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ALGEBRAIC KASPAROV K-THEORY. II

GRIGORY GARKUSHA

ABSTRACT. A kind of motivic stable homotopy theory of algebras is developed. Ex-
plicit fibrant replacements for the S'-spectrum and (S*, G)-bispectrum of an alge-
bra are constructed. As an application, unstable, Morita stable and stable univer-
sal bivariant theories are recovered. These are shown to be embedded by means of
contravariant equivalences as full triangulated subcategories of compact generators of
some compactly generated triangulated categories. Another application is to introduce
and study the symmetric monoidal compactly generated triangulated category of K-
motives. It is established that the triangulated category kk of Cortifias—Thom [3] can
be identified with K-motives of algebras. It is proved that the triangulated category
of K-motives is a localization of the triangulated category of (S*, G)-bispectra. Also,
explicit fibrant (S*, G)-bispectra representing stable algebraic Kasparov K-theory and
algebraic homotopy K-theory are constructed.
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1. INTRODUCTION

Al-homotopy theory is a homotopy theory of motivic spaces, where each smooth
algebraic variety X € Sm/F is regarded as the motivic space Homg,,/p(—, X) (see [22]
20]).

Ek[t]-homotopy theory is a homotopy theory of simplicial functors defined on algebras,
where each algebra A is regarded as the space rA = Homyy,, (4, —), so that we can
study algebras from a homotopy theoretic viewpoint (see [9} [11]). Many of basic ideas
and techniques in this subject originate in A'-homotopy theory. Another source of ideas
for k[t]-homotopy theory comes from Kasparov K-theory of C*-algebras.

In [9] a kind of unstable motivic homotopy theory of algebras was developed. In order
to develop stable motivic homotopy theory of algebras and — what is most important —
make explicit computations presented in this paper, one first needs to introduce and
study “unstable, Morita stable and stable Kasparov K-theory spectra” K“"s!(A, B),
K™°"(A, B) and K%'(A, B) respectively, where A, B are two algebras. We refer the
reader to [II] for properties of the spectra. This paper is to develop stable motivic
homotopy theory of algebras.

Throughout we work with a reasonable category of algebras R and the category UsR
of some pointed simplicial functors on R. UsR comes equipped with a motivic model
structure. We write Sp(R) to denote its category of Sl-spectra. K“"st(A, B), K™ (A, B)
and K%(A, B) are examples of fibrant Q-spectra in Sp(R) (see [11]).

One of the main results of the paper computes a fibrant replacement of the suspension
spectrum »*°rA of an algebra A.

Theorem. Given an algebra A € R, there is a natural weak equivalence of spectra
n2rA — K4, -)
in Sp(R).
Let SHgi(R) denote the homotopy category of Sp(R). It is a compactly generated

triangulated category with compact generators {~°°rA[n]}acn nez. One of the conse-
quences of the theorem says that there is an isomorphism of abelian groups

SHgi (R)(X°rB[n],X®rA) 2 KA, B), A,BcR,ncZ

Another consequence of the theorem states that the full subcategory S of SHg1(R)
spanned by the compact generators {~°rA[n]}acnnez is triangulated and there is a
contravariant equivalence of triangulated categories

D(R,§) — S,

where j : ® — D(R,F) is the universal unstable excisive homotopy invariant homology
theory in the sense of [10]. Thus D(R,§) is recovered from SHgi(R).
If we localize SHg1(R) with respect to the family of compact objects

{cone(X°r(M,A) — X°rA)},~o

we shall get a compactly generated triangulated category SHg"(R) with compact gen-
erators {3°rA[n|}acrnez. It is in fact the homotopy category of a model category
SPmor(R). We construct in a similar way a compactly generated triangulated category



SHZ (R), obtained from SHg1(R) by localization with respect to the family of compact
objects
{cone(E°r(MsA) — X°°rA)},
where M A = U,M,A. It is as well the homotopy category of a model category
Spoc ().
Theorem. Given an algebra A € R, there are a natural weak equivalences of spectra
YrA — K™ (A, —)
and
¥®rA — K*(4A, -)
in Spmor(R) and Spsc(R) respectively.

As above the preceding theorem implies that for all A,B € ® and n € Z there are
isomorphisms of abelian groups
SHG (R)(X>rBn], °rA) =2 K" (A, B)
and
SHZ (R)(E®rBln],°rA) 2 K (A, B)
respectively.
Another consequence of the theorem states that the full subcategories S, and Sy

of SHEH (R) and SHZ (R) spanned by the compact generators {3°°7A[n]} s4ep nez are
triangulated and there are contravariant equivalence of triangulated categories

Dmor@t 3) L> Smor
and
Dy (R, F) — Soo-

Here j : ® = Dpor (R, §) (respectively j : ® — Dg (R, F)) is the universal Morita stable
(respectively stable) excisive homotopy invariant homology theory in the sense of [10].
Thus Dpor (R, ) and Dy (R, §) are recovered from SHZ" (R) and SHE) (R) respectively.

We next introduce the symmetric monoidal compactly generated triangulated cate-
gory of K-motives DK (R) together with a canonical contravariant functor

Mg : R — DK(R).

The category DK (R) is an analog of the triangulated category of K-motives for algebraic
varieties introduced in [12].
For any algebra A € R its K-motive is, by definition, the object Mg (A) of DK (R).
We have that
Mg (A) ®@ Mg(B) = Mg(A® B)
for all A, B € R. We also have the following

Theorem. For any two algebras A, B € ® and any integer n one has a natural isomor-
phism

DK (R)(Mk (B)[n], Mk (A)) = K}(A, B).
If T is the full subcategory of DK (R) spanned by K-motives of algebras { Mg (A)}aen
then T is triangulated and there is an equivalence of triangulated categories

Dy(R,§) = T
sending an algebra A € R to its K-motive Mk (A).



We also prove that for any algebra A € R and any integer n one has a natural
isomorphism

DK (R)(Mx (A)[n], Mk (k) = KHy(A),

where the right hand side is the n-th homotopy K-theory group in the sense of Weibel [2§].
This result is a reminiscence of a similar result for K-motives of algebraic varieties in
the sense of [12] identifying the K-motive of the point with algebraic K-theory.

In [3] Cortinas-Thom constructed a universal excisive homotopy invariant and M-
invariant homology theory on all k-algebras

j: Alg, — kk.

The triangulated category kk is an analog of Cuntz’s triangulated category kk!“® whose
objects are the locally convex algebras [4l [5, [6].

If we denote by kk(R) the full subcategory of kk spanned by the objects from R and
assume that the cone ring I'k in the sense of [20] is in R then we show that there is a
natural triangulated equivalence

kk(R) 2 TP

sending A € kk(R) to its K-motive Mg (A). Thus we can identify kk(R) with K-motives
of algebras.

One of the equivalent approaches to the motivic stable homotopy theory in the sense
of Morel-Voevodsky [22] is the theory of (S!,G,,)-bispectra. The role of G,, in our
context plays the representable functor G := r(c), where o = (t — 1)k[t*!]. We develop
the motivic theory of (S', G)-bispectra. As usual they form a model category which we
denote by Spg(R). We construct an explicit fibrant (S!, G)-bispectrum OFKG(A4, —),
obtained from fibrant S'-spectra K“"s!(¢" A, —), n > 0, by stabilization in o-direction.

The main computational result for bispectra says that OFKG(A, —) is a fibrant re-
placement of the suspension bispectrum associated with an algebra A.

Theorem. Let A be an algebra in R; then there is a natural weak equivalence of bispectra
in Spg(RN)

YEYXCrA - 0gKG(A, —),
where XZFX°r A is the suspension bispectrum of rA.

Let k be the field of complex numbers C and let £ (A, —) be the (0,0)-space of the
bispectrum OFKG(A, —). We raise a question that there is a category of commuta-
tive C-algebras R such that the fibrant simplicial set K?(C,C) has homotopy type of
0¥ 8Y  The question is justified by a recent result of Levine [21] saying that over
an algebraically closed field F' of characteristic zero the homotopy groups of weight zero
of the motivic sphere spectrum evaluated at F' are isomorphic to the stable homotopy
groups of the classical sphere spectrum. The role of the motivic sphere spectrum in our
context plays the bispectrum g %°rC.

We finish the paper by proving that the triangulated category of K-motives DK (R)
is fully faithfully embedded into the homotopy category of (S!,G)-bispectra. We also
construct an explicit fibrant (S!, G)-bispectrum @%’KG“(A, —), obtained from fibrant
Sl-spectra K5 (6" A, —), n > 0, by stabilization in o-direction. The following result says
that the bispectrum @%?KG“(A,—) is (2,1)-periodic and represents stable algebraic
Kasparov K-theory (cf. Voevodsky [26], 6.8-6.9]).



Theorem. For any algebras A, B € R and any integers p,q there is an isomorphism
Wp,q(@(?fKGSt(A, B)) = Kf,t,Qq(A, B).

