γ)

)
.

This inifinite product converges absolutely for Re(s) sufficiently large, see [Pf, section 3].
By [Pf, Corollary 1.2] the functions Rσ(s) and Rρ(s) have a meromorphic continuation to
C. We will also consider symmetric Selberg and Ruelle zeta functions. For σ the trivial
representation of M we let S(s, σ) := Z(s, σ) and Rsym(s, σ) := R(s, σ). If σ is non-trivial,
we let S(s, σ) := Z(s, σ)Z(s, w0σ) and Rsym(s, σ) := R(s, σ)R(s, w0σ).

4. The regularized trace and the regularized determinant

In this section we define the regularized trace and the regularized analytic torsion. For
further details we refer the reader to section 4 and section 5 of [MP2].
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Let us first introduce the differential operators we consider. For a finite-dimensional
unitary representation ν of K over Vν let Ẽν := G ×ν Vν be the associated homogeneous

vector bundle over X̃ . Let Eν := Γ\Ẽν be the corresponding locally homogeneous vector

bundle over X . We equip Ẽν with the G-invariant metric induced from the metric on Vν .
This metric pushes down to a metric on Eν . The smooth sections of Ẽν can be canonically
identified with the space

C∞(G, ν) := {f : G→ Vν : f ∈ C∞, f(gk) = ν(k−1)f(g), ∀g ∈ G, ∀k ∈ K}.(4.5)

We define the space L2(G, ν) in the same way. Let Ãν be the differential operator on Ẽν

which acts on C∞(G, ν) by −Ω. Then by the arguments of [MP2, section 4] the operator

Ãν with domain the compactly supported functions in C∞(G, ν) is essentially selfadjoint on

L2(G, ν) and bounded from below. Its selfajoint closure will be denoted by Ãν too. There
exists a smooth End(Vν)-valued function Hν

t which belongs to all Harish-Chandra-Schwarz
spaces and which satisfies Hν

t (k
−1gk′) = ν(k)−1 ◦ Hν

t (g) ◦ ν(k′) for all k, k′ ∈ K an for

all g ∈ G such that e−tÃν acts on L2(G, ν) as a convolution operator with kernel Hν
t , see

[MP2, equation 4.7]. If C∞(Γ\G, ν) are the Γ-invariant elements of C∞(G, ν), then the
smooth sections of Eν can be identified with C∞(Γ\G, ν). Similarly, the square-integrable
sections of Eν can be identified with the Γ-invariant elements L2(Γ\G, ν) of L2(G, ν). Let
Aν be the differential operator on Eν which acts as −Ω on C∞(Γ\G, ν). Then Aν with
domain the compactly supported elements in C∞(Γ\G, ν) is again bounded from below and
essentially selfadjoint on L2(Γ\G, ν) and its closure will be denoted by the same symbol.
Let λν,0 ≤ λν,1 ≤ . . . be the sequence of eigenvalues of Aν , counted with multiplicity. One
can easily extend Theorem I.1 of [Do] and its proof to the operators Aν and thus there
exists a constant C > 0 such that for each λ > 0 one has

#{j : λν,j ≤ λ} ≤ C(1 + λ)
3
2 .(4.6)

Now consider the heat-semigroup e−tAν of Aν acting on L2(Γ\G, ν). The operator e−tAν

is an integral operator on L2(Γ\G, ν) with smooth kernel Hν(t; x, x′) defined in [MP2,
equation 4.8]. Let hν(t; x, x′) := TrHν(t; x, x′). The operator e−tAν is not trace class and
hν(t; x, x) is not integrable over X . However, it follows from the Mass-Selberg relations,
that with respect to the decomposition (2.3) the integral of hν(t; x, x) over X(Y ) has an
asymptotic expansion in Y as Y → ∞ and, following ideas of Melrose, one can take the
finite part in this expansion as a definition of the regularized trace Trreg(e

−tAν ) of e−tAν .
Explicitly, one obtains

Trreg
(
e−tAν

)
=
∑

j

e−tλν,j +
∑

σ∈M̂ ;σ=w0σ
[ν:σ] 6=0

etc(σ)
Tr(C̃(σ, ν, 0))

4

− 1

4π

∑

σ∈M̂
[ν:σ] 6=0

∫

R

e−t(λ2−c(σ)) Tr

(
C̃(σ, ν,−iλ) d

dz
C̃(σ, ν, iλ)

)
dλ,(4.7)
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see [MP2, equation 5.2, definition 5.1]. Here the first sum on the right hand side of (4.7)
converges absolutely by (4.6) and all integrals converge absolutely by the arguments of

[MP2, section 5]. The functions C̃(σ, ν, z) are meromorphic functions of z with values in
the endomorphisms of a finite-dimensional vector-space, which are regular and invertible on
iR. They are constructed out of the constant term-matrices, also called scattering matrices,
associated to the Eisenstein series, see [MP2, section 3, section 5]. The constansts c(σ) are
defined by c(σj) := j2 − 1, j ∈ 1

2
Z.

The key fact which makes the regularized trace accessible to computations is that the
right hand side of (4.7) equals the spectral side of the Selberg trace formula applied to the
function hνt := TrHν

t . The spectral side of the trace formula consists of a sum of tempered
distributions. We shall now define these distributions in the form in which they will be
used for the subsequent computations. For further details we refer to [MP2, section 6]. If

σ ∈ M̂ , λ ∈ C, we let πσ,λ be the principle-series representation of G as in [MP2, section
2.7]. Then πσ,λ is unitary iff λ is real. The global character of πσ,λ will be denoted by Θσ,λ.
Let α be a K-finite Schwarz function. The identity and the hyperbolic term are defined by

I(α) := vol(X)
∑

σ∈M̂

∫

R

Θσ,λ(α)Pσ(iλ)dλ; H(α) :=

∫

Γ\G

∑

γ∈Γs−1

α(x−1γx)dx.

