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C-SORTABLE WORDS AS GREEN MUTATION SEQUENCES

YU QIU

Abstract. Let Q be an acyclic quiver and s be a sequence s with elements in the
vertex set Q0. We describe a sequence of simple (backward) tilting in the bounded
derived category D(Q), starting from the standard heart HQ = modkQ and ending
at the heart Hs in D(Q). Then we interpret Keller’s green mutation via King-Qiu’s
Ext-quiver of hearts, which provides a proof of Keller’s theorem, that s is a green
mutation sequence if and only if every heart in the simple tilting sequence is greater
than or equal to HQ[−1]; it is maximal if and only if Hs = Q[−1]. Further, fix a
Coxeter element c in the Coxeter group WQ of Q, which is admissible with respect
to the orientation of Q. We show that the sequence w̃ induced by a c-sortable word
w is a green mutation sequence. As a consequence, we obtain a bijection between
the set of c-sortable words and finite torsion class in HQ, which was first proved by
Thomas and was also obtained by Amiot-Iyama-Reiten-Todorov. As byproducts, the
interpretations of inversions, descents and cover reflections of a c-sortable word w,
and thus noncrossing partitions, as well as the wide subcategories associated to Hw,
are given in terms of non-green vertices.
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Introduction

Cluster algebra was invented by Fomin-Zelevinsky in 2000, attempting to understand
total positivity in algebraic groups and canonical bases in quantum groups. It has
been heavily studied during the last decant due to its wide connection to many areas
in mathematics, (for more details, see the introduction survey [6]). The combinatorial
ingredient in the cluster theory is quiver mutation, which leads to the categorification
of cluster algebra via quiver representation theory due to Buan-Marsh-Reineke-Reiten-
Todorov in 2005.

Recently, Keller spotted a remarkable special case of quiver mutation by adding cer-
tain restrictions, known as the green quiver mutation (Definition 2.2); using which,
he obtained results concerning Kontsevich-Soibelman’s noncommutative Donaldson-
Thomas invariant via quantum cluster algebras. Inspired by Keller [5] and Nagao [7],
King-Qiu [8] studied the exchange graphs of hearts and clusters in various categories
associated to cluster categories, with applications to stability conditions and quantum
dilogarithm identities in [9].

Our first aim in this paper is to explain Keller’s green mutation result in terms
of tilting. More precisely, a green sequence s induces a path P(s) in the exchange
graph EgQ (cf. Definition 1.2), that is, a sequence of simple (backward) tilting. Thus
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2 YU QIU

s corresponds to a heart Hs, which provides a proof of Keller’s theorem. Here is a
summarization of the results in Section 2.

Theorem 0.1. Let Q be an acyclic quiver.

• A sequence s is a green mutation sequence if and only if H ≥ HQ[−1] for any
H in the path P(s).
• A vertex j ∈ Q0 is a green vertex for some green mutation sequence s if and
only if the corresponding simple in Hs is in HQ.
• A green sequence s is maximal if and only if Hs = HQ[−1]. Hence the mutated
quivers associated to two maximal green mutation sequences are isomorphic.
• The simples of the wide subcategory Ws associated to the torsion class Ts are
precisely the non-green simples in of Hs shifting by minus one.

Our second focus is on c-sortable words (c for Coxeter element), defined by Read-
ing [10], who showed bijections between c-sortable words, c-clusters and noncrossing
partitions in finite case (Dynkin case). Ingalls-Thomas extended Reading’s result in
the direction of representation theory and gave bijections between many sets (see [4,
p. 1534]). The bijection between c-sortable words and finite torsion classes was first
generalized by Thomas [11] and also obtained by Amiot-Iyama-Reiten-Todorov [1] via
layers for preprojective algebras. We will interpret a c-sortable word as a green mutation
sequence (Theorem 3.1) and obtain many consequences, summarized by the following
theorem.

Theorem 0.2. For an acyclic quiver Q with an admissible Coxeter element c. Then
any c-sortable word w induces a green mutation sequence w̃ and we have the following
bijections.

• {the c-sortable word w}
1−1

←→ {the finite torsion class Tw in HQ = modkQ}.

• {the inversion tT for w}
1−1
←→ {the indecomposable T in Tw}.

• {the descent sj for w}
1−1

←→ {the non green vertex j for w}.

• {the cover reflection tT for w}
1−1
←→ {the non-green simple T in Hw}.

Further, if Q is of Dynkin type, the noncrossing partition ncc(w) associated to w can
be calculated as

ncc(w) =
∏

j∈V-(w)

swj ,

with rankncc(w) = #V-(w), where V-(w) is the set of the non-green vertices and swj
is the reflection corresponding the j-th simple in Hw. Also, the tree of c-sortable words
(with respect to the week order) is isomorphic to a supporting tree of the exchange graph
EgQ.

