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ON LUSTERNIK-SCHNIRELMANN CATEGORY OF CONNECTED
SUMS

ROBERT J. NEWTON

ABSTRACT. In this paper we estimate the Lusternik-Schnirelmann category of the connected
sum of two manifolds through their categories. We achieve a more general result regarding
the category of a quotient space X/A where A is a suitable subspace of X.

1. INTRODUCTION

1.1. Definition. The Lusternik-Schnirelmann category (LS category) of a space X is the
smallest nonnegative integer n such that there exists { Ao, Ay, ..., A,}, an open cover of X
with each A; contractible in X. This is denoted by n = cat X.

Following this definition, spaces with LS category 0 are contractible.

The goal of the paper is to prove the inequality

(1.1) max{cat M,cat N} —1 < cat(M#N) < max{cat M, cat N},
where M and N are closed manifolds.

To prove the inequality, we consider a more general problem about the relation of cat X
and cat(X/A). This problem is indeed more general: in fact, put X = M#N and A be an
(n — 1) sphere that separates M and N (with removed discs). Then X/A = M Vv N and
cat(M V N) = max{cat M, cat N'}.

All spaces are assumed to be CW spaces.
Acknowledgments: A special thanks my advisor, Dr. Yuli Rudyak, and to Dr. Alexander
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2. PRELIMINARIES

2.1. Definition. For a path-connected space X with basepoint zy, we define P.X to be the set
of all continuous functions v : I — X satisfying v(0) = z( topologized by the compact-open
topology.

We then define p : PX — X given by p(y) = v(1), a fibration with base space X and fiber
Q(X), the loop space of X.

Given f:Y — X and g : Z — X we can define Y xx Z = {(y,2,t) € Y « Z|f(y) = g(2)}
and (f*xg):Y *x Z — X by (f *x 9)(y,2,t) = f(y).

From this, we define P, X to be the fiberwise join of n copies of PX over p : PX — X
defined above and denote the fiberwise map as

(2.1) pXPX — X,
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Note that the (homotopy) fiber of pX is Q(X)*", the n-fold join of Q(X).

We need the following theorem of Schwarz, see [2] [16].

2.2. Theorem. The inequality cat(X) < n holds iff there exists a section s : X — P,1 X to
p: P X — X.

2.3. Remark. These claims are well-known, we list them here for reference.

(1) cat(X VY) = max{cat X, cat Y};

(2) cat(X UY) < cat(X) + cat(Y) + 1;

(3) cat(X/A) — 1 < cat X. This follows from the fact that X/A has homotopy type of
X UCA, the union of X with the cone over A, and item (2).

It should be noted that Berstein and Hilton explored the changes in category of a space after
attaching a cone in [I] following Hilton’s exploration of what’s now known as the Hilton-Hopf
invariant in [§].

3. MAIN RESULTS
3.1. Proposition. The inequality (I1)) holds whenever max{cat M,cat N} <2
Proof. If cat M = 1 = cat N then M and N are homotopy spheres, and so M#N is.

Conversely, if cat M#N = 1 then M and N must be homotopy spheres. Thus, we proved
that cat(M#N) = max{cat M, cat N} if max{cat M,cat N} < 2. O

3.2. Theorem. Suppose X is an n-dimensional space with m-connected subspace A, with
3<cat(X/A) <k, and k+m —1>n. Then cat X < k.

Proof. For sake of simplicity, put p = pﬁf and p' = ppyq, of. @I). As cat(X/A) < k, and
by Theorem [2.2] there exists the following section s with ps = 1x/4.

B (X/A)

lh
p| s
X/A
Now we consider the collapsing map ¢ : X — X/A, and get the fiber-pullback diagram.

E —1 Pii(X/A) —— Pppi(X/A)

(3.1) l pl T

X —»  X/A X/A

Now consider P, 1X. We already have p’ : P,;1 X — X, and the collapsing map ¢ : X —
X/Ainduces amap ¢’ : Poy1 X — Pryr1(X/A). Since pq’ = gp’ and the square is the pull-back
diagram, we get a map h : P,.; — X such that the following diagram commutes.
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Pk+1X

A
p|:s

X/A

Recall that our goal is to prove cat X < k. Because of Schwarz’s Theorem [2.2], it suf-
fices to construct a section of p/. To do this, it suffices in turn to construct a section of
the map h : P, 1(X) — E. Moreover, since dim X = n, it suffices to construct a section
of h over the n-skeleton E™ of E, i.e., to construct a map ¢ : E™ — P, 1(X) with h¢ = 1.