As a consequence of the theorem one has that for any algebra B € R and any integers
P, ¢ there is an isomorphism

vaq(@qofKGSt(ka B)) = KHp—Qq(B)-

Thus the bispectrum KG* (k, B) yields a model for homotopy K-theory.

Throughout the paper k is a fixed commutative ring with unit and Algy, is the category
of non-unital k-algebras and non-unital k-homomorphisms. If there is no likelihood of
confusion, we replace ®; by ®. If C is a category and A, B are objects of C, we shall
often write C(A, B) to denote the Hom-set Hom¢ (A, B).

In general, we shall not be very explicit about set-theoretical foundations, and we
shall tacitly assume we are working in some fixed universe U of sets. Members of U are
then called small sets, whereas a collection of members of U which does not itself belong
to U will be referred to as a large set or a proper class.

2. PRELIMINARIES

In this section we collect basic facts about admissible categories of algebras and tri-
angulated categories associated with them. We mostly follow [9] [10].

2.1. Algebraic homotopy

Following Gersten [13] a category of non-unital k-algebras R is admissible if it is a full
subcategory of Alg; and

(1) Rin R, I a (two-sided) ideal of R then I and R/I are in R;
(2) if R is in R, then so is R[z|, the polynomial algebra in one variable;
(3) given a cartesian square

D> 4
al f
B—21-C
in Alg;, with A, B,C in R, then D is in &.

R is said to be tensor closed if k € ® and A ® B € R for all A, B € R. Observe that &
is a symmetric monoidal category in this case with k& a monoidal unit.

Observe that every algebra which is isomorphic to an algebra from R belongs to R.
One may abbreviate 1, 2, and 3 by saying that R is closed under operations of taking
ideals, homomorphic images, polynomial extensions in a finite number of variables, and
pullbacks. For instance, the category of commutative k-algebras CAlg; is admissible.

Recall that an algebra A is square zero if A?> = 0. If we regard every k-module M as
a non-unital k-algebra with trivial multiplication my - me = 0 for all my, ms € M, then
Mod k is an admissible category of k-algebras coinciding with the category of square
zero algebras.



If R is an algebra then the polynomial algebra R[x] admits two homomorphisms onto

R

03

Rz —=R

0z

where
Ovlr=1g, O0u(z)=1, i=0,1.

Of course, d%(z) = 1 has to be understood in the sense that Yr,z" > r,,.

Definition. Two homomorphisms fg, f1 : S — R are elementary homotopic, written
fo ~ f1, if there exists a homomorphism

f:S — Rx]

such that 8%f = fo and dLf = fi. A map f: S — R is called an elementary homotopy
equivalence if there is a map g : R — S such that fg and gf are elementary homotopic
to idg and idg respectively.

For example, let A be a Z,>o-graded algebra, then the inclusion A9 — A is an
elementary homotopy equivalence. The homotopy inverse is given by the projection
A — Ap. Indeed, the map A — A[z] sending a homogeneous element a,, € A,, to a,t"
is a homotopy between the composite A — Ay — A and the identity id4.

The relation “elementary homotopic” is reflexive and symmetric [I3}, p. 62]. One may
take the transitive closure of this relation to get an equivalence relation (denoted by
the symbol “~"). Following notation of Gersten [14], the set of equivalence classes of
morphisms R — S is written [R, S].

Lemma 2.1 (Gersten [14]). Given morphisms in Alg,,

RA.g——7_ I .y
~
g/

such that g ~ ¢, then gf ~ ¢'f and hg ~ hg'.

Thus homotopy behaves well with respect to composition and we have category
H(Algy,), the homotopy category of k-algebras, whose objects are k-algebras and Homy(ag,) (R,S) =
[R,S]. The homotopy category of an admissible category of algebras $ will be denoted
by H(R). Call a homomorphism s : A — B an I-weak equivalence if its image in H(R)
is an isomorphism.

The diagram in Alg,,

AhBSc

is a short exact sequence if f is injective (= Ker f = 0), ¢ is surjective, and the image

of f is equal to the kernel of g.

Definition. An algebra R is contractible if 0 ~ 1; that is, if there is a homomorphism
f: R — Rx] such that 8%f = 0 and 9L f = 1.

For example, every square zero algebra A € Alg, is contractible by means of the
homotopy A — Alz], a € A — ax € A[z]. Therefore every k-module, regarded as a
k-algebra with trivial multiplication, is contractible.



Following Karoubi and Villamayor [20] we define ER, the path algebra on R, as the

0
kernel of dY : R[] — R, so ER — R[z] % R is a short exact sequence in Alg;. Also
0} : R[x] — R induces a surjection

dl:ER—R

and we define the loop algebra QR of R to be its kernel, so we have a short exact sequence

1
OR — ER % R.

We call it the loop extension of R. Clearly, QR is the intersection of the kernels of 92
and d!. By [13] 3.3] ER is contractible for any algebra R.

2.2. Categories of fibrant objects

Definition. Let A be a category with finite products and a final object e. Assume that
A has two distinguished classes of maps, called weak equivalences and fibrations. A map
is called a trivial fibration if it is both a weak equivalence and a fibration. We define a
path space for an object B to be an object B! together with maps
do,d
B gl Wi pop

where s is a weak equivalence, (dy,d;) is a fibration, and the composite is the diagonal
map.

Following Brown [2], we call A a category of fibrant objects or a Brown category if the
following axioms are satisfied.

(A) Let f and g be maps such that gf is defined. If two of f, g, gf are weak
equivalences then so is the third. Any isomorphism is a weak equivalence.

(B) The composite of two fibrations is a fibration. Any isomorphism is a fibration.

(C) Given a diagram

A0l B,

with v a fibration (respectively a trivial fibration), the pullback A x¢ B exists and the
map A Xx¢ B — A is a fibration (respectively a trivial fibration).

(D) For any object B in A there exists at least one path space B! (not necessarily

functorial in B).
(E) For any object B the map B — e is a fibration.

2.3. The triangulated category D(R,F)

In what follows we denote by § the class of k-split surjective algebra homomorphisms.
We shall also refer to § as fibrations.

Let 20 be a class of weak equivalences in an admissible category of algebras R con-
taining homomorphisms A — A[t], A € R, such that the triple (®,§,20) is a Brown
category.

Definition. The left derived category D~ (R,F,20) of R with respect to (F,20) is the
category obtained from R by inverting the weak equivalences.



By [10] the family of weak equivalences in the category HR admits a calculus of right
fractions. The left derived category D~ (R,F,20) (possibly “large”) is obtained from
‘HR by inverting the weak equivalences. The left derived category D~ (R,F,20) is left
triangulated (see [9] 10] for details) with © a loop functor on it.

There is a general method of stabilizing Q (see Heller [I5]) and producing a trian-
gulated (possibly “large”) category D(R,F,20) from the left triangulated structure on
D~ (R,§,20).

An object of D(R,F,20) is a pair (A,m) with A € D~ (R,F,2) and m € Z. If
m,n € Z then we consider the directed set I, , = {k € Z | m,n < k}. The morphisms
between (A, m) and (B,n) € D(R,§,20) are defined by

D(R, T, W)[(A,m), (B,n)] == colimyer,,, D~ (R, T, 2W)(QF"™(4), Q" "(B)).

Morphisms of D(R,§,20) are composed in the obvious fashion. We define the loop
automorphism on D(R,§,20) by Q(A,m) := (A,m — 1). There is a natural functor
S:D™(R,F, W) - D(R,F,2W) defined by A — (A,0).

D(R,§,20) is an additive category [9, [10]. We define a triangulation 7r(R,§,20) of
the pair (D(R,F,20),Q) as follows. A sequence

QA1) = (Cyn) = (B,m) = (A1)

belongs to 77 (R, §,20) if there is an even integer k and a left triangle of representatives
QQF(A)) = QF(C) — QF™(B) — QFl(A) in D~(R,F,20). Then the functor S
takes left triangles in D~ (R, §, ) to triangles in D(R,F,20). By [9, 10] 7r(R,§,20) is
a triangulation of D(R,F,20) in the classical sense of Verdier [25].

By an §-extension or just extension in  we mean a short exact sequence of algebras

(Ey: A= B3 C
such that o € §. Let &€ be the class of all §-extensions in .

Definition. Following Cortinas-Thom [3] a (§-)ezcisive homology theory on R with
values in a triangulated category (7 ,€2) consists of a functor X : ® — T, together with
a collection {0 : E € £} of maps 05 = Jr € T(QX(C), X(A)). The maps Jg are to
satisfy the following requirements.

(1) For all E € £ as above,

ax ()2 x4) 2L x By XL x (o)
is a distinguished triangle in 7.
(2) If
(E) at.p2.¢
Lol
). Aty Lo



is a map of extensions, then the following diagram commutes

0x(0) -2~ x(4)

QX (7) l lxm

QX(C") ——= X (A).
O
We say that the functor X : R — T is homotopy invariant if it maps homotopic
homomomorphisms to equal maps, or equivalently, if for every A € Alg;, X maps the
inclusion A C At] to an isomorphism.