These results give a deeper understanding of the results of Ingalls-Thomas [4]. Note
that all our bijections are consistent with theirs, cf. Table 1 and [4, Table 1]. Also,
the construction from c-sortable words to the green mutation sequences should be the
‘dual’ construction of Amiot-Iyama-Reiten-Todorov [1] and provides a combinatorial
perspective to attack their problems at end of their paper.
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1. Preliminaries

Fixed an algebraically-closed field k. Throughout this paper, Q will be a finite acyclic
quiver with vertex set Q0 = {1, . . . , n} (unless otherwise states). The path algebra is
denoted by kQ. Let HQ := modkQ be the category of finite dimensional kQ-modules,

which is an abelian category, and D(Q) := Db(HQ) be its bounded derived category,
which is a triangulated category. We denote by SimA a complete set of non-isomorphic
simples in an abelian category A and let

SimHQ = {S1, . . . , Sn},

where Si is the simple kQ-module corresponding to vertex i ∈ Q0.

1.1. Coxeter group and words. Recall that the Euler form

〈−,−〉 : ZQ0 × Z
Q0 → Z

associated to the quiver Q is defined by

〈a,b〉 =
∑

i∈Q0

aibi −
∑

(i→j)∈Q1

aibj .

Denote by (−,−) the symmetrized Euler form, i.e. (a,b) = 〈a,b〉 + 〈b,a〉. Moreover
for M,L ∈ modkQ, we have

〈dimM,dimL〉 = dimHom(M,L)− dimExt1(M,L), (1.1)

where dimE ∈ N
Q0 is the dimension vector of any E ∈ modkQ. Let V = K(kQ)⊗ R.

For any non-zero v ∈ V , define a reflection

sv(u) = u−
2(v, u)

(u, u)
v.

We will write sM = sdimM for M ∈ HQ ⊔HQ[−1].
The Coxeter group W = WQ is the group of transformations generated by the simple

reflections si = sdimSi
, i ∈ Q0. The (real) roots in W are {w(ei) | w ∈ W, i ∈ Q0};

the positive roots are those root which are a non-negative (integral) combination of the
ei. Note that, the reflection of a positive root is in W . Denote by T the set of all the
reflections of W , that is, the set of all conjugates of the simple reflections of W . A
Coxeter element for W is the product of the simple reflections in some order. For a
Coxeter element c = sσ1

. . . sσn , we say it is admissible with respect to the orientation
of Q, if there is no arrow from σi to σj in Q for any i > j.

A word w in W is an expression in the free monoid generated by si, i ∈ Q0. For
w ∈ W , denote by l(w) its length, that is, the length of the shortest word for w as a
product of simple reflections. A reduced word w for an element w ∈ W is a word such
that w = w with minimal length. The notion of reduced word leads to the weak order
≤ on W , i.e. x ≤ y if and only if x has a reduced expression which is a prefix of some
reduced word for y.

For a word w in WQ, we have the following notions.
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• An inversion of w is a reflection t such that l(tw) ≤ l(w). The set of inversions
of w is denoted by Inv(w).
• A descent of w is a simple reflection s such that l(ws) ≤ l(w). The set of
descent of w is denoted by Des(w).
• A cover reflection of w is a reflection t such that tw = ws for some descent s of
w. The set of cover reflections of w is denoted by Cov(w).

Definition 1.1 (Reading, [10]). For a word a = a1 . . . ak, define the support supp(a)
to be {a1, . . . , ak}. Fix a Coxeter element c = sσ1

. . . sσn . A word w is call c-sortable if

it has the form w = c(0)c(1) . . . c(m), where c(i) are subwords of c satifying

supp(c(0)) ⊆ supp(c(1)) ⊆ · · · ⊆ supp(c(m)) ⊆ Q0.

Similarly to normal words, a T-word is an expression in the free monoid generated
by elements in the set T of all reflections. Denote by by lT (w) its absolute length, that
is, the length of the shortest word for w as a product of arbitrary reflections. So we
have the notion of reduced T-words, which induces the absolute order ≤T on W .

The noncrossing partitions, with respect to a Coxeter element c, for W are elements
between the identity and c, with respect to the absolute order. The rank of a noncrossing
partition is its absolute length.

1.2. Hearts and tilting. Recall that, a t-structure on a triangulated category D is a
full subcategory P ⊂ D, satisfying P[1] ⊂ P and being the torsion part of some torsion
pair (with respect to triangles) 〈P,P⊥〉 in D. A t-structure P is bounded if, for every
object M , the shifts M [k] are in P for k ≫ 0 and in P⊥ for k ≪ 0. The heart of a
t-structure P is the full subcategory H = P⊥[1] ∩ P and any bounded t-structure is
determined by its heart.