By homotopy excision [7, Prop. 4.28], and because A is m-connected, the quotient map
q: X — X/A induces isomorphisms g : m,(X) — 7,(X/A) for n < m and epimorphism for
n=m+1. So, m,(2X) — 7,(2(X/A)) is an isomorphism for n < (m — 1) and epimorphism
for n = m. Therefore (QX)**+) — (Q(X/A))**+Y is an isomorphism for n < m-+k because
of [3, Prop. 5.7].

The long exact sequence of homotopy groups for a fibration yields the following commutative
diagram

> WZ((QX)*(IH_D) —_— 7TZ'(P]<H_1X) —_— 7TZ(X> —_— ...

E vh lg

o (X)) m(E) m(X) —— ..

By the 5-lemma, the map h, is an isomorphism for ¢ < (m + k — 1) and epimorphism
for n = m + k. So by Whitehead’s theorem, there exists a map ¢ : E™ — P,,1X. Now, the
composition (¢ o ') is a section to p’' : Py — X. Thus cat X < k. O

Combining this with the previous Remark 2.3] gives the following inequality:
cat(X/A) — 1 < cat(X) < cat(X/A)
under the dimension-connectivity conditions from Theorem 3.2

Consider the case where X = M#N, the connected sum of n-dimensional manifolds M
and N, and A = S"! is the separating sphere between M and N. Then X/A = M V N,
and cat(X/A) = max{cat M, cat N}. We have A is (n — 2)-connected, and we can assume
cat M, cat N > 3 because of Proposition[3.Il Then cat(X/A) > 3, and so as (n—2)+3—1 > n,
we are in the case of Theorem and get the following corollary.

3.3. Corollary. There is a double inequality
max{cat M,cat N} — 1 < cat(M#N) < max{cat M, cat N}.

Proof. Consider the case where X = M+#N, the connected sum of n-dimensional manifolds
M and N, and A = S"! is the separating sphere between M and N. Then X/A = MV N,
and cat(X/A) = max{cat M, cat N}. We have A is (n — 2)-connected, and we can assume
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cat M, cat N > 2 because of Proposition[3.Il Then cat(X/A) > 3, and so as (n—2)+3—1 > n,
we are in the case of Theorem and get the corollary. O

3.4. Remark. In [6], an upper bound is given for the LS category of a double mapping
cylinder. If we consider the connected sum of n-manifolds M and N as such a double
mapping cylinder, then the following inequality is obtained:

(3.2) cat M#N < min{1 + cat M' + cat N’, 1 + max{cat M’ cat N'}}.

Here M’ and N’ are M ~ pt and N \ pt, respectively.

Rivadeneyra proved in [12] that category of a manifold without bondary does not increase
when a point is removed. If the categories of M and N do decrease by one when a point is
removed, then (3.2) has already established the main result here. However, in [I1] a closed
manifold is constructed so that the category remains unchanged after the deletion of a point,
and Theorem gives an improvement of the category estimate for such a case.

3.5. Remark. It is unknown if there is an example of two manifolds M and N such that
cat M#N = max{cat M,cat N} — 1.

4. CONNECTED SUM AND TOOMER INVARIANT

4.1. Definition. The Toomer invariant of X e(X) is the least integer k for which the map
pl o H*(X) — H*(P,(X)) is injective, see [2]. It follows that e(X) < cat X.

4.2. Proposition. For closed and oriented manifolds M and N, e(M#N) > max{e(M),e(N)}.

Proof. Consider f : M#N — M the collapsing map onto M. Then we have the following
diagram.

H*(P,M) — H*(P,(M#N))

He(My—"" H*(M#N)
This map has degree 1, and so f*: H*(M) — H*(M#N) is injective [13, Theorem V, 2.13].
Also suppose pl : H*(M#N) — H*(P,(M#N) is injective. Consider u € H*(M). As
f* and p; are injective, p}(u) € H*(P,M) is nonzero, and so p} : H*(M) — H*(P,M) is
injective, and similarly for N. And so e(M#N) > max{e(M),e(N)}. O

4.3. Proposition. For closed, oriented manifolds M and N, if cat M = e(M) and cat N =
e(N), then cat(M#N) = max{cat M,cat N}.

Proof. Combining the assumptions e(M) = cat M and e(N) = cat N with the inequality
max{e(M),e(N)} < e(M#N) < cat(M#N) < max{cat M, cat N}, we have the claim. [

Rudyak asked if the existence of a map f : M — N, of degree 1, implies the inequality
cat M > cat N [14], [2, Open problem 2.48]. While not achieving the full result, he was able
to prove some partial results. In particular it follows from the same injective property of f*
(4.2) that e(M) > e(N), when such a map exists [14].

