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Abstract

New sufficient conditions for the characterization of dwell-times for linear impulsive systems are

proposed and shown to coincide with continuous decrease conditions of a certain class of looped-

functionals, a recently introduced type of functionals suitable for the analysis of hybrid systems. This

approach allows to consider Lyapunov functions that evolve non-monotonically along the flow of the

system in a new way, broadening then the admissible class of systems which may be analyzed. As a

byproduct, the particular structure of the obtained conditions makes the method is easily extendable to

uncertain systems by exploiting some convexity properties. Several examples illustrate the approach.
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I. INTRODUCTION

Impulsive systems [1], [2], [3], [4], [5], [6] are an important class of hybrid systems admitting

discontinuities in their trajectories at certain time-instants. They arise in several fields like

epidemiology [7], [8], sampled-data and networked control systems [9], etc. Among the wide

class of impulsive dynamical systems, we may distinguish systems whose impulse-times depend

on the system state and those for which they are external and only time-dependent. Linear
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systems of the latter class may be represented in the following form

ẋ(t) = Ax(t), t 6= tk, k ∈ {1, 2, . . .}

x+(t) = Jx(t), t = tk, k ∈ {1, 2, . . .}

x(t0) = x0

(1)

where x, x0 ∈ Rn are the system state and the initial condition respectively. The state x(t) is

assumed to be left-continuous with x+(t) := lims↓t x(s) and the matrices A and J may be un-

certain. The sequence {t1, t2, t3, . . .} is a strictly increasing sequence of impulse times in (t0,∞)

for some initial time t0. The sequence is assumed to be finite, or infinite and unbounded. The

distance between two consecutive impulse times is denoted by Tk := tk+1−tk with the additional

assumption that ε < Tk, for some ε > 0, which excludes the possible existence of a finite accu-

mulation point. Given a set S ⊆ (0,∞), we define IS := {{t1, t2, . . .} : tk+1 − tk ∈ S, k ∈ N}

to characterize the sequence of impulse times.

According to the matrices A and J , the system may exhibit different behaviors. In the case

of periodic impulses with period Tk = T , determining stability essentially reduces to study the

Schurness of the matrix JeAT , which is a very simple problem. However, this formulation suffers

from several critical drawbacks:

1) the eigenvalue analysis is not extendable to the case of aperiodic impulses since the spectral

radius is, in general, not submultiplicative;

2) discrete-time Lyapunov approaches are thus needed, but they lead to robust LMIs with

scalar uncertainties at the exponential, known to be complex numerically, but yet solvable

[10];

3) the extension to robust stability analysis is also difficult, again due to the exponential. There

is no efficient solution, at that time, to handle matrix uncertainties at the exponential.

The approach discussed in this paper aims at overcoming these problems. The method orig-

inates from [11], [12] where an implicit but equivalent correspondence between discrete- and

continuous-time domains is obtained by showing that discrete-time stability is equivalent to

a very particular type of continuous-time stability proved using a new type of functionals,

referred to as looped-functionals [6], [13]. Since discrete-time stability focuses on the decrease

of Lyapunov functions along the flow of a system at pointwise instants only, i.e. V (x(t)),

t ∈ {t1, t2, t3, . . .} ∪ {∞}, its continuous-time extension V (x(t)), t ∈ (0,∞) may then be
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allowed to be nonmonotonic between consecutive pointwise instants. This hence permits the

use of continuous-time Lyapunov functions that evolve non-monotonically along the flow of

the system, enlarging then the class of admissible impulsive systems which can be possibly

analyzed using existing approaches [5], [4]. Some results relying on a specific functional have

been obtained for impulsive systems in [6], [14]. Although leading to interesting results in several

cases, selecting a functional however introduces some conservatism.
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Lyapunov Function V (x(t)) = x(t)TPx(t)

Fig. 1. Continuous-time Lyapunov function V (plain) for Example 3.7 and the discrete-time envelopes (dashed). The discrete-

time envelopes are monotonically decreasing while the continuous-time function is highly non-monotonic along the flow of the

system.