By the tilting theory in the sense of Happel-Reiten-Smalø, for any heart H (in a
triangulated category) with torsion pair 〈F ,T 〉, there exists the following two hearts
with torsion pairs

H♯ = 〈T ,F [1]〉, H♭ = 〈T [−1],F〉.

We call H♯ the forward tilt of H with respect to the torsion pair 〈F ,T 〉, and H♭ the

backward tilt of H. Clearly H♭ = H♯[−1].
We say a forward tilt is simple, if the corresponding torsion free part is generated by

a single rigid simple object S. We denote the new heart by H♯
S. Similarly, a backward

tilt is simple if the corresponding torsion part is generated by such a simple and the new
heart is denoted by H♭

S . The simple tilting leads to the notation of exchange graphs.

Definition 1.2. [8] The exchange graph EgD(Q) of a triangulated category D to be
the oriented graph, whose vertices are all hearts in D and whose edges correspond to
the simple backward titling between them. We denote by Eg◦D(Q) the ‘principal’
component of EgD(Q), that is, the connected component containing the heart HQ.
Further more, denote by EgQ full subgraph of Eg◦D(Q) consisting of those hearts
which are backward tilts of HQ.

By [8], every heart in Eg◦D(Q) is finite and rigid (i.e. has finite many simple, each
of which is rigid) and

EgQ = {H ∈ Eg◦(Q) | HQ[−1] ≤ H ≤ HQ}.
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Remark 1.3. Unfortunately, we take a different convention to King-Qiu [8] (backward
tilting instead of forward). Thus a exchange graph Eg in this paper has the opposite
orientation of the exchange graph EG there.

1.3. Simple (backward) tilting sequence. Let s = i1 . . . im be a sequence with
ij ∈ Q0 and we have a sequence of hearts Hs,j with simples

SimHs,j = {S
s,j
i | i ∈ Q0}, 0 ≤ j ≤ m,

inductively defined as follows.

• Hs,0 = HQ with Ss,0
i = Si for any i ∈ Q0.

• For 0 ≤ j ≤ m− 1, we have

Hs,j+1 = (Hs,j)
♭
Ss,j
j

.

Note that SimHs,j+1 is given by formula [8, Proposition 5.2 (5.2)] in terms of SimHs,j,
which inherited a labeling by Q0. Define

Hs = Hs(Q) : = Hs,m

and P(s) to be the path P(s) = T s

m · · ·T
s

1 as follow

P(s) =: HQHs,0
T s

1−→ Hs,1
T s

2−→ . . .
T s

m−−→ Hs,m = Hs,

in Eg◦D(Q), where T s

j = Ss,j−1
j is the j-th simple in Hsj−1

. As usual, the support

suppP(s) of P(s) is the set {T s

1 , . . . , T
s

m}.

Remark 1.4. Note that, for a heart H in Eg◦D(Q) other than HQ, there is no prior
labeling for its simples by Q0. Different sequences of simple tilting might induce different
labeling of simples in SimH (cf. Figure 1).

2. Green mutation

In this section, the interpretation of the green mutation via King-Qiu’s Ext-quiver of
heart is given, which provides a proof of Keller’s theorem.

2.1. Green quiver mutation.

Definition 2.1 (Fomin-Zelevinsky). Let R be a finite quiver without loops or 2-cycles.
The mutation µk on R at vertex k is a quiver R′ = µk(R) obtaining from R as follows

• adding an arrow i→ j for any pair of arrows i→ k and k → j in R;
• reversing all arrows incident with k;
• deleting as many 2-cycles as possible.

It is straightforward to see that the mutation is an involution, i.e. µ2
k = id. A

mutation sequence s = i1 . . . im on R is a sequence with ij ∈ R0 and define

Rs : = µs(R) = µim(µim−1
(. . . µi1(R) . . .)).

As in Section 1.3, a (green) mutation sequence s induces a sequence of simple (backward)
tilting and a heart Hs.

Let Q̃ be the principal extension of Q, i.e. the quiver obtained from Q by adding a
new frozen vertex i′ and a new arrow i′ → i for each vertex i ∈ Q0. Note that we will
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never mutate a quiver at a frozen vertex and so mutation sequences s for Q̃ are precisely
mutation sequences of Q.

Definition 2.2 (Keller [5]). Let s be a mutation sequence of Q̃. A vertex j in the

quiver Q̃s is called green if there is no arrows from j to a frozen vertex i′. Let V-(s) be

the set of non-green vertices in Q̃s for s. A green mutation sequence s on Q (or Q̃) is a
mutation sequence on Q such that every mutation in the sequence is at a green vertex
in the corresponding quiver. Such a green mutation sequence s is maximal if V-(s) = ∅.

