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QUASI-UMBILICAL AFFINE HYPERSURFACES CONGRUENT
TO THEIR CENTRE MAP

A. J. VANDERWINDEN

ABSTRACT. In this paper, we study strictly convex affine hypersurfaces cen-
troaffinely congruent to their centre map, in the case when the shape operator
has two distinct eigenvalues: one of multiplicity 1, and one nonzero of multi-
plicity n — 1. We show how to construct them from (n — 1)-dimensional affine
hyperspheres.

1. INTRODUCTION

In [1], the authors introduced the notion of centre map for a centroaffine hypersur-
face and studied affine hypersurfaces centroaffinely congruent to their centre map,
completely solving the problem for positive definite surfaces.

The solution to this problem is known in higher dimensions for positive definite
improper affine hyperspheres [4] (i.e. for which the shape operator S identically
vanishes), and for generic hypersurfaces [5] (i.e. for which S has n different, nonzero
eigenvalues). In this paper, we investigate the intermediate case of positive definite
quasi-umbilical hypersurfaces, i.e. when S has two distinct eigenvalues: Ao, of mul-
tiplicity 1, and A; of multiplicity n — 1.

More precisely, we prove the

Theorem 1.1. Let f : M™ — R"™! be an affine immersion centroaffinely con-
gruent to its centre map c. Assume that both f and c are centroaffine, that the
Blaschke metric h is positive definite, and that f is quasi-umbilical, with the mul-
tiple eigenvalue Ay # 0.

Then such a hypersurface exists iff Ao + A1 < 0, and in that case (M, h) is locally
isometric to a warped product R x . N"~1. Moreover,

o if (n 4 2)Ao + nA1 # 0, then there exists a proper affine hypersphere go :
N — R™ such that, up to an affine transformation of R"*1,

(L) s = (omm. ).

where K1 and N are constants related to the \;’s.
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o if (n+2)X\g+nA\; =0, then, up to an affine transformation of R"*1,

_, _ _ . _ . 1
(1.2) ft, @) = (t M 2K gt 2K1(f(u)— 2—K110gt) ),

where F is a solution of the Monge—Ampére equation, and K1, o are con-
stants.

The converse also holds.

The hypersurfaces in Theorem [[] are similar to those described in [6], where hy-
persurfaces with pointwise SO(n — 1)-symmetry are studied. The shape operator
and difference tensor in that paper have indeed the same form as the one we get
under the assumptions of Theorem [T the proof of which follows in part that of
[6, Theorem 3.1].

Acknowledgements: I am very grateful to Luc Vrancken for many valuable dis-
cussions.

2. PRELIMINARIES AND NOTATIONS

Let us now very briefly recall some basic notions of affine geometry (see [3] for
details) and introduce the relevant notations.

Let f : M — R™"! be a non-degenerate immersion of an n-dimensional oriented
manifold M into R™*!, with its Blaschke structure. Let us denote by

D the standard flat affine connection on R"*+!,
¢ the affine normal of f,

V the induced equiaffine connection on M,

h the equiaffine metric on M,

S the shape operator of f.

The above quantities are related by the following relations, for all vector fields X
and Y on M:

Dxf.Y = f.VxY + h(X,Y)E,
Dxé=—f.5X.
(We will often drop the symbol f, in the sequel.)

The standard volume form det on R**! induces a volume form w on M, defined as
w(X1,...,X,) =det(Xq,...,Xp,§), and, € being the affine normal,

wi(X1,...,X,) =det(h;;), where hj; = h(X;, X;).
We will also denote by

e V the Levi-Civita connection of the metric h,
e K the difference tensor, defined by

K(X,Y)=KxY =VxY —VyY.
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Recall [3, Proposition I1.4.1] that
1
(2.1) W(Ex(Y),2) = —5(Vh)(X.Y.2)

and also that the apolarity condition Vw = 0 can be expressed as tr Kx = 0 for
any vector field X on M.

For all u € M, the position vector f(u) can be decomposed as

f(u) = fuZu + p(u)éu,

where Z is a vector field on M and p the affine support function of f.

We now recall the definition of the centre map, which has been introduced in [IJ.

Definition 2.1. The centre map of an immersion f : M — R™*! is the map
c: M — R""! defined for all u € M by

c(u) = f(u) - p(u)gu = fuZy.

It follows that
e.X = f.(id+pS)X — (Xp)E,
hence the centre map of an immersion f is itself an immersion iff

ker(id +pS) Nker dp = {0}.

