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ON SOME EXTREMAL PROBLEMS IN CERTAIN HARMONIC

FUNCTION SPACES OF SEVERAL VARIABLES RELATED TO

MIXED NORM SPACES

ROMI SHAMOYAN

Abstract. Some estimates on distances in spaces of harmonic functions in
the unit ball and the upper half space are provided. New estimates concerning
mixed norm spaces and general weighted Bergman spaces are obtained and
discussed.

1. Introduction and preliminaries

The main goal of this note to present several new results on distances in harmonic
spaces though some isolated results from our previous papers (see[1],[2]) will be also
given to make the picture more complete. This direction of investigation related
to extremal problems in harmonic function spaces started in [1],then continued in
[2],[4] In this note in particular a new sharp theorem on distances in harmonic
function spaces in the unit ball will be added.An analogue of this assertion in case
of upper half space was formulated and proved before in [2] and for completeness
of exposition we will add it also here (but without proof) Note also this result in
the unit ball in case of p > 1 was also provided before in [2] ,in this note we extend
it to all values of positive p . The main tool for us will be so-called Whitney type
decomposition of the unit ball of Euclidean space and this technique was used before
in case of upperhalfspace by us in [2] We also add important remarks concerning this
extremal problem (distance function) in mixed norm spaces and weighted spaces
of harmonic functions at the end of this paper. Harmonic function spaces were
studied by many authors during last several decades we mention , for example, [5]
and [3] and various references there.

Our line of investigation can be also considered as a continuation of papers on
distances in analytic function spaces [6] and [7]. All main results are contained
in the second section of the paper. The first section is devoted to preliminaries
and main definitions which are needed for formulations of main results. Almost
all objects we define in this section and definitions can be found in [3],[1],[2],[4]
and in [8].The Whitney decomposition and properities and estimates we used for
our proofs can be found in various places, but we refer the reader to [1] ,[10] for
case of upperhalfspace and for case of unit ball of Euclidean space (see also [2])
This paper also contains important additions namely we add important remarks
about general Bergman spaces with general w weights,these new weighted harmonic
spaces appeared for the first time in [11]) .These results are also new and we hope
to return to these issues related to general harmonic hp

w and Hp
w Bergman- type

spaces in unit ball and upper halfspace also later.
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Let B be the open unit ball in Rn, S = ∂B is the unit sphere in Rn, for x ∈ Rn

we have x = rx′, where r = |x| =
√

∑n
j=1 x

2
j and x′ ∈ S. Normalized Lebesgue

measure on B is denoted by dx = dx1 . . . dxn = rn−1drdx′ so that
∫

B
dx = 1. We

denote the space of all harmonic functions in an open set Ω by h(Ω). In this paper
letter C designates a positive constant which can change its value even in the same
chain of inequalities.

For 0 < p < ∞, 0 ≤ r < 1 and f ∈ h(B) we set

Mp(f, r) =

(
∫

S

|f(rx′)|pdx′

)1/p

,

with the usual modification to cover the case p = ∞.
For 0 < p < ∞ and α > −1 we consider weighted harmonic Bergman spaces

Ap
α = Ap

α(B) defined by

Ap
α =

{

f ∈ h(B) : ‖f‖p
Ap

α
=

∫

B

|f(x)|p(1 − |x|2)αdx < ∞

}

For p = ∞ this definition is modified in a standard manner:

A∞
α = A∞

α (B) =

{

f ∈ h(B) : ‖f‖A∞
α

= sup
x∈B

|f(x)|(1 − |x|2)α < ∞

}

, α > 0

These spaces are complete metric spaces for 0 < p ≤ ∞, they are Banach spaces
for p ≥ 1 ([3]) These spaces serve as particular cases of more general scales of mixed
norm spaces F p,q

α and Bp,q
α (see [2])in unit ball of Rn

Next we need certain facts on spherical harmonics and the Poisson kernel, see [3]

for a detailed exposition. Let Y
(k)
j be the spherical harmonics of order k, 1 ≤ j ≤ dk,

on S. Next,

Z
(k)
x′ (y′) =

dk
∑

j=1

Y
(k)
j (x′)Y

(k)
j (y′)

are zonal harmonics of order k. Note that the spherical harmonics Y
(k)
j , (k ≥ 0,

