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SINGULARITIES AND NONHYPERBOLIC MANIFOLDS

DO NOT COINCIDE

NÁNDOR SIMÁNYI

Abstract. We consider the billiard flow of elastically colliding hard disks on the
flat 2-torus and prove that no singularity manifold can locally coincide with a
manifold describing future non-hyperbolicity of the trajectories. As a corollary, we
obtain the ergodicity (actually the Bernoulli mixing property) of all such systems.

1. Introduction

In this paper we prove the Boltzmann–Sinai Ergodic Hypothesis for hard disk
systems on the 2-torus R2/Z2 without any assumed hypothesis or exceptional model.

This introduction is, to a large extent, an edited version of some paragraphs of
the introductory sections §1 and §2 of my paper [Sim(2009)]. For a more detailed
introduction into the topic of hard ball systems, please see these two introductory
sections of [Sim(2009)].

In a loose form, as attributed to L. Boltzmann back in the 1880’s, the Boltzmann
hypothesis asserts that gases of hard balls are ergodic. In a precise form, which is
due to Ya. G. Sinai in [Sin(1963)], it states that the gas of N ≥ 2 identical hard
balls (of ”not too big” radius) on a torus T

ν = R
ν/Zν , ν ≥ 2, (a ν-dimensional

box with periodic boundary conditions) is ergodic, provided that certain necessary
reductions have been made. The latter means that one fixes the total energy, sets
the total momentum to zero, and restricts the center of mass to a certain discrete
lattice within the torus. The assumption of a not too big radius is necessary to have
the interior of the arising configuration space connected.

Sinai himself pioneered rigorous mathematical studies of hard ball gases by proving
the hyperbolicity and ergodicity for the case N = 2 and ν = 2 in his seminal pa-
per [Sin(1970)], where he laid down the foundations of the modern theory of chaotic
billiards. The proofs there were further polished and clarified in [B-S(1973)]. Then
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Chernov and Sinai extended these results to (N = 2, ν ≥ 2), as well as proved a gen-
eral theorem on “local” ergodicity applicable to systems of N > 2 balls [S-Ch(1987)];
the latter became instrumental in the subsequent studies. The case N > 2 is sub-
stantially more difficult than that of N = 2 because, while the system of two balls
reduces to a billiard with strictly convex (spherical) boundary, which guarantees
strong hyperbolicity, the gases of N > 2 balls reduce to billiards with convex, but
not strictly convex, boundary (the latter is a finite union of cylinders) – and those
are characterized by a very weak hyperbolicity.

Further development has been due mostly to A. Krámli, D. Szász, and the present
author. We proved hyperbolicity and ergodicity for N = 3 balls in any dimen-
sion [K-S-Sz(1991)] by exploiting the “local” ergodic theorem of Chernov and Sinai
[S-Ch(1987)], and carefully analyzing all possible degeneracies in the dynamics to
obtain “global” ergodicity. We extended our results to N = 4 balls in dimension
ν ≥ 3 next year [K-S-Sz(1992)], and then I proved the ergodicity whenever N ≤ ν
in [Sim(1992)-I] and [Sim(1992)-II]. At that point the existing methods could no
longer handle any new cases, because the analysis of the degeneracies became overly
complicated. It was clear that further progress should involve novel ideas.

A big step ahead was made by Szász and myself, when we used the methods of
algebraic geometry in [S-Sz(1999)]. We assumed that the balls had arbitrary masses
m1, . . . , mN (but the same radius r). By taking the limit mN → 0, we were able
to reduce the dynamics of N balls to the motion of N − 1 balls, thus utilizing a
natural induction on N . Then algebro-geometric methods allowed us to effectively
analyze all possible degeneracies, but only for typical (generic) (N + 1)-tuples of
“external” parameters (m1, . . . , mN , r); the latter needed to avoid some exceptional
submanifolds of codimension one, which remained unknown. This approach led to
a proof of full hyperbolicity (but not yet ergodicity) for all N ≥ 2 and ν ≥ 2, and
for generic (m1, . . . , mN , r), see [S-Sz(1999)]. Later I simplified the arguments and
made them more “dynamical”, which allowed me to obtain full hyperbolicity for hard
balls with any set of external geometric parameters (m1, . . . , mN , r) [Sim(2002)]. The
reason why the masses mi are considered geometric parameters is that they determine
the relevant Riemannian metric

||dq||2 =
N
∑

i=1

mi||dqi||
2

of the system. Thus, the almost sure hyperbolicity has been fully established for all
systems of hard balls on tori.