The current article develops a more generic framework based on an implicit characterization

of a subset of suitable looped-functionals. Since no particular functional is chosen in this paper,

the obtained results are in essence more computationally-oriented than those in [6], [14] where

functionals are specifically chosen. The obtained conditions are expressed as robust convex

optimization problems, conveniently depending on the inter-impulses interval distance and the

system matrices. They are also devoid of exponential terms and can therefore be efficiently

extended to the uncertain case, usually not considered in the literature due to a lack of tractability.

Thanks to the discrete-time nature of the stability notion, the approach is able to consider the

jumps precisely by authorizing the continuous-time Lyapunov function to be strongly non-

monotonic along the flow of the system; see Fig. 1. This feature allows to both characterize

stability under periodic and aperiodic impulses. In the aperiodic case, stability under different

dwell-times [15], [16], [5] are considered: minimal dwell-time Tk ∈ [Tmin,+∞), maximal dwell-
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time Tk ∈ (0, Tmax] and ranged dwell-time Tk ∈ [Tmin, Tmax]. The resulting feasibility problems

are then solved using polynomial programming, such as sum-of-squares [17] programming, very

suitable for this kind of problems.

The paper is structured as follows: Section II is devoted to preliminary results on dwell-times

for impulsive systems. In Section III, alternative sufficient conditions for dwell-times are provided

and applied in Section IV to uncertain systems. Finally, Section V is devoted to the presentation

of Sum-of-Squares (SOS) programming used in the examples to enforce the conditions stated in

the main results. Illustrative examples are treated in the related sections using SOSTOOLS [18]

and SeDuMi [19].

The notation is quite standard. The sets of symmetric and positive definite matrices of di-

mension n are denoted by Sn and Sn+ respectively. Given two symmetric matrices A,B, A � B

means that A−B is positive definite. For a square matrix A, the operator He(A) stands for the

sum A+ AT . The identity matrix of dimension n is denoted by In.

II. DWELL-TIME RESULTS

A. Ranged Dwell-Time

The most general dwell-time notion is referred to as ranged dwell-time and is characterized

in this section. Minimal and maximal dwell-times are corollaries of this result.

Lemma 2.1 (Ranged Dwell-Time): Assume there exists a matrix P ∈ Sn+ such that

JT eA
T θPeAθJ − P ≺ 0 (2)

holds for all θ ∈ [Tmin, Tmax]. Then, for any impulse sequence in I[Tmin,Tmax], the system (1) is

globally asymptotically stable.

Proof: The condition (2) implies that V (x) = xTPx is a discrete-time Lyapunov function

for the discrete-time system z(k+ 1) = eATkJz(k), Tk ∈ [Tmin, Tmax], since (2) is equivalent to

the condition V (x(tk+1)) − V (x(tk)) < 0 for all tk+1 − tk ∈ [Tmin, Tmax] and all x(tk) ∈ Rn.

This implies in turn that ||x(tk)||2 → 0 as k →∞. It remains to prove that the convergence of

||x(tk)||2 to 0 implies the convergence of ||x(t)||2 to 0 when t → ∞. Defining t = tk + τ , we

have x(t) = eAτJx(tk) and hence

V (x(t)) ≤ µ||x(tk)||22
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where µ = sups∈[Tmin,Tmax] λmax(J
T eA

T τPeAτJ). Thus, when ||x(tk)||2 → 0 then ||x(t)||2 → 0.

The proof is complete.

A difficulty in the above result lies in solving the robust semidefinite feasibility problem (2) over

the whole range of θ. The presence of exponential terms also prevents to easily derive a tractable

generalization of this result to the uncertain case. These remarks underlie the development of

the approach described in this paper.

B. Minimal Dwell-Time

The minimal dwell-time result corresponds to the case when Tmin = T̄ , for some T̄ > 0,

and Tmax → ∞. However, since the interval [T̄ ,+∞) is of infinite measure, it seems rather

difficult to computationally check the condition (2). It is fortunately possible to provide a finite

dimensional alternative result.

Lemma 2.2 (Minimal Dwell-Time): Assume that for some given T̄ > 0, there exists a matrix

P ∈ Sn+ such that

ATP + PA ≺ 0 (3)

and

JT eA
T T̄PeAT̄J − P ≺ 0 (4)

hold. Then, for any impulse sequence in I[T̄ ,+∞), the system (1) is globally asymptotically stable.