From now on, we will assume that the immersion f is centroaffine, i.e. that the
position vector is everywhere transversal to the tangent space, and that the centre
map c of f is centroaffine, too, which amounts to

(2.2) dim(f.Z; , fo(id4+pSX — (Xp)éu | X € TLM) =n + 1,
where we have used the notation Z* = p=127.

We are interested in immersions f which are centroaffinely congruent to their centre
map c.

The following result has been established in [I, Propositions 4.1, 4.2]:

Proposition 2.2 (Furuhata—Vrancken). Let f : M — R"! be an affine immersion
whose centre map ¢ is a centroaffine immersion. Then f is centroaffinely congruent
with ¢ iff there exist a nowhere vanishing function p and a vector field Z* on M
satisfying the following system of equations for all vector fields X,Y on M:

(2.3) X(p) = —ph(X,Z"),

(2.4) (VxS)Y = h(X,Z*)SY + h(Y,Z*)SX — h(X,Y)SZ*,

(2.5) (Vh)(X,Y,Z*) = —2p 'h(X,Y) — 2h(X, SY) — h(X,Y)h(Z*, Z%),
(2.6) VxZ*=hWMX,Z)Z* +p ' X + SX.

Using the apolarity condition, [21]), and (Z3]), we get

1 1
2.7 =TS —Zh(Z 2
(2.7) P —tr 2( 247,
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hence we can reformulate (Z3]) as

(2.8) (Vh)(X,Y,Z*) = % tr S h(X,Y) — 2h(X, SY).

3. PRELIMINARY COMPUTATIONS

Let f : M — R™"! be an immersion whose centre map c is itself a centroaffine
immersion, centroaffinely congruent to f.

We also assume that the metric kA induced by f is positive definite. From the Ricci

equation, there exists a local h-orthonormal basis { Xy, X1,..., X,,—1} of eigenvec-
tors for the shape operator S.
If we denote by Ag, ..., A,—1 the corresponding eigenvalues, then the Codazzi equa-
tion for S in this basis reads:

n—1 n—1
(3.1) XiA)X5 + D> (N = MTE X = X0 X + Y (A — M), X,

k=0 k=0
where Ffj denote the Christoffel symbols of the equiaffine connection V of f.

Writing Z* = ZZ:Ol a; X;, we get from (23) that X;(p) = —pa;. By [I, Proposi-
tion 4.3], there exist constants v; such that pA; = v;. Applying X; to this equality,
we obtain

(3.2) Xi(Aj) = aid;.
We now restrict to the quasi-umbilical case, i.e. when S has two distinct eigenvalues:

e )\, with eigenspace (Xo),
e )\, nonzero, with eigenspace (X1,..., X,—1).

For i,j=1,...,n— 1, (8I) now simplifies to
Xi(M)X,; + (M — )\o)l—‘?on =X;(M)Xi+ (M — )\O)ngXo-
Therefore X;(A1) =0fori=1,...,n—1, so by B2), a; =0, i.e.
Z*:Zan@

Let us now introduce the two constants
Ao A1

K: K: .
o7 N = N\ D VW
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Using [31), the Codazzi equation for h, and the apolarity condition, we get

Lemma 3.1. Fori,j=1,...,n—1, one has
n—1
Vx,Xo = ! 5 )ao(Ko + K1) Xo,
ao
VXOXi = ?(KQ + Kl)Xi + Z}F&X;@,
k#0,t
Vx, Xo = ao K1 X5,
n—1
VXI.XJ‘ = 5ijCLOKOX0 + Z Fijk.
k=1

From (23 we have, fori=1,...,n — 1,
—ad(Ko + K1) = Vh(X;, X;, Z*) = =2p~ 1 — 2\ — a2,
(n — 1)ad (Ko + K1) = Vh(Xo, X0, Z*) = —2p~* — 2\¢ — a3,
and from (2.6]),
(P~ + M)X; = Vx,a0Xo = X;(ao)Xo + ag K1 X;,
n—1

(a% +(pt + Ao))Xo = Vx,a0X0 = (Xo(ao) - a2 (Ko + K1)> Xo,

so we deduce that
2

(3.3) Xo(ao) = %,
(3.4) p A = alK,
2
(35) ag(/\o + )\1) = _E(/\O — )\1)2.

Remark 3.2. Equation ([3.5) shows that we must have A\g + A1 < 0, as stated in
Theorem [[.T]

Lemma 3.3. Under the assumptions of Theorem [I1], the centre map of [ is a
centroaffine immersion.