To upgrade the full hyperbolicity to ergodicity, one needs to refine the analysis of
the mentioned degeneracies. For hyperbolicity, it was enough that the degeneracies
made a subset of codimension ≥ 1 in the phase space. For ergodicity, one has to
show that its codimension is ≥ 2, or to find some other ways to prove that the (possi-
bly) arising codimension-one manifolds of non-sufficiency are incapable of separating
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distinct ergodic components. In the paper [Sim(2003)] I took the first step in the
direction of proving that the codimension of exceptional manifolds is at least two: I
proved that all systems of N ≥ 2 balls on a 2-dimensional torus are ergodic for typi-
cal (generic) (N +1)-tuples of external parameters (m1, . . . , mN , r). The proof again
involves some algebro-geometric techniques, thus the result is restricted to generic
parameters (m1, . . . , mN ; r). But there was a good reason to believe that systems in
ν ≥ 3 dimensions would be somewhat easier to handle, at least that was indeed the
case in earlier studies.

As the next step, in the paper [Sim(2004)] I was able to further improve the
algebro-geometric methods of [S-Sz(1999)], and proved that for any N ≥ 2, ν ≥ 2,
and for almost every selection (m1, . . . , mN ; r) of the external geometric parameters
the corresponding system of N hard balls on T

ν is (fully hyperbolic and) ergodic.
Finally, in the paper [Sim(2009)] I managed to prove the Boltzmann-Sinai Ergodic

Hypothesis in full generality (i. e. without exceptional models), by assuming that
the so called Chernov-Sinai Ansatz is true for these models.

Remark 1.1. The Chernov-Sinai Ansatz states that for almost every singular phase
point x ∈ SR+

0 (with respect to the hypersurface measure of SR+
0 ) the forward orbit

S(0,∞)x is sufficient (geometrically hyperbolic). This is the utmost important global
geometric hypothesis of the Theorem on Local Ergodicity of [S-Ch(1987)], see also
Condition 3.1 in [K-S-Sz(1990)].

Thus the only missing piece of the whole puzzle is to prove that no open piece of a
singularity manifold can precisely coincide with a codimension-one manifold desribing
the trajectories with a non-sufficient forward orbit segment corresponding to a fixed
symbolic collision sequence. This is exactly what we prove in our Theorem below for
the case of elastically colliding disks, i. e. ν = 2.

2. Formulation and Proof of the Theorem

Let U0 ⊂ M \ ∂M be an open ball, T > 0, and assume that

(a) ST (U0) ∩ ∂M = ∅,

(b) ST is smooth on U0.

Next we assume that there is a codimension-one, smooth submanifold J ⊂ U0 with
the property that for every x ∈ U0 the trajectory segment S [0,T ]x is geometrically
hyperbolic (sufficient) if and only if x 6∈ J . (J is a so called non-hyperbolicity or
degeneracy manifold.) Denote the common symbolic collision sequence of the orbits
S [0,T ]x (x ∈ U0) by Σ = (e1, e2, . . . , en), listed this time in the increasing time order,
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and let the corresponding advances be αi = α(ei), i = 1, 2, . . . , n. Let ti = t(ei) the
time of the i-th collision, 0 < t1 < t2 < · · · < tn < T .

Finally we assume that for every phase point x ∈ U0 the first reflection Sτ(x)x in
the past on the orbit of x is a singular reflection (i. e. Sτ(x)x ∈ SR+

0 ) if and only if x
belongs to a codimension-one, smooth submanifold K of U0. For the definition of the
manifold of singular reflections SR+

0 see, for instance, the end of §1 in [Sim(2009)].