Here Pσ is the Plancherel polynomial. Explicitly, for k ∈ 1
2
Z one has

Pσk
(z) =

1

4π2
(k2 − z2),(4.8)

see [MP1], [Mü3]. Moreover, Γs are the semisimple elements of Γ. Next for each σ in M̂
we define a meromorphic function Ω(σ, λ) as in [MP2, Theorem 6.2] and we define the
constant C(Γ) as in [MP2, page 22]. Then the distributions I and T are defined as

I(α) := κ(X)

4π

∑

σ∈M̂

∫

R

Θσ,λ(α)Ω(σ̌,−λ)dλ; T (α) :=
C(Γ)

2π

∑

σ∈M̂

∫

R

Θσ,λ(α)dλ

Finally let JP0|P̄0
(σ, z) be the Knapp-Stein intertwining operator defined as in [MP2, equa-

tion 6.6]. Then JP0|P̄0
(σ, z) is a meromorphic function of z ∈ C which is regular and

invertible on R − {0}. Let Hǫ be the half-circle from −ǫ to ǫ in the lower half-plane,
oriented counter-clockwise. Let Dǫ be the path which is the union of (−∞,−ǫ], Hǫ and
[ǫ,∞). Then the distribution J is defined by

J(α) := −
∑

σ∈M̂

κ(X)

4πi

∫

Dǫ

Tr

(
JP̄0|P0

(σ, ζ)−1 d

dζ
JP̄0|P0

(σ, ζ)πσ,ζ(α)

)
dζ.(4.9)

By the Selberg trace formula, one can express the regularized trace as

Trreg(e
−tAν ) = I(hνt ) +H(hνt ) + T (hνt ) + I(hνt ) + J(hνt ),(4.10)

see [MP2, Theorem 6.1, Theorem 6.2].
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Next we introduce the spectral zeta function associated to Aν + s for certain s ∈ C. If
λν ∈ R is the smallest eigenvalue of Aν , we define b(ν) ∈ R by

b(ν) := max
{
{c(σ) : σ ∈ M̂ : [ν : σ] 6= 0} ⊔ {−λν}

}
,(4.11)

where the constants c(σ) are as above.

Proposition 4.1. Let s ∈ C with Re(s) > b(ν). Then for Re(z) > d
2
the integral

ξν(s, z) :=

∫ ∞

0

tz−1Trreg(e
−t(Aν+s))dt

converges and ξν is holomorphic on {(s, z) ∈ C×C : Re(s) > b(ν) : Re(z) > d
2
} . Moreover,

ξν(s, z) has a continuation to a holomorphic function on {(s, z) ∈ C×C : Re(s) > b(ν) : z 6=
−j, z 6= 3/2− j, j ∈ N0}. For every s ∈ C with Re(s) > b(ν) the function z 7→ ξν(s, z) is a
meromorphic function on C with an at most simple pole at z = 0 and its residue at z = 0
is independent of s.

Proof. By (4.7) there exists a constant C such that
∣∣Trreg e−t(Aν+s)

∣∣ ≤ Ce−t(Re(s)−b(ν)). Thus

the integral
∫∞
1
tz−1Trreg e

−t(Aν+s) converges absolutely for all {(z, s) ∈ C × C : Re(s) >
b(ν)} and is holomorphic there. Expanding e−ts in a power series, it follows from [MP2,
Proposition 6.9] that one has an asymptotic expansion

Trreg e
−t(Aν+s) ∼

∞∑

j=0

aj(s)t
j− 3

2 +

∞∑

j=0

bj(s)t
j− 1

2 log t+

∞∑

j=0

cj(s)t
j(4.12)

as t → +0 which holds locally uniformly in s. Here the coefficients aj(s), bj(s) and cj(s)
depend holomorphically on s and by [MP2, Proposition 6.9] and the fact that d = 3 is
odd it follows that c0(s) is independent of s. Thus the Proposition follows from standard
methods which are described for example in [Gi]. �

Now we can define the regularized determinant proceeding as on a closed manifold. By
Proposition 4.1, for s ∈ C with Re(s) > b(ν) the function ξν(s, z)/Γ(z) is regular at z = 0.
Thus for s ∈ C with Re(s) > b(ν) we define the determinant of Aν + s by

det(Aν + s) := exp

(
− ∂

∂z

∣∣
z=0

ξν(s, z)

Γ(z)

)
.

This definition generalizes the definition of the zeta-regularized determinant of a positive
elliptic differential operator on a closed manifold. We remark that one can easily show
that −b(ν) equals the infimum of the spectrum of Aν . This fact puts the definition of b(ν)
into a natural context. However it will not be used here.

