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Abstract

In this manuscript we study inclusion posets of Borel orbit closures on (sym-

metric) matrices. In particular, we show that the Bruhat poset of partial invo-

lutions is a lexicographiically shellable poset. Also, studying the embeddings of

symmetric groups and involutions into rooks and partial involutions, respectively,

we find new EL-labelings on permutations as well as on involutions.

1 Introduction.

Recall that a simplicial complex ∆ is called shellable if there exits a linear ordering

F1, F2, . . . , Fk of the facets of ∆ in such a way that, for each j = 2, . . . , k, the inter-

section of the sub-complex of Fj with the union of all sub-complexes of previous facets

F1, . . . , Fj−1 is a pure sub-complex of ∆ of dimension dimFj − 1.

Although its definition is not illuminating, the notion of shellability has remarkable

topological consequences. For example, if shellable, the simplicial complex ∆ has the

homotopy type of a wedge of spheres. See [4].

In this manuscript we are concerned with the shellability question of a simplicial

complex arising from an action of the invertible upper triangular matrices on symmetric

matrices. Let K denote an algebraically closed field of characteristic zero,M =Mn(K)

denote the affine variety of n × n matrices over K, and let Y denote an arbitrary

subvariety of M . When a group G acts on Y , we denote by B(Y ;G) the set of G-orbit

closures.

In this paper we focus on two main examples:

• Y = Q, the space of symmetric matrices in M , and G = Bn, the Borel group of

invertible upper triangular matrices acting on Y via

x · A = (x−1)⊤Ax−1,
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where x⊤ denotes the transpose of the matrix x ∈ Bn and A ∈ Q.

• Y =M and G = Bn ×Bn acting on Y via

(x, y) · A = xAy−1, (1)

where x, y ∈ Bn and A ∈M .

In the above cases, the set B(Y ;G) is finite, and furthermore, elements of B(Y ;G)

are partially ordered with respect to set inclusion. Let ∆(Y ) denote the set of all

chains (sequences of nested orbit-closures) of the poset (B(Y ;G),⊆). Then ∆(Y ) has

the structure of a simplicial complex. Our first main result is that ∆(Q) is a shellable

complex. In fact, we prove a much stronger statement; the poset (B(Q;Bn),⊆) is

“lexicographically shellable.”

Introduced by Björner in [2] and advanced by Björner and Wachs in [3], the notion

of lexicographic shellability is equivalent to finding a suitable labeling of the edges

of the Hasse diagram of the poset under consideration. Thus, associated with each

saturated chain is a sequence of labels, which provides an ordering of the faces of the

simplicial complex ∆(Y ).

Recall that the rook monoidRn is the finite monoid of 0/1 matrices with at most one

1 in each row and each column. It is well known that the elements of Rn parametrize

the orbits of the action (1) of Bn ×Bn on M . See [11]. The elements of Rn are called

rooks, or rook matrices. It is shown by Szechtman in [12] that each orbit closure in

B(Q;Bn) has a unique corresponding symmetric rook in Rn. Following [1], we call

these rooks partial involutions as they satisfy the quadratic equation

x2 = e,

where e ∈ Rn is a diagonal matrix. We denote the set of all partial involutions in Rn

by Pn.

The Bruhat-Chevalley-Renner ordering on rooks is defined by

r ≤ t ⇐⇒ BnrBn ⊆ BntBn, r, t ∈ Rn.

Here, bar on the orbit BntBn stands for the Zariski closure inM . Corresponding partial

order on Pn, which we denote by �, is studied by Bagno and Cherniavsky [1]. If A

and A′ are two Bn-orbit closures in B(Q;Bn), and, r and r
′ are two partial involutions

representing A and A′, respectively, then

r � r′ ⇐⇒ A′ ⊆ A.
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Although � is more natural from geometric point of view, we prefer to work with

its opposite, which we denote, by abuse of notation, by ≤, also. Our first main result

is that

Theorem 1. The poset (Pn,≤) is lexicographically shellable.

Let Sn denote the symmetric group of permutations which is contained in Rn as

the group of invertible rooks. In an increasing order of generality, the articles [7], [9],

and [3] show that (Sn,≤) is a lexicographically shellable poset. Generalizing this result

to Rn, [5] shows that Rn is a lexicographically shellable poset. See also [10].

Recall that a graded poset (P,≤) with the rank function ρ : P → N is called

Eulerian, if for all x ≤ y the equality

|{z ∈ [x, y] : ρ(z) is odd}| = |{z ∈ [x, y] : ρ(z) is even}|

holds.

Let In ⊂ Pn denote the subset of involutions of maximal rank. Hence, In lies in Sn.

It is shown by Incitti in [8] that In with respect to “opposite inclusion ordering” is not

only lexicographically shellable but also Eulerian. Unfortunately, neither Rn nor Pn is

Eulerian, so, we direct our attention to certain important subposets of them.

Let H denote the group of invertible elements of a monoid N . It is important for

semigroup theorists to understand the structure of orbits of H on N for various actions.

In this regard, we consider a two sided action of Sn on Rn:

(x, y) · z = xzy−1, for all z ∈ Rn, x, y ∈ Sn. (2)

There is natural restriction of this action to an Sn-action on partial involutions:

y · t = (y−1)⊤ty−1, for t ∈ Pn, y ∈ Sn. (3)

Let Rn,k ⊂ Rn denote the rook matrices with k non-zero entries, and let Pn,k =

Rn,k ∩ Pn. Then any orbit of (2) is equal to one of Rn,k for some k, and similarly, any

orbit of (3) is equal to one of Pn,k for some k.