Theorem 2.1. Using all the assumtions and notations above, the submanifolds J
and K of U0 do not coincide.

The rest of this section is devoted to the proof of this theorem. It will be subdivided
into several lemmas and propositions.

First of all, we assume that the center x0 of the open ball U0 belongs to the
exceptional set J . During the indirect proof of the theorem smaller and smaller open
balls U0 will be selected to guarantee a regular (smooth) behavior.

Observe that the sufficiency of the orbit segments S [0,T ]x (x ∈ U0 \ J) immediately
implies that the collision graph G = ({1, 2, . . . , N}, {e1, e2, . . . , en}) is connected on
the vertex set V = {1, 2, . . . , N}. Therefore, according to Lemma 2.13 of [Sim(1992)-
II], the linear map

Φ : N0

(

S [0,T ]x
)

→ R
n

defined by (Φ(w))i = αi(w) (i = 1, 2, . . . , n) is a linear embedding for every x ∈ U0.
Here N0(S

[0,T ]x) denotes the neutral linear space of the trajectory segment S [0,T ]x, see
Definition 2.5 of [Sim(2009)]. The sufficiency (geometric hyperbolicity) of a trajectory
segment S [0,T ]x means that the dimension of the neutral linear space N0(S

[0,T ]x) takes
the minimum possible value 1, see Definition 2.7 in [Sim(2009)]. Moreover, just like
in the previous section, let 1 = k(1) < k(2) < · · · < k(N − 1) < n be the uniquely
defined indices with the property that for every l (1 ≤ l ≤ N − 1) the collision graph
(

V, {e1, e2, . . . , ek(l)}
)

has exactly N − l connected components, whereas the number

of components of
(

V, {e1, e2, . . . , ek(l)−1}
)

is N − l + 1.
We shall call the edges (collisions) ek(1), . . . , ek(N−1) essential.
For every non-essential edge em = {i(m), j(m)} (1 ≤ i(m) < j(m) ≤ N) we express

the relative displacement

∆q−
i(m)(tm)−∆q−

j(m)(tm) = αm

[

v−
i(m)(tm)− v−

j(m)(tm)
]

as a linear combination of relative velocities of earlier collisions e1, e2, . . . , em−1 (with
coefficients made up from some masses and advances) precisely as described by the
CPF, see Proposition 2.19 in [S-Sz(1999)].

(2.2) αm

[

v−
i(m)(tm)− v−

j(m)(tm)
]

=

m−1
∑

k=1

αkΓ
(m)
k
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(1 ≤ m ≤ n, em is not essential), where each Γ
(m)
k is a linear combination of the

relative velocities v−
i(k) − v−

j(k) and v+
i(k) − v+

j(k), and the coefficients in these linear

combinations are fractional linear expressions of the masses mi(k) and mj(k), see the
CPF as Proposition 2.19 in [S-Sz(1999)]. We observe that the solution set of the
system of all equations (2.2) (taken for all m with a non-essential edge em) is precisely
the linear space Φ

(

N0(S
[0,T ]x)

)

= N 0(S
[0,T ]x), having the same dimension as the

neutral space N0(S
[0,T ]x), x ∈ U0.

As follows, we are presenting an indirect proof (a proof by contradiction) by as-
suming that the nonhyperbolicity manifold J coincides with a past singularity so that
no collision takes place between the mentioned singularity and J . (Otherwise those
collisions between the singularity and J could be added to the symbolic sequence
Σ = (e1, e2, . . . , en)) as an initial segment.)

Throughout the proof we shall assume not only that the dimension ν of the con-
tainer torus is equal to 2, but also that the masses of the interactive disks are equal:
m1 = m2 = · · · = mN . As a matter of fact, this assumption is not a serious restric-
tion of generality: it is merely a technical-notational assumption, and the reader can
easily re-write the present proof to cover the general case of arbitrary masses. We
denote by d = 2(N − 1) the dimension of the configuration space Q.

Following the ideas and notations of §3 of [S-Sz(2000)], we introduce the following
concepts and notations.