2.2. Principal extension of Ext-quivers. Following [8], we will also use Ext-quivers
of hearts interpret green mutation.

Definition 2.3 (King-Qiu). Let H be a finite heart in a triangulated category D with
SH =

⊕
S∈SimH

S. The Ext-quiver Q(H) is the (positively) graded quiver whose vertices
are the simples of H and whose graded edges correspond to a basis of End•(SH,SH).
Further, define the CY-N double of a graded quiver Q, denoted by CYN (Q), to be the
quiver obtained from Q by adding an arrow T → S of degree N − k for each arrow
S → T of degree k and adding a loop of degree N at each vertex.

As the principal extension of a quiver Q, we consider the analogue for HQ. Since

Q is a subquiver of its extension Q̃, HQ and D(Q) are subcategories of H
Q̃

and D(Q̃)

respectively. For a sequence s, it also induces a simple tilting sequence in D(Q̃) (starting

at H
Q̃
) and corresponds to a heart, denoted by H̃s.

Let the set of simples in SimH
Q̃
− SimHQ be

SimHQ′ : = {S′
i | i ∈ Q0}.

A straightforward calculation gives

Homk(S′
i, Sj) = δijδ1k, ∀i, j ∈ Q0, k ∈ Z.

Hence, for any M ∈ HQ, we have

Homk(
⊕

i∈Q0

S′
i,M) 6= 0 ⇐⇒ k = 1. (2.1)

We have the following lemma.

Lemma 2.4. For any sequence s, we have Sim H̃s = SimHs ∪ SimHQ′.

Proof. Use induction on the length of s starting from the trivial case when s = ∅.

Suppose that s = tj with Sim H̃t = SimHt ∪ SimHQ′ . By [8, Lemma 3.4], we have
Ht ≤ HQ and hence the homology of any object in Ht, with respect to HQ, lives in non-
positive degrees. Thus, any M ∈ Ht admits a filtration with factors Si[k], i ∈ Q0, k ≤ 0.

As s′ is a source in Q̃ for any s ∈ Q0, S′
s is an injective in H

Q̃
which implies that

Ext1(Si[k], S
′
s) = 0 for any i ∈ Q0 and k ≤ 0. Therefore, we have Ext1(M,S′

s) = 0
for any M ∈ Ht, in particular, for M = St

j . Then applying [8, formula (5.2)] to the

backward tilt Ht
♭
St

j
and (H̃t)

♭

St

j
, gives Sim H̃s = SimHs ∪ SimHQ′ . �

By the lemma, we know that Q(Hs) is a subquiver of Q(H̃s).
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Definition 2.5. Given a sequence s, define the principal extension of the Ext-quiver

Q(Hs) to be the Ext-quiver Q(H̃s) while the vertices in SimHQ′ are the frozen vertices.

From the proof of Lemma 2.4, it is straightforward to see the following.

Lemma 2.6. Every frozen vertices S′
i is a source in Q(H̃s).

2.3. Keller’s theorem. Before we proof Keller’s observations for green mutation, we
import a result from [8] concerning the relation between quivers (for clusters) and Ext-
quivers.

Lemma 2.7 (King-Qiu). If H̃s ∈ Eg
Q̃

for some sequence s, then Q̃s is canonically

isomorphic to the degree one part of CY3(Q(H̃s)).

Proof. First, Eg
Q̃

is isomorphic to the cluster exchange graph for Q̃ and hence a heart

H̃s ∈ EgQ corresponding to a cluster C̃s (cf. [4] and [8]). By [3], Q̃s is the degree zero

part of the colored quiver Q(C̃s) associated to Cs while Q(C̃s) is the CY-2 completion of

Q̃s. Moreover, by [8, Proposition 6.7], after shift grading by one, this CY-2 completion

is isomorphic to the CY-3 completion of Q(H̃s). Thus the lemma follows. �

Now we proceed to prove our first theorem.

Theorem 2.8. Let Q be an acyclic quiver and s be a green mutation sequence for Q.
Then we have the following.

1◦. HQ[−1] ≤ Hs ≤ HQ and hence Hs ∈ EgQ.

2◦. Q̃s is canonically isomorphic to the degree one part of CY3(Q(H̃s)).

3◦. A vertex j in Q̃s is green if and only if the corresponding simple Ss

j is in HQ.

4◦. A vertex j in Q̃s is not green if and only if the corresponding simple Ss

j is in

HQ[−1]. In such case, there is no arrow from j to any of the frozen vertices i′.

Proof. We use induction on the length of s starting with trivial case when l(s) = 0. Now
suppose that the theorem holds for any green mutation sequence of length less than m
and consider the case when l(s) = m. Let s = tj where l(t) = m− 1 and j is a green

vertex in Q̃t.
First, the simple St

j corresponding to j is in HQ, by 3◦ of the induction step, which

implies 1◦ by [8, Lemma 5.4, 1◦].