Proof. We know from (2:2)) that c is a centroaffine immersion iff
dim(f. Z, , f(id+pS)X — (Xp)éy | X €e T, M) =n+1
iff the n + 1 vectors
aoXo, (1+pA)X1, ..., (14 p ) Xno1, (14 pAo)Xo + paoé

are linearly independent iff 1 + pA; # 0.
If p=' = — 1, then we would get from (7)) that a§ = 2(A; — Ao). This and (3)
would imply that A\; = 0, a contradiction. O
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A short computation using Lemma [3]leads to the following

Lemma 3.4.

e Fori,j > 1, @XiX- = %&jaoXo + 22;11 fijk where ff] denote the
Christoffel symbols of the Levi-Civita connection v.
o VXO XO =0.
o The difference tensor Kx, takes the form
—”T’lao(Ko—i-Kﬂ 0 0

0
Kx, =
%ao(KO —|— Kl) idn,1

0
Remark 3.5. From Lemma 34 we see that the form of Kx,, as well as that of
the shape operator S, is the same as in [6].

4. WARPED PRODUCTS

Let (Mi,¢91) and (Ma, g2) be two Riemannian manifolds. Using the appropriate
projections, any vector V' tangent to My X Ms can be decomposed as V = V; + Vb,
with V; tangent to M; (i =1,2).
Recall that the warped metric g1 X .r g2 on My X Mo is defined by

g(Va W) = gl(vla Wl) + 62F92(V2a WQ)v

where F' is a function on M7 x M, depending only on M;.

The manifold M; x Ms, endowed with this metric, is a Riemannian manifold,
denoted by M; X .r M.

We will now use the following special case of a theorem of Nolker [2]:

Proposition 4.1. Let (M, g) be a Riemannian manifold with Levi-Ciwita connec-

tion 6, whose tangent bundle splits into two orthogonal distributions N7 and Ns.
Assume that there exists H € N such that for all X, Y € N1, U,V € N>, one has

%XY S N1,
g(VuV,Z)=g(UV)g(H,Z)  for all Z € Ni.

Assume further that U(|H|) = 0 for all U € Na. Then (M, g) is locally isometric
to a warped product My x .r Mo, with M; integral manifolds of Nj.
Moreover, one has grad F' = —H.

So from Lemma[B4] we get that the Riemannian manifold (M, h) is locally isometric
to a warped product R x.» N" !, with the induced metric Ay on N given by
hN(Xi,Xj) = 6_2F5ij (Z,j =1,...,n— 1), and H = %GQXQ.

We now choose coordinates local coordinates uq,...,u,—1 on N, and a local coor-
dinate t on R such that Xy = ;.
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5. PROOF OF THEOREM [[ T}k CASE (n + 2)A\g + nA; # 0

We construct two maps g; : M — R"*! (i = 1,2) of the form g; = ;& + 3; X such
that DXigl = Dng2 =0.

A straightforward computation using Lemma B and (B3] leads to
Lemma 5.1. The map g1 = agK1£ + A1 X satisfies
Dnglzo (Zzlavn_l)v
a
ongl = —70 ((TL + 1)K1 + (n - 1)K0) g1

Hence, there exist a function ¢(t) and a constant vector C such that g (t) = ¢(t)Co.

Lemma 5.2. There exists a map g2 = a2€ + S2Xo such that Dx, g2 = 0.

Proof. Let us denote by V¥ the restriction of V to (X1,..., X,_1).

Fori,j=1,...,n—1, we have from Lemma [3]
Dx,X; = [, VY, X; + 6ij (a0 Ko Xo + €).
The map ¢ = agKoXg + £ satisfies
0« Xi = Dx,¢ = (ad Ko K1 — M) X; = —C(8)X;
and from (B3] we also have
¢+ Xo = Dx,¢ = aoKo¢.

Hence we can find a function as(t) with Dx,(az¢) = 0. This function has to satisfy

(51) Xo(OéQ) = —aoK()OQ,
so for the map go = g0, we get Dx,g2 = 0 and Dx,g2 = n(t)X;, with n =
OZQ(CL?JK()Kl — )\1) = —OQC. O

Notice for further use that by (BEI)

(52) = ( Ao+ A1

hence the condition in the title of this section reads ¢ # 0.

Proposition 5.3. When ¢ # 0, the map g2 is an immersion of N as a proper
affine hypersphere in some hyperplane of R 1.

