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ON LUSTERNIK-SCHNIRELMANN CATEGORY OF CONNECTED

SUMS

ROBERT J. NEWTON

Abstract. In this paper we estimate the Lusternik-Schnirelmann category of the connected
sum of two manifolds through their categories. We achieve a more general result regarding
the category of a quotient space X/A where A is a suitable subspace of X .

1. Introduction

1.1. Definition. The Lusternik-Schnirelmann category (LS category) of a space X is the
smallest nonnegative integer n such that there exists {A0, A1, ..., An}, an open cover of X
with each Ai contractible in X. This is denoted by n = catX .

Following this definition, spaces with LS category 0 are contractible.

The goal of the paper is to prove the inequality

(1.1) max{catM, catN} − 1 ≤ cat(M#N) ≤ max{catM, catN},

where M and N are closed manifolds.

To prove the inequality, we consider a more general problem about the relation of catX
and cat(X/A). This problem is indeed more general: in fact, put X = M#N and A be an
(n − 1) sphere that separates M and N (with removed discs). Then X/A = M ∨ N and
cat(M ∨N) = max{catM, catN}.

All spaces are assumed to be CW spaces.

Acknowledgments: A special thanks my advisor, Dr. Yuli Rudyak, and to Dr. Alexander
Dranishnikov for their continued support and patience.

2. Preliminaries

2.1.Definition. For a path-connected spaceX with basepoint x0, we define PX to be the set
of all continuous functions γ : I → X satisfying γ(0) = x0 topologized by the compact-open
topology.

We then define p : PX → X given by p(γ) = γ(1), a fibration with base space X and fiber
Ω(X), the loop space of X .

Given f : Y → X and g : Z → X we can define Y ∗X Z = {(y, z, t) ∈ Y ∗ Z|f(y) = g(z)}
and (f ∗X g) : Y ∗X Z → X by (f ∗X g)(y, z, t) = f(y).

From this, we define PnX to be the fiberwise join of n copies of PX over p : PX → X
defined above and denote the fiberwise map as

(2.1) pXn : PnX → X.
1
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Note that the (homotopy) fiber of pXn is Ω(X)∗n, the n-fold join of Ω(X).

We need the following theorem of Schwarz, see [2, 16].

2.2. Theorem. The inequality cat(X) ≤ n holds iff there exists a section s : X → Pn+1X to

p : Pn+1X → X.

2.3. Remark. These claims are well-known, we list them here for reference.
(1) cat(X ∨ Y ) = max{catX, cat Y };
(2) cat(X ∪ Y ) ≤ cat(X) + cat(Y ) + 1;
(3) cat(X/A) − 1 ≤ catX . This follows from the fact that X/A has homotopy type of
X ∪ CA, the union of X with the cone over A, and item (2).

It should be noted that Berstein and Hilton explored the changes in category of a space after
attaching a cone in [1] following Hilton’s exploration of what’s now known as the Hilton-Hopf
invariant in [8].

3. Main results

3.1. Proposition. The inequality (1.1) holds whenever max{catM, catN} ≤ 2

Proof. If catM = 1 = catN then M and N are homotopy spheres, and so M#N is.
Conversely, if catM#N = 1 then M and N must be homotopy spheres. Thus, we proved
that cat(M#N) = max{catM, catN} if max{catM, catN} ≤ 2. �

3.2. Theorem. Suppose X is an n-dimensional space with m-connected subspace A, with

3 ≤ cat(X/A) ≤ k, and k +m− 1 ≥n. Then catX ≤ k.

Proof. For sake of simplicity, put p = p
X/A
k+1 and p′ = pXk+1, cf. (2.1). As cat(X/A) ≤ k, and

by Theorem 2.2, there exists the following section s with ps = 1X/A.

Pk+1(X/A)

p

��
X/A

s

TT

Now we consider the collapsing map q : X → X/A, and get the fiber-pullback diagram.