Proof: The goal is to show that the conditions of Lemma 2.2 implies that JT eAT θPeAθJ −

P ≺ 0 for all θ ∈ [T̄ ,+∞). A Taylor expansion of Φ(θ) := eA
T θPeAθ around θ0 ≥ 0 yields

Φ(θ0 + δ) = Φ(θ0) + eA
T θ0(ATP + PA)eAθ0δ + o(δ).

Hence, condition (3) implies that the map Φ(θ) is strictly decreasing, in the sense that Φ(θ0+ε) ≺

Φ(θ0), for any θ0 > 0 and ε > 0. Combining this with (4) yields

JT eA
T (T̄+ε)PeA(T̄+ε)J − P ≺ 0

for all ε ≥ 0. The proof of convergence of the state x(t) is finally proved as in the proof of

Lemma 2.1.
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C. Maximal Dwell-Time

The maximal dwell-time1 result can be obtained by letting Tmax = T̄ , for some T̄ > 0, and

Tmin → 0 in Lemma 2.1. In this case, the interval (0, T̄ ] is of finite measure and condition (2)

can be directly considered over this interval. It is however possible, under the restriction that A

is anti-Hurwitz, to reduce the condition to a finite-dimensional one, similarly as for the minimal

dwell-time.

Lemma 2.3 (Maximal Dwell-Time): Assume that for some given T̄ > 0, there exists a matrix

P ∈ Sn+ such that

ATP + PA � 0 (5)

and

JT eA
T T̄PeAT̄J − P ≺ 0 (6)

hold. Then, for any impulse sequence in I(0,T̄ ], the system (1) is globally asymptotically stable.

Proof: The proof is similar to the one of Lemma 2.2.

III. ALTERNATIVE DWELL-TIME CHARACTERIZATIONS

The main and common drawback of the results of Section II is the presence of exponential

terms, preventing any extension to robust dwell-time characterization. Efficiently dealing with

matrix uncertainties at the exponential is indeed an open and difficult problem. Checking the

condition (2) over a finite-length interval is also computationally demanding, again due to the

exponential terms.

We provide here a way for approximating these LMI constraints involving exponential terms

by convex ones. These conditions are expressed as robust LMIs containing an additional infinite-

dimensional decision variable satisfying a certain boundary condition (looping-condition). It is

also emphasized that the results can be interpreted as a continuous-time decrease condition of a

very general looped-functional.

1This is also referred to as reverse dwell-time in [5]
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A. Ranged Dwell-Time:

As in the previous section, we start with the most general ranged dwell-time result:

Theorem 3.1: The system (1) is globally asymptotically stable for any impulse sequence in

I[Tmin,Tmax] if there exist a matrix P ∈ Sn+, a scalar ε > 0 and a matrix function Z : [0, Tmax]×

[Tmin, Tmax]→ S3n, differentiable with respect to the first variable, verifying

Y T
1 Z(0, θ)Y1 − Y T

2 Z(θ, θ)Y2 = 0 (7)

for all θ ∈ [Tmin, Tmax] where

Y1 =


J 0

In 0

0 In

 , Y2 =


0 In

In 0

0 In


and such that the parameter dependent LMI

Ψ(θ) + He



A 0 0

0 0 0

0 0 0


T

Z(τ, θ)

+
∂

∂τ
Z(τ, θ) � 0 (8)

holds for all τ ∈ [0, θ] and θ ∈ [Tmin, Tmax] with

Ψ(θ) :=


θ(ATP + PA) 0 0

0 JTPJ − P + ε In 0

0 0 0

 . (9)

Moreover, in such a case, the quadratic form V (x) = xTPx is a discrete-time Lyapunov

function for the discrete-time formulation of system (1) and Lemma 2.1 holds with the same

matrix P .