Once k is fixed, the unions ∪l≤kRn,l and ∪l≤kPn,l parametrize Borel orbits in certain

determinental varieties. Therefore, it is important to study the restriction of Bruhat-

Chevalley-Renner ordering on these subposets.

Although they are significantly different from each other, Rn,k and Pn,k share many

important properties. For example, both of them have the smallest and the largest

elements. In fact, much more is true.

Given a positive integer n, let [n] denote the set {1, 2, . . . , n}.
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Theorem 2. For all n ≥ 1 and k ∈ [n], the subposets Rn,k ⊆ Rn and Pn,k ⊆ Pn are

Eulerian if and only if k = n or k = n− 1.

The proof of Theorem 2 relies on the following intriguing result:

Theorem 3. For all n ≥ 1,

1. (Rn,n−1 ∪Rn,n,≤) is isomorphic to the poset (Sn+1,≤) and,

2. (Pn,n−1 ∪ Pn,n,≤) is isomorphic to the poset (In+1,≤).

Let us point out that, as a remarkable corollary of Theorems 1 and 3 together with

the main result of [5], we obtain new EL-labelings of Sn+1 and In+1 induced from their

imbedding into Rn and Pn, respectively.

The organization of our paper is as follows. In Section 2 we introduce our notation

and provide preliminaries. In Section 3 we study covering relations of the opposite

order ≤ of �. In Section 4 we prove Theorem 1, and finally, in Section 5 we prove

Theorems 2 and 3.

Acknowledgement. The authors are partially supported by the Louisiana Board of

Regents enhancement grant.

2 Background.

2.1 Lexicographic shellability.

We start with reviewing the notion of lexicographic shellability.

Let P be a finite poset with a maximum and a minimum element, denoted by 1̂ and

0̂, respectively. We assume that P is graded of rank n. In other words, all maximal

chains of P have equal length n. Denote by C(P ) the set of covering relations

C(P ) = {(x, y) ∈ P × P : y covers x}.

An edge-labeling on P is a map f = fP,Γ : C(P ) → Γ into some totally ordered set

Γ . The Jordan-Hölder sequence (with respect to f) of a maximal chain c : x0 < x1 <

· · · < xn−1 < xn of P is the n-tuple

f(c) := (f((x0, x1)), f((x1, x2)), . . . , f((xn−1, xn))) ∈ Γ n.
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Fix an edge labeling f , and a maximal chain c : x0 < x1 < · · · < xn. We call both the

maximal chain c and its image f(c) increasing, if

f((x0, x1)) ≤ f((x1, x2)) ≤ · · · ≤ f((xn−1, xn))

holds in Γ .

Let k > 0 be a positive integer and let Γ k denote the k−fold cartesian product

Γ k = Γ × · · · × Γ , totally ordered with respect to the lexicographic partial ordering.

An edge labeling f : C(P ) → Γ is called an EL−labeling, if

1. in every interval [x, y] ⊆ P of rank k > 0 there exists a unique maximal chain c

such that f(c) ∈ Γ k is increasing,

2. the Jordan-Hölder sequence f(c) ∈ Γ k of the unique chain c from (1) is the

smallest among the Jordan-Hölder sequences of maximal chains x = x0 < x1 <

· · · < xk = y.

A poset P is called EL-shellable, if it has an EL−labeling.

Remark 4. Let P op and Γ op denote the opposites of (P,≤) and the total order Γ ,

respectively. Suppose f : C(P ) → Γ is an EL-labeling for (P,≤). Then, the same

underlying map f : C(P op) → Γ op gives an EL-labeling for P op. Therefore, our first

main result implies the lexicographic shellability of (Pn,�), also.

2.2 Rooks and their enumeration.

We set up our notation for rook matrices and establish a preliminary enumerative

result.

Let x = (xij) ∈ Rn be a rook matrix of size n. Define the sequence (a1, . . . , an) by

aj =

{
0 if the j’th column consists of zeros,

i if xij = 1.
(4)

By abuse of notation, we denote both the matrix and the sequence (a1, . . . , an) by x.

For example, the associated sequence of the partial permutation matrix

x =




0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0



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is x = (3, 0, 4, 0).

Once n is fixed, a rook matrix x ∈ Rn with k-nonzero entries is called a k-rook.

Observe that the number of k-rooks is given by the formula

|Rn,k| = k! ·

(
n

k

)2

. (5)

Indeed, to determine a k-rook, we first choose n− k 0 zero rows and n− k 0 columns.

This is done in
(

n

n−k

)2
ways. Next we decide for the non-zero entires of the k-rook.

Since deleting the zero rows and columns results in a permutation matrix of size k,

there are k! possibilities. Hence, the formula follows.

Let τn denote the number of invertible partial involutions. By default, we set τ0 = 1.

There is no closed formula for τn, however, there is a simple recurrence that it

satisfies;

τn+1 = τn + (n− 1)τn−1 (n ≥ 1) (6)

There is a similar recurrence satisfied by the number of invertible n-rooks (permuta-

tions);

(n + 1)! = n! + n2 · (n− 1)! (n ≥ 1). (7)

It follows that

Lemma 5. For all n ≥ 1,

1. |Rn,n−1 ∪ Rn,n| = (n+ 1)!,

2. |Pn,n−1 ∪ Pn,n| = τn+1.

Proof. The first assertion follows from equations (7) and (5). The second assertion

follows from equation (6) and the fact that |Pn,n−1| = (n− 1)τn−1.