Second, as Sim H̃s = SimHs ∪ SimHQ′ by Lemma 2.4, Hs ∈ EgQ is equivalent to

H̃s ∈ Eg
Q̃
. Then 2◦ follows from Lemma 2.7.

Third, since HQ is hereditary, 1◦ implies that any simple Ss

j ∈ SimHs is in either

HQ or HQ[−1]. If Ss

j is in HQ, by (2.1), there are arrows S′
i → Ss

j in Q(H̃s) and each
of which has degree one. Further, by 2◦, any such degree one arrow corresponds to an

arrow i′ → j in Q̃s. Therefore 3
◦ follows. Similarly, if Ss

j is in HQ[−1], there are arrows

S′
i → Ss

j in Q(H̃s), each of which has degree two and corresponds to an arrow i′ ← j in

Q̃s. Thus 4
◦ follows too. �
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The consequences of theorem include a criterion for a sequence being green muta-
tion sequence and one of Keller’s original statement about maximal green mutation
sequences.

Corollary 2.9. A sequence s is a green mutation sequence if and only if H ≥ HQ[−1]
for any H ∈ suppP(s). Further, a green mutation sequence s is maximal if and only if

Hs = HQ[−1]. Thus a maximal green mutation sequence s satisfies Q̃s
∼= Q̃.

Proof. The necessity of first statement follows from 1◦ of Theorem 2.8. For the suffi-
ciency, we only need to show that if t is a green mutation sequence and s = tj satisfies
Hs ≥ HQ[−1], for some j ∈ Q0, then s is also a green mutation sequence. Since
Ht ≥ HQ[−1], by [8, Lemma 5.4, 1◦] we know that Hs ≥ HQ[−1] implies St

j is in HQ.
But this means j is a green vertex for t, by 3◦ of Theorem 2.8, as required.

For the second statement, s is a maximal, if and only if Ss

i ∈ HQ[−1] for any i ∈ Q0,
or equivalently, Hs = HQ[−1], as required. �

Example 2.10. We borrow an example of A2 type green mutations from Keller [5] (but
the orientation slightly differs). Figure 1 gives two different maximal green mutation
sequences (121 and 21) which end up being isomorphic to each other.

2.4. Wide subcategory via non-green vertices. In this section, we aim to show
the non-green simples are precisely the simples in the wide subcategory Ws corresponds
to the torsion class Ts in the sense of Ingalls-Thomas.

Recall that a wide subcategory is an exact abelian categories closed under extensions.
Further, given a finite generated torsion class T in HQ, define the corresponding wide
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Figure 1. Two maximal green mutation sequences for an A2 quiver



C-SORTABLE WORDS AS GREEN MUTATION SEQUENCES 9

subcategory W(T ) to be

{M ∈ T | ∀(f ;X →M) ∈ T , ker(f) ∈ T }. (2.2)

First, we give another characterization for W(T ).

Proposition 2.11. Let 〈F ,T 〉 be a finite generated torsion pairs in HQ and H♯ be the
corresponding backward tilt. Then we have

SimW(T ) = T ∩ SimH♯ . (2.3)

Proof. By [4] and [8], such torsion pair corresponds to a cluster tilting object (in the
cluster category of D(Q)) and thus the heart H♯ is in EgQ and hence finite. Noticing

that H♯ admits a torsion pair 〈T ,F [1]〉, any its simple is either in T or F [1]. Let W be
the wide subcategory of H♯ generated by simples in T ∩ SimH♯.

First, for any S ∈ T ∩ SimH♯ and

(f : X → S) ∈ T ⊂ H♯,

f is surjective (in H♯) since S is a simple. Thus ker(f) is in T since T is a torsion free
class in H♯, which implies S ∈ W(T ). Therefore W ⊂ W(T ) and we claim that they
are equal.

If not, let M in W(T )−W whose simple filtration in H♯ (with factors in SimH♯) has
minimal number of factors. Let S be a simple top of M and then X = ker(M ։ S) is in
T . If S is in T ∩SimH♯, then X is inW(T )−W with less simple factors, contradicting
to the choice of M . Hence S ∈ F [1] ∩ SimH♯. Then we obtain a short exact sequence

0→ X →֒M ։ S → 0

in H♯ which became a short exact sequence

0→ S[−1] →֒ X
f
։ M → 0

in HQ. But ker(f) = S[−1] ∈ F , which contradicts to the fact that M is in W(T ) (cf.
(2.2)). Therefore W(T ) =W or (2.3). �

An immediate consequence of this corollary is as follows, noticing that a function Z
(known as the central charge) from SimH♯ to the upper half plane (of the complex plane
C) gives a stability condition, in the sense of Bridgeland (cf. [9]), on the triangulated
category D(Q).