Proof: To see the implication of Lemma 2.1, first pre- and post-multiply (8) by ξk(τ) :=

col(x(tk+τ), x(tk), x(tk+1)), where x(tk+τ) = eAτJx(tk), τ ∈ [0, Tk], tk+1 = tk+Tk, to obtain

ξk(τ)TΨ(Tk)ξk(τ) +
∂

∂τ

[
ξk(τ)TZ(τ, Tk)ξk(τ)

]
≤ 0 (10)

where we have set θ = Tk since we are considering the interval [tk, tk+1]. The second term of

(10) has been obtained using the fact that

d

dτ
ξk(τ) =


A 0 0

0 0 0

0 0 0

 ξk(τ). (11)
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Integrating (10) from 0 to Tk we get

ηk :=
∫ Tk

0

[
x(tk)

T (JTPJ − P + ε In)x(tk)

+ Tk
d

dτ
V (x(tk + τ))

]
dτ

+ξk(Tk)
TZ(Tk, Tk)ξk(Tk)

−ξ+
k (0)TZ(0, Tk)ξ

+
k (0)

(12)

where V (x) = xTPx. Noting that

ξ+
k (0) = Y1

 x(tk)

x(tk+1)

 , ξk(Tk) = Y2

 x(tk)

x(tk+1)

 , (13)

we can see that the constraints (7) make the two last terms of (12) equal to 0, and hence we

have
ηk = Tk [V (x+(tk))− V (x(tk)) + ε ||x(tk)||22

+V (x(tk+1))− V (x+(tk))]

= Tk [V (x(tk+1))− V (x(tk)) + ε ||x(tk)||22] .

(14)

Since (10) is nonpositive, then ηk ≤ 0 for all k and hence the feasibility of the conditions of

Theorem 3.1 implies the feasibility of the conditions of Lemma 2.1. This concludes the proof.

The above theorem provides then a sufficient condition for the asymptotic stability of linear

impulsive systems for any arbitrary impulse sequence in I[Tmin,Tmax]. The condition (8) can

be understood as the continuous decrease over τ ∈ [0, θ] of the following family of looped-

functionals parameterized by θ ∈ [Tmin, Tmax]:

W := x(tk + τ)TPx(tk + τ) + ξk(τ)TZ(τ, θ)ξk(τ)

+τx(tk)
T (JTPJ − P + ε I)x(tk)

(15)

defined for τ ∈ [0, θ] and satisfying the looping condition

ξ+
k (0)TZ(0, θ)ξ+

k (0) = ξk(θ)
TZ(θ, θ)ξk(θ). (16)

The obtained conditions take the form of an infinite dimensional semi-infinite feasibility problem,

which may be hard to solve. When the matrix function Z(τ, T ) is chosen in the set of matrix poly-

nomials, sum-of-squares techniques can be applied in order to solve this problem. This framework

allows to easily consider the equality constraint (looping-condition) as a linear equality constraint

on the polynomial coefficients. One of the advantages of the proposed alternative formulation
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(8) is to provide conditions which are structurally well suited (convex) for the generalization to

the uncertain case, as performed in Section IV.

Example 3.2: Let us consider the system (1) with matrices [6]

A =

−1 0.1

0 1.2

 , J =

1.2 0

0 0.5

 . (17)

Since both A and J have unstable eigenvalues, the system is unstable for sufficiently small and

large periods, and cannot be studied using many of the existing approaches [5], [4]. In order to

determine the lower and upper bounds for the inter-impulse intervals, Theorem 3.1 is applied and

leads to estimates of Table I. It is important to stress that, in the periodic case, the minimal and

maximal periods are given by 0.1824 and 0.5776, showing that the same bounds are achieved in

the aperiodic case and that the proposed result is nonconservative for a multivariate polynomial

Z(τ, T ) of degree 3.

order of Z Tmin Tmax

1 0.2040 0.5672

2 0.1824 0.5774

3 0.1824 0.5776

4 0.1824 0.5776
TABLE I

ESTIMATES OF THE ADMISSIBLE INTER-IMPULSE INTERVALS FOR THE APERIODIC SYSTEM OF EXAMPLE 3.2

B. Minimal Dwell-time

The exponential-less approximation of the conditions of Lemma 2.2 is given below:

Theorem 3.3 (Minimal Dwell-Time): Assume that for some T̄ > 0, there exist a scalar ε > 0,

a matrix P ∈ Sn+ and a continuously differentiable matrix function Z : [0, T̄ ] → S3n satisfying

Y T
1 Z(0)Y1 − Y T

2 Z(T̄ )Y2 = 0 and such that the LMIs

ATP + PA ≺ 0 (18)
T̄ (ATP + PA) 0 0

0 JTPJ − P + ε In 0

0 0 0

+ He



A 0 0

0 0 0

0 0 0


T

Z(τ)

+
d

dτ
Z(τ) � 0 (19)
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hold for all τ ∈ [0, T̄ ]. Then, for any impulsive sequence in I[T̄ ,+∞), the system (1) is globally

asymptotically stable and Lemma 2.2 holds with the same matrix P .