2.3 The poset (Pn,�).

We briefly review a combinatorial description of � as described by Bagno and Cherni-

avsky in [1].

Let X = (xij) be an n × m matrix. For each 1 ≤ k ≤ n and 1 ≤ l ≤ m, denote

by Xkl the upper-left k × l submatrix of X . Then the rank-control matrix of X is the

n×m matrix R(X) = (rkl) with entries given by

rkl = rank(Xkl),
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for 1 ≤ k ≤ n and 1 ≤ l ≤ m. For example, for the partial involution x = (1, 0, 3), the

rank control matrix is

R(x) =



1 1 1

1 1 1

1 1 2


 (8)

Given matrices A = (akl) and B = (bkl) of the same size with integer entries, we

write A ≤R B, if akl ≤ bkl for all k and l.

Knowing the rank-control matrices of partial involutions x, y ∈ Pn is enough to

compare them with respect to �:

x � y if and only if R(x) ≤R R(y).

However, covering relations depend on a numerical invariant associated with the rank

control matrices, which is defined as follows.

For any non-negative integer k, define r0,k to be 0. For a rank-control matrix

R(X) = (rij), define

D(x) = #{(i, j)|1 ≤ i ≤ j ≤ n and rij = ri−1,j−1}.

For example, if R(x) is as in (8), then D(x) = #{(2, 2), (2, 3)} = 2. In [1], Bagno and

Cherniavsky prove that, in (Pn,�),

x covers y ⇔ R(y) ≤R R(x) and D(x) = D(y) + 1.

We depict the Hasse diagram of the opposite partial order on partial involutions

for n = 3 in Figure 3 below.

2.4 An EL-labeling of invertible involutions.

In [8], Incitti shows that the poset of invertible involutions is lexicographically shellable.

Let us briefly recall his arguments.

For a permutation σ ∈ Sn, a rise of σ is a pair (i, j) ∈ [n]× [n] such that

i < j and σ(i) < σ(j).

A rise (i, j) is called free, if there is no k ∈ [n] such that

i < k < j and σ(i) < σ(k) < σ(j).
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For σ ∈ Sn, define its fixed point set, its exceedance set and its defect set to be

If (σ) = Fix(σ) = {i ∈ [n] : σ(i) = i},

Ie(σ) = Exc(σ) = {i ∈ [n] : σ(i) > i},

Id(σ) = Def(σ) = {i ∈ [n] : σ(i) < i},

respectively.

Given a rise (i, j) of σ, its type is defined to be the pair (a, b), if i ∈ Ia(σ) and

j ∈ Ib(σ), for some a, b ∈ {f, e, d}. We call a rise of type (a, b) an ab-rise. On the other

hand, two kinds of ee-rises have to be distinguished from each other; an ee-rise is called

crossing, if i < σ(i) < j < σ(j), and it is called non-crossing, if i < j < σ(i) < σ(j).

The rise (i, j) of an involution σ ∈ In is called suitable if it is free and if its type is

one of the following: (f, f), (f, e), (e, f), (e, e), (e, d).

Finally, the covering transformation, denoted ct(i,j)(σ), of a suitable rise (i, j) of σ

is the involution obtained from σ by moving the 1’s from the black dots to the white

dots as described in Table 1 of [8], depending on the type of (i, j).

It is proven in [8] that, if τ and σ are two involutions in In, then

τ covers σ in ≤ ⇔ τ = ct(i,j)(σ), for some suitable rise (i, j) of σ. (9)

In particular, Incitti shows that the labeling

F ((σ, c(i,j)(σ))) := (i, j) ∈ [n]× [n]

is an EL-labeling, hence, (In,≤) is a lexicographically shellable poset. In the next

section we give a generalization of this result to the set all partial involutions.

3 Covering relations of partial involutions Pn.

The notion of suitable rise on involutions extends to the partial permutations (Pn,≤),

verbatim. There are additional covering relations. In this section we exhibit all possible

covering types.

Lemma 6. Let x and y be two partial involutions. Then x covers y if and only if one

of the following is true:

1. x and y have the same zero-rows and columns. Let x̃ and ỹ denote the full rank

involutions obtained from x and y, respectively, by deleting common zero rows
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and columns. Then x covers y if and only if x̃ covers ỹ. For example,

y =



1 0 0

0 0 0

0 0 1


 is covered by x =



0 0 1

0 0 0

1 0 0


 .

2. Without removing a suitable rise, x is obtained from y by one of the following

moves:

(a) a 1 on the diagonal is moved down to the first available diagonal entry. It

is possible for a 1 to be pushed out of the matrix. For example,

y =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0


 is covered by x =




0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 1


 .

(b) Two off-diagonal symmetric 1’s are pushed right/down or down/ right to the

first available entries at symmetric positions. There are two cases which we

demonstrate by examples:

i. y =



0 1 0

1 0 0

0 0 0


 is covered by x =



0 0 1

0 0 0

1 0 0


 ,

ii. y =



0 0 1

0 0 0

1 0 0


 is covered by x =



0 0 0

0 0 1

0 1 0


 .

As a special case of ii., if there are no available entries at symmetric posi-

tions to push down and right, then the two 1’s at positions (i, j) and (j, i)

with i > j are pushed to (i, i), and to the first available diagonal entry below

(i, i). For example,

y =




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 0


 is covered by x =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 .