Proof. We have
Dx;Dx, g2 = n(t)Dx,; X

)
(t)[f*VN Xi+dij9)
( )+5zj77( )¢
= g2+(VX X;) = 64;¢(t)g2

When ¢ # 0, go can be viewed as an immersion of N into R"*!. The above
computation shows that g actually lies in some fixed hyperplane of R"*!, namely

= g2«
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H = (X1(p), X2(p), .-, Xn—1(p), g2(p)) for some given point p. Hence go is an
immersion of N into H, and the position vector is transversal to go.(N). From
Lemma [3.1], we see that the difference tensor K%V satisfies the apolarity condition,
hence go is (possibly up to a constant factor) the affine normal of g, which is
therefore a proper affine hypersphere in H. O

Remark 5.4. When ¢ # 0, the vector field g; is transversal to H.

Proof. One has
n—1

A
ag K1+ M Xo = a—292 + Z a; X;
i=1

n—1

iff apK1&+ M Xo = AE + apKoXo) + Z a; X;
=1

iff a;=0fori=1,....n—1, A = agK1, and \; = a3KoK3, i.e. ( = 0. O
(12
From Xo(ag) = %, we get ag = —. Hence, (5.1)) gives

d:_%(@+UKan—UKﬂc

| —

(n+1)Ki + (n—1)Ko) c,
whence

(5.3) c(t) = nqt(MDELH (1)Ko
for some constant ni.

Solving
g1 = aoK 1§ + A1 X,
{92 = € + anag KXo
for Xo, we get

a0K1 C
(5'4) Xo = g2 + ZCO.
Hence % = a“—cKlgz + %CO, which, after an appropriate affine transformation

(putting Cy in the e, 11-direction), gives the following expression for f:

f(t7 ﬁ) = (71 (t)g2 (ﬁ)v Y2 (t))’

where @ = (u1,...,u,—1) and

(t) = / “Ofl (t) dt, o (t) / %dt.

Let us now explicitly compute v; and ~a.

By (32), we know that the eigenvalues A; only depend on ¢, with A, = —%/\i, hence
N = i—2 with [; constant.
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Since ¢ = \; — a2Ko K1, we get ¢ = g—;’, where by (B2), (o = & (%)

Using (6.3]), we have

Con _ M (n—1)K1+(n+1)Ko

2 = 2 .

C( ) Co
Notice that (n — 1)K1 + (n + 1)Ko # —1. Otherwise, Ko + K1 = —2, hence, by
@A), a3 = Ao — A1, i.e. a2 Ky = A\1. But by B4), a3 K1 = p~ !+ A1, a contradiction.
So we get

ny tN

t) = — —

/72() <O N’
where N = (n — 2)K; + (n + 2)Ky # 0.

On the other hand, n = —as(, where, from (B.1)), ao = not?K0, with ny constant.

Hence n = —n2§0t2<K0—1> = —ny(et?Kr.
It is easy to check that ' = —agK17, hence v; = % = —%Cofﬂﬁ. So we have
1 ni1 tN
5.5 til) = [ ———t2Krgy(a) ——) .
(5.5 ) = (@, 2

Let us now check that the hypersurfaces described in (5.5) do indeed satisfy the
assumptions of Theorem [T.11

One has

I = (7192, 72),
aui (’71 g2« (811,1 )7 0)7

1
§=—g2 —aoKo0,
s

so that

"

Dy, 0; = (1—2, + agKo) 9 + &,
2

/
Dat 8uI - ﬁau
!

i)

Dauj Ou;, = Vé\g@ui + eQFhN(Z)ui,@uj)(aoKO@t +9).
Hence

h(0, 0r) =1,
h(Qui, Ouy) = e*F hn (Qui, Ou;),
h(@t, 8ul) O,

with hy the positive definite metric induced on N by go.
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We see that h is positive definite and that det h = e2("~DF det hy.
On the other hand,

1
w(O, Ouy y ..., Oy, ,)=det ((’%, ouyy oooy Ou,_y, —9g2 —aoKoat)
(€5)]
1
= det (8t, 8u1 g eee gy 8un,1 y —92)
Qg
ao—gﬁéh %92*(51“) %92*(5%,1) 0%292
c
— 0 0 0
¢
ntoC 1 1 1
=(-1) +2Z det (592*(&“), e 592*(8%71), a—292>
= (_1) W det(QQ*(aul)a SRR 92*(8un—1) s 92)

- (—1)"“77% Vet hy.

For £ to be the affine normal, we have to check that

(5.6) W (D4, By ooy O, ) = det h = 2D det hy.