Corollary 2.12. A finite generated wide subcategories in HQ is a semistable subcategory
of some Bridgeland stability condition on D(Q).

Remark 2.13. Note that Corollary 2.12 implies Ingalls-Thomas’ result, that every
wide subcategory in HQ is a semistable subcategory for some θ-stability condition, in
the sense of King, on HQ.

We end this section by showing that the simples of the wide subcategory associated
to a green mutation sequence. Let s be a green mutation sequence. We will write Ws

for the wide subcategory W(Ts) of the torsion pair

Ts = HQ ∩Hs[1]. (2.4)
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Recall that V-(s) is the set of non-green vertices of a green mutation sequence s. Denote
by V-(Hs) the set of non-green simples, that is, the simples corresponds to vertices in
V-(s).

Corollary 2.14. Let s be a green mutation sequence. Then SimWs[1] = V-(Hs).

Proof. By 3◦ and 4◦ of Theorem 2.8, we have

V-(Hs) = HQ[−1] ∩ SimHs = T [−1] ∩ SimHs .

Noticing that Hs[1] is the forward tilt of HQ with respect to the torsion class Ts, the
corollary follows from Proposition 2.11. �

3. C-sortable words

In this section, we will show that it is natural to interpret a c-sortable word as a
green mutation sequence, which produces many consequences.

3.1. Main results. Denote by w̃ = i1 . . . ik the sequence induced from a c-sortable
word w = si1 . . . sik . Note that w induces a path P(w̃) and a heart Hw̃ as in Section 1.3.
We will drop the tilde of w̃ later when it appears in the subscript or superscript.

Theorem 3.1. Let Q be an acyclic quiver and c be an admissible Coxeter element with
respect to the orientation of Q. Let w be a c-sortable word and we have the following.

1◦. w̃ is a green mutation sequence.
2◦. For any i ∈ Q0, let s

w

i be the reflection of Sw

i , the i-th simple of Hw. Then

swi ·w = w · si. (3.1)

3◦. Let Tw is defined as in (2.4) and we have IndTw = suppP(w).

Proof. We use induction on l(w)+#Q0 staring with the trivial case l(w) = 0. Suppose
that the theorem holds for any (Q, c,w) with l(w) + #Q0 < m. Now we consider the
case when l(w) + #Q0 = m. Let c = s1c− without lose of generality.

If s1 is not the initial of w, then the theorem reduces to the case for (Q−, c−,w),
where Q− is the full subquiver with vertex set Q0 −{1}, which is true by the inductive
assumption.

Next, suppose that s1 is the initial of w, so w = s1v for some v. Denote by ṽ the
sequence induced by v. Let Q+ = µ1(Q), c+ = s1cs1 and we identify

HQ+
= modkQ+ with Hs1 = (HQ)

♭
S1

via a so-called APR-tilting (reflecting the source 1 of Q).
For 2◦, consider the influence of the APR-tilting on the dimension vectors and Coxeter

group. we know that for any M ∈ HQ−{S1}, the dim+M with respect to Q+ equals
s1(dimM). Thus the reflection tM of M for Q+ equals s1sMs1. In particular, the
reflection tvi of Sw

i for Q+ equals s1s
w

i s1. Then formula (3.1) gives tvi · v = v · si or
swi ·w = w · si, as required.

Further more, by [10, Lemma 2.5], v is c+-sortable and hence the theorem holds for
(Q+, c+,v). Let v = usj, then the theorem also holds for (Q, c, s1u). Let T = Sw

j
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the j-th simple of Hw. Use the criterion in Corollary 2.9 for being a green mutation
sequence, we know that

{
(Hw)

♯
T = Hs1u ≥ HQ[−1],

Hw = Hw(Q) = Hv(Q+) ≥ HQ+
[−1].

(3.2)

If Hw ≥ HQ[−1] fails, comparing (3.2) with

IndHQ+
[−1] = IndHQ[−1]− {S1[−1]} ∪ {S1[−2]},

we must have T = S1[−2]. However, by formula (3.1) for (Q, c, s1u) and j ∈ Q0, noticing
that the j-th simple of Hs1u is T [1], we have

sT [1] · (s1u) = (s1u) · sj.

The RHS is w while the LHS equals to s21u = u, which is a contradiction to the fact that
the c-sortable word w is reduced. So Hw ≥ HQ[−1], and thus w̃ is a green mutation
sequence, by Corollary 2.9, as required.