In this case, a single 1 is allowed to be pushed out of the matrix. For example,

y =

(
0 1

1 0

)
is covered by x =

(
0 0

0 1

)
.
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Before we start the proof, let us illustrate by an example, what it means to remove

a suitable rise:

Example 7. Let y =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 0


 and let x =




0 0 0 1

0 0 0 0

0 0 1 0

1 0 0 0


. Then x is obtained

from y by a move as in 2.(b)i., however, it removes the suitable rise (1, 3). Therefore,

it is not a covering relation.

Proof. Comparing the rank-control matrices R(·) as well as the invariants D(·) of x

and y, the “if” direction of the claim is straightforward to verify.

We prove the “only if” direction by contraposition. To this end let x denote a

partial involution that covers y ∈ Pn, and x is not obtained by one the moves as in 1.,

2.(a), or 2.(b).

Since 1. does not hold, x has a smallest row consisting of zeros such that the

corresponding row of y contains a non-zero entry. Let i denote the index of this zero

row of x. Notice that, if there is a zero row for both x and y with the same index,

then removing this row and the corresponding column does not have any effect on the

remaining entries of the rank-control matrices. Therefore, we assume that neither x

nor y has a zero row before the i-th row.

There are two subcases;

1) the nonzero entry of y occurs before the i-th column,

2) it occurs on or after the i-th column.

We proceed with 1). Then y and x are as in

y =




0

A
... B

1
...

0 · · · 1 · · · 0 · · · 0

C
... D

0




and x =




0

A′
... B′

0
...

0 · · · 0 · · · 0 · · · 0

C ′
... D′

0




,

where A,A′B,B′, . . . stand for appropriate size matrices. Let 1 ≤ k < i denote the

index of the row of y with a 1 on its i-th entry.

Let Γ denote the set of coordinates of non-zero entries (r, s) of x satisfying k ≤ r ≤ n

and i < s ≤ n. Since the upper k × n portions of both of y and x are rank k, Γ 6= ∅.
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Let (r, s) ∈ Γ denote the entry with smallest second coordinate. Unless r = s,

we define x̃ to be the matrix obtained from x by moving the non-zero entries at the

positions (r, s) and (s, r) (which exists, by symmetry) to the positions (r, i) and (i, r).

If r = s, then x̃ is defined by moving the non-zero entry to the (i, i)-th position.

We claim that y ≤ x̃ < x. Indeed, since x̃ is obtained from x by reverse of the one

of the moves 2.(a) or 2.(b), the second inequality is clear. The first inequality follows

immediately from checking the corresponding rank-control matrices of x, x̃ and of y.

Let us illustrate the procedure by two possible scenarios:

Example 8. Let

y =




0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0




and x =




0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0




.

Then i = 5, k = 1, and the rank-control matrices of y and x are

R(y) =




0 0 0 0 1 1 1 1

0 1 1 1 2 2 2 2

0 1 2 2 3 3 3 3

0 1 2 2 3 3 3 4

1 2 3 3 4 4 4 5

1 2 3 3 4 5 5 6

1 2 3 3 4 5 5 6

1 2 3 4 5 6 6 7




and R(x) =




0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 3 4

0 1 2 2 2 3 3 4

1 2 3 3 3 4 4 5

1 2 3 3 3 4 5 6

1 2 3 4 4 5 6 7




.

In this case,

x̃ =




0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0




and R(x̃) =




0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 3 4

0 1 2 2 3 4 4 5

1 2 3 3 4 5 5 6

1 2 3 3 4 5 5 6

1 2 3 4 5 6 6 7




.
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If

y =




0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




and x =




0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0




,

then i = 4, k = 1 and the rank-control matrices are

R(y) =




0 0 0 0 1 1 1 1

0 1 1 1 2 2 2 2

0 1 2 2 3 3 3 3

0 1 2 2 3 4 4 4

1 2 3 4 4 5 5 5

1 2 3 4 5 6 6 6

1 2 3 4 5 6 7 7

1 2 3 4 5 6 7 8




and R(x) =




0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 3 3

0 1 2 2 2 3 4 4

1 2 3 3 3 4 5 5

1 2 3 3 4 5 6 6

1 2 3 3 4 5 6 6




.

In this case,

x̃ =




0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0




and R(x̃) =




0 0 0 0 0 1 1 1

0 0 1 1 1 2 2 2

0 1 2 2 2 3 3 3

0 1 2 2 2 3 4 4

0 1 2 2 2 3 4 4

1 2 3 3 3 4 5 5

1 2 3 4 4 5 6 6

1 2 3 4 4 5 6 6




.

We proceed with the case 2) that the non-zero entry of y in its i-th column occurs

at the k-th row, where k ≥ i.

First of all, without loss of generality, we may assume that x has a non-zero entry

in its i+ 1-st row, whose column index we denote by jx.

Denote by ỹ the partial involution obtained from y by interchanging its i-th and

i + 1-st rows as well as interchanging its i-th and i + 1-st columns. If exists, let jy
denote the column index of the non-zero entry of ỹ in its i-th row. If jy < k, then,
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y < ỹ. Furthermore, in this case, because i-th row of x consists of 0’s, ỹ < x. In other

words, we have y < ỹ < x.

Therefore, we assume that k < jy. In this case, if k < jx, then let x̃ denote the

partial involution obtained from x by interchanging its i-th and i+1-st rows as well as

interchanging its i-th and i+ 1-st columns. Then we have y < x̃ < x and we are done.

Therefore, we assume that k > jx. But in this case y < ỹ < x holds. This finishes the

proof of the case 2), and we conclude the result.

4 EL-labeling of Pn.

In this section we define an edge labeling of Pn and prove that it is an EL-labeling.

1. If the covering relation is derived from a regular covering of an involution, namely

from a move that is as in Lemma 6, Part 1., then we use the labeling as defined

in [8].