Proof: The proof follows from Lemma 2.2 and Theorem 3.1.

Example 3.4: Let us consider the system (1) with matrices [6]

A =

−1 0

1 −2

 , J =

2 1

1 3

 . (20)

Since A is Hurwitz, the minimal dwell-time concept applies and using Lemma 2.2 we get the

value 1.14053 with the matrix

P =

0.6351 0.0601

0.0601 0.3649

 .
Considering then Theorem 3.3 with polynomial Z(τ) of degree 3, we get the value 1.14054,

which is very close to the one computed with Lemma 2.2. In such a case, the following matrix

is obtained

P =

 0.3443 −0.1102

−0.1102 0.2285

 .
Estimates of the minimal-dwell-time for different degrees for Z are given in Table II.

order of Z Tmin

1 4.3255

2 1.1407

3 1.14054

4 1.14054

5 1.14054

TABLE II

ESTIMATES OF THE MINIMAL DWELL-TIME FOR EXAMPLE

3.4

order of Z Tmin

1 36.3071

2 4.0705

3 2.6893

4 2.2966

5 2.2209

6 2.2010

7 2.1979

8 2.1974

9 2.1983

10 2.1990

11 infeasible

TABLE III

ESTIMATES OF THE MINIMAL DWELL-TIME FOR EXAMPLE

3.5
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Example 3.5: Let us consider now the system (1) with matrices [4]

A =

−1 100

−1 −1

 , J =

 0 −0.9

0.9 0

 . (21)

In the T -periodic case, this system exhibits a quite complicated behavior for small T ’s, alternating

stable and unstable regions. Since A is Hurwitz, we can determine the minimal dwell-time using

Lemma 2.2 and we get the minimum dwell-time value 2.1254. Theorem 3.3 leads on the other

hand to the estimates of Table III. We can see that, in this case, a gap still persists and the

smallest one is obtained with a polynomial Z(τ) of degree 8. Numerical problems arise when

using polynomials of degree larger than 10, resulting then in infeasible problems.

This last example shows some limitations of the approach when the convergence of the

sequence of polynomials Z(τ) of increasing orders, towards a suitable function, is quite poor.

In such a case, high order polynomials would be needed to obtain accurate results, but would

also dramatically increase then the number of decision variables and lead to severe numerical

problems. It is indeed well-known that SOS-programming scales very poorly with the problem

complexity, and it is a matter of future research to see how the complexity of the problem

addressed in this paper can be reduced.

C. Maximal dwell-time

A general maximal dwell-time result can be straightforwardly obtained be setting Tmin = 0

in Theorem 3.1. When the matrix A is anti-Hurwitz, we have the following simpler result,

corresponding to Lemma 2.3:

Theorem 3.6 (Maximal Dwell-Time): Assume that for some T̄ > 0, there exist a scalar ε > 0,

a matrix P ∈ Sn+ and a continuously differentiable matrix function Z : [0, T̄ ] → S3n satisfying

Y T
1 Z(0)Y1 − Y T

2 Z(T̄ )Y2 = 0 and such that the LMIs

ATP + PA � 0 (22)
T̄ (ATP + PA) 0 0

0 JTPJ − P + ε In 0

0 0 0

+ He



A 0 0

0 0 0

0 0 0


T

Z(τ)

+
d

dτ
Z(τ) � 0 (23)

hold for all τ ∈ [0, T̄ ]. Then, for any impulsive sequence in I(0,T̄ ], the system (1) is globally

asymptotically stable and Lemma 2.3 holds with the same matrix P .
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Proof: The proof follows from Lemma 2.3 and Theorem 3.1.