(3.1)

E
f

−−−→ Pk+1(X/A) Pk+1(X/A)




y

p





y

x





s

X −−−→ X/A X/A

Now consider Pk+1X . We already have p′ : Pk+1X → X , and the collapsing map q : X →
X/A induces a map q′ : Pk+1X → Pk+1(X/A). Since pq′ = gp′ and the square is the pull-back
diagram, we get a map h : Pk+1 → X such that the following diagram commutes.
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Pk+1X

p′

��

q′

''

h

""
E

��

f// Pk+1(X/A)

p

��
X

q //

s′

UU

X/A

s

TT

Recall that our goal is to prove catX ≤ k. Because of Schwarz’s Theorem 2.2, it suf-
fices to construct a section of p′. To do this, it suffices in turn to construct a section of
the map h : Pk+1(X) → E. Moreover, since dimX = n, it suffices to construct a section
of h over the n-skeleton E(n) of E, i.e., to construct a map φ : E(n) → Pk+1(X) with hφ = 1E.

By homotopy excision [7, Prop. 4.28], and because A is m-connected, the quotient map
q : X → X/A induces isomorphisms q∗ : πn(X) → πn(X/A) for n ≤ m and epimorphism for
n = m+1. So, πn(ΩX) → πn(Ω(X/A)) is an isomorphism for n ≤ (m−1) and epimorphism
for n = m. Therefore (ΩX)∗(k+1) → (Ω(X/A))∗(k+1) is an isomorphism for n ≤ m+k because
of [3, Prop. 5.7].

The long exact sequence of homotopy groups for a fibration yields the following commutative
diagram

... // πi((ΩX)∗(k+1)) //

∼=
��

πi(Pk+1X) //

h∗

��

πi(X) //

∼=
��

...

... // πi((ΩX)∗(k+1)) // πi(E) // πi(X) // ...

By the 5-lemma, the map h∗ is an isomorphism for i ≤ (m + k − 1) and epimorphism
for n = m+ k. So by Whitehead’s theorem, there exists a map φ : E(n) → Pk+1X . Now, the
composition (φ ◦ s′) is a section to p′ : Pk+1 → X . Thus catX ≤ k. �

Combining this with the previous Remark 2.3 gives the following inequality:

cat(X/A)− 1 ≤ cat(X) ≤ cat(X/A)

under the dimension-connectivity conditions from Theorem 3.2.

Consider the case where X = M#N , the connected sum of n-dimensional manifolds M
and N , and A = Sn−1 is the separating sphere between M and N . Then X/A = M ∨ N ,
and cat(X/A) = max{catM, catN}. We have A is (n − 2)-connected, and we can assume
catM, catN ≥ 3 because of Proposition 3.1. Then cat(X/A) ≥ 3, and so as (n−2)+3−1 ≥ n,
we are in the case of Theorem 3.2 and get the following corollary.

3.3. Corollary. There is a double inequality

max{catM, catN} − 1 ≤ cat(M#N) ≤ max{catM, catN}.

Proof. Consider the case where X = M#N , the connected sum of n-dimensional manifolds
M and N , and A = Sn−1 is the separating sphere between M and N . Then X/A = M ∨N ,
and cat(X/A) = max{catM, catN}. We have A is (n − 2)-connected, and we can assume
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catM, catN ≥ 2 because of Proposition 3.1. Then cat(X/A) ≥ 3, and so as (n−2)+3−1 ≥ n,
we are in the case of Theorem 3.2 and get the corollary. �

3.4. Remark. In [6], an upper bound is given for the LS category of a double mapping
cylinder. If we consider the connected sum of n-manifolds M and N as such a double
mapping cylinder, then the following inequality is obtained:

(3.2) catM#N ≤ min{1 + catM ′ + catN ′, 1 + max{catM ′, catN ′}}.

Here M ′ and N ′ are M r pt and N r pt, respectively.
Rivadeneyra proved in [12] that category of a manifold without bondary does not increase
when a point is removed. If the categories of M and N do decrease by one when a point is
removed, then (3.2) has already established the main result here. However, in [11] a closed
manifold is constructed so that the category remains unchanged after the deletion of a point,
and Theorem 3.2 gives an improvement of the category estimate for such a case.

3.5. Remark. It is unknown if there is an example of two manifolds M and N such that
catM#N = max{catM, catN} − 1.

4. Connected sum and Toomer invariant

4.1. Definition. The Toomer invariant of X e(X) is the least integer k for which the map
p∗n : H∗(X) → H∗(Pn(X)) is injective, see [2]. It follows that e(X) ≤ catX .