2. If the covering relation results from a move as in Lemma 6 Part 2.(a), namely

from a diagonal push where the element that is pushed from is at the position

(i, i), then we label it by (i, i).

3. Suppose that a covering relation is as in Lemma 6 (b). Observe that, in all of

these covering relations, one of the 1’s is pushed down and the other is pushed

right. Let i denote the column index of the first 1 that is pushed to the right,

and let j denote the index of the resulting column. Then we label the move by

(i, j).

To illustrate the third labeling let us present a few examples. Also, see Figure 1

below for the labeling of P3 which is depicted in one-line notation.

Example 9.

y =




0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0




is covered by x =




0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0




The corresponding labeling here is (3, 5).
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Example 10.

y =




0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0




is covered by x =




0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




The corresponding labeling here is (1, 3).

Example 11.

y =




0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0




is covered by x =




0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1




The corresponding labeling here is (2, 3).

If x covers y with label (i, j), then we refer to it as an (i, j)−covering. Alternatively,
we call a covering relation a c-cover, if it is derived from an involution; a d-cover, if it is

obtained by a shift of a diagonal element; an r-cover, if it is derived from a right/down

or a down/right move.

Let Γ denote the lexicographic total order on the product [n]× [n]. Then, for any

k > 0, Γ k = Γ × · · · × Γ is totally ordered with respect to lexicographic ordering.

Finally, let F : C(Pn) → Γ denote the labeling function defined above.

For an interval [x, y] ⊆ Pn and a maximal chain c : x = x0 < · · · < xk = y, we

denote by F (c) the Jordan-Hölder sequence of labels of c:

F (c) = (F ((x0, x1)), . . . , F ((xk−1, xk))) ∈ Γ k.

Proposition 12. Let c : x = x0 < · · · < xk = y be a maximal chain in [x, y] such that

its Jordan-Hölder sequence F (c) is lexicographically smallest among all Jordan-Hölder

sequences (of chains in [x, y]) in Γ k. Then,

F ((x0, x1)) ≤ F ((x1, x2)) ≤ · · · ≤ F ((xk−1, xk)). (10)

Proof. Assume that (10) is not true. Then, there exist three consecutive terms

xt−1 < xt < xt+1

in c, such that F ((xt−1, xt)) > F ((xt, xt+1)). We have 9 cases to consider.
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Case 1: type(xt−1, xt) = c, and type(xt, xt+1) = c.

Case 2: type(xt−1, xt) = d, and type(xt, xt+1) = d.

Case 3: type(xt−1, xt) = d, and type(xt, xt+1) = c.

Case 4: type(xt−1, xt) = c, and type(xt, xt+1) = d.

Case 5: type(xt−1, xt) = r, and type(xt, xt+1) = r.

Case 6: type(xt−1, xt) = d, and type(xt, xt+1) = r.

Case 7: type(xt−1, xt) = r, and type(xt, xt+1) = d.

Case 8: type(xt−1, xt) = r, and type(xt, xt+1) = c.

Case 9: type(xt−1, xt) = c, and type(xt, xt+1) = r.

In each of these 9 cases, we either produce an immediate contradiction by showing

that we can interchange the two moves, or we construct an element z ∈ [x, y] which

covers xt−1, and such that F ((xt−1, z)) < F ((xt−1, xt)). Since we assume that F (c) is

the lexicographically first Jordan-Hölder sequence, the existence of z is a contradiction,

too.

Case 1: Straightforward from the fact that type-c covering relations have identical

labelings with Incitti’s [8].

Case 2: Suppose that the first move is labeled (i, i) and the second one (j, j) with

j < i. If the two moves are not interchangeable then (j, i) is a legal c- move in xt−1.

Since (j, i)-move is lexicographically smaller than (i, i)-move, we derive a contradiction.

Case 3: Let (i, i) be moved to (j, j) in the first step (type d-move), hence i < j.

If the following c-move does not involve the entry at (j, j), then either the c- and the

d-move commute with each other, or the rise for the c-move is not free in xt−1. In that

case there has to be an ef -rise involving the entry at the position (i, i). This ef -rise

has a smaller label than (i, i), which is a contradiction.

Thus we may assume that the c-move involves the entry at the (j, j)- th position.

Then the c-move has to come from either an ff -, an fe-, or an ef -rise.

ff is not possible, because if in (a, b), a = j, then (a, b) > (i, i). If b = j, then a < i

if (a, b) < (i, i). Therefore, the legal c-move (a, i) in xt−1 has a smaller label than (i, i).

Contradiction..

fe is not possible since (j, b) is greater than (i, i).

Finally, ef is not possible: Let (k, j) be the label of the c-move. If (k, i) is a

suitable rise in xt−1, then (k, i) > (i, i). If (k, i) is not a suitable rise in xt−1, let

(j, j), (k, l), and (l, k) denote the entries involved in the c-move with l < k. Then

l < i < k and (l, j) < (i, i). (l, j) is a legal r-move in xt−1 with a smaller label than

(i, i). Contradiction.

Case 4: This is not possible since no c-move places a 1 on the diagonal such that

moving this 1 gives rise to a smaller labeling than the c-move. Note that if there is
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a 1 on the diagonal before the c-move takes place, then moving this 1 first creates an

element z with covering label lexicographically smaller that of the c-move. Thus we

are done with this case.