Finally, we have IndT (Q)w = IndTv(Q+) ∪ {S1} which implies 3◦. �

3.2. Consequences. In this subsection, we discuss various corollaries of Theorem 3.1.
First, we prove the bijection between c-sortable words and finite torsion classed in HQ.

Corollary 3.2 (Thomas, Amiot-Iyama-Reiten-Todorov). There is a bijection between
the set of c-sortable words and the set of finite torsion classes in HQ, sending such a
word w to Tw.

Proof. Clearly, every torsion class Tw induced by a c-sortable word w is finite. To see
two different c-sortable words w1 and w2 induce different finite torsion classes, we use
the induction on l(w). Then it is reduced to the case when the initials of w1 and w2 are
different. Without lose of generality, let the initial s1 of w1 is on the left of the initial
s2 of w2 in expression

c = · · · s1 · · · s2c
′

of the Coxeter element c. Now, the sequence of simple tilting w̃2 takes place in the full
subcategory

D(Qres) ⊂ D(Q),

where Qres is the full subquiver of Q restricted to supp(s2c
′). Thus the simple S1

will never appear in the path P(w2) which implies Tw̃1
6= Tw̃2

by 3◦ of Theorem 3.1.
Therefore, we have an injection from the set of c-sortable words to the set of finite
torsion classes in HQ.

To finish, we need to show the surjectivity, i.e. any finite torsion class T is equal to Tw
for some c-sortable words. This is again by induction for (Q, c,T ), on # IndT +#Q0,
starting with the trivial case when # IndT = 0. Suppose that the surjectivity hold for
any (Q, c,T ) with # IndT +#Q0 < m and consider the case when # IndT +#Q0 = m.
Let c = s1c− without lose of generality.

If the simple injective S1 of HQ is not in T , we claim that T ⊂ HQ−
⊂ HQ, where

Q− is the full subquiver with vertex set Q0−{1}. If so, the theorem reduces to the case
for (Q−, c−, s), which holds by the inductive assumption. To see the claim, choose any
M ∈ HQ−HQ−

. Then S1 is a simple factor of M in its canonical filtration and hence
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the top, since S1 is injective. Thus Hom(M,S) 6= 0. But S1 /∈ T implies S1 is in the
torsion free class corresponds to T . So M /∈ T , which implies T ⊂ HQ−

as required.
If the simple injective S1 of HQ is in T , then consider the quiver Q+ = µ1(Q) and

the torsion class
T+ = add (IndT − {S1}) .

Similar to the proof of Theorem 3.1, we know that the claim holds for (Q+, c+,T+),
where c+ = s1cs1. i.e. T+ = Tv for some c+-sortable word v. But w = s1v is a
c-sortable word by [10, Lemma 2.5] and we have

IndTw = {S1} ∪ IndTv = IndT ,

or T = Tw, as required. �

Second, we claim that the path P(w) has maximal length.

Corollary 3.3. Let w be a c-sortable word. Then P(w) is the longest directed path in
EgQ connecting H and Hw.

Proof. By 4◦ of Theorem 3.1, the number of indecomposables in Tw is exactly the length
of P(w). Then the corollary follows from the fact that, each time we do a backward tilt
in the sequence w̃, the torsion class adds at least a new indecomposable, i.e. the simple
where the tilting is at. �

Third, we describe the properties of a c-sortable wordw in terms of non-green vertices
of the corresponding green mutation sequence w̃. Recall that V-(w) is the set of non-
green vertices of a green mutation sequence w̃ and V-(Hw) the set of (non-green) simples
in Hw.

Corollary 3.4. Let Q be an acyclic quiver and c be an admissible Coxeter element
with respect to the orientation of Q. For a c-sortable word w, the set of its inversions,
descents and cover reflections are given as follows

Inv(w) = {sT | T ∈ suppP(w)}, (3.3)

Des(w) = {si | i ∈ V-(w)}, (3.4)

Cov(w) = {sT | T ∈ V-(Hw)}, (3.5)

where sT is the reflection of T .

Proof. First of all, as the proof of Theorem 3.1 or [4, Theorem 4.3], we have (3.3) by
inducting on l(w) + #Q0.

For any j ∈ V-(s), by 4◦ of Theorem 2.8, we have the corresponding simple Sw

j is in

HQ[−1] and hence Sw

j [1] the torsion class Tw. By formula (3.3), we know that swi is in

Inv(w) and hence si is in Des(w) by (3.1).
For any j /∈ V-(s), by 3◦ of Theorem 2.8, and hence the corresponding simple Sw

j is
in HQ but not in the torsion class Tw. Then dimSw

j is not equal to any dimT, T ∈ Tw
since Tw is a simple in Hw ⊃ T . Again, by formula (3.3), we know that swi is not in
Inv(w) and hence si is not in Des(w) by (3.1).

