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We present a fundamental limit to the sympathetic cooling of ions in radio-frequency traps using
cold atoms. The limit arises from the work done by the trap electric field during a long-range
ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a perfectly
dc-compensated trap. We conclude that in current experimental implementations this collisional
heating prevents access to the quantum regimes of atom-ion interaction or ion motion. We determine
conditions on the atom-ion mass ratio and on the trap parameters for reaching the s-wave collision
regime and the trap ground state.
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The combination of cold trapped ions and atoms [1–
6] constitutes an emerging field that offers interesting
and hitherto unexplored possibilities for the study of
quantum gases. New proposed phenomena and tools
include sympathetic cooling to ultracold temperatures
[7, 8], charge transport in an atomic gas [9], dressed ion-
atom states [10–13], local high-resolution probes [14, 15]
and ion-atom quantum gates [16, 17].

In contrast to atom traps that are based on conserva-
tive forces, radiofrequency ion traps (Paul traps) employ
time-varying electric fields to create a time-averaged sec-
ular trapping potential [18]. The time-varying field can
pump energy into the system if the ion’s driven motion
is disturbed, which raises the question to what extent
the ion can collisionally thermalize with a cold atomic
gas that it is embedded in. Four decades ago, Major
and Dehmelt analyzed this problem by approximating
the ion-atom interaction as a hard-core potential, and
concluded that sympathetic cooling is possible as long as
the ion-to-atom mass ratio exceeds unity [19]. However,
as we show below, a more refined analysis that includes
the attractive long-range r−4 atom-ion potential leads at
low temperatures to a different conclusion.

Paul traps employ a spatially varying radiofrequency
(RF) electric field that drives a micromotion at the RF
frequency with an amplitude proportional to the local
field. At any position and time, the ion’s velocity can be
decomposed into the micromotion velocity and the re-
maining velocity of the secular motion. To understand
the sympathetic cooling and heating processes described
by Ref. [19] in an intuitive physical picture, consider the
simple case of a sudden collision with an atom that brings
an ion to rest, a process which in a conservative trap
would remove all kinetic energy. Immediately after such
a collision the ion’s secular velocity is equal and opposite
to the micromotion velocity at the time of the collision.
This secular velocity can be larger or smaller than before
the collision. In particular, if at the time just preced-
ing the collision the ion’s micromotion velocity exceeded
the secular velocity, the ion’s secular energy will be in-

creased, i.e., the ion will be heated even in a collision that
brings it momentarily to rest. This picture also makes it
clear that if a trap is not dc-compensated, i.e. if a dc
electric field displaces the trap minimum from the node
of the RF field, then the average RF-induced collisional
heating will be larger due to the increased micromotion
[20]. Currently realized ion-atom systems are limited by
incomplete compensation of the dc field, with the low-
est directly observed equilibrium ion temperature being
on the order of 1 K [3]. Quantum effects in these sys-
tems, on the other hand, are characterized by the much
smaller temperature scales ~ω/kB ∼ 50µK for the trap
zero point motion and Es/kB ∼ 50 nK for the s-wave
collision threshold [21].

In this Letter, we show that even in a perfectly dc-
compensated Paul trap, a fundamental limit to sympa-
thetic atom-ion cooling arises from the electric field of
the atom when polarized by the ion, or equivalently,
the long-range ion-atom interaction. The displacement
of the ion from the RF node by the approaching atom
leads to micromotion, whose interruption causes heating.
A second nonconservative process arises from the non-
adiabatic motion of the ion relative to the RF field due
to the long-range atom-ion potential; during this time,
the trap can do work on the ion and increase its total
energy.

We show that, in realistic traps, the work done by the
RF field dominates the effect of the sudden interruption
of the ion’s micromotion and leads to an equilibrium en-
ergy scale that, for all but the lightest atoms and heaviest
ions, substantially exceeds both the s-wave threshold Es

and the trap vibration energy ~ω. Our analysis shows
that current atom-ion experiments [1–6] will be confined
to the classical regime, and indicates how to choose par-
ticle masses and trap parameters in order to reach the
quantum domain in future experiments.

Our analytical results are supported by numerical cal-
culations that furthermore reveal that in those collisions
where the RF field removes energy from the system, the
atom becomes loosely bound to the ion, leading to multi-
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ple subsequent close-range collisions until enough energy
is absorbed from the RF field to eject the atom and heat
the ion. In a quantum picture, the latter process process
can be thought of as the trap RF field exciting transi-
tions between the closely spaced near-threshold states in
the ion-atom potential.