With every collision ek = (i(k), j(k)) (1 ≤ k ≤ n, 1 ≤ i(k) < j(k) ≤ N) we asso-
ciate the real projective line P ∼= RP(1) of all orthogonal reflections of the common
tangent space

(2.3) Z = TQ = TqQ =

{

(δq1, . . . , δqN) ∈ (R2)N
∣

∣

N
∑

i=1

δqi = 0

}

∼= R
d

across all possible tangent hyperlanes H of the cylinder Cek corresponding to the
collision ek. In this way we obtain a map

(2.4) Φ : Sd−1 ×
n
∏

k=1

Pk → Sd−1

which assignes to every (n+ 1)-tuple

(V0; g1, g2, . . . , gn) ∈ Sd−1 ×
n
∏

k=1

Pk

the image velocity Vn = V0g1g2 . . . gn of V0 under the composite action g1g2 . . . gn.
(Here, by convention, the composition is carried out from the left to the right, and
Sd−1 denotes the unit sphere of Z in 2.3.) The space Mn = Sd−1 ×

∏n

k=1Pk is
called the phase space of the virtual velocity process (V0, V1, . . . , Vn), where Vk =
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V0g1g2 . . . gk. Clearly, the velocity process (V0, V1, . . . , Vn) uniquely determines the
sequence of reflections g1, g2, . . . , gn. For any x ∈ Mn or x ∈ U0 we denote the
velocity Vk by Vk(x). Similarly, v+

i(k)−v+
j(k) denotes the relative velocity of the colliding

particles i(k) and j(k) right after the collision ek = (i(k), j(k)) (1 ≤ i(k) < j(k) ≤
N), and the definition of the pre-collision relative velocity v−

i(k) − v−
j(k) is analogous,

k = 1, 2, . . . , n. Thus we get a natural projection

(2.5) Π : U0 → Mn

by taking Π(x) = (V0(x); g1(x), . . . , gn(x)) for x = (q(x), v(x)) ∈ U0, where V0(x) =
v(x).

What is coming up is a local analysis in a small, open ball neighborhood B0 ⊂ Mn

of the base point (V0(x0); g1(x0), . . . , gn(x0)).
The Connecting Path Formula (2.2) together with the results of [S-Sz(2000)] and

[Sim(2002)] yield the following results.

Proposition 2.6. For any integer n0, 2 ≤ n0 ≤ n, the neutral space

Nt1+0(V0; g1, g2, . . . , gn0
) = N1(V0; g1, g2, . . . , gn0

)

is fully determined by the directions of all relative velocities v−
i(l) − v−

j(l), v
+
i(l) − v+

j(l)

(2 ≤ l ≤ n0−1), and by the directions of v+
i(1)−v+

j(1) and v−
i(n0)

−v−
j(n0)

. This property

will be called the Direction Determination Principle, or DDP. As a consequence, the
neutral space N0(V0; g1, g2, . . . , gn0

) is fully determined by the relative velocities listed
above and by v−

i(1) − v−
j(1).

Proof. Observe that for any tangent vector δq = (δq1, . . . , δqN ) ∈ Z the relation
δq ∈ N1(V0; g1, . . . , gn0

) holds true if and only if for every k, 2 ≤ k ≤ n0, the vector
Rk(δq ·g2 ·g3 ·· · ··gk−1) is parallel to the relative velocity vector v−

i(k)−v−
j(k), and R1(δq)

is parallel to v+
i(1) − v+

j(1). (Here Rk(δy) = δyi(k)− δyj(k) for any δy = (δy1, . . . , δyN) ∈

Z.) �

Proposition 2.7. For every n0, 1 ≤ n0 ≤ n, the generic (⇐⇒minimal) dimension
(both in measure-theoretical and topological senses) of the neutral spaces

N0(V0; g1, . . . , gn0
)

on the phase space Mn0
is equal to the generic (⇐⇒minimal) value of

dimN0(V0(x); g1(x), g2(x), . . . , gn0
(x))

for all x ∈ U0. (Key Lemma 3.19 in [Sim(2002)].)

The value of this typical dimension will be denoted by ∆(e1, e2, . . . , en0
). Plainly,

it only depends on the symbolic sequence (e1, e2, . . . , en0
).