We finally turn to the definition of the analytic torsion. For further details we refer to
[MP2, section 7]. Let ρ be a finite-dimensional irreducible complex representation of G
which is not invariant under θ. Let E ′

ρ be the flat vector bundle associated to the restriction
of ρ to Γ. Then E ′

ρ is canonically isomorphic to the locally homogeneous vector bundle Eρ

associated to ρ|K . For p = 0, . . . , 3 we define νp(ρ) := ΛpAd∗⊗ρ : K → GL(Λpp∗ ⊗ Vρ).
There is a canonical isomorphism Λp(Eρ) ∼= Γ\(G ×νp(ρ) (Λ

pp∗ ⊗ Vρ)). By [MtM, Lemma
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3.1], the bundle Eρ carries a canocial invariant metric, called admissible metric and if ∆p(ρ)
denotes the corresponding flat Hodge-Laplace operator acting on the Eρ-valued p-forms,
then by Kuga’s formula ∆p(ρ) acts on C

∞(Γ\G, νp(ρ)) as −Ω+ ρ(Ω), see [MtM, equation
6.9]. By [MP2, Lemma 7.1 (2), Lemma 7.3], for p = 0, . . . , 3 one has ρ(Ω) − bνp(ρ) ≥ 1

4
,

where the bνp(ρ) are as in (4.11). Thus the determinants det(∆p(ρ)) := det(Aνp(ρ) + ρ(Ω))
are defined. As in the closed case we now define the analytic torsion of Eρ by

TX(ρ) :=
3∏

p=0

det∆p(ρ)
(−1)p+1 p

2 .

We define a K-finite Schwarz-function kρt by

kρt := e−tρ(Ω)
3∑

p=0

(−1)pph
νp(ρ)
t .(4.13)

Then if we apply equation (4.10), we obtain

log TX(ρ) =
1

2

d

dz

(
1

Γ(z)

∫ ∞

0

tz−1(I(kρt ) +H(kρt ) + T (kρt ) + I(kρt ) + J(kρt ))dt

)∣∣∣∣
z=0

,(4.14)

where the right hand side is defined near z = 0 by analytic continuation of the Mellin
transform.

5. The determinant formula for the Symmetric Selberg zeta function

In this section we let σ = σk, k ∈ N. We want to relate the symmetric Selberg zeta
function S(s, σ) to the graded determinant of certain Laplace-type operators.

We consider the differential operator A(σ) which was introduced by Bunke and Olbrich
for the closed case [BO, section 1.1.3] and which had been used in [Pf, section 7]. Let us
briefly recall its definition. We let the mν(σ) be as in Lemma 2.1. Then one defines a
vector bundle E(σ) over X and a differential operator A(σ) on E(σ) by

E(σ) :=
⊕

ν∈K̂
mν(σ)6=0

Eν ; A(σ) :=
⊕

ν∈K̂
mν(σ)6=0

Aν + c(σ),(5.15)

where c(σ) is as in the preceding section. We define a K-finite Schwarz function hσt by

hσt := e−tc(σ)
∑

ν∈K̂

mν(σ)h
ν
t ,(5.16)

where the hνt are as in the previous section. Then by [Pf, equation 7.4] for σ′ ∈ M̂ one has

Θσ′,λ(h
σ
t ) = e−tλ2

, if σ′ ∈ {σ, w0σ}; Θσ′,λ(h
σ
t ) = 0, if σ′ /∈ {σ, w0σ}(5.17)

The bundle E(σ) admits a grading E(σ) = E+(σ)⊕E−(σ) defined by the sign of mν(σ).
In this section we study the relative graded determinant of the operators A(σ) + s. To
define this determinant, we start with the following Lemma.

Lemma 5.1. For ν ∈ K̂, mν(σ) 6= 0 one has c(σ) ≥ b(ν).
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Proof. By Lemma 2.1, and the definition of the c(σ), we have c(σ) ≥ c(σ′) for every σ′ ∈ M̂

with mν(σ) [ν : σ′] 6= 0, ν ∈ K̂. Moreover, since σ 6= w0σ, the twisted Dirac operator D(σ)
can be defined as in [Pf, section 8, section 9] and it follows from [Pf, Proposition 8.1] that
A(σ) = D(σ)2. Thus the eigenvalues of A(σ) are nonnegative and the Lemma follows. �

Let s ∈ C with Re(s) > 0. By Proposition 4.1 and Lemma 5.1, for every ν ∈ K̂ with
mν(σ) 6= 0 the relative determinant det (Aν + c(σ) + s) ∈ C

∗ is defined. Thus we can
define the graded determinant detgr(A(σ) + s) ∈ C∗ of A(σ) + s by

detgr(A(σ) + s) :=
∏

ν∈K̂
mν(σ)6=0

(det(Aν + c(σ) + s))mν(σ) .

We now study the function s 7→ detgr(A(σ) + s2), Re(s) > 0, Re(s2) > 0. By (4.10) we
have

log detgr(A(σ) + s2)

=− d

dz

∣∣∣∣
z=0

(
1

Γ(z)

∫ ∞

0

tz−1e−ts2 (I(hσt ) +H(hσt ) + T (hσt ) + I(hσt ) + J(hσt )) dt

)
,(5.18)

where the right hand side is defined near z = 0 by analytic continuation of the Mellin
transform. We will compute the Mellin transform of each summand on the right hand
side separately. In the sequel, we shall write LM to indicate that the Laplace-Mellin
transform of a function is taken, allthoug we take the Laplace-transform in s2 rather than
in s. Firstly, the idenditiy contribution is easily treated.