Since grad f = —% Xo, el” = egt for some constant eg, and (5.6) reads:
C2 TL2 n— 2(n—1 n—

(5.7) = L 2= = 220D

77% - n%ncgn ’
which does hold after adjusting the integration constants ni, na, eq.

A straightforward computation shows that Dx,{ = —AoXo and Dx,{ = —A\1 X; for
i=1,....,n—1.

Let us now check that f is indeed congruent to its centre map cy. By definition,
cy = [+ Z = pfZ*. From ([Z3) we deduce p = pot?, with py a constant. So

¢y = —2potXo
4po K
- < ¥ 192,—2poﬂtN)'
n Co
On the other hand, by (&3]
1 ni1 tN)
f_ (77927 CO N/’
hence ¢y = Af, with
0
A | 4pokiid, o

0 ... 0 —2pN
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6. PROOF OF THEOREM [[ T} CASE (n +2)A\g +nA; =0

In this case, we have ¢ = 0 (cf. (52)).

As in the case ( # 0, we have, fori,j=1,...,n—1,
(6.1) DXin = f*VéV(lX] + 61']‘ (GQKQXQ + f)

The map ¢ = agKoXg + £ satisfies
and 5

$+Xo = Dix,¢ = aoKo¢ = — 2 Koo,
so that ¢ = t~2Ko¢, with ¢y a constant vector.
Since (n + 2)Ko + nK; = 0, one has

a

(6.2) Dx,Xo = 7 (Ko + K1) Xo + ¢,
hence f(t, ) takes the form

[t 1) = go(@)y1(t) + g1(@)1 + a(t)do
and
Xo = 71(t) go(a@) + &/ (t)o.

From Dy, Xo = agK10u;, we deduce

o Vi =agKim, i.e. y1 = Yot "2 (o constant),
e ¢1(@) is constant,

and «(t)¢o is a solution of (G.2) iff a(t) satisfies

Oé”(t) = %(K@ —|— Kl)a’(t) + t_2K0,
ie. 1

o (t) + g(KO + K)o/ (t) = t—2K0,

The general solution to this equation is

t72K1 —2K,
t) = — logt — B C
a(t) ok, %8 o TO
where B and C are constants. Hence, up to a translation,
—2K;
(6.3) f(t, 1) = yigo(u) — 5K, (logt + B)do

and
XO = aole go(’&:) + t_(K°+K1)(10gt + B)(bo

11
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We now show that gy is an improper affine hypersphere in some hyperplane of
R

We first show that the n+1 vectors go(@), Oy, go (@), o (1 =1,...,n— 1) are linearly
independent. Indeed, denoting by (hi;) = h(Ou,;, Ou,) (i,5 = O — 1), we know

that det(d;, Oy, - - -, Ou;, &) = y/det(hi;) # 0.
Since € = ¢ — agKo0: and 0y, = 104, o,
det(Ds, Ouys vy Oupy_y, &) = det(0r, ¥10u, 905 -+ s V10u,_1 90, @)
= det(aOKI’YlgO ) ”Ylaulgo ) ’Ylaun71907 t72K0¢0)5
hence det(go, Ou, 90, - - -y Ou,_, 90, P0) 7 0.

Let us now fix a point po in N and choose a frame in R"*! such that

gO(pO) :(1,0, .- 'aO)v

Ou; 90(po) =(0,...,1,...,0), t=1,....,n—1,
(1 in (¢ 4+ 1)st position)

o =(0,...,0,¢0) (¢o a constant).

From (&),

(64) Dauj DBWQO = gO*vé\ij 8u1 =+ hN(aui)au]‘)¢0'

This equation has a unique solution satisfying the initial conditions go(pg) and
Ou;90(po). Looking at the first component of (6.4]), we see that go lies in the
hyperplane H = zg = 1.

A straightforward computation shows that, since (n — 2)Ky + nK; = 0,

w(aulgO7 ) 3%,190, Qb) = v/ det hN-

Moreover, Dy, ¢ = 0, hence go is an improper affine hypersphere in #, with affine
normal ¢. It is well kwown that any such map is locally the graph of a function

F : N — R solution of the Monge-Ampere equation det (8‘928;_ ) =1, so that by

O,
©3),

(65)  flt.a) = (t% N g7 (F() — 5 log ) )
1

We also have
logt t=2Ki1
Xo= (ks o (k@) + 2k BT Y

with 7] = —% Kyt 2K,
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Recall that the centre map is given by ¢y = —2pot Xy, hence ¢y = Af with

4po K1 0 . . 0
0 4po K1
A =
0 Ry 4po K1 0
P})(_fo 0 - 0 4po K1
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