Denote by 204 the class of homomorphisms f such that X(f) is an isomorphism
for any excisive, homotopy invariant homology theory X : ® — 7. We shall refer
to the maps from Q. as stable weak equivalences. The triple (R, §,204) is a Brown
category. In what follows we shall write D~ (R, §) and D(R, §) to denote D~ (R, F, WA )
and D(R, F,WA) respectively, dropping 20 from notation.

By [10] the canonical functor

R — D(R,T)

is the universal excisive, homotopy invariant homology theory on R.

3. HOMOTOPY THEORY OF ALGEBRAS

Let R be a small admissible category of algebras. We shall work with various model
category structures for the category of simplicial functors on . We mostly adhere
to [9l [I1].

3.1. Bousfield localization

Recall from [I6] that if M is a model category and S a set of maps between cofibrant
objects, we shall produce a new model structure on M in which the maps S are weak
equivalences. The new model structure is called the Bousfield localization or just local-
ization of the old one. Since all model categories we shall consider are simplicial one
can use the simplicial mapping object instead of the homotopy function complex for the
localization theory of M.

Definition. Let M be a simplicial model category and let S be a set of maps between
cofibrant objects.

(1) An S-local object of M is a fibrant object X such that for every map A — B
in S, the induced map of Map(B, X) — Map(A, X) is a weak equivalence of
simplicial sets.

(2) An S-local equivalence is a map A — B such that Map(B, X) — Map(A4, X) is
a weak equivalence for every S-local object X.

In words, the S-local objects are the ones which see every map in S as if it were
a weak equivalence. The S-local equivalences are those maps which are seen as weak
equivalences by every S-local object.



Theorem 3.1 (Hirschhorn [16]). Let M be a cellular, simplicial model category and let
S be a set of maps between cofibrant objects. Then there exists a new model structure
on M in which

(1) the weak equivalences are the S-local equivalences;

(2) the cofibrations in M /S are the same as those in M;

(3) the fibrations are the maps having the right-lifting-property with respect to cofi-
brations which are also S-local equivalences.

Left Quillen functors from M /S to D are in one to one correspondence with left Quillen
functors @ : M — D such that (f) is a weak equivalence for all f € S. In addition,
the fibrant objects of M are precisely the S-local objects, and this new model structure
1s again cellular and simplicial.

The model category whose existence is guaranteed by the above theorem is called
S-localization of M. The underlying category is the same as that of M, but there are
more trivial cofibrations (and hence fewer fibrations). We sometimes use M /S to denote
the S-localization.

Note that the identity maps yield a Quillen pair M = M /S, where the left Quillen
functor is the map id : M — M/S.

3.2. The categories of pointed simplicial functors UsR

Throughout this paper we work with a model category UsR. To define it, we first
enrich R over pointed simplicial sets S,. Given an algebra A € R, denote by rA the
representable functor Homgp (A, —). Let R, have the same objects as R and whose
pointed simplicial sets of morphisms are rA(B) = Homy (A, B) pointed at zero. Denote
by Us¥t the category of Se-enriched functors from R, to Se. One easily checks that U
can be regarded as the category of covariant pointed simplicial functors X : R — S,
such that X (0) = .

By [8, 4.2] we define the projective model structure on UyR. This is a proper, sim-
plicial, cellular model category with weak equivalences and fibrations being defined ob-
jectwise, and cofibrations being those maps having the left lifting property with respect
to trivial fibrations.

The class of projective cofibrations for UsR is generated by the set

Iy = {rA N (OA™ C A™) 370
indexed by A € R. Likewise, the class of acyclic projective cofibrations is generated by
T = {rAN (A} C A") 1 }520<,
Given X, Y € U, the pointed function complex Map,(X,)) is defined as
Map,(X,Y)n = Homy,g(X AAL,Y), n=0.
By [8l 2.1] there is a natural isomorphism of pointed simplicial sets
Map,(rA, X) = X (A)

for all A € ® and X € UR.
Recall that the model category UR of functors from R to unpointed simplicial sets S
is defined in a similar fashion (see [9]). Since we mostly work with spectra in this paper,

10



the category of spectra associated with UgR is technically more convenient the category
of spectra associated with UR.

3.3. The model categories Uy, UsIy, UsRy, s

Let I = {i =i :r(AJt]) — r(A) | A € R}, where each i, is induced by the natural
homomorphism i : A — A[t]. Recall that a functor F' : R — S,/Spectra is homotopy
invariant if F(A) — F(A[t]) is a weak equivalence for all A € R. Consider the projective
model structure on UsR. We shall refer to the I-local equivalences as (projective) I-weak
equivalences. The resulting model category Us$t/I will be denoted by UsR;. Notice that
any objectwise fibrant homotopy invariant functor F' € U4R is an I-local object, hence
fibrant in UR ;.

Let us introduce the class of excisive functors on . They look like flasque presheaves
on a site defined by a cd-structure in the sense of Voevodsky [27, section 3].

Definition. A simplicial functor X € UR is called ezcisive with respect to § if for any
cartesian square in f
D A

B-L-C
with f a fibration (call such squares distinguished) the square of simplicial sets
X(D) — X(A)

L

X(B) — X(C)

R ——

is a homotopy pullback square. It immediately follows from the definition that every
excisive object takes §-extensions in & to homotopy fibre sequences of simplicial sets.

Let a denote a distinguished square in R

D——=A

L

B——C
Let us apply the simplicial mapping cylinder construction cyl to a and form the pushouts:

rC cyl(rC — rA) rA

| | |

rB——cyl(rC — rA)[],orB——1D

Note that rC — cyl(rC — rA) is a projective cofibration between (projective) cofibrant
objects of UgR. Thus s(a) = cyl(rC — rA) ][, rB is (projective) cofibrant [17, 1.11.1].
For the same reasons, applying the simplicial mapping cylinder to s(a)) — rD and setting
t(a) = cyl(s(e) — rD) we get a projective cofibration

cyl(a): s(a) —t(a).

11



Let Jf}:léa) consists of all pushout product maps

s(a) N AT Hs(oz)/\@A?r t(a) NOAT ——t(a) N AT}

and let J = Jy,p U Jiia. Tt is directly verified that X' € UR is J-local if and only if
it has the right lifting property with respect to J. Also, X is J-local if and only if it is
objectwise fibrant and excisive [9, 4.3].

Finally, let us introduce the model category Us¥t; ;. It is, by definition, the Bousfield
localization of Ug¥ with respect to /U J. The weak equivalences (trivial cofibrations) of
UsR;, ;s will be referred to as (projective) (I,J)-weak equivalences ((projective) (I, J)-
trivial cofibrations). By [9 4.5] a functor X € U,R is (I, J)-local if and only if it is
objectwise fibrant, homotopy invariant and excisive.

Remark. The model category U,Rs,; can also be regarded as a kind of unstable mo-
tivic model category associated with R. Indeed, the construction of UsRs, s is similar
to Morel-Voevodsky’s unstable motivic theory for smooth schemes Sm/F over a field
F [22]. If we replace the family I by

I'={XxA'" 25 X | X € Sm/F}

and the family of distinguished squares by the family of elementary Nisnevich squares
and get the corresponding family J’ associated to it, then one of the equivalent models
for Morel-Voevodsky’s unstable motivic theory is obtained by Bousfield localization of
simplicial presheaves with respect to I’ U.J’.

For this reason, U,R; ; can also be called the category of (pointed) motivic spaces,
where each algebra A is identified with the pointed motivic space rA. One can also refer
to (I, J)-weak equivalences as motivic weak equivalences.

3.4. Monoidal structure on UsR

In this section we mostly follow [24] section 2.1] Suppose R is tensor closed, that is
k,A® B € R for all A, B € ®. We introduce the monoidal product X ® Y of X and Y
in Ui by the formulas

X A) = lim X (A As).

®Y(A) = colim X (A) AY(As)
The colimit is indexed on the category with objects a: A1 ® A3 — A and maps pairs of
maps (p,v): (A1, As) — (A}, A}) such that o/ (¢ ® ¢) = a. By functoriality of colimits
it follows that X ® Y is in UK.
The tensor product can also be defined by the formula

Aq,AzeR
Xy = [ (X(A) A V(4) A Homa(4r © 43, 4),

This formula is obtained from a theorem of Day [7], which also asserts that the triple
(UeR, ®,7(k)) forms a closed symmetric monoidal category.
The internal Hom functor, right adjoint to X ® —, is given by

Hom (X, Y)(A) = en Map, (X (B), V(A @ B)),

where Map, stands for the function complex in S,.

12



So there exist natural isomorphisms
Hom(X @ Y, 2Z) = HO_IMX,HO_HI(J/, Z))
and
Hom(r(k),2) = Z.
Concerning smash products of representable functors, one has a natural isomorphism
rArB=r(A® B), A,BeR.

Note as well that for pointed simplicial sets K and L, one has K L = K A L.