Proposition 5.2. Let s ∈ C, Re(s) > 0, Re(s2) > 0. For Re(z) > 3/2 the integral

LMI(s, z, σ) :=

∫ ∞

0

tz−1e−ts2I(hσt )dt

converges absolutely. Moreover, LMI(s, z, σ) has a meromorphic continuation to z ∈ C

and is regular at z = 0. Let LMI(s, σ) := LMI(s, z, σ)
∣∣
z=0

. Then one has

LMI(s, σ) = −4π vol(X)

∫ s

0

Pσ(r)dr.

Proof. Since the Pσ(z) are even polynomials in z of degree 2, it follows from (5.17) and

a change of variables that I(hσt ) = a0t
− 3

2 + a1t
− 1

2 , where a0, a1 ∈ C. Thus for s ∈ C,
Re(s) > 0, Re(s2) > 0 and Re(z) > 3/2 the function LMI(s, z, σ) is defined and it extends
to a meromorphic function of z ∈ C which is regular at z = 0. Moreover the assignment
s → LMI(s, 0, σ) is holomorphic on {s ∈ C : Re(s) > 0, Re(s2) > 0}. Applying [Fr,
Lemma 2, Lemma 3], the Lemma is proved for s ∈ (0,∞) and thus it also follows for
general s. �

Next we treat the hyperbolic contribution. For our purposes, it suffices to prove the
following estimate.
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Proposition 5.3. Let s ∈ (
√
2,∞). Then for every z ∈ C the integral

LMH(s, z, σ) :=

∫ ∞

0

tz−1e−ts2H(hσt )dt

converges absolutely and LMH(s, z, σ) is an entire function of z. Let LMH(s, σ) :=
LMH(s, z, σ)

∣∣
z=0

. Then there exists a constant C such that one has |LMH(s, σ)| ≤ Cs−2.

Proof. For γ ∈ Γs we let γ0 be a generator of Z(γ) and we let

f(t) :=
∑

[γ]∈C(Γ)s−[1]

e−2ℓ(γ)ℓ(γ0)
Tr(σ)(mγ) + Tr(w0σ)(mγ)

det (Id−Ad(mγaγ)|n̄)
e−ℓ(γ)2/4t

(4πt)
1
2

.

Then, since σ̌ = w0σ, by (5.17) and [Pf, equation 5.4] we have H(hσt ) = f(t). Thus by
[MP2, Proposition 10.2], it remains to prove the estimate in s. By [MP2, equation 10.8]
there is C1 such that

∫ ∞

1

t−1e−ts2 |f(t)| dt ≤ C1e
− s2

4 .

Moreover, by [MP2, equation 10.12] there exists a constant c > 0 such that for 0 < t ≤ 1
one can estimate |f(t)| ≤ e−

c
t . Thus, by partial integration we obtain

∫ 1

0

t−1|f(t)|e−ts2dt ≤ C2

∫ 1

0

e−ts2e−
c
2tdt = C2

(
− 1

s2
e−s2e−

c
2 +

c

2s2

∫ 1

0

t−2e−ts2e−
c
2t dt

)

for some constant C2. It follows that there exists a constant C3 such that
∫ 1

0

t−1|f(t)|e−ts2dt ≤ C3s
−2.

This proves the proposition.
�

The contribution of the distribution T is as follows.

Proposition 5.4. Let s ∈ C, Re(s2) > 0, Re(s) > 0. For Re(z) > 3/2 the integral

LMT (s, z, σ) :=

∫ ∞

0

tz−1e−ts2T (hσt )dt

conveges absolutely. Moreover, the function z 7→ LMT (s, z, σ) has a meromorphic con-

tinuation to C which is regular at 0. Let LMT (s, σ) := LMT (s, z, σ)
∣∣
z=0

. Then one has

LMT (s, σ) = −2C(Γ)s.

Proof. By (5.17) and the definition of T one has LMT (s, z, σ) = C(Γ)√
π
s−2z+1Γ

(
z − 1

2

)
and

the proposition follows. �

For the invariant distribution I associated to the weighted orbital integral we have the
following proposition.
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Proposition 5.5. Let the meromorphic function Ω(σ, λ), σ ∈ M̂ , λ ∈ C be defined as in

[MP2, Theorem 6.2]. Then for k ∈ N the function Ω(σk, λ) is given as

Ω(σk, λ) = −2γ − ψ(1 + iλ)− ψ(1− iλ)−
∑

1≤l<|k|

2l

λ2 + l2
− |k|
λ2 + k2

,

where γ is the Euler-Mascheroni constat and ψ is the Digamma function. Moreover, for

s ∈ C, Re(s) > 0, Re(s2) > 0 and z ∈ C, Re(z) > 3/2 the integral

LMI(s, z, σ) :=
∫ ∞

0

tz−1e−ts2I(hσt )dt

converges absolutely. The function z 7→ LMI(s, z, σ) has a meromorphic continuation to

z ∈ C with an at most simple pole at z = 0. Let LMI(s, σ) := ∂
∂z
|z=0

LMI(s,z,σ)
Γ(z)

. Then

there exists a constant C0 which is independent of X such that for every k ∈ N one has

LMI(s, σk) = κ(X)C0 + 2κ(X)γs+ 2κ(X) log Γ(s+ k) + κ(X) log (s+ k).

Proof. The statement about Ω(σk, λ) follows from an elementary computation using the
identity ψ(z +1) = 1

z
+ψ(z). Thus the Proposition follows from (5.17) and [MP2, Lemma

10.5, Lemma 10.6]. Here we remark that the assumption c ∈ (0,∞) in these Lemmas can
be weakened to c ∈ C, Re(c) > 0. The proofs remain the same. �

We finally turn to the contribution of the non-invariant distribution J .

