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Analytical Modeling of Nonlinear Propagation in a
Strongly Dispersive Optical Communication System

Pontus Johannisson

Abstract

Recently an analytical model was presented that treats dhénear signal distortion from the Kerr nonlinearity intimal
transmission systems as additive white Gaussian noise. ififportant model predicts the impact of the Kerr nonlirtgaim
systems operating at a high symbol rate and where the acatedudispersion at the receiver is large. Starting from tiggested
model for the propagating signal, we here give an indepenaieth different calculation of the main result. The analysibased
on the Manakov equation with attenuation included and a ¢et@@mnd detailed derivation is given using a perturbatioslysis.

As in the case with the published model, in addition to assgnthat the input signal can be written on a specific form, two
further assumptions are necessary; the nonlinearity ikwed the signal-noise interaction is neglected. The résutien found
without any further approximations.
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|I. INTRODUCTION

N AN OPTICAL transmission system operating at a high symladé,rthe propagating signal is rapidly evolving due to

chromatic dispersion (CD). It has been found numericaliy tfter a relatively short distance of propagation, théphdlity
density function of all four quadratures of a polarizatiodtiplexed signal become Gaussian with zero mean and ancwi
related to the signal power][1]. This can also be shown aicaljf by using the central limit theorem and is intuitively
understandable since the dispersed signal at every poititnan can be viewed as a coherent superposition of many signal
pulses. During the propagation, a nonlinear phase shifidsded in proportion to the local power by the Kerr nonliitgar
As the CD is compensated in the receiver, this phase shiftgiié rise to a residual signal distortion. Numericallyhias
been observed that this distortion is very similar to additivhite Gaussian noise (AWGN)I[1]. This observation is cdajr
importance as it suggests that if no attempt is made to cosaperor the nonlinear effects, then modeling the nonlisearal
distortion as AWGN is possible.

In 2011, an analytical model was presented that calculategoise-like nonlinear distortion for a quite general wength
division multiplexing (WDM) system([2],[[3]. This signal stiortion was namedonlinear interferencg€NLI) and recently an
extensive paper on the same topic was publishéd [4]. The wepkrted here is closely related to these publications tut i
should be pointed out that there are many results in theatiteg that address the same or similar questions. To name one
example, the work for OFDM by Chen and Shieh [5] has many aitis in both the approach and the results. However, the
previous work in the area seems to be well described in thhedattion of [4] and we will not further elaborate this topic
here.

In the publications [2]-+[4], a suggestion is given for howntodel the signal, the four-wave mixing (FWM) of the diffeten
signal spectral components is calculated, and the cometspg power spectral density (PSD) is found. However, thiévdton
of the main result is quite short. Partly this is because knBWWM results are used|[6]. In this paper, an independenilddta
derivation of the resulting PSD is carried out. The caldatastarts from the Manakov equation with power gain anchaidion
included and we use the signal model suggestedlin [2]. Thruledion is based on a perturbation approach previouslg,use
e.g., to investigate intrachannel cross-phase modulg@d®M) and intrachannel FWM, which gives rise to “ghost psisi
systems using on-off keyin@|[7]3[9]. This approach hasrlaen used both to analytically study systems, see for ebeg[H],

[11], and to compensate for the NLI, see for example [12]ngghe perturbation approach, we here present a self-cautai
calculation of the PSD of the NLI directly from the model ejoa. This work also goes beyond] [4] since, as described in
Section 1I-B, we perform the calculation for a more geneyatam.

The organization of this paper is as follows: In Secfidnhk perturbation analysis is introduced and a formal satutiat
is valid for all input signals is given. In Sectignllll, we firtte solution corresponding to the specific input signal ssted
in [2], which is then used in Sectidn ]V to calculate the NLE.j the PSD of the perturbation. We then calculate the PSD
corresponding to the result in_1[4, Eqg. (18)] by studying ac#jiesystem choice in Sectidn] V. Finally, we conclude.
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Il. PERTURBATION ANALYSIS

The calculation of the NLI in[[2] assumes that the FWM is a wedflect. This assumption is stated explicitly as “the
pump is undepleted”. We proceed in a similar way by introdgdhe complex envelope of the electric field in theandy
polarizations according t\ = (A,, A,)T and writing this asA = A, + A, where A, is the linearly propagating signal,
i.e., the signal in the absence of any Kerr nonlinearity, Andis a small perturbation. This implies that the nonlineaeet$
may not become significant and this constitutes the firstrapian of the model. The second assumption is that the input
signal can be written on the form suggested’in [2]. The rarfgelidity for this signal model is a separate question and we
do not discuss this question here. A third assumption istti@signal-noise interaction is neglected as the calaraif the
NLI does not involve amplifier noise in any way. This is alsoamsumption ofi[2] and in order to account for amplifier noise
under this assumption, noise corresponding to the total AVWi®@m the amplification is added just before the receivereseh
three assumptions are sufficient and no further approxéamatare necessary to carry out the analysis.