We consider a classical model and later confirm that
this assumption is self-consistent, i.e. that the equilib-
rium energies obtained from the model are consistent
with a classical description. An atom of mass ma ap-
proaches from infinity to an ion of mass mi held sta-
tionary in the center of an RF quadrupole trap. At suf-
ficiently low collision energies, the angular-momentum
barrier will be located far from the collision point, and
will not influence the collision dynamics once the barrier
is passed. For simplicity, and for deriving the energy and
length scales of the problem, we initially assume a one-
dimensional (1D) collision in a quadrupole RF potential
given by V (ri, ra, t) = eE (ri, t) ri/2+U(r), where e is the
ion’s charge, ri and ra are the ion and atom locations,
respectively, r = ri − ra is the ion-atom distance, and
E (ri, t) = gri cos (Ωt+ φ) is the RF electric field of the
ion trap at frequency Ω parameterized by its quadrupole
strength g. The ion-atom interaction potential is given
by U(r) = −C4/(2r

4) at large distances [21], and mod-
eled as a hard-core repulsion at some small distance.

As the ion is pulled from the origin of the trap by
the long-range interaction U with the approaching atom,
the oscillating electric field E causes it to execute si-
nusoidal micromotion with amplitude qri/2 where q =
2eg/(miΩ

2) is the unitless trap Mathieu parameter (cho-
sen in physical traps as q < 0.5 to ensure stability). As
long as the motion of the ion relative to the atom re-
mains slow in comparison to the RF frequency, the ion’s
equations of motion during one RF cycle will remain lin-
ear and the secular motion of the ion during each RF
cycle can be described in terms of an effective conser-
vative secular potential Vs = 1

2
miω

2r2i + U(r), where

ω ≈ qΩ/23/2 is the vibration frequency of the ion trap.
Associated with Vs are the characteristic length scale

R =
(

C4/miω
2
)1/6

, time scale T = 2π/ω, and energy

scale ER = 1

2
miω

2R2 = 1

2
(m2

iω
4C4)

1/3 at which the in-
teraction potential U is equal in magnitude to the trap
harmonic potential.

In collisions with light atoms, ma < mi, we expect
the ion to stay confined close to the trap origin; in this
case, the dependence of the ion-atom distance r on time
is governed solely by the motion of the atom in the ion-
atom potential U as

r (t) ≈ (9C4/µ)
1/6

|t|
1/3

, (1)

where the collision occurs at time t = 0 and µ =
mima/(mi+ma) is the reduced mass of the system. The
displacement rc of the ion from the center of the trap
at the time when the hard-core collision with the atom
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Figure 1: Trajectories of an ion ri (t) and an atom ra (t) dur-
ing a classical one-dimensional low-energy collision. The atom
of mass ma approaches the ion of mass mi = 2ma held in the
center of a RF trap with secular frequency ω = 2π/τ and
Mathieu parameter q = 0.1, leading to a hard-core collision
at ri = ra = rc, t = 0 and RF phase φ. For φ = π/2 (dotted
lines), the trap field adds energy to the system, causing heat-
ing. For φ = 3π/2 (solid lines), the RF field removes energy,
binding the atom to the ion and causing further collisions at
various RF phases until enough energy is accumulated to eject
the atom.

occurs can then be estimated by integrating the effect of
the force 2C4/r

5 exerted by the atom on the ion trapped

in its secular potential, yielding rc ≈ 1.11 (ma/mi)
5/6

R.
In collisions with heavy atoms (mi < ma) on the other
hand, the ion responds quickly to minimize the total sec-
ular potential energy until, at (ri, ra) = (0.29, 1.76)R,
the deformed ion’s equilibrium position becomes unsta-
ble and the light ion quickly falls towards the atom with
the collision occurring at rc ≈ 1.76R. In general, the
collision point can be computed by numeric integration
of the system’s secular equations of motion which, when
expressed in the (R, T,ER) units, depend only on the
ion/atom mass ratio mi/ma.