Proposition 5.6. Let the distribution J be as in (4.9) and let k ∈ N. The one has

J(hσk
t ) =

κ(X)

2π


1 + 2

∑

1≤j<|k|
e−t(k2−j2) + e−tk2



∫

R

1

iλ + k
e−tλ2

dλ.(5.19)

Let s ∈ C, Re(s) > 0, Re(s2) > 0. For Re(z) > 3/2 the integral

LMJ(s, z, σk) :=

∫ ∞

0

tz−1e−ts2J(hσk
t )dt

converges absolutely. Moreover, the function z 7→ LMJ(s, z, σk) has a meromorphic con-

tinuation to C with a simple pole at 0. For LMJ(s, σk) :=
∂
∂z
|z=0

LMJ(s,z,σk)
Γ(z)

one has

LMJ(s, σk) =− 2κ(X)
∑

1≤j<k

log (
√
s2 + k2 − j2 + k)

− κ(X) log (
√
s2 + k2 + k)− κ(X) log (s+ k).

Proof. For j ∈ Z, l ∈ N0, |j| ≤ l we let cνl(σj , z) be the Harish-Chandra c-function
associated to the representation νl and σj defined by [MP2, equation 6.7]. Then by [Co,
Appendix 2] one has

cνl(σj , z) :=
Γ(iz − j)Γ(iz + j)

Γ(iz − l)Γ(iz + l + 1)
,
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see also [MP2, equation 6.8]. By [MP2, equation 6.14] and the definition of hσk
t one has

J(hσk
t ) = −κ(X)e−tc(σk)

4πi

∑

ν∈K̂

∑

σ′∈M̂

mν(σk) [ν : σ′]

∫

Dǫ

e−t(ζ2−c(σ′))cν(σ
′ : ζ)−1 d

dζ
cν(σ

′ : ζ)dζ.

Thus if one applies Lemma 2.1, equation (5.19) follows. If one applies [MP2, Lemma 10.5]
to (5.19), the formula for LMJ(s, σk) follows. Here we remark again that the condition
c ∈ (0,∞) in [MP2, Lemma 10.5] can be weakened to the condition c ∈ C, Re(c) > 0
without changing the proof.

�

By the preceding proposition, each summand on the right hand side of (5.18) can be
integrated individually and we have

log detgr(A(σ) + s2)

=−LMI(s, σ)− LMH(s, σ)− LMT (s, σ)−LMI(s, σ)− LMJ(s, σ).(5.20)

To proof our determinant formula, we will also need the following Lemma.

Lemma 5.7. Let Trreg(e
−tA(σ)) :=

∑
ν∈K̂ mν(σ)e

−tc(σ) Trreg(e
−tAν ). Then for s, s1 ∈ C with

Re(s) > 0, Re(s1) > 0 one has

∫ ∞

0

(e−ts − e−ts1) Trreg(e
−tA(σ))dt

=
d

dζ
log detgr(A(σ) + ζ)

∣∣
ζ=s

− d

dζ
log detgr(A(σ) + ζ)

∣∣
ζ=s1

.

Proof. For ζ ∈ C, Re(ζ) > 0 and z ∈ C let ξA(σ)(ζ, z) :=
∑

ν∈K̂ mν(σ)ξν(ζ+ c(σ), z), where
the ξν are as in the previous section. Then by definition one has

log (detgr(A(σ) + s)) = − ∂

∂z

ξA(σ)(s, z)

Γ(z)

∣∣
z=0

.

By (4.7) and the choice of s and s1, (e
−ts − e−ts1) Trreg(e

−tA(σ)) decays exponentially for
t → ∞ and by (4.12) one has (e−ts − e−ts1) Trreg(e

−tA(σ)) = O(t−1/2) as t → 0. Thus the
integral in the lemma exists. By Proposition 4.1, there exists a constant α(σ) such that
for all ζ with Re(ζ) > 0 one has Res

∣∣
z=0

ξA(σ)(ζ, z) = α(σ) and since 1
Γ(z)

= z+ γz2+O(z3)

as z → 0, for all such ζ one has log detgr(A(σ) + ζ) = − limz→0(ξA(σ)(ζ, z)− α(σ)
z

+ γα(σ)).

One has ξA(σ)(ζ, z + 1) = − ∂
∂ζ
ξA(σ)(ζ, z) by the definition of ξA(σ) and by meromorphic
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continuation. Thus one has
∫ ∞

0

(e−ts − e−ts1) Trreg(e
−tA(σ))dt = lim

z→0

∫ ∞

0

tz(e−ts − e−ts1) Trreg(e
−tA(σ))dt

=− lim
z→0

(
∂

∂ζ
ξA(σ)(ζ, z)

∣∣
ζ=s

− ∂

∂ζ
ξA(σ)(ζ, z)

∣∣
ζ=s1

)

=− lim
z→0

(
∂

∂ζ
(ξA(σ)(ζ, z)−

α(σ)

z
+ γα(σ))

∣∣
ζ=s

− ∂

∂ζ
(ξA(σ)(ζ, z)−

α(σ)

z
+ γα(σ))

∣∣
ζ=s1

)

=
d

dζ
log detgr(A(σ) + ζ)

∣∣
ζ=s

− d

dζ
log detgr(A(σ) + ζ)

∣∣
ζ=s1

.