Case 5: It is clear that moving the same 1 twice towards right gives an increasing

sequence of labels hence this is not possible. If we move the element to the right which

is already moved down via the first move, then switching the order of the moves give

a lexicographically smaller sequence, hence a contradiction is obtained. If we move

different elements to the right, then, if possible, we perform the second move first. If

it is not possible to interchange the order of the r-moves, then by the first r-move a

suitable rise is removed. But then the corresponding c-cover has a smaller label in xt−1

the r-move.

Case 6: We either perform the r-move first if possible, or perform the c-cover

corresponding to the suitable rise removed by d-move which has a smaller label than

the d-move in in xt−1.

Case 7: Similar to Case 6 so we omit the proof.

Case 8: The c-move has to include the elements moved by the previous r-move

since otherwise a c-move can be performed first.

If the suitable rise is created by the r-move then the label of the r-move is smaller

than the label of the c-move. Otherwise, there is a suitable rise in xt−1 involving the

elements moved by the r-move. But the c-move corresponding to this suitable rise has

a smaller label than the r-move.

Case 9: If the r-move does not involve an element moved by the c-move then

perform the r-move first. If this is not possible then a suitable rise is removed by

moving it. The c-move corresponding to this suitable rise has a smaller label than the

other c-move.

If the r-move involves an element that is placed at this position by the preceding

c-move, then we proceed to exhibit every c-move to exclude all of them:

ff : the label of c-move is (i, j). The smaller r-move involving a new element can

only be (i, k) with k < j. But then (i, i) is possible in xt−1 and (i, i) < (i, j).

fe: Similar to ff so we omit the proof.

ef : the label of c-move is (i, j). The smaller r-move involving a new element can

only be (i, k) with k < j. Then (i, k) is possible in xt−1 and (i, k) < (i, j).

non-crossing ee, crossing ee and ed are similar to ef so we omit the proof.

Proposition 13. We use the notation of Proposition 12. There exists a unique maxi-

mal chain x = x0 < · · · < xk = y with F ((x0, x1)) ≤ · · · ≤ F ((xk−1, xk)).
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Proof. We already know that the lexicographically first chain is increasing. Therefore,

it is enough to show that there is no other increasing chain. We prove this by induction

on the length of the interval [x, y]. Clearly, if y covers x, there is nothing to prove. So,

we assume that for any interval of length k there exists a unique increasing maximal

chain.

Let [x, y] ⊆ Pn be an interval of length k + 1, and let

c : x = x0 < x1 < · · · < xk < xk+1 = y

be the maximal chain such that F (c) is the lexicographically first Jordan-Hölder se-

quence in Γ k+1.

Assume that there exists another increasing chain

c
′ : x = x0 < x′1 < · · · < x′k < xk+1 = y.

Since the length of the chain

x′1 < · · · < x′k < xk+1 = y

is k, by the induction hypotheses, it is the lexicographically first chain between x′1 and

y.

We are going to find contradictions to each of the following possibilities.

Case 1: type(x0, x1) = c, and type(x0, x
′
1) = c,

Case 2: type(x0, x1) = d, and type(x0, x
′
1) = d,

Case 3: type(x0, x1) = d, and type(x0, x
′
1) = c,

Case 4: type(x0, x1) = c, and type(x0, x
′
1) = d,

Case 5: type(x0, x1) = r, and type(x0, x
′
1) = r,

Case 6: type(x0, x1) = d, and type(x0, x
′
1) = r,

Case 7: type(x0, x1) = r, and type(x0, x
′
1) = d,

Case 8: type(x0, x1) = r, and type(x0, x
′
1) = c,

Case 9: type(x0, x1) = c, and type(x0, x
′
1) = r,

In each of these cases we will construct a partial involution z such that z covers x′1
and F ((x′1, z)) < F ((x′1, x

′
2)). Contradiction to the induction hypothesis.

Case 1: Proved in [8].

Case 2: F (x0, x1) = (i, i) < F (x0, x
′
1) = (j, j) with i < j. In x′1 (i, i) is a legal

covering move. Hence we have our desired contradiction: (j, j) ≤ F ((x′1, x
′
2)) ≤ (i, i).

Case 3: F (x0, x1) = (i, i) < F (x0, x
′
1) = (j, k). There are two cases to consider:

i = j and i < j. If i < j then we can reverse the order of the d and c move and get
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to the same contradiction as in Case 2. If i = j then k 6= i + 1 since otherwise (i, i)

wouldn’t have been a possible move x0. The d-cover moves (i, i) to (l, l) where l < k.

But then (i, l) is a legal move of x′1 and (i, l) < (i, k) which is a contradiction.

Case 4: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, k). There are two cases to be consid-

ered: j = k and j 6= k. If j 6= k then k 6∈ [i, j] since otherwise (i, j) is not a suitable

rise. Hence k > j. But this means the two covering moves are interchangeable. We

get to the same contradiction as in the preceding cases.

If j = k then (i, j) is a legal r-move of x′1 with (i, j) < (k, k). Contradiction.

Case 5: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, l). k > i since there is at most one

legal r-move of each element. We also have j < l since otherwise either (i, k) or (i, l)

is a suitable rise with a label less than (i, j). We have two cases to consider:

(a) i < j < k < l

(b) i < k < j < l

In case (a) both moves are interchangeable.

In case (b) we have that (i, k) is a suitable rise in x0 with (i, k) < (i, j).

Case 6: F (x0, x1) = (i, i) < F (x0, x
′
1) = (j, k). j 6= i by construction. Hence i <

j < k. Therefore (j, k) does not influence the move (i, i) and we derive a contradiction.

Case 7: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, k). k > j since otherwise a suitable

rise is removed by (i, j). But then (i, j) is a legal move of x′1. Contradiction.