We recall a pointed simplicial set tensor and cotensor structure on UgR. If X and )
are in UM and K is a pointed simplicial set, the tensor X ® K is given by

XYRKA) =XAANK
and the cotensor V¥ in terms of the ordinary function complex
Y (A4) = Map, (K, V(4)).
The function complex Map,(X,)) of X and Y is defined by setting
Map, (X, Y), = Homy, (X © A%, V).
By the Yoneda lemma there exists a natural isomorphism of pointed simplicial sets
Map,(r4,Y) = Y(A).
Using these definitions UgR is enriched in pointed simplicial sets So. Moreover, there
are natural isomorphisms of pointed simplicial sets
Map, (X ® K,Y) = Map, (K, Map,(X,Y)) = Map, (X, V).
It is also useful to note that
Hom(X,Y)(A) = Map, (X, V(A ® —)).
and
Hom(rB,Y) = Y(— ® B).

It can be shown similar to [24], 3.10; 3.43; 3.89] that the model categories UsR, UsR7,
URy, UsRs,; are monoidal.

4. UNSTABLE ALGEBRAIC KASPAROV K-THEORY

Let U be an arbitrary category and let ¢ be an admissible category of k-algebras.
Suppose that there are functors F': 8 — U and T : U — R such that T is left adjoint to
F. We denote TFA, A € R, and the counit map TFA— A by T A and 14 respectively.
If X € ObU then the unit map X — FTX is denoted by ix. We note that the
composition

FA XA pTrA 204 pa

equals 1p4 for every A € R, and hence F'ny splits in Y. We call an admissible category
of k-algebras T'-closed if TA € R for all A € R.

Lemma 4.1. Suppose U is either a full subcategory of sets or a full subcategory of k-
modules. Suppose as well that F': ® — U is the forgetful functor. Then for every A € R
the algebra T A is contractible, i.e. there is a contraction 7 : TA — T Alz]| such that
V1 = 0,0L7 = 1. Moreover, the contraction is functorial in A.
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Proof. Consider a map u : FTA — FTA[x] sending an element b € FTA to bx €
FTAlz]. By assumption, u is a morphisms of #/. The desired contraction 7 is uniquely
determined by the map woipy : FA — FTA[z]. By using elementary properties of
adjoint functors, one can show that 897 = 0,917 = 1. O

Throughout this paper, whenever we deal with a T-closed admissible category of k-
algebras & we assume fixed an underlying category U, which is a full subcategory of
Mod k.

Examples. (1) Let R = Alg,. Given an algebra A, consider the algebraic tensor algebra
TA=A® AR A A% @ ...

with the usual product given by concatenation of tensors. In Cuntz’s treatment of
bivariant K-theory [4] [5, [6], tensor algebras play a prominent role.

There is a canonical k-linear map A — T'A mapping A into the first direct summand.
Every k-linear map s : A — B into an algebra B induces a homomorphism v, : TA — B
defined by

Vs(T1 ® - @ ) = s(x1)8(x2) - -+ s(xy).

R is plainly T-closed.
(2) If ® = CAlg,, then

T(A) = Sym(A) = Bnz1S"A, S"A=A"/(a1 @ @ an — ag(1) @+ @ Uy(n)),
the symmetric algebra of A, and R is T-closed.

Given a small T-closed admissible category of k-algebras R, we denote by Sp(R) the
category of Sl-spectra in the sense of Hovey [I8] associated with the model category
UsR; j. Recall that a spectrum consists of sequences £ = (&,,)n>0 of pointed simplicial
functors in U4R equipped with structure maps of : X, — £,,1 where & = — A S!
is the suspension functor. A map f : &€ — F of spectra consists of compatible maps
fn: €y — F, in the sense that the diagrams

0.8
X — gn+1

anl lfn«kl
oF
E]:n s -7:n+1

commute for all n > 0. The category Sp(R) is endowed with the stable model structure
(see [18] for details).

Given an algebra A € R, we denote by X*°rA the suspension spectrum associated
with the functor rA pointed at zero. By definition, (X*°rA), = rA A S™ with obvious
structure maps.

In order to define one of the main spectra of the paper R(A) associated to an algebra
A € R, we have to recall some definitions from [I1].

For any B € R we define a simplicial algebra

B2 :[n] — B2" := Blto, ..., ta]/(1 — Zm (= Blt1, ..., tn)).

14



The face and degeneracy operators 9; : B[A"] — B[A"!] and s; : B[A"] — B[A"11]
are given by

tj (vesp. tj), j < i
al(t]) (resp' S’l(tj)) = 0 (resp. t_] +t]+1), J = 1
tj—1 (vesp. tjy1), i < j

We have that B® = B® k® and B2 is pointed at zero.

For any pointed simplicial set X € S,, we denote by B2(X) the simplicial algebra
Map, (X, B®). The simplicial algebra associated to any unpointed simplicial set and
any simplicial algebra is defined in a similar way. By B*(X) we shall mean the pointed
simplicial ind-algebra

BA(X) = BA(sd' X) —» BA(3d2 X) — - -
In particular, one defines the “path space” simplicial ind-algebra PB®. We shall also
write B2(Q") to denote BA(S™), where S™ = S A --- A S! is the simplicial n-sphere.
For any A € R we denote by Hom Algind (A, BA(Q")) the colimit of the sequence in S,

Hom g, (A, B2(S™)) — Homyyg, (4, B2 (sd' S™)) — Homyyg, (4, B2 (sd? S™)) — - --

The natural simplicial map d; : PB®(Q") — B2(Q") has a natural k-linear splitting
described below. Let t € Pk2(Alx -*- xAl)y stand for the composite map

sd™(Alx "TH ALY 2 sqm AL 5 AL G A
where pr is the projection onto the (n + 1)th direct factor Al and t = ¢ € kA" The

element t can be regarded as a 1-simplex of the unital ind-algebra k® (Al x L x Al)
such that dy(t) = 0 and dy(t) = 1. Let 2 : BA(Q") — (BA(Q")2 be the natural
inclusion. Multiplication with t determines a k-linear map (B2(Q"))A' SN PB2(QM).
Now the desired k-linear splitting B2 (Q") — PB2(Q") of simplicial ind-modules is
defined as
vi=t-1.

If we consider B2(Q") as a (Zso x A)-diagram in R, then there is a commutative

diagram of extensions for (Z>o x A)-diagrams

JBA(Q") —— TBA(Q") — B2 (Q")
. l |
BAQH) —~ PBA(Q?) — L BA(OM),
where the map &, is uniquely determined by the k-linear splitting v. For every element
fe HomAlgiknd(J"A,BA(Q")) one sets:
<(f) ==& 0 J(f) € Hom Algiknd(J"HA,IBBA(Q”“)).

The spectrum R(A) is defined at every B € R as the sequence of spaces pointed at
Zero
HomAlgiknd(A, BA), HomAlgiknd(JA, B2), HomAlgiknd(J2A, BA),...

By [111 section 2] each R(A),(B) is a fibrant simplicial set and
QFR(A)(B) = HomAlgz,d(A,BA(Qk)).

15



Each structure map o, : R(A), A St — R(A),+1 is defined at B as adjoint to the map
G: HomAlgz\d(J"A,BA) — HomAlgz\d(J"‘HA,BA(Q)).
For every A € R there is a natural map in Sp(R)
i:X°rA— R(A)
functorial in A.

Definition. (see [11]) (1) Given two k-algebras A, B € R, the unstable algebraic Kas-
parov K -theory of (A, B) is the space (A, B) defined as the fibrant space

colim,, Hom , ,ina (J"A, B2 (Q)),

where the colimit maps are given by £,-s. Its homotopy groups will be denoted by
Kn(A, B), n > 0. The simplicial functor (A, —) is fibrant in U, (R);,; by [11} section 4].
Also, there is a natural isomorphism of simplicial sets

K(A,B) 2 QK(JA, B).
In particular, K(A, B) is an infinite loop space with (A, B) simplicially isomorphic to
Q"K(J"A, B) (see [11, 5.1]).
(2) The unstable algebraic Kasparov KK -theory spectrum of (A, B) consists of the
sequence of spaces

K(A,B),K(JA,B),K(J*A, B),...

together with the natural isomorphisms K(J"A, B) = QK(J" ™A, B). It forms an Q-
spectrum which we also denote by K“"'(A, B). Its homotopy groups will be denoted
by Ku"st(A, B), n € Z. We sometimes write K(A, B) instead of K“"$!(A, B), dropping
“unst” from notation. Observe that K,, (4, B) = K,,(A, B) for any n > 0 and K,,(A, B) =
Ko(J~™A, B) for any n < 0.

There is a natural map of spectra
Jj:R(A) = K(A,—).
By [I1J, section 6] it is a stable equivalence and K(A, —) is a fibrant object of Sp(R). In
fact for any algebra B € 3 the map
j: R(A)(B) = K(4, B)
is a stable equivalence of ordinary spectra.

The following theorem is crucial in our analysis. It states that K(A, —) is a fibrant
replacement of ¥X>°rA in Sp(R).

Theorem 4.2. Given A € R the map i : 3°rA — R(A) is a level (I,J)-weak equiva-
lence, and therefore the composite map

sorA 5 R(A) 5 K(4,-)
is a stable equivalence in Sp(R), functorial in A.