As the RF field at the collision point rc is nonzero,
we may expect the hard-core collision with the atom to
change the system energy on the scale of the ion’s aver-
age micromotion energy at this point, Eµm ≈ miω

2r2c/2.
In general, the energy of the system can change dur-
ing the whole interval in which the ion is moving non-
adiabatically relative to the RF field, including the inter-
val −t1 < 0 < t1 around the collision at t = 0, during
which the ion’s velocity ṙi is greater than its average mi-
cromotion velocity vµm ≈ ωrc. In this regime, the trap
RF field can be thought of as a time-dependent pertur-
bation to the ion-atom potential, doing work on the ion
equal to

W = e

ˆ t1

−t1

E (ri (t) , t) · ṙi (t) dt. (2)

For ṙi ≫ vµm, we may neglect the effect of the electric
field on the ion’s trajectory and approximate the ion’s
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Figure 2: Change ∆E in the total secular energy of a colliding
ion-atom system (ma/mi = 1/2, q = 0.1), as a function of
the RF phase φ during the first hard-core collision. For 0 <
φ < π, the system undergoes only one collision with energy
gain comparable to the analytic prediction (3) (dashed line).
For π < φ < 2π, the atom is bound and undergoes several
collisions with the ion before eventually escaping, leading to
a sensitive dependence of the total energy gain ∆E on the
initial conditions.

position in terms of the free collision trajectory r (t), Eq.
1, as ri ≈ rc−r (t)ma/(mi+ma). The work done by the
RF field can then be written as W = Wmax sinφ, where
φ is the RF phase at the time of the hard-core collision.
The maximal energy gain of the system after one collision
Wmax is approximated by

Wmax ≈ W0

ˆ Ωt1

−Ωt1

sgnτ |τ |
−2/3

sin (τ) dτ (3)

with

W0 =
rc
R

(

8ma

mi +ma

)5/6

(3q)−2/3 ER (4)

the characteristic energy scale of the work done on
the ion by the RF field expressed in terms of the en-
ergy scale ER of the secular potential Vs. The non-
adiabatic condition |ṙi| > |vµm| is equivalent to 3qΩt <

(2R/rc)
3/2 (1 +mi/ma)

−5/4, which, for the practically
relevant values of q < 0.5, will always include the region
|Ωt| < 0.8 where the dominant contribution to the in-
tegral in (3) occurs. Consequently, we may extend the
limits of integration to ±∞ to obtain Wmax ≈ Γ (1/3)W0

where Γ (1/3) = 2.68 is the Euler gamma function.
For q < 0.5, W0/Eµm > 2, and the gradual energy

change (2) dominates the effect of the sudden interrup-
tion of the ion’s micromotion. Intuitively, as the collision
energy is lowered, the ion-atom potential determines the
dynamics at longer times, giving the RF field more time
to do work on the system. Since the trap electric field
must be increased at high RF frequencies in order to pre-
serve the ion secular potential, the gradual heating also
increases with a decrease in the Mathieu parameter.
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Figure 3: Maximal energy gain Wmax in a low-energy 1D
ion-atom collision as a function of the atom/ion mass ratio
ma/mi with Mathieu parameter q = 0.1 (a) and as a function
of q with ma/mi = 1/2 (b). Data points are numeric calcula-
tions. The solid line corresponds to Wmax = Γ (1/3)W0 where
the collision point rc is calculated numerically using the sec-
ular potential approximation, and the dashed lines represent

the light- and heavy-atom estimates (rc/R ≈ 1.11 (ma/mi)
5/6

and rc/R ≈ 1.76, respectively).

Since W corresponds to the difference in the work done
by the RF field during the incoming and outgoing parts of
the collision, the energy change will depend on the phase
φ of the RF field at the time of the hard-core collision.
For 0 < φ < π, the RF field accelerates the collision
partners towards each other and causes heating; for π <
φ < 2π, the RF field opposes the collision, doing negative
work and causing the atom to be bound to the trapped
ion with binding energy on the order of −W0 (Figure 1).
Since the r−4 potential does not possess stable orbits,
bound ion-atom trajectories will include further close-
range collisions. Depending on the RF phase during each
such collision, the system will gain or lose energy on the
order of W0, leading to a random walk in energy space
until the atom finally unbinds, leaving the system with a
net energy gain also on the order of W0 (Figure 2).

To quantitatively confirm the above heating model, we
numerically calculated classical trajectories of 1D ion-
atom collisions as function of the RF phase φ, the mass
ratio ma/mi and the Mathieu parameter q (Figures 1,
2 and 3). The ion was initially held fixed at the center
of the trap and the atom allowed to approach along the
analytic trajectory (1). At an ion-atom distance r such
that C4/(2r

4) ≪ W0, the ion was displaced from the trap
to balance the force exerted by the atom and the numeric
integration started. The equations of motion were inte-
grated using the Dormand-Prince explicit Runge-Kutta
method: away from collision points, the motion was inte-
grated as a function of time while near the collisions, the
ion-atom distance r was used. The accuracy of integra-
tion was confirmed by replacing the RF potential with
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Figure 4: (a) Distribution of numerically computed secu-
lar energy gains in 2883 random low-energy collisions be-
tween a free 87Rb atom and a 174Yb+ ion held in the three-
dimensional trap from [2], in units of the micromotion heat-
ing energy scale W0. A sample ion-atom collision trajectory
is shown in the inset (b).

the time-independent secular potential and confirming
energy conservation at the level of 10−3W0.