1 ≤ j ≤ dk) form an orthonormal basis of L2(S, dx′). Every f ∈ h(B) has an
expansion

f(x) = f(rx′) =

∞
∑

k=0

rkbk · Y
k(x′),

where bk = (b1k, . . . , b
dk

k ), Y k = (Y
(k)
1 , . . . , Y

(k)
dk

) and bk · Y k is interpreted in the

scalar product sense: bk · Y
k =

∑dk

j=1 b
j
kY

(k)
j .

We denote the Poisson kernel for the unit ball as usual by P (x, y′), it is given by

P (x, y′) = Py′(x) =
∞
∑

k=0

rk
dk
∑

j=1

Y
(k)
j (y′)Y

(k)
j (x′)

=
1

nωn

1− |x|2

|x− y′|n
, x = rx′ ∈ B, y′ ∈ S,
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where ωn is the volume of the unit ball in Rn. We are going to use also a Bergman
kernel for Ap

β spaces,(see [3]) this is the following function

(1) Qβ(x, y) = 2

∞
∑

k=0

Γ(β + 1 + k + n/2)

Γ(β + 1)Γ(k + n/2)
rkρkZ

(k)
x′ (y′), x = rx′, y = ρy′ ∈ B.

This function is playing a very important role in many issues related with harmonic
function spaces in unit ball (see [3],[1],[2],[4] and references there

For details on this kernel we refer to [3], where the following theorem can be
found.

Theorem 1 ([3]). Let p ≥ 1 and β ≥ 0. Then for every f ∈ Ap
β and x ∈ B we have

f(x) =

∫ 1

0

∫

Sn−1

Qβ(x, y)f(ρy
′)(1− ρ2)βρn−1dρdy′, y = ρy′.

This theorem is a cornerstone for our approach to distance problems in the case
of the unit ball. Everywhere below y = ρy” and x = rx” are in unit ball, sometimes
this will be omitted by us and this will be clear from text. The following lemma
gives estimates for this kernel, see [3], [5].

Lemma 1. 1. Let β > 0. Then, for x = rx′, y = ρy′ ∈ B we have

|Qβ(x, y)| ≤
C

|ρx− y′|n+β
.

2. Let β > −1. Then

∫

Sn−1

|Qβ(rx
′, y)|dx′ ≤

C

(1− rρ)1+β
, |y| = ρ, 0 ≤ r < 1.

3. Let β > n− 1, , 0 ≤ r < 1 and y′ ∈ Sn−1. Then

∫

Sn−1

dx′

|rx′ − y′|β
≤

C

(1 − r)β−n+1
.

The following simple lemma is classical see ,for example, [3] and references there.

Lemma 2 ([3]). Let α > −1 and λ > α+ 1. Then

∫ 1

0

(1− r)α

(1− rρ)λ
dr ≤ C(1 − ρ)α+1−λ, 0 ≤ ρ < 1.

The following lemma is purely technical ,but it is vital for the proof of our main
result.

Lemma 3. For δ > −1, γ > n+ δ and β > 0 we have

∫

B

|Qβ(x, y)|
γ

n+β (1− |y|)δdy ≤ C(1 − |x|)δ−γ+n, x ∈ B.
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Proof. Using Lemma 1 and Lemma 2 we obtain:
∫

B

|Qβ(x, y)|
γ

n+β (1− |y|)δdy ≤ C

∫

B

(1 − |y|)δ

|ρrx′ − y′|γ
dy

≤ C

∫ 1

0

(1− ρ)δ
∫

S

dy′

|ρrx′ − y′|γ
dy′dρ

≤ C

∫ 1

0

(1− ρ)δ(1 − rρ)n−γ−1dρ

≤ C(1 − r)n+δ−γ . �

Now we turn to the basic definitions for upperhalfspace,all of them are classical
see [3] and references there or see [1],[2]

We first set Rn+1
+ = {(x, t) : x ∈ Rn, t > 0} ⊂ Rn+1. We usually denote points

in R
n+1
+ by z = (x, t) or w = (y, s) where x, y ∈ Rn and s, t > 0.