Proof. Recall that for any functor F' from rings to simplicial sets, Sing(F') is defined at
each ring R as the diagonal of the bisimplicial set F'(R[A]). The map iy : (X°rA)y —
R(A)p equals rA — Ex* o Sing(rA), which is an [-weak equivalence by [9] 3.8]. Let us
show that 77 : TAA ST — R(A); = Ex*® 0 Sing(r(JA)) is an (I, J)-weak equivalence. It
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is fully determined by the element p4 : JA — QA, which is a zero simplex of Q(Exz* o
Sing(r(JA))(A)), coming from the adjunction isomorphism

Map,(rA A St Ex™ o Sing(r(JA))) = Q(Ez™ o Sing(r(JA))(A)).

Let (I,0) denote A[1] pointed at 0. Consider a commutative diagram of cofibrant objects
in UJR

rA=">7rANA(I,0) —=rAAS!

i |

r(TA) X = rAA St
where the left square is pushout, the left map is induced by the canonical homomorphism
na: TA — A, vis induced by the natural inclusion d° : A[0] — A[1]. Lemma @I implies
r(TA) is weakly equivalent to zero in UgR;. It follows that « is an I-weak equivalence.
By the universal property of pullback diagrams there is a unique morphism o : X —
r(JA) whose restriction to r(T'A) equals ¢*, where 14 = Kerny, which makes the
diagram

rAA(I,0) X
- 7
rA | r(TA) |o
1| pt % r(JA)
A A
rA —1r(TA)
A

commutative. Since the upper and the lower squares are homotopy pushouts in U.¥; ;
and 7A A (I,0) is weakly equivalent to zero, it follows from [16, 13.5.10] that o is an
(I,J)-weak equivalence. Therefore the composite map, we shall denote it by p,

X 5 r(JA) — R(A),

is an (I, J)-weak equivalence, where the right map is the natural I-weak equivalence.
Let R(A)1[z] € UsR be the simplicial functor defined as

R(A)[z](B) = HomAlgiknd(JA,BA [z]) = Ez™ o Homayg, (JA, Blz]®), BeR.

There is a natural map s : R(A);1 — R(A)1[z], induced by the monomorphism B — B|z]
at each B. It follows from [9 3.2] that this map is a weak equivalence in UsR. The
evaluation homomorphisms 9%,0. : B[z] — B induce a map (9%,0}) : R(A)1[z] —
R(A); xR(A)1, whose composition with s is the diagonal map R(A4); — R(A); x R(A);.
We see that R(A)1[z] is a path object for the projectively fibrant object R(A);.

If we constructed a homotopy H : X — R(A)1[x] such that OH = iy and 1 H = p
it would follow that i, being homotopic to the (I, J)-weak equivalence p, is an (I, J)-
weak equivalence. Since as well « is an (I, J)-weak equivalence, then so would be i;.

The desired map H is uniquely determined by maps h; : r(T'A) — R(A)i[z] and
hy : AN (1,0) = R(A)1[z] such that hin% = hov defined as follows. The map h; is
uniquely determined by the homomorphism JA — T A[z] which is the composition of
t4 and the contraction homomorphism 7 : TA — T Alz], functorial in A, that exists by
Lemma A1l The map hs is uniquely determined by the one-simplex JA — A[A!][x]
of Ex> o Hompg, (JA, A[z]*) which is the composition of ps : JA = QA = (£* —
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t)A[t] € A[A'] and the homomorphism w : A[A!] — A[A!][z] sending the variable ¢ to
1— (1=t —=x).
Thus we have shown that
i1 :rANST = R(A)

is an (I, J)-weak equivalence. It follows that the composite map

rAAS 5 R(A) A SY 20 R(A),

which is equal to i1, is an (I, J)-weak equivalence. Hence o is an (I, .J)-weak equiv-
alence, because ig A S' is an I-weak equivalence. More generally, one gets that every
structure map

R(A)p A ST T5% R(A)pia
is an (I, J)-weak equivalence.

By induction, assume that i, : TAAS™ — R(A), is an (I, J)-weak equivalence. Then
in A St is an (I,.J)-weak equivalence, and hence so is 4,11 = 0y, 0 (i, A S1). O

Denote by SHgi(R) the stable homotopy category of Sp(R). Since the endofunctor
— A St is an equivalence on SHg1 (R) by [18], it follows from [17, Ch. 7] that SHg1(R) is
a triangulated category. Moreover, it is compactly generated with compact generators

{E=rA)nl}acnez.

Corollary 4.3. {3>°rA[n]}acpnez forms a family of compact generators for SHg1(R).
Moreover, there is a natural isomorphism

SHgi (R)(X°rB[n],2*rA) =2 K, (A, B)
for all A, BeR andn € Z.

Denote by S the full subcategory of SHg:(R) whose objects are {3°rA[n]}ack nez-
The next statement gives another description of the triangulated category D (R, F).

Theorem 4.4. The category S is triangulated. Moreover, there is a contravariant equiv-
alence of triangulated categories

T:D®R,3) — S.
Proof. By [10] the natural functor
j:R—= DR,F)

is a universal excisive homotopy invariant homology theory. Consider the homology
theory

t:R— SHg (R)P
that takes an algebra A € R to X*°rA. It is homotopy invariant and excisive, hence
there is a unique triangulated functor

T:DR,§) — SHgi1 (R)P
such that t =T o j. If we apply T to the loop extension
QA — FA— A,

we get an isomorpism
T(QA) = X°rAll],

which is functorial in A.

18



It follows from Comparison Theorem B of [11] and Corollary 3] that T" is full and
faithful. Every object of S is plainly equivalent to the image of an object in D(R,§). O

Recall from [I1] that we can vary R in the following sense. If ' is another T-closed
admissible category of algebras containing R, then D(R,§) is a full subcategory of
DR, F).

5. MORITA STABLE ALGEBRAIC KASPAROV K-THEORY

If A is an algebra and n > 0 is a positive integer, then there is a natural inclusion
t: A — M,A of algebras, sending A to the upper left corner of M, A. Throughout
this section we assume that R is a small T-closed admissible category of k-algebras with
M,k € R, n>1. Then M, A € R for any A € R and M, (f) € § for any f € F.

Denote by UR7T'S" the model category obtained from U, ; by Bousfield localization
with respect to the family of maps of cofibrant objects

{r(M,A) — rA| A€ R,n >0}

Let Spmor(R) be the stable model category of Sl-spectra associated with U.§RI7 9.
Observe that it is also obtained from Sp(R) by Bousfield localization with respect to
the family of maps of cofibrant objects in Sp(R)

(F,(r(MpA)) — Fy(rA) | A€ R,n > 0,s > 0}.

Here Fy : URT'S — SPmor(R) is the canonical functor adjoint to the evaluation functor
Evg : Spmor(R) — U.%Tf}r.

Definition. (see [9]) (1) The Morita stable algebraic Kasparov K -theory of two algebras
A, B € R is the space

KMo (A, B) = colim(K(A, B) = K(A, Mok ® B) = K(A, M3k ® B) — - ).

Its homotopy groups will be denoted by K" (A, B), n > 0.

(2) A functor X : R — S/(Spectra) is Morita invariant if each morphism X (A4) —
X(M,A), A€ R,n>0,is a weak equivalence.

(3) An excisive, homotopy invariant homology theory X : R — T is Morita invariant
if each morphism X(A) — X(M,A), A € R,n > 0, is an isomorphism.

(4) The Morita stable algebraic Kasparov K -theory spectrum of A, B € R is the Q-
spectrum

K™ (A, B) = (K™ (A, B), K™ (J A, B), K™ (J2A, B),...).

Denote by SHE" () the (stable) homotopy category of Spyor(R). It is a compactly
generated triangulated category with compact generators {X°rA[n]} acpnez. Let Spor
be the full subcategory of SH{"(R) whose objects are {£*°rA[n]}Ac nez-

Recall from [I0] the definition of the triangulated category D,or(R,§). Its objects
are those of i and the set of morphisms between two algebras A, B € R is defined as
the colimit of the sequence of abelian groups

DR,5)(A,B) - DR, 5)(A, MyB) — D(R,§)(A, MsB) — - -

There is a canonical functor 8 — Dy (R, ). It is the universal excisive, homotopy
invariant and Morita invariant homology theory on R.
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Theorem 5.1. Given A € R the composite map
52r A 4 R(A) L K(A, —) — K" (A4, —) (1)

is a stable equivalence in Spmor(R), functorial in A. In particular, there is a natural
isomorphism

SHG (R)(X>rBn], 2°rA) =2 K" (A, B)
for all A, B € R and n € Z. Furthermore, the category Spmor s triangulated and there is
a contravariant equivalence of triangulated categories

T: Dmor(gRa %’) — Smor-
Proof. Let §¢ and Sy, be the categories of compact objects in SHgi () and SHE?" (R)
respectively. Denote by R the full triangulated subcategory of S generated by objects
{cone(X°r(M,A) — X°rA)k]| AeR,n>0kecZ}.