The value of dimN0(V0(x); g1(x), . . . , gn0
(x)) for typical x ∈ J (either in measure-

theoretical or in topological sense) will be denoted by ∆J(e1, e2, . . . , en0
). By selecting
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the open balls B0 and U0 (B0 ⊂ Mn, U0 ⊂ M, U0 = Π−1(B0)) small enough we may
(and shall) assume that for every integer n0, 1 ≤ n0 ≤ n,

(2.8) dimN0 (V0(y); g1(y), . . . , gn0
(y)) = ∆(e1, e2, . . . , en0

) ∀y ∈ B0 \ J̃ ,

(2.9) dimN0 (V0(y); g1(y), . . . , gn0
(y)) = ∆J(e1, e2, . . . , en0

) ∀y ∈ J̃ ,

where J̃ ⊂ B0 is an analytic submanifold of B0 with J = Π−1(J̃).
For variable points x = (V0; g1, . . . , gn) ∈ Mn let us consider all minors (deter-

minants of square submatrices) M1(x),M2(x), . . . ,Ms(x) of the system (2.2) of all

CPFs that identically vanish on J̃ but are not identically zero on the phase space
Mn. By again selecting the ball B0 ⊂ Mn small enough we may and shall assume
that

(2.10) J̃ =
{

x ∈ B0

∣

∣ Mi(x) = 0
}

for i = 1, . . . , s.

Now it is time to bring up the definition of the “critical index” n0.

Definition 2.11. The critical index n0 is the minimum value of all the maximum
column indices of minors Mi(x) featuring (2.10). Let Mi0(x) be a minor (satisfying
2.10) whose biggest column index is n0.

Due to the facts that the columns of the minor Mi0(x) depend on the coordinates
of the relative velocities in a linear way and by the Direction Determination Principle
(DDP) of Proposition 2.6 we obtain a useful description of the membership relation

x ∈ J̃ .

Proposition 2.12. For any x ∈ B0 the relation x ∈ J̃ holds true (i.e. Mi0(x) = 0)
if and only if the pair of relative velocities

(2.13) r(x) :=
(

v−
i(n0)

(x)− v−
j(n0)

(x), v+
i(n0)

(x)− v+
j(n0)

(x)
)

∈ R
2 × R

2 = R
4

belongs to a hyperplane H(x) ⊂ R
4 depending analytically on the directions

dir(v−
i(k)(x)− v−

j(k)(x)), dir(v+
i(k)(x)− v+

j(k)(x))

of the indicated relative velocities for k = 1, 2, . . . , n0 − 1.

The next result tells that the collision en0
is “essential” in the sense that it decreases

the dimension of the neutral space.

Lemma 2.14.

∆(e1, e2, . . . , en0
) = ∆(e1, e2, . . . , en0−1)− 1.

Proof. Proof by contradiction: assume that ∆(e1, . . . , en0
) = ∆(e1, . . . , en0−1). This

means that the actual CPF of (2.2) (in which m = n0) can be dropped from the whole
system without affecting the solution set. Furthermore, by making the standard
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reduction αn0
= 0 for the advance αn0

(which can be done by modifying the solution
by adding to it a solution with all advances equal, and this chops off the dimension
of the solution set by 1) we can completely drop the n0-th column from the system
of CPFs (2.2). This shows that the two relative velocity components of r(x) in (2.13)
have no effect on the solution set in question, thus the essential minor Mi0(x) from
(2.10) cannot have the n0-th column as one of its columns. �

The upcoming lemma tells us that the critical collision en0
does not distinguish

between the points of J̃ and of B0 \ J̃ .

Lemma 2.15.

∆(e1, e2, . . . , en0
) = ∆J(e1, e2, . . . , en0

).