For 0 < p < ∞ and α > −1 we consider spaces

Ãp
α(R

n+1
+ ) = Ãp

α =

{

f ∈ h(Rn+1
+ ) :

∫

R
n+1

+

|f(x, t)|ptαdxdt < ∞

}

.

Also, for p = ∞ and α > 0, we set

Ã∞
α (Rn+1

+ ) = Ã∞
α =







f ∈ h(Rn+1
+ ) : sup

(x,t)∈R
n+1

+

|f(x, t)|tα < ∞







.

These spaces have natural (quasi)-norms, for 1 ≤ p ≤ ∞ they are Banach spaces
and for 0 < p ≤ 1 they are complete metric spaces.(see [3]) They serve as paticular
cases of more general F p,q

α and Bp,q
α mixed norm spaces. (see ,for example, [2] and

references there)
Now we turn to formualte some known assertions in this case of upperhalfspaces

(see [3]) and references there We denote the Poisson kernel for Rn+1
+ by P (x, t), i.e.

P (x, t) = cn
t

(|x|2 + t2)
n+1

2

, x ∈ R
n, t > 0.

For an integer m ≥ 0 we introduce a Bergman kernel Qm(z, w), where z = (x, t) ∈
R

n+1
+ and w = (y, s) ∈ R

n+1
+ , by

Qm(z, w) =
(−2)m+1

m!

∂m+1

∂tm+1
P (x− y, t+ s).

The terminology is justified by the following result from [3] which is a complete
analogue of integral representation of Bergman spaces in the unit ball we formulated
above.Note it is well-known that these theorems on integral representations for ball
and upperhalfspace have various applications in harmonic function theory.

Theorem 2. Let 0 < p < ∞ and α > −1. If 0 < p ≤ 1 and m ≥ α+n+1
p − (n+ 1)

or 1 ≤ p < ∞ and m > α+1
p − 1, then

(2) f(z) =

∫

R
n+1

+

f(w)Qm(z, w)smdyds, f ∈ Ãp
α, z ∈ R

n+1
+ .
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The following elementary estimate of this kernel is crucial and it is contained,
for example, in [3]:

(3) |Qm(z, w)| ≤ C
[

|x− y|2 + (s+ t)2
]−n+m+1

2 , z = (x, t), w = (y, s) ∈ R
n+1
+ .

It is well- known that the theory of Bergman spaces in unit ball and upperhalf-
space are parallel to each other and it is natural to consider extremal problems
in both spaces together. Various issues in these spaces can be solved using argu-
ments related so- called properties of a certain family of special cubes which usually
called Whitney cubes (see [8]) and references there. Here are two basic properties of
Whitney type decomposition which we will need for upperhalfspace Rn+1

+ (see,for

example, [2]). There is a collection of closed cubes ∆k in Rn+1
+ with sides parallel

to coordinate axes such that the following properties hold The union of these collec-
tion ∆k of cubes gives all Rn+1

+ .The interior of ∆k cubes are pairwise disjoint.Such
type of family also exists in the unit ball (see, for example, [10] and references
there).Related facts and estimates we need for these cubes and their centers can be
found in [10] in unit ball and in [2] in case of upperhalfspace Rn+1

+

2. Sharp estimates for distances in harmonic Bergman function

spaces of several variables in the unit ball and in R
n+1
+ and

related theorems in mixed norm spaces and weighted Bergman

spaces.

In this section we investigate distance problems both in the case of the unit ball
and in the case of the upper half space for harmonic functions of several variables.
The method we use here originated in [9], see also [1],[2],[4], [6], [7] for various mod-
ifications of this interesting approach, and applications of this method to various
distance problems in analytic function spaces and harmonic function spaces in one
and several variables. New assertions and important remarks concerning mixed
norm harmonic function spaces and general harmonic weighted Bergman spaces
will be added at the second part of this paper. The followiing lemma is elementar.