Let R¢ be the thick closure of R in SHgi(R). It follows from [23] 2.1] that the natural
functor
S°/R¢ = S,

mor
is full and faithful and S¢,,, is the thick closure of S¢/R°.

We claim that the natural functor
S/R — S8°/R¢ (2)

is full and faithful. For this consider a map « : X — Y in 8¢ such that its cone Z is
in R and Y € S. We can find Z' € R such that Z @ Z’ is isomorphic to an object
W € R. Construct a commutative diagram in ¢

U Y w »U
I R
X 2-Y Z rX,

where p is the natural projection. We see that as is such that its cone W belongs to
R. Standard facts for Gabriel-Zisman localization theory imply (2)) is a fully faithful
embedding. It also follows that
Smor = S/R.

We want to compute Hom sets in §/R. For this observe first that there is a con-

travariant equivalence of triangulated categories
7: DR, F) /U = Spmor,
where  is the smallest full triangulated subcategory of D(R,§) containing
{cone(A 5 M,A) | A€ R,n>0}.

This follows from Theorem [£.4]

By construction, every excisive homotopy invariant Morita invariant homology theory
R — T factors through D(R,§)/U. Since R — Dyor (R, F) is a universal excisive
homotopy invariant Morita invariant homology theory [I0], we see that there exists a
triangle equivalence of triangulated categories

DmOT‘(%’ '3{) = D(éR? g)/ﬂ'
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So there is a natural contravariant triangle equivalence of triangulated categories
T Dynor (R, ) = Sor-
Using this and [11}, 9.9], there is a natural isomorphism
Smor (271 B[n], £°rA) 2 K" (A, B)

for all A, B € ® and n € Z. The fact that (1) is a stable equivalence in Sp;,or(R) is now
obvious. U

6. STABLE ALGEBRAIC KASPAROV K-THEORY

If Ais an algebra one sets M, A = U, M, A. There is a natural inclusion ¢ : A — M, A
of algebras, sending A to the upper left corner of M., A. Throughout the section we
assume that R is a small tensor closed and T-closed admissible category of k-algebras
with M (k) € R. Tt follows that M A = A® My (k) € R for all A € R.

Denote by U,R7°; the model category obtained from U, ; by Bousfield localization
with respect to the family of maps of cofibrant objects

{r(MsA) - rA| AcR}.
Observe that U.?R??J is a monoidal model category whenever R is T-closed.

Let Spoo(R) be the stable model category of S'-spectra associated with U.?R??J. Ob-
serve that it is also obtained from Sp(R) by Bousfield localization with respect to the
family of maps of cofibrant objects in Sp(R)

{Fs(r(MxA)) — Fs(rA) | A€ R,s > 0}.

Definition. (see [11]) (1) The stable algebraic Kasparov K -theory of two algebras A, B €
R is the space

K5 (A, B) = colim(K(A, B) — K(A, Mook ® B) — K(A, Mook @ Mok @ B) — --+).
Its homotopy groups will be denoted by K5f(A, B), n > 0.

(2) A functor X : ® — S/(Spectra) is stable or Moo-invariant if X(A) — X (M A)
is a weak equivalence for all A € R.

(3) An excisive, homotopy invariant homology theory X : ® — T is stable or M-

invariant if X(A) - X(MxA) is an isomorphism for all A € R.
(4) The stable algebraic Kasparov K -theory spectrum for A, B € R is the Q-spectrum

K*(A, B) = (K*(A, B),K*'(JA, B), K*(J?A, B),...).

Denote by SHZ () the (stable) homotopy category of Spuo(%). It is a compactly
generated triangulated category with compact generators {3*°rA[n|}scrnez. Let S
be the full subcategory of SHZS(R) whose objects are {X°rA[n]} sen nez.-

Recall from [10] the definition of the triangulated category Dy (®,§). Its objects are
those of R and the set of morphisms between two algebras A, B € R is defined as the
colimit of the sequence of abelian groups

D(R,T)(A, B) — D(R,3)(A, Mook @) B) = DR, §)(A, Mook ®f Mok @5 B) — - -

There is a canonical functor 8 — Dy (R,F). It is the universal excisive, homotopy
invariant and stable homology theory on R.
The proof of the next result is like that of Theorem [B.11
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Theorem 6.1. Given A € R the composite map
5orA 5 R(A) S K(A,—) — KA, -) (3)
is a stable equivalence in Speo(R), functorial in A. In particular, there is a natural
isomorphism
SHE(R)(Z®rBln],x*rA) 2 K (A, B)
for all A, B € R and n € Z. Furthermore, the category S is triangulated and there is
a contravariant equivalence of triangulated categories
T: Dst(%,g) — Soo
Let 'A, A € Alg;,, be the algebra of N x N-matrices which satisfies the following two
properties.
(i) The set {a;; | i,j € N} is finite.
(ii) There exists a natural number N € N such that each row and each column has
at most N nonzero entries.

My A CT'Ais an ideal. We put
YA=TA/MA.

We note that "4, X A are the cone and suspension rings of A considered by Karoubi and
Villamayor in [20, p. 269], where a different but equivalent definition is given. By [3]
there are natural ring isomorphisms

TAXThk® A, SAXTE® A
We call the short exact sequence
M A—TA—» YA

the cone extension. By [3] A — X A is a split surjection of k-modules.
Let 7 be the k-algebra which is unital and free on two generators o and [ satisfying
the relation af = 1. By [3} 4.10.1] the kernel of the natural map
T k[til]
is isomorphic to Mok. We set 79 = 7 @p+1) 0.
Let A be a k-algebra. We get an extension

My A —— 1A —— AltH],
and an analogous extension
My A —— 1A ——= dA. (4)

Definition. We say that an admissible category of k-algebras R is 79-closed (respectively
I'-closed) if oA € R (respectively 'A € R) for all A € R.

Cuntz [4, 5, 6] constructed a triangulated category kk'“® whose objects are the locally
convex algebras. Later Cortinas—Thom [3] construct in a similar fashion a triangulated
category kk whose objects are all k-algebras Alg.. If we suppose that R is also I'-closed,
then one can define a full triangulated subcategory kk(R) of kk whose objects are those
of .
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It can be shown similar to [9, 7.4] or [10, 9.4] that there is an equivalence of triangu-
lated categories

Dgt(R,T) — kk(R).

An important computational result of Cortinas—Thom [3] states that there is an iso-
morphism of graded abelian groups

P kk(R)(k, Q" A) = D K H,(A),
nez neL
where the right hand side is the homotopy K-theory of A € R in the sense of Weibel [28].

Summarizing the above arguments together with Theorem [6.1] we obtain the following

Theorem 6.2. Suppose R is I'-closed. Then there is a contravariant equivalence of
triangulated categories

kk(R) = Seo-
Moreover, there is a natural isomorphism

SHG (R)(XrAln], X%r(k)) = KH,(A).
for any A € R and any integer n.

7. K-MOTIVES OF ALGEBRAS

Throughout the section we assume that R is a small tensor closed and T-closed admis-
sible category of k-algebras with M (k) € R. It follows that M A := A ®@ My (k) € R
for all A € R.

In this section we define and study the triangulated category of K-motives. It shares
lots of common properties with the category of K-motives for algebraic varieties con-
structed in [12].

Since R is tensor closed, it follows that UsR7°; is a monoidal model category. Let

SpZ (R) be the monoidal category of symmetric spectra in the sense of Hovey [I§]
associated to U.?R?f’J.

Definition. The category of K-motives DK (R) is the stable homotopy category of
SpZ (R). The K-motive M (A) of an algebra A € R is the image of A in DK (R), that
is Mg (A) = X£°°rA. Thus one has a canonical contravariant functor

Mg : R — DK(R)
sending algebras to their K-motives.
The following proposition follows from standard facts for monoidal model categories.

Proposition 7.1. DK (R) is a symmetric monoidal compactly generated triangulated
category with compact generators { Mg (A)} aen. For any two algebras A, B € R one has
a natural isomorphism

Mg (A) ® Mg(B) = Mg(A® B).
Furthermore, any extension of algebras in R

(B): A—-B-—>C
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induces a triangle in DK (R)
My(E): Mg (C)— Mg(B) — Mg (A) 5.
There is a pair of adjoint functors
V: Speo(R) S Sp(R) : U,

where U is the right Quillen forgetful functor. These form a Quillen equivalence. In
particular, the induced functors

V:SHGRN) S DKR): U
are equivalences of triangulated categories. It follows from Proposition [.Ilthat SHgT (R)
is a symmetric monoidal category and
YrA®¥®rB =¥*r(A® B)
for all A, B € R. Moreover,
V(E®rA) = Mg(A)
for all A € R.
Summarizing the above arguments together with Theorem we get the following

Theorem 7.2. For any two algebras A, B € R and any integer n one has a natural
isomorphism of abelian groups

DK (R)(Mk (B)[n], Mk (A)) = K}(A, B).