Here limit and differentation in the third line can be interchanged since the function

(ζ, z) 7→ ξA(σ)(ζ, z) − α(σ)
z

+ γα(σ) is holomorphic for ζ ∈ C, Re(ζ) > 0 and z in a
neighbourhood of zero. �

Now we can state the determinant formula for the symmetric Selberg zeta function,
which is the main result of this section.

Proposition 5.8. Let s ∈ C, Re(s) > 0, Re(s2) > 0. Let κ(X) be the number of cusps of

X and let cΓ := 2 (C(Γ)− γκ(X)), where C(Γ) is as above. Then there exists a constant

C0 which is independent of X such that for every k ∈ N one has

S(s, σk) =e
κ(X)C0 detgr

(
A(σ) + s2

)
exp

(
−4π vol(X)

∫ s

0

Pσk
(r)dr

)
Γ2κ(X)(s+ k)

· (s+ k)κ(X) exp (LMJ(s, σk)− scΓ).

Proof. We fix s1 ∈ R, s1 > 2 and let s ∈ R, s > 2. We let σ := σk. Then we can apply [Pf,
equation 7.7] with N = 2, s2 := s and obtain

∫ ∞

0

(e−ts2 − e−ts21)H(hσt )dt =
1

2s

d

ds
S(s, σ)− 1

2s1

d

ds
S(s1, σ).

Thus if we apply (4.10), (5.17) and equation (4.8), Proposition 5.2, Proposition 5.4, Propo-
sition 5.5 and Propostion 5.6, we obtain a constant a, depending on s1, such that

∫ ∞

0

(e−ts2 − e−ts21) Trreg(e
−tA(σ))dt

=
1

2s

d

ds
log S(s, σ) +

2π vol(X)Pσ(s)

s
+
C(Γ)

s
− κ(X)γ + κ(X)ψ(s+ k)

s

+
κ(X)

2
√
s2 + k2(

√
s2 + k2 + k)

+
∑

1≤j<k

κ(X)√
s2 + k2 − j2(

√
s2 + k2 − j2 + k)

+ a

=
1

2s

d

ds

(
logS(s, σ)− LMI(s, σ)− LMT (s, σ)−LMI(s, σ)− LMJ(s, σ)

)
+ a.
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If we multiply this equation by 2s and apply Lemma 5.7, we obtain

log S(s, σ) = log detgr(A(σ) + s2) + LMI(s, σ) + LMI(s, σ) + LMT (s, σ) + LMJ(s, σ)

+ as2 + b.(5.21)

for some constant b. Thus by (5.20) we have logS(s, σ) = −LMH(s, σ)+as2+b. Applying
[Pf, equations 3.3, 3.4, 3.5], it follows that logS(s, σ) decays exponentially as Re(s) → ∞.
Since LMH(s, σ) tends to zero for s ∈ R, s → ∞ by Propostion 5.3, the constants a and
b are zero. If we apply Proposition 5.2, Proposition 5.4 and Proposition 5.5 and to the
right hand side of (5.21), the Proposition follows for s ∈ (2,∞). By [Pf, Theorem 1.1],
the function S(s, σ) has a meromorphic continuation to C and since all functions on the
right hand side of the equation in the Proposition are holomorphic in s ∈ C, Re(s) > 0,
Re(s2) > 0 by Proposition 4.1, Lemma 5.1 and Proposition 5.6, the Proposition follows. �

6. The functional equations

Let σ ∈ M̂ . In this section we prove a functional equation for the symmetric Selberg
zeta function S(s, σ).

For ν ∈ K̂ and σ ∈ M̂ with [ν : σ] 6= 0 we define the space E(ν : σ) and the operator
C(ν : σ : λ) : E(ν : σ) → E(ν : w0σ) as in [Pf, section 4]. Let us first symmetrize the

scattering matrices. For σ ∈ M̂ , σ 6= w0σ and ν ∈ K̂ we let E(σ, ν) := E(σ, ν)⊕E(w0σ, ν)
and for s ∈ C we let

C(σ : ν : s) : E(σ, ν) → E(σ, ν); C(σ : ν : s) :=

(
0 C(w0σ : ν : s)

C(σ : ν : s) 0

)
.

By the arguments of [Pf, section 4], the function
(
detC(σ : ν : s)

) 1
dim(ν) is canonically

defined. For σ ∈ M̂ we let νσ be as in [Pf, section 4]. Then, if σ = σk we have νσ = ν|k|.
To save notation, for k ∈ 1

2
N we shall write

(
detC(σk : νk : s)

) 1
dim(ν) =: C(k : s).

Then C(k : s) is a meromorphic function of s which has no zeroes and poles for s ∈ iR.
By [Pf, equation 4.2] it satisfies C(k : s)C(k : −s) = 1.
We can now state a functional equation for the symmetric Selberg zeta function.

Proposition 6.1. Let k ∈ N and let cΓ be as in Proposition 5.8. Then the symmetric

Selberg zeta function S(s, σk) satisfies the functional equation

S(−s, σk) =S(s, σk) exp
(
8π vol(X)

∫ s

0

Pσk
(r)dr + 2cΓs

)
(Γ(−s+ k))2κ(X)

(Γ(s+ k))2κ(X)

C(k : s)

C(k : 0)
.

Proof. Let

Ξ(s, σk) := exp

(
4πvol(X)

∫ s

0

Pσk
(r)dr + scΓ

)
(Γ (s + k))−2κ(X) · S(s, σk).