Lemma 4. Let 0 < p < ∞ and α > −1. Then there is a C = Cp,α,n such that for

every f ∈ Ap
α(B) we have

|f(x)| ≤ C(1 − |x|)−
α+n

p ‖f‖Ap
α
, x ∈ B.

Proof. We use subharmonic behavior of |f |p, see for this for example [8],[3], to
obtain

|f(x)|p ≤
C

(1− |x|)n

∫

B(x,
1−|x|

2
)

|f(y)|pdy

≤ C
(1− |x|)−α

(1− |x|)n

∫

B(x, 1−|x|
2

)

|f(y)|p(1− |y|)αdy

≤ C(1− |x|)−α−n‖f‖p
Ap

α
. �

This lemma shows that Ap
α is continuously embedded in A∞

α+n
p

and motivates

the distance problem in unit ball which investigated in our Theorems below.

Lemma 5. Let 0 < p < ∞ and α > −1. Then there is C = Cp,α,n such that for

every f ∈ Ãp
α and every (x, t) ∈ R

n+1
+ we have

(4) |f(x, t)| ≤ Cy−
α+n+1

p ‖f‖Ãp
α
.
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The above lemma states that Ãp
α is continuously embedded in Ã∞

α+n+1

p

, its proof

is analogous to that of Lemma 4. This lemma motivates the distance problem in
harmonic function spaces in upperhalfspaces which investigated in our Theorems
below.

For ǫ > 0, t > 0 and f ∈ h(B) we set

Uǫ,t(f) = Uǫ,t = {x ∈ B : |f(x)|(1 − |x|)t ≥ ǫ}.

The following assertion alone can be found among other things in [4] hovewer we
decided to formulate it since the remaining part of it p ≤ 1 case was open and we
in this note close it in our next theorem,we also prove the first theorem to use it
for further results and observations at the end of this note.

Theorem 3. Let p > 1, α > −1, λ = α+n
p , m ∈ N0 Set, for f ∈ A∞

α+n
p

(B):

s1(f) = distA∞
α+n

p

(f,Ap
α),

s2(f) = inf

{

ǫ > 0 :

∫

B

(

∫

Uǫ,λ

Qβ(x, y)(1 − |y|)β−λdy

)p

(1− |x|)αdx < ∞

}

.

Then there is a m0 depending from α, p, n so that for all β > m0

t1(f) ≍ t2(f)

.

In the following new sharp theorem on distances we cover the remaining case of
p ≤ 1. Note this result is new. Nevertheless the proof of this theorem is based on
estimates connected with Whitney- type decomposition of the unit ball which we
mentioned above(see [10]),and it is very close and parallel to the case of upperhalf-
space case (see the last theorem of this paper below) and arguments in proofs are
similar . The theorem in upperhalf space is formulated at the end of this paper and
the proof of it is given in our previous work. (see [2]).Hence here we omit details
of proof , referiyng the reader to [2].

Theorem 4. Let p ≤ 1, α > −1, λ = α+n
p , m ∈ N0 . Set, for f ∈ A∞

α+n
p

(B):

s1(f) = distA∞
α+n

p

(f,Ap
α),

s2(f) = inf

{

ǫ > 0 :

∫

B

(

∫

Uǫ,λ

Qβ(x, y)(1 − |y|)β−λdy

)p

(1− |x|)αdx < ∞

}

.

Then there is an m0 depending on α, p, n so that for all β > m0

s1(f) ≍ s2(f)

.

We now provide now a complete proof of first theorem we formulated above.
Proof. We begin with inequality t1(f) ≥ t2(f). Assume t1(f) < t2(f). Then

there are 0 < ǫ1 < ǫ and f1 ∈ Ap
α such that ‖f − f1‖A∞

t
≤ ǫ1 and

∫

B

(

∫

Uǫ,t(f)

|Qβ(x, y)|(1 − |y|)β−tdy

)p

(1− |x|)αdx = +∞.
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Since (1 − |x|)t|f1(x)| ≥ (1 − |x|)t|f(x)| − (1 − |x|)t|f(x) − f1(x)| for every x ∈ B

we conclude that (1− |x|)t|f1(x)| ≥ (1− |x|)t|f(x)| − ǫ1 and therefore

(ǫ− ǫ1)χUǫ,t(f)(x)(1 − |x|)−t ≤ |f1(x)|, x ∈ B.