Proof. Again a proof by contradiction: assume that ∆(e1, . . . , en0
) < ∆J (e1, . . . , en0

).
According to Proposition 2.6, the neutral space

Nn0−1 (V0(x); g1(x), . . . , gn0−1(x))

is determined by the relative velocities v−
i(l)(x) − v−

j(l)(x) and v+
i(l)(x) − v+

j(l)(x) for

l = 1, 2, . . . , n0 − 1. On the other hand, the projection

Rn0
[Nn0−1 (V0(x); g1(x), . . . , gn0−1(x))]

of this neutral space onto δqi(n0) − δqj(n0) determines if x ∈ J is true or not: x 6∈ J if
and only if the dimension of the above projection is 2, and not 1. This, in turn, means
that the relative velocities v−

i(l)(x)−v−
j(l)(x) and v+

i(l)(x)−v+
j(l)(x) (l = 1, 2, . . . , n0−1)

determine if x ∈ J is true or not, thus some essential minor Mi(x) of (2.10) has all
its column indices < n0. �

3. Finishing the proof of the Theorem

Consider an arbitrary point y0 ∈ J . Let τ < 0 be the unique number such that

(1) Sτy0 = y∗ ∈ SR+
0 ,

(2) S(τ,0)y0 ∩ ∂M = ∅.

Here SR+
0 denotes the set of all singular reflections given with their outgoing (post-

singularity) velocity.
Select and fix a vector w0, w0 ⊥ v(y∗), such that

(3.1) w0 ∈ N0 (V0(y
∗); g1(y

∗), . . . , gn0−1(y
∗)) \ N0 (V0(y

∗); g1(y
∗), . . . , gn0

(y∗)) .

This is possible, due to lemmas 2.14–2.15. Next we consider a smooth curve γ0(s),
|s| < ε0, γ0(0) = y∗, γ0(s) ∈ SR+

0 , as follows:
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Case A. If the singularity at y∗ is a double collision (a corner of the configuration
space)

(1) v(γ0(s)) =
v(y∗) + s · w0

||v(y∗) + s · w0||
,

(2) q(γ0(s)) = q(γ0(0)) = q(y∗)

for |s| < ε0.

Case B. If the singularity at y∗ is a tangency

(1) v(γ0(s)) =
v(y∗) + s · w0

||v(y∗) + s · w0||
,

(2) q(γ0(s)) = q(y∗) + α · w0 + β · v(γ0(s)))

(|s| < ε0) so that the relation γ0(s) ∈ SR+
0 still holds true. We note that the orders

of magnitude of the correction parameters α and β are α = O(s2), β = O(s), as a
simple geometric observation shows.

Fix a time t∗, tn0−1(y
∗) < t∗ < tn0

(y∗), and investigate the image St∗(γ0(s)) = γ∗(s)
of the curve γ0 under the t∗-iterate of the billiard flow. More precisely, let us focus
our attention on the projection

(3.2)

(

qi(n0)(γ
∗(s))− qj(n0)(γ

∗(s)), vi(n0)(γ
∗(s))− vj(n0)(γ

∗(s))
)

= (q(s), v(s)) ∈ R
2 × R

2,

and on the lines

(3.3) L(s) :=
{

q(s) + t · v(s)
∣

∣ t ∈ R
}

⊂ R
2.

The following proposition directly follows from the definition (3.1) of w0 and from
the definition of the curve γ0 ⊂ SR+

0 .

Proposition 3.4. The lines L(s) rotate about a point A of R2 in Case A, whereas
they are tangential to a given ellipse of R2 in Case B.

We remind the reader that, according to Proposition 2.12, the vectors

r(γ0(s)) =
(

v(s), v+(s)
)

belong to a given hyperplane H(γ0(0)) = H(y∗) of R4 not depending on the parameter
s. Here

(3.5) v+(s) := v+
i(n0)

(γ0(s))− v+
j(n0)

(γ0(s))

denotes the outgoing (i(n0), j(n0)) relative velocity right after the collision en0
=

(i(n0), j(n0)).
The proof of the Theorem will be complete as soon as we prove our

Proposition 3.6. Let C1 ⊂ R
2 be an ellipse, possibly degenerated to a single point,

C2 ⊂ R
2 be a circle, so that C1 and C2 are lying outside of each other. Suppose that

L(s), |s| < ε0, is a smooth family of lines in R
2 with the following properties:
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(i) L(s) is tangent to C1 at the point of contact A(s),
(ii) L(s) intersects C2 in two points, out of which the one lying closer to A(s) is

denoted by B(s),

(iii)
d

ds
α (B(s)− A(s)) > 0 for all s, |s| < ε0.