19

We note that the Polynomial Q(σk, λ) and the constants cj,l(σ) occuring in [Pf, Proposition
5.4] are zero in the 3-dimensional case. Thus if we combine [Pf, Proposition 7.2], [Pf,
equation 4.2] [Pf, equation 4.10] and [Pf, Remark 4.3], we obtain

Ξ′(s, σk)

Ξ(s, σk)
+

Ξ′(−s, σk)
Ξ(−s, σk)

= − d

ds
logC(k : s).

Hence the logarithmic derivative of Ξ(s,σ)
Ξ(−s,σ)

C(k : s) is zero and so this function is constant.

Now the order of the singularity of the function Ξ(s, σk) at 0 is the same as the order of
the singularity of S(s, σ) at 0. This order is even by [Pf, Theorem 9.2]. Since Pσk

(r) is an
even polynomial, the proposition follows. �

The previous proposition implies the following functional equation for the symmetric
Ruelle zeta function.

Proposition 6.2. Let k ∈ N. Then the symmetric Ruelle zeta function Rsym(s, σk) satisfies
the functional equation

Rsym(−s, σk) =Rsym(s, σk) exp

(
−8

π
vol(X)s

)
C(k : s− 1)C(k : s+ 1)

C(k + 1 : s)C(k − 1 : s)

· C(k + 1 : 0)C(k − 1 : 0)

C(k : 0)2
.

Proof. The same argument as in [Mü3, Lemma 3.1] gives

Rsym(s, σk) =
S(s+ 1, σk)S(s− 1, σk)

S(s, σk+1)S(s, σk−1)
.

Moreover, using (4.8) we compute
∫ s+1

0

Pσk
(r)dr +

∫ s−1

0

Pσk
(r)dr −

∫ s

0

Pσk+1
(r)dr −

∫ s

0

Pσk−1
(r)dr = − s

π2
.

Thus the proposition follows from Proposition 6.1. �

To prove Theorem 1.2, we will also need the following proposition.

Proposition 6.3. Let m ∈ N, m ≥ 3. Then

Rρ(m)(s)Rρ(m)θ (s) =Rρ(2)(s)Rρ(2)θ (s)
C(m : m+ 1− s)

C(m+ 1 : m− s)

C(3 : 2− s)

C(2 : 3− s)

C(m+ 1 : 0)

C(m : 0)

C(2 : 0)

C(3 : 0)

·
m∏

k=3

Rsym(k − s, σk)Rsym(k + s, σk) exp

(
−8

π
vol (X)(k − s)

)
.

Proof. Let m ∈ N, m ≥ 3. Applying [Mü3, equation (3.14)], we can symmetrize [Mü3,
equation (8.2)] and obtain

Rρ(m)(s)Rρ(m)θ (s) = Rρ(2)(s)Rρ(2)θ
(s)

m∏

k=3

Rsym(s+ k, σk)Rsym(s− k, σk).

Thus together with proposition 6.2, the proposition follows. �
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7. Proof of the main results

In this section we prove our main results. Let m ∈ N. Arguing as in [Mü3, Proposition
3.5] it follows that

Rρ(m)(s)Rρ(m)θ(s) =
S(s+m+ 1, σm)S(s−m− 1, σm)

S(s+m, σm+1)S(s−m, σm+1)
.(7.22)

Now we express the analytic torsion TX(ρ(m)) by the graded determinants associated
to the operators A(σ) which were introduced section 5. Namely, we have the following
Proposition which is a generalization of [Mü3, equation 7.28] to the noncompact case.

Proposition 7.1. Let m ∈ N. Then one has

TX(ρ(m))2 =
detgr(A(σm) + (m+ 1)2)

detgr(A(σm+1) +m2)
.

Proof. Let k
ρ(m)
t be as in (4.13). Then by Lemma 2.2 and Remark 2.3, as a special case of

[MP2, Proposition 8.2] one has k
ρ(m)
t = e−t(m+1)2hσm

t − e−tm2
h
σm+1

t . Applying (4.14) and
(5.18), the proposition follows. �

In order to relate the behaviour of Rρ(m)Rρ(m)θ at 0 to the analytic torsion TX(ρ(m)),
we want to apply the determinant formula for the symmetric Selberg zeta function from
Proposition 5.8 to the right hand side of (7.22) and combine it with Proposition 7.1.

However, in contrast to a closed hyperbolic manifold, this is not possible directly since
the determinant formula for the symmetric Selberg zeta function is valid only for s ∈ C

with Re(s) > 0, Re(s2) > 0. Thus we first have to apply the functional equation from
Proposition 6.1. We obtain the following proposition.

Proposition 7.2. For m ∈ N one has

Rρ(m)(s)Rρ(m)θ (s) =e
2cΓ
S(−s+m+ 1, σm)S(s+m+ 1, σm)C(m+ 1 : 0)

S(−s+m, σm+1)S(s+m, σm+1)C(m : 0)

·
C(m : m+ 1− s)(Γ(s− 1))2κ(X) exp

(
8π vol(X)

∫ −s+m+1

0
Pσm

(r)dr
)

C(m+ 1 : m− s)(Γ(s+ 1))2κ(X) exp
(
8π vol(X)

∫ −s+m

0
Pσm+1(r)dr

) .

Proof. By proposition 6.1 we have

S(s−m− 1, σm)

S(s−m, σm+1)
=e2cΓ

S(−s+m+ 1, σm) exp
(
8π vol(X)

∫ −s+m+1

0
Pσm

(r)dr
)

S(−s+m, σm+1) exp
(
8π vol(X)

∫ −s+m

0
Pσm+1(r)dr

)

· C(m+ 1 : 0)C(m : m+ 1− s)(Γ(s− 1))2κ(X)

C(m : 0)C(m+ 1 : m− s)(Γ(s+ 1))2κ(X)
.