Example 3.7: Let us consider the system (1) with matrices [6]

A =

 1 3

−1 2

 , J =

1/2 0

0 1/2

 . (24)

Since the matrix A is anti-Hurwitz and J is Schur, Theorem 3.6 may be applied and leads to

the results of Table IV. For comparison, Lemma 2.3 yields the value 0.4620, which is recovered

by choosing Z(τ) as a polynomial of order 3.

order of Z Tmax

1 0.3999

2 0.4613

3 0.4620

4 0.4620

TABLE IV

ESTIMATES OF THE MAXIMAL DWELL-TIME FOR EXAMPLE

3.7

order of Z Tmax

1 0.1067

2 0.1072

3 0.1072

TABLE V

ESTIMATES OF THE MAXIMAL DWELL-TIME FOR EXAMPLE

4.2

IV. ROBUST DWELL-TIME ANALYSIS

In this section, we extend the previous results to the case of uncertain systems with constant

polytopic-type uncertainties, that is

A ∈ A := co {A1, . . . , ANA
} , J ∈ J := co {J1, . . . , JNJ

} (25)

for some integers NA, NJ > 0. The system matrices can hence be alternatively written as

A =

NA∑
i=1

σA,iAi, and J =

NJ∑
i=1

σJ,iJi

where both σA := coli(σA,i) and σJ := coli(σJ,i) belong to the unit simplex. The exponential

terms in the usual dwell-time conditions have been major obstacles to the extension of the results

to uncertain systems. This is henceforth possible thanks to the proposed alternative dwell-time

formulations. The theorem below provides a result concerning the characterization of ranged

dwell-time for uncertain systems:

May 3, 2012 DRAFT



12

Theorem 4.1: Assume there exist a matrix P ∈ Sn+, a scalar ε > 0, NJ matrix functions

Zi : [0, Tmax] × [Tmin, Tmax] → S3n, i = 1, . . . , NJ , differentiable with respect to the first

variable, verifying the condition (Y i
1 )TZi(0, θ)Y

i
1 − Y T

2 Zi(θ, θ)Y2 = 0 for all θ ∈ [Tmin, Tmax],

i = 1, . . . , NJ where

Y i
1 =


Ji 0

In 0

0 In

 , Y2 =


0 In

In 0

0 In


and such that the parameter dependent LMIs

θ(ATj P + PAj) 0 0

0 JTi PJi − P + ε In 0

0 0 0

+ He



Aj 0 0

0 0 0

0 0 0


T

Zi(τ, θ)

+
∂

∂τ
Zi(τ, θ) � 0

(26)

hold for all τ ∈ [0, T ], T ∈ [Tmin, Tmax] and i = 1, . . . , NJ and j = 1, . . . , NA.

Then, the system (1)-(25) is asymptotically stable for any impulse sequence in I[Tmin,Tmax] and

the following equivalent statements hold:

1) The quadratic form V (x) = xTPx is a discrete-time Lyapunov function for the uncertain

time-varying discrete-time system z(k + 1) = eATkJz(k) for any Tk ∈ [Tmin, Tmax] and

any (A, J) ∈ A× J .

2) The LMI

JT eA
T θPeAθJ − P ≺ 0 (27)

holds for any θ ∈ [Tmin, Tmax] and any (A, J) ∈ A× J .

Proof: Multiplying (26) by σA,j , summing over j = 1, . . . , NA and integrating over [0, T ]

leads to the equivalent LMI JTi e
ATTPeATJi−P ≺ 0. Since the LMI holds for all i = 1, . . . , NJ ,

then using a Schur complement, it is possible to show that this is equivalent to JT eATTPeATJ−

P ≺ 0, for all (A, J) ∈ A× J . The proof is complete.

Let us illustrate the above result with the following example:

Example 4.2: Let us consider the matrix polytopes

A = co


 1 3

−1 2

 ,
 3 1

−2 4

 , J = co


1/4 0

0 2/3

 ,
2/3 0

0 1/2

 . (28)
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This uncertain system satisfies the maximal dwell-time conditions since the matrices in A are

anti-Hurwitz. We apply Theorem 4.1 with Zi(τ) and adding the conditions ATj P + PAj � 0,

j = 1, . . . , NA. The computed dwell-time estimates for different degrees for the polynomial Zi

are gathered in Table V. For comparison, the conditions of Lemma 2.3 are gridded and yield the

upper-bound 0.1072 on the maximal dwell-time, which shows that the proposed approach gives

the exact value for a polynomial of degree 2. Note, however, that solving the set of gridded

LMIs is much longer than solving the proposed result. Gridding is also less accurate since the

LMIs are not checked over the whole set A.