Hence

+∞ =

∫

B

(

∫

Uǫ,t(f)

|Qβ(x, y)|(1 − |y|)β−tdy

)p

(1 − |x|)αdx

=

∫

B

(
∫

B

χUǫ,t(f)(y)

(1− |y|)t
|Qβ(x, y)|(1 − |y|)βdy

)p

(1− |x|)αdx

≤ Cǫ,ǫ1

∫

B

(
∫

B

|f1(y)||Qβ(x, y)|(1 − |y|)βdy

)p

(1− |x|)αdx = M,

and we are going to prove that M is finite, arriving at a contradiction. Let q be
the exponent conjugate to p. We have, using Lemma 3,

I(x) =

(
∫

B

|f1(y)|(1 − |y|)β|Qβ(x, y)|dy

)p

=

(
∫

B

|f1(y)|(1 − |y|)β|Qβ(x, y)|
1

n+β
(n
p
+β−ǫ)|Qβ(x, y)|

1
n+β

(n
q
+ǫ)dy

)p

≤

∫

B

|f1(y)|
p(1− |y|)pβ |Qβ(x, y)|

n+pβ−pǫ
n+β dy

(
∫

B

|Qβ(x, y)|
n+qǫ
n+β dy

)p/q

≤ C(1 − |x|)−pǫ

∫

B

|f1(y)|
p(1− |y|)pβ |Qβ(x, y)|

n+pβ−pǫ
n+β dy

for every ǫ > 0. Choosing ǫ > 0 such that α−pǫ > −1 we have, by Fubini’s theorem
and Lemma 3:

M ≤ C

∫

B

|f1(y)|
p(1 − |y|)pβ

∫

B

(1− |x|)α−pǫ|Qβ(x, y)|
n+pβ−pǫ

n+β dxdy

≤ C

∫

B

|f1(y)|
p(1 − |y|)αdy < ∞.

In order to prove the remaining estimate t1(f) ≤ Ct2(f) we fix ǫ > 0 such that the
integral appearing in the definition of t2(f) is finite and use Theorem on integral
representation in unit ball formualted above, with β > max(t− 1, 0):

f(x) =

∫

B\Uǫ,t(f)

Qβ(x, y)f(y)(1 − |y|2)βdy +

∫

Uǫ,t(f)

Qβ(x, y)f(y)(1 − |y|2)βdy

= f1(x) + f2(x).

Since, by Lemma 3, |f1(x)| ≤ 2β
∫

B
|Qβ(x, y)|(1−|w|)β−tdy ≤ C(1−|x|)−t we have

‖f1‖A∞
t

≤ Cǫ. Thus it remains to show that f2 ∈ Ap
α and this follows from

‖f2‖
p
Ap

α
≤ ‖f‖pA∞

t

∫

B

(

∫

Uǫ,t(f)

|Qβ(x, y)|(1 − |y|2)β−tdy

)p

(1 − |x|)αdx < ∞. �

The above theorem has a counterpart in the R
n+1
+ setting. As a preparation for

this result we need the following analogue of Lemma 3.
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Lemma 6. For δ > −1, γ > n+ 1 + δ and m ∈ N0 we have
∫

R
n+1

+

|Qm(z, w)|
γ

n+m+1 sδdyds ≤ Ctδ−γ+n+1, t > 0.

Proof. Using Fubini’s theorem and estimate (3) we obtain

I(t) =

∫

R
n+1

+

|Qm(z, w)|
γ

n+m+1 sδdyds ≤ C

∫ ∞

0

sδ
(
∫

Rn

dy

[|y|2 + (s+ t)2]γ

)

ds

= C

∫ ∞

0

sδ(s+ t)n−γds = Ctδ−γ+n+1. �

For ǫ > 0, λ > 0 and f ∈ h(Rn+1
+ ) we set:

Vǫ,λ(f) = {(x, t) ∈ R
n+1
+ : |f(x, t)|tλ ≥ ǫ}.