Applying (7.22), the proposition follows. �



21

Now we can prove Proposition 1.3. We shall state the proposition also for m+ 1
2
, m ∈ N.

The proof remains the same if one makes the appropriate modifications in section 5 and
in Proposition 6.3, Proposition 7.1 and Proposition 7.2. For m ∈ N we define

c(m+ 1/2) :=

∏m−1
j=0

√
(m+ 3/2)2 + (m+ 1/2)2 − (j + 1/2)2 +m+ 1/2

∏m
j=0

√
(m+ 3/2)2 + (m+ 1/2)2 − (j + 1/2)2 +m+ 3/2

.(7.23)

Then we have the following proposition.

Proposition 7.3. For m ∈ N we define the constant c(m)s and c(m + 1
2
) as in Theorem

1.1 resp. equation (7.23). Then one has

TX(ρ(m))4

=c(m)4κ(X) C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rρ(m)(s)Rρ(m)θ (s)

C(m+ 1 : m− s)

C(m : m+ 1− s)
(Γ(s− 1))−2κ(X)

)

and

TX(ρ(m+ 1/2))4 =c(m+ 1/2)4κ(X)C(m+ 1/2 : 0)

C(m+ 3/2 : 0)
· lim
s→0

(
Rρ(m+1/2)(s)Rρ(m+1/2)θ (s)

C(m+ 3/2 : m+ 1/2− s)

C(m+ 1/2 : m+ 3/2− s)
(Γ(s− 1))−2κ(X)

)
.

Proof. Let m ∈ N. To save notation, let us first introduce two auxiliary functions. Let

Pρ(m)(s) := exp

(
−4π vol(X)

∫ s+m+1

0

Pσm
(r)dr + 4π vol(X)

∫ −s+m+1

0

Pσm
(r)dr

− 4π vol(X)

∫ −s+m

0

Pσm+1(r)dr + 4π vol(X)

∫ s+m

0

Pσm+1(r)dr

)
.

Moreover, let

Jρ(m)(s) := exp

(
LMJ(−s+m, σm+1) + LMJ(s+m, σm+1)

− LMJ(−s +m+ 1, σm)− LMJ(s+m+ 1, σm)

)
.
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Then by Proposition 7.2, Proposition 5.8 and Proposition 7.1 one has

C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rρ(m)(s)Rρ(m)θ (s)

C(m+ 1 : m− s)(Γ(s+ 1))2κ(X)

C(m : m+ 1− s)(Γ(s− 1))2κ(X)
Jρ(m)(s)

)

= lim
s→0

(
e2cΓ

S(s+m+ 1, σm)S(−s+m+ 1, σm)

S(s+m, σm+1)S(−s+m, σm+1)
Jρ(m)(s)

)

· lim
s→0

exp

(
8π vol(X)

∫ −s+m+1

0

Pσm
(r)dr − 8π vol(X)

∫ −s+m

0

Pσm+1(r)dr

)

= lim
s→0

detgr (A(σm) + (s+m+ 1)2) detgr (A(σm) + (−s +m+ 1)2)

detgr (A(σm+1) + (s+m)2) detgr (A(σm+1) + (−s+m)2)
Pρ(m)(s)

=
det2gr (A(σm) + (m+ 1)2)

det2gr (A(σm+1) +m2)

=TX(ρ(m))4.

Here we used that the function Pρ(m)(s) is an entire function of s satisfying Pρ(m)(0) = 1.
Now by Proposition 5.6 the function Jρ(m)(s) is entire for s in a neighbourhood of zero and

one has Jρ(m)(0) = c(m)4κ(X). This proves the proposition for m ∈ N. For m + 1/2 one
can argue in the same way. �

Let us finally turn to the proof of Theorem 1.2. We recall that the infinite products
in (3.4) defining the Ruelle zeta functions R(s, σ) converge absolutely for Re(s) > 2. Let
m ∈ N, m ≥ 3. By Proposition 7.3 and Proposition 6.3 we have

TX(ρ(m))4

=c(m)4κ(X) C(m : 0)

C(m+ 1 : 0)
lim
s→0

(
Rρ(m)(s)Rρ(m)θ (s)

C(m+ 1 : m− s)

C(m : m+ 1− s)
(Γ(s− 1))−2κ(X)

)

=c(m)4κ(X)C(2 : 0)

C(3 : 0)
lim
s→0

(
Rρ(2)(s)Rρ(2)θ(s)

C(3 : 2− s)

C(2 : 3− s)
(Γ(s− 1))−2κ(X)

)

·
m∏

k=3

exp

(
−8

π
vol(X)k

)
Rsym(k, σk)

2

=
c(m)4κ(X)

c(2)4κ(X)
TX(ρ(2))

4 exp

(
−4

π
vol(X)(m(m+ 1)− 6)

) m∏

k=3

Rsym(k, σk)
2.

Now one has σ = w0σ and so by the definition of the Ruelle zeta function and by meromor-
phic continuation one gets R(s̄, w0σ) = R(s, σ). Thus one has Rsym(k, σk) = |R(k, σk)|2.
This proves the first equation in Theorem 1.2. Modifying Proposition 6.3, the second
equation in this theorem is obtained in the same way.
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