4.4. Remark. We know e(M xS™) > e(M)+1, and there exist examples where cat(M xS™) =
cat M for suitable M and n, [9], [10].
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5. RATIONALIZATIONS

Here we assume X to be simply connected and denote by Xg the rationalization of X, see
[5],[15]. We define eg(X) to be the least integer n such that the nth fibration P, X — X
induces an injection in cohomology with coefficients in Q. For X simply connected and of
finite type, we have that eg(X) = e(Xq), [2].

5.1. Proposition. For simply connected, CW spaces X and Y, (X VY )g = Xg V Yp.

Proof. In the following diagram, the map [ is the localization map of X VY, and k is given
by the wedge of localization maps on X and Y. The map j exists by the universal property
of (X VY)q, and induces isomorphisms in homology. Hence Xq V Yy = (X VY)q

l
XVY —=(XVY)g

g
Y
XoV Yy

k

O

In [4] it is shown that for a closed, simply connected manifold M, e(M) = eg(M) = cat(Mg),
and hence cat Mgy < cat M.

5.2. Proposition. For M and N, closed and simply connected manifolds, cat(M#N)g =
max{cat Mg, cat Ng}.

Proof. As M and N are closed and simply connected, M#N is closed and simply connected,
and eg(M#N) = cat(M#N ). Combining (3.3) and (4.2) establishes on the left hand side,

max{cat My, cat Ng} = max{eg(M), eq(N)} < eo(M#N) = cat(M#N)g.
While on the right hand side we have,
cat(M#N)q = catg(M#N) < max(catg M, catg N) = max{cat Mg, cat Ng},
where the middle inequality comes from (3.3). O

Returning to Rudyak’s question on a possible relation between degree and category, we can
settle it in the rational context.

5.3. Proposition. For closed and simply connected m-manifolds M and N with f: M — N
of nonzero degree, we have cat Mgy > cat Ny.

Proof. 1t suffices to show eg(M) > eg(N). That is, suppose p* : H*(M;Q) — H*(P,(M)Q)
in the following diagram is injective.

f*

H*(M;Q) H*(N;Q)
By [13, V.2.13], the map f* is injective. Since p* and f* are injective, the composition p*o f*
is injective, and p* : H*(N;Q) — H*(P,(N); Q) is injective. Thus eg(N) < n.
L]



6 ROBERT J. NEWTON

REFERENCES

[1] I. Berstein, and P. Hilton. Category and generalized Hopf invariants. Illinois J. Math. 4 (1960), 437-451.
[2] O. Cornea, G. Lupton, J. Oprea and D Tanré. Lusternik—Schnirelmann category. Mathematical Surveys
and Monographs, 103. American Mathematical Society, Providence, RI, 2003.
[3] A. Dranishnikov, M. Katz, and Yu. Rudyak. Small values of the Lusternik-Schnirelmann category for
manifolds, Geometry and Topology 12 (2008), 1711-1727.
[4] Y. Felix, S. Halperin, and J.-M. Lemaire. The rational LS category of products and of Poincare duality
complexes. Topology 37 (1998) 749-756.
[5] Y. Felix, S. Halperin, and J.-C. Thomas. Rational Homotopy Theory, Springer, 2000.
[6] K. Hardie. On the category of the double mapping cylinder. Téhoku Math. J. (2) 25 (1973), 355-358.
[7] A. Hatcher. Algebraic Topology, Cambridge University Press, 2002.
[8] P. J. Hilton. Suspension Theorems and the generalized Hopf invariant. Proc. of the London Math. Soc.
1 (1951), 462-493.
[9] N. Iwase. Ganea’s conjecture on Lusternik-Schnirelmann category. Bull. Lond. Math. Soc., 30 (1998),
623-634.
[10] N. Iwase. Ao methods in Lusternik-Schnirelmann category. Topology. 41 (2002) 695-723.
[11] P. Lambrechts, D. Stanley, and L. Vandembroucq. Embeddings up to homotopy of two cones in Euclidean
spaces. Trans. American Math. Soc. 354 (2002), 3973-4013.
[12] J. J. Rivadeneyra-Pérez. On cat(X \ p), International Journal of Mathematics and Mathematical Sci-
ences, 15 (1992), 812.

[13] Y. Rudyak. On Thom Spectra, Orientability, and Cobordism. Springer, 2010.

[14] Y. Rudyak. On Category weight and its applications. Topology, 50 (2008) 37-55.

[15] D. Sullivan. Geometric Topology, Localization, Periodicity, and Galois Symmetry. The MIT Press, 1970.
[16] A. Svarc. The genus of a fibered space. Trudy Moskov. Mat. Obsc 10, 11 (1961 and 1962), 217-272,

99-126, (in Amer. Math. Soc. Transl. Series 2, vol 55 (1966)).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32608



	1. Introduction
	2. Preliminaries
	3. Main results
	4. Connected sum and Toomer invariant
	5. Rationalizations
	References