If T is the full subcategory of DK (R) spanned by K-motives of algebras { Mg (A)}aen
then T 1is triangulated and there is an equivalence of triangulated categories

Dy(R,T) =T
sending an algebra A € R to its K-motive My (A).

The next result is a reminiscence of a similar result for K-motives of algebraic varieties
in the sense of [12] identifying the K-motive of the point with algebraic K-theory.

Corollary 7.3. Suppose R is I'-closed. Then for any algebra A and any integer n one
has a natural isomorphism of abelian groups

DK (R) (Mg (A)[n], Mk (k) = KHp(A),
where the right hand side is the n-th homotopy K -theory group in the sense of Weibel [28].
Proof. This follows from Theorem [I10], 10.6] and the preceding theorem. U

We finish the section by showing that the category kk(R) of Cortinas-Thom [3] can
be identified with the K-motives of algebras.

Theorem 7.4. Suppose R is I'-closed. Then there is a natural equivalence of triangu-
lated categories

kk(R) = T°P
sending an algebra A € R to its K-motive M (A).

Proof. This follows from Theorem [T.2]and the fact that Dy (R, §) and kk(R) are triangle
equivalent (see [9, 7.4] or [10} 9.4]). O

The latter theorem shows in particular that kk(R) is embedded into the compactly
generated triangulated category of K-motives DK (R) and generates it.
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8. THE G-STABLE THEORY

Motivic stable homotopy theory over a field is homotopy theory of T-spectra, where
T = S' A G, (see [26, 19]). There are various equivalent definitions of the theory,
one of which is given by (S!,G,,)-bispectra. In our context the role of the motivic
space G, plays o = (t — 1)k[tT!]. Its simplicial functor r(o) is denoted by G. In
this section we define the stable category of (S', G)-bispectra and construct an explicit
fibrant replacement of the (S, G)-bispectrum LFErA of an algebra A. One can as
well define a Quillen equivalent category of T-spectra, where T'= S' A G, and compute
an explicit fibrant replacement for the 7T-spectrum of an algebra. However we prefer
to work with (S',G)-bispectra rather than T-spectra in order to study K-motives of
algebras in terms of associated (S, G)-bispectra (see the next section).

Throughout the section we assume that R is a small tensor closed and T-closed ad-
missible category of k-algebras. We have that cA .= A® o € R for all A € R.

Recall that UsR; s is a monoidal model category. It follows from [I8] 6.3] that Sp(R)
is a UsR7 j-model category. In particular

—®G: Sp(R) = Sp(R)

is a left Quillen endofunctor.

By definition, a (St, G)-bispectrum or bispectrum & is given by a sequence (Ey, E1, . ..),
where each Ej is a Sl-spectrum of Sp(R), together with bonding morphisms &, : E,, A
G — E,41. Maps are sequences of maps in Sp(R) respecting the bonding morphisms.
We denote the category of bispectra by Spg(R). It can be regarded as the category of
G-spectra on Sp(R) in the sense of Hovey [18].

Spg(R) is equipped with the stable U j-model structure in which weak equiva-
lences are defined by means of bigraded homotopy groups. The bispectrum object £
determines a sequence of maps of S'-spectra

. O (&
E() io—)Q@El MQ%EQ-)

where g is the functor Hom(G, —) and &,-s are adjoint to the structure maps of £. We

define 7, (€ in A-sections as the colimit

colimy (Homgyy_, () (S~ Q& TEy(A)) — Homgp, ) (SP~9, Q& T B (A) — )

once £ has been replaced up to levelwise equivalence by a levelwise fibrant object JE
so that the “loop” constructions make sense. We shall also refer to m, ;£ as homotopy
groups of weight q.

By definition, a map of bispectra is a weak equivalence in Spg(R) if it induces an iso-
morphism on bigraded homotopy groups. We denote the homotopy category of Spg(R)
by SHg: g(R). It is a compactly generated triangulated category.

In order to define the main (S', G)-bispectrum of this section, denoted by KG(A4, —),
we should first establish some facts for algebra homomorphisms.

Suppose A,C' € R, then one has a commutative diagram

NA®C

JARC)——T(AR(C)— A C

Na®C
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in which 4 ¢ is uniquely determined by the split monomorphism iy ® C : A® C —
T(A)®C.
One sets 791,0 = lagc. We construct inductively
Yic:J"(A®C) = J"(A)®C, n>1

Namely, 7”“ is the composite

T (A ) LA Fma) e 0) G iy e C.
Given n > 0 we define a map
ty =t K(JMA, —) = K(JY(A® C),— ® C) = Hom(rC,K(J"(A® C), -))

as follows. Let B € R and (a : J"™™A — B(Q™)) € K(J"A, B). We set t,(a) €
K(J"(A® C),B® C) to be the composite

J”WA®®7E¢JHWMWM7MCBHWW®C (B ® C)2(QM).
Here 7 is a canonical isomorphism (see [3, 3.1.3]) and (B ® C)* stands for the simplicial
ind-algebra

[m, €] — Homg(sd™ A, (B ® C)2) = (B O)4" A" = 54" A o (B g ().
One has to verify that £, is consistent with maps

HomAlgzxd(Jn-l-mA,BA(Qm)) N HomAlgz\d(J"er“A,IB%A(QWH))-

More precisely, we must show that the map

J(y Tc’"> J(a®1)

TN ARC) - JBX@M)C) 2 J(BeC)® Q™) £ BeC)> (@)

is equal to the map

JJ"TARQ) -

n+m-+41

T (A C) AE g o 22 JBA Q) e 2L BA QM 00 = (BeC)A Q7).

The desired property follows from commutativity of the diagram

Jn+m+1(A ® O)

(vﬁ*cm)l

J(Imm A @ ) LEIAL imtl g g o TJ+mA®C JHmA®C
J(a®1)l J(@)®1 la@l

JBA(Q™) @ C) — J(BA(QM)) @ C— T (BA(Q™)) ® C — BA(Q™) @ C
| |
J(BA(Q™) ® C) —— BA Q™) ® C>—— P(B2(Q™)) ® C —==BA(Q") @ C

JT\L T T T

J((B® C)A(Qm)) — B ® C)A Q") P(B® C)2(Q™) — (B ® C)2(Q™)

v

We see that t,, is well defined. We claim that the collection of maps (¢, ), defines a map
of Sl-spectra
K(4,B) - K(A® C,B®C).
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We have to check that for each n > 0 the diagram

~

K(J"A, B) — QK(J" A, B)

tn l \L Qtn+ 1

K(J"(A®C),B®C) —= QK(J"" (A® C),B®C)

is commutative. But this directly follows from the definition of the horizontal maps and
arguments above made for t,-s.
If we replace C by o we get that the array

K(02A, B) : K(o?A, B) K(Jo%A, B) K(J%0%A, B)
K(cA, B) : K(cA, B) K(JoA, B) K(J?c A, B)
K(A, B) : K(A, B) K(JA, B) K(J?A, B)

together with structure maps
K(o"A,—) ® G — K(o" 4, —)
defined as adjoint maps to
t:K(o"A,—) — Hom(G,K(¢" A, —))

form a (S*, G)-bispectrum, which we denote by KG(A, —).
There is a natural map of (S*, G)-bispectra

[:32E°rA - KG(A, -),
where XZX°rA is the (81, G)-bispectrum represented by the array

YrAeG?: rA®G? (2r(c2A)) (rAnSY) ®G? (2 r(c?2A) A S
YrAaeG: rA®G (Z2r(cA)) (rAASY) @G (Z2r(cA) ASY)
3°rA: rA rAn St

with obvious structure maps.
By Theorem each map

I, :¥°rAdeG" - KG(4, —), =K(c"A4, —)
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is a stable weak equivalence in Sp(R). By [11] each K(c™A, —) is a fibrant object in
Sp(R). For each n > 0 we set,

OFKG(A, ), = colim(K(0" A, —) 1% K(0" A, —00) 228, K(o™+24, —@02) 5 )

By specializing a collection of results in [I8, section 4] to our setting we have that
OFKG(A, —) is a fibrant bispectrum and the natural map

Jj : KG(A4,—-) - OFKG(A4, —)
is a weak equivalence in Spg(R).

We have thus shown that OFKG(A, —) is an explicit fibrant replacement for the
bispectrum YLF¥X>*rA of the algebra A. Denote by K7(A, B) the (0,0)-space of the
bispectrum ©FKG(A, B). It is, by construction, the colimit

colim,, K(c"A,c"B).
Its homotopy groups will be denoted by K9 (A, B), n > 0.

Theorem 8.1. Let A be an algebra in R; then the composite map
joI : ¥F¥*rA — OFKG(A4, —)
is a fibrant replacement of XZFXrA. In particular,
SHg g(EFX*rB,Xg¥>rA) = K (A, B)
for all B € R.

Remark. Let SH(F) be the motivic stable homotopy theory over a field F. The
category SHgi g(R) shares a lot of common properties with SH(F). To the author
knowledge computation of SH(F)(X55X, %55, ), where X, Y € Sm/F, as well as
an explicit construction of a fibrant replacement for X35 X is a very hard problem in
Al-topology.