V. GENERAL PRESENTATION OF SUM OF SQUARES AS ALGORITHMIC TOOL

The methodology we use to implement the conditions of Theorems 3.1, 3.3, 3.6 and 4.1

is based on the sum-of-squares (SOS) decomposition of positive polynomials. When applying

this methodology, we assume that all matrix functions are polynomial, can be approximated by

polynomials, or there is a change of coordinates that renders them polynomial.

Denote by R[y] the ring of polynomials in y = (y1, . . . , yn) with real coefficients. Denote by

Σs the cone of polynomials that admits a SOS decomposition, i.e., those p ∈ R[y] for which

there exist hi ∈ R[y], i = 1, . . . ,M so that

p(y) =
M∑
i=1

h2
i (y).

If p(y) ∈ Σs, then clearly p(y) ≥ 0 for all y. The converse is however not true, except in some

very specific cases. The advantage of SOS is that the problem of testing whether a polynomial

is SOS is equivalent to solving a semidefinite program [17], hence worst-case polynomial-time

verifiable. Note that, on the other hand, checking whether a polynomial is positive is NP-hard.

When extended to matrix polynomials, positivity is substituted by semidefinite positivity. The

semidefinite programs related to SOS can be formulated efficiently and the solution can be

retrieved using SOSTOOLS [18], which interfaces with semidefinite solvers such as SeDuMi

[19].

Consider now the conditions in Theorem 3.3 which take the form

L(τ) ≤ 0, τ ∈ S = [0, T̄ ], (29)

where L(τ) ∈ S3n and S is a semialgebraic set described by polynomial inequalities:

S = {ν ∈ R : gi(ν) ≥ 0, i = 1, . . . ,M},
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where the gi’s are polynomial functions. In order to test condition (29), we can apply Posi-

tivstellensatz results, such as the one in [20], which allow to test positivity on a semialgebraic

set using SOS programming. Specifically, Condition (29) holds if there exist SOS polynomials

Pi(τ), such that

L(τ) +
M∑
i=1

gi(τ)Pi(τ) = P0(τ).

Intuitively, the above condition guarantees that when τ ∈ S, we have L(τ) ≤ −
∑M

i=1 gi(τ)Pi(τ) ≤ 0

since gi ≥ 0 and Pi ≥ 0, and therefore L(τ) ≤ 0 for those τ .

VI. CONCLUSION

Alternative sufficient conditions for the dwell-time characterization of linear impulsive systems

have been developed. They can be interpreted as continuous-time decrease conditions of a certain

class of looped-functionals. Ranged, minimal and maximal dwell-times have been considered.

The obtained conditions are expressed as robust semidefinite programming problems which

may be solved using polynomial techniques, such as sum-of-squares. Thanks to the convenient

structure of the conditions, the results have been extended to uncertain systems. Several examples

illustrate the efficiency of the approach. Future works will be devoted to the derivation of

necessary and sufficient alternative conditions, stabilization criteria and the extension to nonlinear

systems.
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[16] J. Geromel and P. Colaneri, “Stability and stabilization of continuous-time switched linear systems,” SIAM Journal on

Control and Optimization, vol. 45(5), pp. 1915–1930, 2006.

[17] P. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization,” Ph.D.

dissertation, California Institute of Technology, Pasadena, California, 2000.

[18] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOSTOOLS: Sum of squares opti-

mization toolbox for MATLAB, Available from http://www.cds.caltech.edu/sostools and

http://www.mit.edu/˜parrilo/sostools, 2004.

[19] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones,” Optimization Methods and

Software - Special issue on Interior Point Methods, vol. 11-12, pp. 625–653, 1999.

[20] M. Putinar, “Positive polynomials on compact semi-algebraic sets,” Indiana Univ. Math. J., vol. 42, no. 3, pp. 969–984,

1993.

May 3, 2012 DRAFT


	I Introduction
	II Dwell-time results
	II-A Ranged Dwell-Time
	II-B Minimal Dwell-Time
	II-C Maximal Dwell-Time

	III Alternative dwell-time characterizations
	III-A Ranged Dwell-Time:
	III-B Minimal Dwell-time
	III-C Maximal dwell-time

	IV Robust dwell-time analysis
	V General presentation of Sum of Squares as Algorithmic Tool
	VI Conclusion
	References