Theorem 5. Let p > 1, α > −1, λ = α+n+1
p , m ∈ N0 and Set, for f ∈

Ã∞
α+n+1

p

(Rn+1
+ ):

s1(f) = distÃ∞
α+n+1

p

(f, Ãp
α),

s2(f) = inf

{

ǫ > 0 :

∫

R
n+1

+

(

∫

Vǫ,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞

}

.

Then there is an m0 depending on α, p, n so that for all m > m0 we have

s1(f) ≍ s2(f)

.

The proof of this theorem closely parallels the proof of the previous one, in fact,
the role of Lemma 3 is taken by Lemma 6 and the role of Theorem on integral
representation in unit ball formulated above is taken by Theorem on integral re-
proesentation in upperhalspace which was also given above. We leave details to the
reader.

The following theorem covers the remaining case of p ≤ 1. A sharp theorem for
this values of p as above in parallel case of same values of p, but in unit ball is
proved via direct application of Whitney decomposition of upperhalfspace (see [2])
we mentioned above and estimates for it which were also mentioned above by us
(see also[10]).We remark here that this theorem below is not new and we add this
assertion for completness of our exposition in these issues connected with extremal
problems . The proof of theorem will be omitted. We refer the reader to our
previous papers [1],[2] where the proof of this result can be seen.

Theorem 6. Let p ≤ 1, α > −1, λ = α+n+1
p , m ∈ N0 and Set, for f ∈

Ã∞
α+n+1

p

(Rn+1
+ ):

s1(f) = distÃ∞
α+n+1

p

(f, Ãp
α),

s2(f) = inf

{

ǫ > 0 :

∫

R
n+1

+

(

∫

Vǫ,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞

}

.

Then there is an m0 depending from α, p, n so that for all m > m0 we have

s1(f) ≍ s2(f)

.
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The proof closely parallels the proof we have in the unit bll case for same values of
p (see [2]) At the end of this paper we add important remarks on distance theorems
in so-called mixed norm and general weighted spaces of harmonic functions.

By S we define a class of all positive measurable functions v on (0,1) for which
there are positive numbers mv,Mv and qv so that mv, qv ∈ (0, 1) and so that

mv ≤ v(λr)
v(r) ≤ Mv for all r and λ,r ∈ (0, 1),λ ∈ (qv, 1) These spaces of special

functions were mentioned in [3] and analytic Bergman spaces with these general
weights were considered and studied in unit disk,polydisk and later in unit ball. [11]
This S class includes various unusal weight- functions ,for example, like tα(ln( ct )

β

for any positive numbers α and β.
We define as in [11] the following general spaces of harmonic functions of Bergman

-type in unit ball and upperhalfspace. Let hp
v(B) for all positive values of p be the

space of all harmonic F functions in the unit ball with the following finite quazi-
norm.

∫

B

|F (x)|pv(1− |x|)dx

.These are Banach spaces for all p so that p > 1 and quazinormed spaces for all
p ≤ 1 (see [11]) We modify this quazinorm in a standard manner to define also
h∞
v (B) as a space of F harmonic functions with finite quazinorm

sup
x∈B

|F (x)|v(1 − |x|)

Some results of this note can be extended directly to these general spaces since
the Bergman representation formula for these general classes is also valid (see[11])
and it is a core of our approach in all proofs [1],[2],[4]. We formulate a result from
[11] it says that for all p > 1 and p = ∞ and all α > s(v, p) = αv+1

p ,where

αv = logmv

ln qv
the intergal representation for all functions from hp

v via Qα(x, y) kernel

is valid. The following theorem in particular can be found in [11].We formulate it
since it is not available in literature openly.