Figures 3a and 3b show the maximal energy gain of the
system in one collision Wmax depending on the atom-ion
mass ratio ma/mi and the Mathieu parameter q. The
numerically calculated value for Wmax is within a factor
of two of the analytic prediction Wmax = W0Γ (1/3). Fig-
ure 2 shows the numerically calculated total energy gain
of the ion-atom system as a function of the RF phase φ
for q = 0.1, ma = mi/2 (similar to the parameters in
Ref. [4]). For 0 < φ < π, the system undergoes one
collision after which the atom is ejected to infinity with
the total energy gain ∆E well approximated by (3). For
π < φ < 2π, the atom remains bound to the ion until
subsequent collisions add sufficient energy (on the order
of W0) to eject it. In the latter regime, ∆E depends sen-
sitively on the RF phase at each subsequent hard-core
collision spaced in time by many RF cycles, leading to a
sharp dependence of ∆E on the RF phase φ during the
initial collision.

In three-dimensional RF traps, the collision trajectory
may be close to the direction where the trap confine-
ment is only due to a DC potential, resulting in a smaller
ion micromotion at the collision point. The direction of
the ion’s micromotion may also subtend a large angle
with the collision trajectory, decreasing the work (2) done
by the RF field during the collision. Together, we may
expect these effects to reduce the micromotion-induced
heating by a factor of order unity. To check this, nu-
merical simulations were also done for a sample three-
dimensional quadrupole RF trap from Ref. [2]. A cold
87Rb atom was allowed to approach the trapped 174Yb+

ion from a random direction and at a random time. Fig-
ure 4b shows a sample ion-atom trajectory including mul-
tiple collisions. Due to a difference in the axial and ra-

ion + atom ω/ (2π) q Es/kB ~ω/kB W0/kB

[kHz] [µK ] [µK] [µK ]

138Ba+ 87Rb [4] 200 0.11 0.052 9.6 120
174Yb+ 87Rb [2] 200 0.013 0.044 9.6 440
174Yb+ 172Yb [1] 67 0.14 0.044 3.2 34
174Yb+ 40Ca [5] 250 0.25 0.27 12 25
174Yb+ 23Na 50 0.30 0.71 2.4 1.2
174Yb+ 7Li 50 0.30 6.4 2.4 0.18

Table I: The quantum s-wave energy limit (Es), the ion trap
vibrational quantum (~ω), and the micromotion-induced en-
ergy scale W0 in various ion-atom systems.

dial frequencies of the ion trap, the collision trajectory
precesses about the y axis. A histogram of the final sys-
tem energies E after the atom is ejected back to infinity
is shown on Figure 4a, with an average energy gain of
0.5W0. This confirms that the collisional heating is sim-
ilar in one and three dimensions.

In summary, we find that, within a factor of order
unity, the mean trap-induced energy gain in cold ion-
atom collisions is described by the heating energy scale
W0 as given by Eq. (4). Table I shows W0 together with
the s-wave threshold energy Es = ~

2/(2µ2C4) and the
energy ~ω of a trap vibrational quantum in various ex-
perimental systems. In currently realized systems, W0 is
more than one order of magnitude larger than the trap
vibrational quantum and almost three orders of magni-
tude larger than the s-wave scattering limit. Therefore,
reaching the quantum regime in close-range ion-atom col-
lisions in these systems is unlikely.

Since, for light atoms, the ratio of of heat-
ing to the s-wave collision threshold scales as

W0/~ω ∝ (ωC4)
4/3 m

11/3
a /mi and the ratio of heat-

ing to the trap vibration quantum scales as W0/~ω ∝

(ωC4)
1/3

m
5/3
a /mi, our model predicts that micromotion

heating could be mitigated using light atoms and heavy
ions trapped in weak RF traps. In particular, the Yb+/Li
system may enter the quantum regime of direct colli-
sions without impediment from micromotion-induced col-
lisional heating. Heating effects described in this paper
could be avoided if the atom was kept away from the ion
at a distance larger than R (R=50-90 nm in current sys-
tems) such that their motion remains adiabatic relative
to the RF field, e.g. by using a strong optical lattice.
Another option may be the use of an optical trap for the
ion, as was recently demonstrated [22].
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