Here α (B(s)− A(s)) = α(v(s)) denotes the direction angle of the vector B(s) −
A(s) = v(s). Finally, let v+(s) be the mirror image of v(s) under the orthogonal
reflection across the tangent line of the circle C2 at the point B(s).

We claim that there is no hyperplane H ⊂ R
2 × R

2 containing all the points
(v(s), v+(s)) for |s| < ε0.

Proof. A simple geometric inspection. Indeed, first one can assume that lines L(s)
depend on the parameter s analytically. Then one can analytically extend the family
of lines L(s) to a maximal interval of parameters I = [a, b] ⊃ (−ε0, ε0) by preserving
all properties (i)–(iii) above so that L(a) and L(b) are tangential to the circle C2. If
there was a hyperplane H ⊂ R

2 × R
2 containing all points (v(s), v+(s)) for |s| < ε0

then, by the reason of analyticity, the same containment (v(s), v+(s)) ∈ H would be
true for all s, a ≤ s ≤ b. Let s0 ∈ (a, b) be such that v+(s0) = −v(s0). Now we have
that

(v(a), v(a)) ∈ H,

(v(b), v(b)) ∈ H,

(v(s0), −v(s0)) ∈ H,

so the hyperplane H ⊂ R
2 × R

2 must coincide with the hyperplane
{

(x, y) ∈ R
2 × R

2
∣

∣ (y − x) ‖ v(s0)
}

.

But this is impossible, for the difference vectors v+(s)−v(s) are obviously not parallel
to v(s0) for any s, unless s = s0, or s = a, or s = b. �

4. Proof of the Boltzmann-Sinai Ergodic Hypothesis

for all hard disk systems

Proof. We carry out an induction on the number N of elastically interacting disks.
For N = 2 this is the classic result of Sinai, [Sin(1970)]. Suppose that N > 2 and the
result (ergodicity, the Chernov-Sinai Ansatz, and complete hyperbolicity, implying
the Bernoulli mixing property, see [C-H(1996)] and [O-W(1998)]) has been proved
for all systems of hard disks (of equal masses) on the flat 2-torus T2 with the number
of disks less than N . According to Theorem 6.1 of [Sim(1992)-I], for almost every
singular phase point x ∈ SR+

0 the forward orbit S(0,∞)x of x
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(1) contains no singularity, and
(2) contains infinitely many connected collision graphs following each other in

time.

By Corollary 3.26 of [Sim(2002)] such forward orbits S(0,∞)x are sufficient (geomet-
rically hyperbolic), unless the phase point x belongs to a countable family J1, J2, . . .
of exceptional, codimension-one, nonhyperbolicity manifolds studied right here in this
paper. By our Theorem all these exceptional manifolds Jk intersect SR+

0 in zero-
measured subsets of SR+

0 , and this proves the Chernov-Sinai Ansatz for our current
system with N disks. Finally, the Theorem of [Sim(2009)] gives us that the considered
N -disk system is also ergodic, completely hyperbolic, hence Bernoulli mixing. �
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[S-Sz(1999)] Simányi, N., Szász, D.: Hard ball systems are completely hyperbolic, Annals of Mathe-

matics, 149 (1999), 35–96.
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[S-Sz(2000)] Simányi, N., Szász, D.: Non-integrability of Cylindric Billiards and Transitive Lie

Group Actions, Ergod. Th. & Dynam. Sys. 20 (2000), 593–610.

The University of Alabama at Birmingham, Department of Mathematics, 1300 Uni-

versity Blvd., Suite 452, Birmingham, AL 35294 U.S.A.

E-mail address : simanyi@uab.edu


	1. Introduction
	2. Formulation and Proof of the Theorem
	3. Finishing the proof of the Theorem
	4. Proof of the Boltzmann-Sinai Ergodic Hypothesis  for all hard disk systems
	References