Case 8: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, l). Two cases need to be considered:

i < k and i = k, i < j < l. If i < k then j < k since otherwise a suitable rise would have

been removed by (i, j). But this means that (i, j) is a legal move of x′1. Contradiction.

If i = k then the c-move corresponds to an ef , non-crossing ee, crossing ee or a ed

rise. In each of these cases (i, j) is a legal move of x′1.

Case 9: F (x0, x1) = (i, j) < F (x0, x
′
1) = (k, l). We have two cases to consider:

(a) i = k, i < j < l

(b) i < k

(a) does not occur because then the r-move removes a suitable rise, hence, it is not a

covering relation.

(b) Since we have i < k < l and i < j, we consider i < j < k < l, i < k < j < l and i <

k < l < j. In all these cases the c- and the r-moves are interchangeable. This ends the

proofs of our claims.
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Combining previous two propositions we obtain our first main result.

Theorem 14. The poset of partial permutations is lexicographically shellable.

(1, 2, 3)

(1, 2, 0) (1, 3, 2) (2, 1, 3)

(1, 0, 3) (2, 1, 0) (3, 2, 1)

(1, 0, 0) (0, 2, 3) (3, 0, 1)

(0, 2, 0) (0, 3, 2)

(0, 0, 3)

(0, 0, 0)

(2,3)(3,3) (1,2)

(1,3)(2,2)

(1,2)(3,3)(2,3) (1,2)

(2,2)(3,3)

(1,1) (1,2) (1,3) (1,3) (2,3)

(1,2)(1,1) (2,3)(3,3)

(2,2) (2,3)

(3,3)

Figure 1: The EL-labeling of P3.

5 Eulerian intervals.

In this section we prove Theorems 2 and 3.

There is a concrete way to compare two rooks given in one line notation in Bruhat-

Chevalley-Renner ordering. For an integer valued vector a = (a1, . . . , an) ∈ Z
n, let

19



ã = (aα1
, . . . , aαn

) be the rearrangement of the entries a1, . . . , an of a in a non-increasing

fashion;

aα1
≥ aα2

≥ · · · ≥ aαn
.

The containment ordering, “≤c,” on Zn is then defined by

a = (a1, . . . , an) ≤c b = (b1, . . . , bn) ⇐⇒ aαj
≤ bαj

for all j = 1, . . . , n.

where ã = (aα1
, . . . , aαn

), and b̃ = (bα1
, . . . , bαn

).

Example 15. Let x = (4, 0, 2, 3, 1), and let y = (4, 3, 0, 5, 1). Then x ≤c y, because

x̃ = (4, 3, 2, 1, 0) and ỹ = (5, 4, 3, 1, 0).

For k ∈ [n], the k-th truncation a(k) of a = (a1, . . . , an) is defined to be

a(k) = (a1, a2, . . . , ak).

Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be two rooks in Rn. It is shown in [6] that

v ≤ w ⇐⇒ ṽ(k) ≤c w̃(k) for all k = 1, . . . , n.

Example 16. Let x = (0, 1, 2, 3, 4), and let y = (4, 3, 2, 5, 1). Then x ≤ y, because

x̃(1) = (0) ≤c ỹ(1) = (4),

x̃(2) = (1, 0) ≤c ỹ(2) = (4, 3),

x̃(3) = (2, 1, 0) ≤c ỹ(3) = (4, 3, 2),

x̃(4) = (3, 2, 1, 0) ≤c ỹ(4) = (5, 4, 3, 2),

x̃(5) = (4, 3, 2, 1, 0) ≤c ỹ(5) = (5, 4, 3, 2, 1).

The next lemma, whose proof is omitted, shows that for two permutations x and y

of Sn, the inequality x ≤ y can be decided in n− 1 steps.

Lemma 17. Let x = (a1, . . . , an) and y = (b1, . . . , bn) be two permutations in Sn. Then

x ≤ y if and only if

x̃(k) ≤c ỹ(k) for k = 1, . . . , n− 1.

We are ready to prove the first half of Theorem 3.

Proposition 18. The union (Rn,n−1 ∪Rn,n,≤) is isomorphic to the poset (Sn+1,≤).
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We depict the isomorphism between S4 and R3,3 ∪ R3,2 in Figure 2.

Proof. Let u and w denote the rooks u = (0, 1, 2, . . . , n) and w = (n, n − 1, . . . , 2, 1).

Then Rn,n−1 ∪Rn = [u, w].

We define a map ψ between [v, w] and Sn+1 as follows. If x = (a1, . . . , an) ∈ [v, w],

then

ψ(x) = (a1 + 1, a2 + 1, . . . , an + 1, ax), (11)

where ax is the unique element of the set

[n+ 1] \ {a1 + 1, a2 + 1, . . . , an + 1}.

We have two immediate observations.

1. If x is already a permutation (in Rn,n), then ax = 1.

2. ψ is injective, hence by Lemma 5, it is bijective as well.

Now, let x = (a1, . . . , an) and y = (b1, . . . , bn) be two elements in [v, w] such that

x ≤ y. For the sake of brevity, denote the “shifted” sequence (a1 + 1, . . . , an + 1)

associated with x by x′. Since increasing each entry of x and y by 1 does not change

the relative sizes of the entries of x and y, we have

x′ ≤ y′.

Recall that this is equivalent to saying that x̃′(k) ≤c ỹ′(k) for all k = 1, . . . , n. Since,

x′ is the n-th truncation ψ(x)(n) of the permutation ψ(x), the proof of the theorem is

complete by considering Lemma 17. The converse statement “ψ(x) ≤ ψ(y) =⇒ x ≤
y′′ follows from the same argument. Therefore, ψ is a poset isomorphism.