Theorem 7 ([11]). Let p ≥ 1 or p = ∞ and α > s(v, p) > 0. Then for every

f ∈ hp
v and x ∈ B we have

f(x) =

∫ 1

0

∫

Sn−1

Qα(x, y)f(ρy
′)(1− ρ2)αρn−1dρdy′, y = ρy′.

The complete analogue of this representation is valid for all p > 1 for spaces of
Bergman type in upper halfspace Rn+1, which we defined above ,but with general v
weights from S class [11] These are spaces of F harmonic functions in upperhalfplane
Hp

v (R
n+1
+ ) with finite quazinorm

∫

Rn+1

+

|F (x”, xn+1)|
pv(xn+1)dxdxn+1

for all positive p [11] with obvious modification for p = ∞ case.And again for p > 1
these are Banach spaces, for all other positive p they are quazinormed spaces. Here
again v is a positive slowly varying function on (0,∞) from S class.(see [11])

In this case another integral repesentation for upperhalfspace Rn+1
+ with another

kernel ,which we also mentioned above is true. Note for other values of positive
p,namely for p ≤ 1 there is also another(more complicated) kind of integral repre-
sentations [11] both unit ball and upperhalfspace. The following result for general
weighted Bergman spaces also can be found in [11]
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Theorem 8. Let 1 < p ≤ ∞ and m > m0 for certain fixed m0 depending from

p, w,m0 = s(v, p)− 1 then the following rpresentation is valid

(5) f(z) =

∫

R
n+1

+

f(w)Qm(z, w)smdyds, f ∈ Hp
v , z ∈ R

n+1
+ .

Finnaly we remark results of these note partially can be extended to so- called
mixed norm spaces of harmonic functions F p,q

α and Bp,q
α in unit ball and their direct

analogues in upperhalf space Rn+1
+ at the same time. For definition of these four

scales of harmonic mixed norm spaces we refer the reader to [2],[1],[4] Note CArleson
-type embedding theorems for these spaces were studied in our previous paper [2] .
The core of the proof of a distance theorem for these classes is the same and at the
end of proof an appropriate (known) embeddings connecting classical Bergman Ap

α

spaces with F p,q
α and Bp,q

α classes in unit ball or Rn+1
+ should be used [2] We provide

two natural examples in Rn+1
+ from a group of not sharp results for these calsses

in ball and upperhalfspace to readers noting we didn”t get yet any sharp result yet
in this direction.Note the problem is motivated by an embedding F p,q

α ⊂ A∞
λ and

also by another embedding Bp,q
α ⊂ A∞

λ for q ≤ p ,which we actually already showed
partially above (see also [1],[2],[4]) where λ = α+n+1

p ,α > −1,p, q ∈ (0,∞)

Theorem 9. Let p, q ∈ (0,∞),q ≤ p, α > −1, λ = α+n+1
p , m ∈ N0 . Set,for

f ∈ Ã∞
α+n+1

p

(Rn+1
+ ):

s1(f) = distÃ∞
α+n+1

p

(f, B̃p,q
α ),

s2(f) = inf

{

ǫ > 0 :

∫

R
n+1

+

(

∫

Vǫ,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞

}

.

Then there is an m0 depending from p, q, n, α so that for all m > m0 ,

s2(f) ≤ Cs1(f)

.

Theorem 10. Let q, p ∈ (0,∞),q ≤ p, α > −1, λ = α+n+1
p , m ∈ N0 . Set, for

f ∈ Ã∞
α+n+1

p

(Rn+1
+ ):

s1(f) = distÃ∞
α+n+1

p

(f, F̃ p,q
α ),

s2(f) = inf

{

ǫ > 0 :

∫

R
n+1

+

(

∫

Vǫ,λ

Qm(z, w)sm−λdyds

)p

tαdxdt < ∞

}

Then there is an m0 depending from p, q, n, α so that for all m > m0,

s2(f) ≤ Cs1(f)

Proofs repeat arguments we provided above in combination with (known) embed-
dings between mixed norm and Bergman spaces [2] ,namely we use the embedding
X ⊂ Ap

α where by X we denote one of these mixed norm spaces and which we
should use at very last step of proof and we omit easy details here.
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