Let F' be an algebraically closed field of characteristic zero with an embedding F' — C
and SH be the stable homotopy category of ordinary spectra. Let ¢ : SH — SH(F)
be the functor induced by sending a space to the constant presheaf of spaces on Sm/F.
Levine [21] has recently shown that ¢ is fully faithful. This is in fact implied by a result
of Levine [21] saying that the Betti realization functor in the sense of Ayoub [I]

Rep : SH(F) - SH
gives an isomorphism
Rep, : 7Tn7OSF(F) — 7Tn(8)
for all n € Z. Here Sp is the motivic sphere spectrum in SH(F') and S is the classical
sphere spectrum in SH. These results use recent developments for the spectral sequence

associated with the slice filtration of the motivic sphere Sg.
All this justifies to raise the following

Questions. (1) Is there an admissible category of commutative algebras R over the field
of complex numbers C such that the natural functor

c:SH — SHsl’G(gR),

induced by the functor S — UR sending a simplicial set to the constant simplicial functor

on R, is fully faithful?
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(2) Let R be an admissible category of commutative C-algebras and let Sc be the
bispectrum LFX°rC. Is it true that the homotopy groups of weight zero m,0Sc(C) =
K2(C,C), n > 0, are isomorphic to the stable homotopy groups m,(S) of the classical
sphere spectrum?

We should also mention that one can define (S!,G)-bispectra by starting at the
monoidal category of symmetric spectra Sp*(R) associated with monoidal category
Us(R);.s and then stabilize the left Quillen functor — ® G : Sp*(R) — Sp*(RN). One
produces the model category Sp%(R) of (usual, non-symmetric) G-spectra in Sp*(R).
Using Hovey’s [I8] notation, one has, by definition, SpE(R) = Sp(Sp™(R), — ® G).

There is a Quillen equivalence

V:SpR) = Sp=(R) : U
as well as a Quillen equivalence
V: Sps(R) S Spg(R) : U,

where U is the forgetful functor (see [18 5.7]).
If we denote by SH3 (R) and SHZ (R) the homotopy categories of Sp¥(R) and

Spé(?R) respectively, then one has equivalences of categories
V:SHu(R) S SHHZ(R) : U
and
V:SHag(R) S SHg o(R) : U.
We refer the interested reader to [I8) [19] for further details.

9. K-MOTIVES AND (S!, G)-BISPECTRA

We prove in this section that the triangulated category of K-motives is fully faithfully
embedded into the stable homotopy category of (S*, G)-bispectra SHgi g(R). In partic-
ular, the triangulated category kk(R) of Cortinas—Thom [3] is fully faithfully embedded
into SHg1 (%) by means of a contravariant functor. As an application we construct
an explicit fibrant (S!, G)-bispectrum representing homotopy K-theory in the sense of
Weibel [28].

Throughout this section we assume that R is a small tensor closed, T-, I'- and 7p-closed
admissible category of k-algebras. It follows that c A, XA, M A € R for all A € R.

Let SpOEQG(%) denote the model category of (usual, non-symmetric) G-spectra in

SpZ (R). Using Hovey’s notation [I8] Sp?QG(?R) = SpN(SpZ(R), — @ G).
Proposition 9.1. The functor
~®G: Spx(R) = Spx(R)
and the canonical functor
Fog = 5§ : Spi(R) — SpZ g(R)

are left Quillen equivalences.
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Proof. We first observe that — ® G is a left Quillen equivalence on SpZ (R) if and only
if so is — ® X°G. By [3] section 4] there is an extension

Mok — 19 = 0.

It follows from [3, 7.3.2] that £*°(r(7)) = 0 in DK (R), and hence ¥°°(r(7p)) is weakly
equivalent to zero in Sp (R).

The extension above yields therefore a zig-zag of weak equivalences between cofibrant
objects in SpZ (R) from X°(r(Myk)) to B°GAS!. Since X°(r(Myk)) is weakly equiv-
alent to the monoidal unit X°°(r(k)), we see that X°°(r(k)) is zig-zag weakly equivalent
to (X°G) A S! in the category of cofibrant objects in Sp (R).

Since X°(r(k)) is a monoidal unit in SpZ (R), then — ®@ ¥°(r(k)) is a left Quillen
equivalence on SpZ (R), and hence so is — ® ((B*°G) A SY)). But — A S! is a left Quillen
equivalence on SpZ (R). Therefore —® Y°G is a left Quillen equivalence by [17, 1.3.15].

The fact that the canonical functor

Fog : Sps(R) = Sps, 6(R)
is a left Quillen equivalence now follows from [18, 5.1]. O

Denote the homotopy category of SpOEQG(?R) by SH?{E(%)

Corollary 9.2. The canonical functor
Foe =X : DK(R) — SHGE(R)

is an equivalence of triangulated categories.

Recall that SpZ (R) is Bousfield localization of Sp*(R) with respect to

{Fs(r(MxA)) = Fs(rA) | A€ R, s > 0}.
It follows that the induced triangulated functor
DK(R) — SHz (R)

is fully faithful.
In a similar fashion, Sp?o ;) can be obtained from Spé(?ﬁ) by Bousfield localization
with respect to

{Fre(Fy(r(MaA))) = Fya(Fy(rA)) | A€ R, k,s > 0},

We summarize all of this together with Proposition as follows.

Theorem 9.3. There is an adjoint pair of triangulated functors
®:SHE o(R) S DK(R): ¥

such that V is fully faithful. Moreover, T = Ker® is the localizing subcategory of
SH?1 c(R) generated by compact objects

{cone(Fg(Fs(r(MsA))) = Fig(Fs(rA))) | A€ R}
and DK (R) is triangle equivalent to SHgl,G(%)/T.
Corollary 9.4. There is a contravariant fully faithful triangulated functor
kk(R) — SHg1 g(R).
Proof. This follows from Theorems [7.4] and O
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Let Speo,c(R) denote the model category of G-spectra in Spo(R). Using Hovey’s
notation [I8] Speo.c(R) = SpN (Spee(R), —@G). As above, there is a Quillen equivalence

ViSpsoc(R) S Sp?o@(%) U,
where U is the forgetful functor. It induces an equivalence of triangulated categories
Vi SHE (R) S SHGR(R) U,

where the left hand side is the homotopy category of Sps (R).
Given an algebra A € R, consider a (S', G)-bispectrum KG*!(A, —) which we define
at each B € R as

colim,, (KG(A, B) — KG(A, Mok ® B)) — KG(A, M2k ® B) — ---)

It can also be presented as the array

K* (02 A, B) : K5t (0% A, B) Kst(Ja?A, B) K3t (J%20% A, B)
Kst(c A, B) : K#t(c A, B) Kst(Jo A, B) K3t (J%0 A, B)
K*'(A, B) : Kst(A, B) Kst(JA, B) Kst(J2A, B)

It follows from Theorem that the canonical map of bispectra
YEYCrA — KG¥ (A, -)

is a level weak equivalence in Speg(R). If we define OFKG* (A, —) similar to the
bispectrum ©FKG(A, —), then the canonical map

7 KG*(A, —) — OFKG(4, —)

is a stable equivalence of bispectra.
The following result says that the bispectrum KG*'(A, —) is (2,1)-periodic and rep-
resents stable algebraic Kasparov K-theory (cf. [26] 6.8-6.9]).

Theorem 9.5. For any algebras A, B € R and any integers p, q there is an isomorphism
of abelian groups

7.¢(KG*(A, B)) = Homg Hy o) (EFTXTB® S0 G KG*'(A,-)) 2 K5 5, (A, B).

In particular,
p,g(KG™ (A, B)) = mp42,441(KG* (4, B)).

Proof. As we have shown above, the bispectrum XZ'¥°°rA is level weak equivalent to

KG* (A, —) in Speo,(R). Therefore,
7p.¢(KG* (A, B)) = Homgp () (SFT7rB @ P71 ® G, XFE>rA).
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Corollary @2l implies that the right hand side is isomorphic to DK (R)(Mg(B) ® SP~1®
GY, Mk (A)). On the other hand,

DK (R)(Mg(B) ® SP™ 1@ GY, My (A)) = DK (R)(Mg(B) ® SP~2 © S7® G, M (A)).

The proof of Proposition 0.1l shows that ¥°°(S!®G) is isomorphic to the monoidal unit.
Therefore,

DK (R)(Mg(B) ® P71 ® 57 ® G, Mk (A)) = DK (R)(Mg (B)[p — 2], Mk (A)).
Our statement now follows from Theorem O

The next statement says that the bispectrum KG*!(k, B) gives a model for homotopy
K-theory in the sense of Weibel [28] (cf. [26] 6.9]).

Corollary 9.6. For any algebra B € R and any integers p,q there is an isomorphism
of abelian groups

7p.q(KG* (k, B)) = K H,_5,(B).
Proof. This follows from the preceding theorem and [11} 9.11]. O
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