Unfortunately, the map ψ defined in (11) does not restrict to partial involutions

nicely enough, therefore, we need another order preserving injection in Pn,n−1∪Pn onto

In+1.

Let u = (0, n, n− 1, . . . , 2) and let ι = (1, 2, . . . , n). Observe that the rank-control

matrix of u is the smallest, and that the rank-control matrix of ι is the largest among

all elements of Pn,n−1 ∪ Pn,n. Therefore, the union Pn,n−1 ∪ Pn,n is the underlying set

of the interval [ι, u] of Pn.

Let x = (a1, . . . , an) ∈ [ι, u] be given in one-line notation. Then there are two cases:

1. there is an i ∈ [n] such that ai = 0,
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(0, 0, 0)

(0, 0, 1)

(0, 0, 2) (0, 1, 0)

(0, 1, 2) (0, 0, 3) (0, 2, 0) (1, 0, 0)

(0, 1, 3) (0, 2, 1) (0, 3, 0) (1, 0, 2) (2, 0, 0)

(0, 2, 3) (0, 3, 1) (1, 0, 3) (1, 2, 0) (2, 0, 1) (3, 0, 0)

(1, 2, 3) (0, 3, 2) (1, 3, 0) (2, 0, 3) (2, 1, 0) (3, 0, 1)

(1, 3, 2) (2, 1, 3) (2, 3, 0) (3, 0, 2) (3, 1, 0)

(2, 3, 1) (3, 1, 2) (3, 2, 0)

(3, 2, 1)

Figure 2: S4 in (R3,≤).
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2. x is a permutation.

We start with the first case. If ai = 0 for some i ∈ [n], then we define bi = n + 1 and

for j ∈ [n] \ {i} we set bj = aj. In addition, in this case, we define bn+1 to be the

unique element of the set {0, 1, . . . , n} − {a1, . . . , an}. If latter case, we set bj = aj for

j = 1, . . . , n and define bn+1 = n+ 1. Finally, we define φ : [ι, u] → In+1 by

φ(x) = (b1, . . . , bn+1). (12)

For example,

x =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 1


 ⇒ φ(x) =




0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0



.

We are ready to prove the second half of Theorem 3.

Proposition 19. The union (Pn,n−1 ∪ Pn,n,≤) is isomorphic to the poset (In+1,≤).

We depict the isomorphism between I4 and P3,3 ∪ P3,2 in Figure 3.

Proof. Let φ be defined as in (12). By its construction, φ is injective. Therefore, by

Lemma 5, Part 2., it is enough to show that φ is order preserving.

Let x and y be two elements in [ι, u] such that x ≤ y. Then R(y) ≤R R(x).

Note that the upper-left n × n portion of the rank-control matrix of φ(x) is equal

to R(x). The same is true for φ(y) and R(y).

Let R
φ(x)
i,j denote the (i, j)-th entry of R(φ(x)). Then, since φ(x) is a permutation

in In+1, we have

R
φ(x)
n+1,i = i and R

φ(x)
j,n+1 = j

for all i, j ∈ [n + 1]. The same is true for R(φ(y)). Therefore,

R(φ(y)) ≤R R(φ(x))

and the proof is complete.

It follows from Propositions 18 and 19 that Theorem 3 is true;

Rn,n−1 ∪ Rn,n
∼= Sn+1 and Pn,n−1 ∪ Pn,n

∼= In+1.

Next we prove Theorem 2, which states that Rn,k and Pn,k are Eulerian if and only

if k = n or k = n− 1.
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(1, 2, 3)

(1, 2, 0) (1, 3, 2) (2, 1, 3)

(1, 0, 3) (2, 1, 0) (3, 2, 1)

(1, 0, 0) (0, 2, 3) (3, 0, 1)

(0, 2, 0) (0, 3, 2)

(0, 0, 3)

(0, 0, 0)

Figure 3: I4 in (P3,≤).
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First of all, Rn,n
∼= Sn, and by Theorem 3, Rn,n−1 is isomorphic to an interval in

Sn+1. Thus, both Rn,n and Rn,n−1 are Eulerian. The same argument is true for both of

the posets Pn,n and Pn,n−1. Therefore, to finish the proof of Theorem 2, it is enough to

show that, for k 6= n, n− 1, Rn,k and Pn,k are not Eulerian. To this end, for k ≤ n− 2,

let vk, v
′
k and v′′k denote the elements

vk = (0, . . . , 0, 0, 1, 2, . . . , k),

v′k = (0, . . . , 0, 1, 0, 2, . . . , k),

v′′k = (0, . . . , 1, 0, 0, 2, . . . , k)

in Rn,k. Then the interval [vk, v
′′
k ] ⊂ Rn,k has exactly three elements vk, v

′
k, v

′′
k , hence it

cannot be Eulerian.

Similarly, for k ≤ n− 2, let uk, u
′
k and u′′k denote the elements

uk = (1, 2, . . . , k, 0, . . . , 0),

u′k = (1, 2, . . . , k − 1, 0, k + 1, 0, . . . , 0),

u′′k = (1, 2, . . . , k − 1, 0, 0, k + 2, 0, . . . , 0)

in In,k. Then the interval [uk, u
′′
k] ⊂ Pn,k has exactly three elements uk, u

′
k, u

′′
k, and

therefore, it cannot be Eulerian. This finishes the proof of Theorem 2.
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