4.2.Proposition. For closed and oriented manifoldsM and N , e(M#N) ≥ max{e(M), e(N)}.

Proof. Consider f : M#N → M the collapsing map onto M . Then we have the following
diagram.

H∗(PnM) // H∗(Pn(M#N))

H∗(M)

OO

// f∗

// H∗(M#N)

OO

This map has degree 1, and so f ∗ : H∗(M) → H∗(M#N) is injective [13, Theorem V, 2.13].
Also suppose p∗n : H∗(M#N) → H∗(Pn(M#N) is injective. Consider u ∈ H∗(M). As
f ∗ and p∗n are injective, p∗n(u) ∈ H∗(PnM) is nonzero, and so p∗n : H∗(M) → H∗(PnM) is
injective, and similarly for N . And so e(M#N) ≥ max{e(M), e(N)}. �

4.3. Proposition. For closed, oriented manifolds M and N , if catM = e(M) and catN =
e(N), then cat(M#N) = max{catM, catN}.

Proof. Combining the assumptions e(M) = catM and e(N) = catN with the inequality
max{e(M), e(N)} ≤ e(M#N) ≤ cat(M#N) ≤ max{catM, catN}, we have the claim. �

Rudyak asked if the existence of a map f : M → N , of degree 1, implies the inequality
catM ≥ catN [14], [2, Open problem 2.48]. While not achieving the full result, he was able
to prove some partial results. In particular it follows from the same injective property of f ∗

(4.2) that e(M) ≥ e(N), when such a map exists [14].

4.4.Remark. We know e(M×Sn) ≥ e(M)+1, and there exist examples where cat(M×Sn) =
catM for suitable M and n, [9], [10].
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5. Rationalizations

Here we assume X to be simply connected and denote by XQ the rationalization of X , see
[5],[15]. We define eQ(X) to be the least integer n such that the nth fibration PnX → X
induces an injection in cohomology with coefficients in Q. For X simply connected and of
finite type, we have that eQ(X) = e(XQ), [2].

5.1. Proposition. For simply connected, CW spaces X and Y , (X ∨ Y )Q ∼= XQ ∨ YQ.

Proof. In the following diagram, the map l is the localization map of X ∨ Y , and k is given
by the wedge of localization maps on X and Y . The map j exists by the universal property
of (X ∨ Y )Q, and induces isomorphisms in homology. Hence XQ ∨ YQ

∼= (X ∨ Y )Q

X ∨ Y

k &&▲▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

l // (X ∨ Y )Q

j

��
XQ ∨ YQ

�

In [4] it is shown that for a closed, simply connected manifoldM , e(M) = eQ(M) = cat(MQ),
and hence catMQ ≤ catM .

5.2. Proposition. For M and N , closed and simply connected manifolds, cat(M#N)Q =
max{catMQ, catNQ}.

Proof. As M and N are closed and simply connected, M#N is closed and simply connected,
and eQ(M#N) = cat(M#N)Q. Combining (3.3) and (4.2) establishes on the left hand side,

max{catMQ, catNQ} = max{eQ(M), eQ(N)} ≤ eQ(M#N) = cat(M#N)Q.

While on the right hand side we have,

cat(M#N)Q = catQ(M#N) ≤ max(catQM, catQ N) = max{catMQ, catNQ},

where the middle inequality comes from (3.3). �

Returning to Rudyak’s question on a possible relation between degree and category, we can
settle it in the rational context.

5.3. Proposition. For closed and simply connected m-manifolds M and N with f : M → N
of nonzero degree, we have catMQ ≥ catNQ.

Proof. It suffices to show eQ(M) ≥ eQ(N). That is, suppose p∗ : H∗(M ;Q) → H∗(Pn(M)Q)
in the following diagram is injective.

H∗(Pn(M);Q) H∗(Pn(N);Q)oo

H∗(M ;Q)

p∗

OO

H∗(N ;Q)

p∗

OO

f∗

oo

By [13, V.2.13], the map f ∗ is injective. Since p∗ and f ∗ are injective, the composition p∗◦f ∗

is injective, and p∗ : H∗(N ;Q) → H∗(Pn(N);Q) is injective. Thus eQ(N) ≤ n.
�
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