Therefore, (3.4) and (3.5) both follow. �

In the finite case, there are two more consequences. The first one is about the
supporting trees of the (cluster) exchange graphs.
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Corollary 3.5. Let Q be a Dynkin quiver. For any H ∈ EgQ, there is a unique c-
sortable word w such that H = Hw. Equivalently, the tree of c-sortable word w (with
respect to the week order) is isomorphic to a supporting tree of the exchange graph EgQ.

Proof. First, notice that all c-sortable words forms a tree with respect to the week order.
Then the corollary follows from 3◦ of Theorem 3.1 and the fact that any torsion class
in HQ is finite. �

We finish this section by showing a formula of a T -reduced expression for noncrossing
partitions via non-green vertices. Let ncc be Reading’s map from c-sortable words to
noncrossing partitions. We have the following formula.

Corollary 3.6. Let Q be a Dynkin quiver. Keep the notation of Theorem 3.1, we have
the following formula

ncc(w) =
∏

j∈V-(w)

swj ,

with rank ncc(w) = #V-(w).

Proof. The corollary follows from (3.5) and Reading’s map ([10, Section 6]). �

XYZ

XYZ

XYZ

XYZ XBC

YXC

YBC

ZBC

ZBX

ABC AZY

CZY

BZY

XZY

2

3

1

3 2

3

1

3 3

2 3

1

1

Figure 2. The supporting tree of EgQ with respect to c = s1s2s3
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4. Example: Associahedron

Example 4.1. Consider an A3 type quiver Q : 2 ← 1 → 3 with c = s1s2s3. We have
the tree of c-sortable words is given below.

s2 // s2s3 s1s2|s1

e //

��✽
✽✽

✽✽
✽✽

✽

CC✝✝✝✝✝✝✝✝
s1 //

��❄
❄❄

❄❄
❄❄

❄
s1s2 //

<<①①①①①①①①①
s1s2s3 // s1s2s3|s1

&&▼▼
▼▼

▼▼
▼▼

▼▼
// s1s2s3|s1s2 // s1s2s3|s1s2s3

s3 s1|s3 // s1s3|s1 s1s2s3|s1s3

Moreover, a piece of AR-quiver of D(Q) is as follows

Z

  ❅
❅❅

❅ B

��❅
❅❅

❅ Y

  ❅
❅❅

❅ C

��❅
❅❅

❅

A

??⑦⑦⑦⑦

��❅
❅❅

❅ X

>>⑦⑦⑦⑦

  ❅
❅❅

❅ A

??⑦⑦⑦⑦

��❅
❅❅

❅ X

Y

>>⑦⑦⑦⑦
C

??⑦⑦⑦⑦
Z

>>⑦⑦⑦⑦
B

??⑦⑦⑦⑦

where the green vertices are the indecomposables in HQ and the red ones are there shift
minus one. Note that X,Y,Z are the simples S1, S2, S3 in HQ respectively.

Figure 2 is the exchange graph EgQ (cf. [8, Figure 1 and 4]). where we denote
a heart Hw by the set of its simples Sw

1 Sw

2 Sw

3 (in order). The green edges are the
green mutations in some green mutation sequences induced from c-sortable words. The
number on a green edges indicates where the mutation is at. Note that the underlying
graph of Figure 2 is the associahedron (of dimension 3).

Further, Table 1 is a list of correspondences between c-sortable words, hearts (as in
the Figure 2), descents, cover reflection, inversions and (finite) torsion classes. Note
that this table is consistent with [4, Table 1], in the sense that the objects in the j-th
row here are precisely objects in the j-th row there.
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Table 1. Example:A3

c-sortable Heart Descent Cover ref. Torsion class
word w Hw Des(w) Cov(w) Tw

s1s2s3|s1s2s3 XZY s1, s2, s3 tX , tY , tZ XBCAZY

s1s2s3|s1s2 BZY s1, s2 tB, tZ XBCAZ

s1s2s3|s1s3 CZY s1, s3 tC , tY XBCAY

s2s3 XYZ s2, s3 tY , tZ YZ

s1s2s3 ABC s2, s3 tB , tC XBC

s1s3|s1 ZBX s1, s3 tZ , tX XCZ

s1s2|s1 YXC s1, s2 tY , tX XBY

s2 XYZ s2 tY Y

s3 XYZ s3 tZ Z

s1s2s3|s1 AZY s1 tA XBCA

s1s2 YBC s2 tB XB

s1s3 ZBC s3 tC XC

s1 XBC s1 tX X

e XYZ ∅ ∅ ∅

N.B.1: {tX , tY , tZ , tA, tB , tC} = {s1, s2, s3, s2s3s1s3s2, s1s2s1, s1s3s1} .
N.B.2: The underlines objects in Tw form the wide subcategory Ww.
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