A. The perturbation equation from the Manakov equation

In order to describe transmission using polarization mldking, we start from the Manakov equation [[13] and include
power gain and attenuation. It should be noted that the Mana&kjuation is obtained by averaging over the polarization
rotations which are assumed to be fast and this equation matetake polarization mode dispersion into account. Degpoti
the group-velocity dispersion b§,(z), the power gain by(z), and the power attenuation lay(z) we have

2
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where AHA = |A4,|* + |A,|? is the sum of the power in the and y polarizations and the nonlinear parametér) =
(8/9)(konz2/Aex). In the expression fory, kq is the wavenumber corresponding to the center frequengyis the Kerr
coefficient, andAex is the effective area of the optical fiber. The power g@in), which is set up using erbium-doped fiber
amplifiers (EDFAs) and/or Raman amplification, is assumetiaee no frequency dependence, i.e., the gain is flat over the
bandwidth of the signal. The perturbation is introducedoadinig to

a=acenn=(4)+ (). @

where A, (z,t) solves the linear equation obtained by setting: 0 in (). We find that

(ATAIA = (s + Aoy + 4y + 4y, ) (47040 ®
yi+Ayp
Our intention is to study, and we will consider the two cases that eithet fi), ;| and| A, ;| are of the same order of magnitude
(transmission using polarization multiplexing) or (), ; = 0 (single-polarization transmission). The first assumptibove
can then be strictly formulated a4, ,| < |A4,,| and|A, ;| < |A,,|. This allows us to approximate the nonlinear term to
leading order according to

Ay
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Inserting this into the Manakov equation, we obtain
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where thez-dependence is now implicit for compactness. The fact thasolves [1) wheny = 0, implies that
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We will study thez-polarized perturbation, which is described by
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For compactness, we temporarily introdutfe, t) = iy (|4, ,1|*+|A,.1|?) A, to denote the source term in the partial differential
equation for the perturbation, which is then written
0A, Ba BQAM, g—a
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B. Formal solution

We now derive a general formal solution without any assuomgtiabout the input signal or the system parameters. To
describe the power evolution, we introduB¢z) as a function that satisfies the equation

dpP
= =l9(x) —a(:)|P. (©)
In the absence of any Raman amplification this function gaaig=—“* between the amplifiers. The EDFA gain can be modeled

by ad-function in g( ) to obtain the discontinuities iff(z) at eachz corresponding to the location of an amplifier. Introducing
Ay p(z,t) = /P(2)9¥(z,t), we obtain the equatlon

8t2 (10)
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We proceed by describing the accumulated disperditin), by a function that satisfies
dB
= Ba(z). (12)

If there is lumped dispersion compensation (such as a cdhl‘nber Bragg grating), the® will have discontinuities. This can
be modeled by a@-function in 8(z) to obtain
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Fourier transformirﬂ;the equation, and denoting this operation by tilde, we obtai
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which can be written
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Integrating [, - d¢, we use
. 2 1¢== ~ . -\ 2 ~
[ T BRG] = {0, 1) = 0} = e T PO ) (16)
=0
to obtain
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The final perturbation at the receiver is describedllkﬁ;b, f), whereL is the total system length (possibly containing many
spans with fibers and amplifiers). Assuming that perfect ED@erformed, the exponential before the integration is elac
and we obtain
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Assuming that the power at = L is equal to the power at the transmitté®,, we haveA, ,(L,t) = /P(L)¢(L,t)
v Py (L, t) and we can write the general expression for the perturbaison

Az,p(L,f) :A —z(27rf) B(z)/2‘\S’/—\/_dZ 7/ —i(2ﬂ—f)2B(z)/2% dZ, (19)

wherep(z) = P(z)/P, has been introduced. This function describes the nornthlmaver evolution through the system.
Using the definition ofS, we find

L —i(2nf)?B(2)/2

0 Vp(2)

Aw,p(Lv = f[i7(|Aw,l|2 + |Ay,l|2)Aw,l] dz, (20)

where F denotes Fourier transformation.

we use the same definition for the Fourier transform as Psofl], i.e.,a(f) = [0 u(t)e”27ftdt andu(t) = [ a(f)ei? ™ tdf.



IIl. SIGNAL MODEL

Provided that the first assumption is fulfilled, (20) is théusion to () without further approximations. However, weed
to choose the system parameters, select the boundary ioonditz = 0, i.e., the input signal, and perform the integration.
When trying to do this with an accurate modeling of the sigmalses, the calculations become cumbersome and the final
expression needs to be averaged over the data. We heredinsteahe second assumption, i.e., we write the initial field i
the way suggested inl[2]. This model is

A0, 1) = Vo Z &/ Ga(kfo) 5(f — kfo), (21)

k=—oc0
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k=—o0

where¢,, and(;, are complex independent Gaussian random variables of anénce and the input signal PSD of thendy
polarizations are denoted lfy,.(f) andG,(f), respectively. In the following, we will suppress the infe(nsummation limits
for notational convenience. We account for dispersion amslgp variations during the propagation by modifying this to

=Vfop(2) ng VG (kfo) O(f — k fo)e Grrfol*B()/2, (23)
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Using this linear solution, we can now calculate the pedtidm using [(2D). In order to do this we need the expression
f[i7(|Aw,l|2 + |Ay,l|2)Aw,l] = i'VJ:[Ai,lA;,l] + i’V-F[Aw,lAy7lAz,l]~ (25)

The solution [[2D) can be written
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where we again omit the dependence for notational compactness. We have
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and get
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These expressions can be simplified to
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The Fourier transforms are
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The integrands of(26) can then be written
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We can move the exponential functions containiB@fter the summation signs to obtain
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The solution can therefore be written
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Inverse Fourier transformation gives
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We can also rearrange integration and summation to obtain
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Consideringy(z), p(z), B(z), and L to be given system parameters, we introduce

L
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to write this as
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For later use we notice that
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wherep and#¥ are the maximum values @f(z) and~(z) in the intervalz € [0, L]. This means thafCy;.,| is upper bounded
by a constant a%, [, m, and f, are changed.

IV. POWER SPECTRAL DENSITY

When the input signal is modeled Hy {21) afdl(22), then theugaation is given by[(46). The next step is to calculate the
corresponding PSD. Using the Wiener-Khinchin theorem [L.467], we have that the PSD is the Fourier transform of the
autocorrelation according to

Gopll) = FIR@) = [ REm)em 17 (48)
where
R = E{Amyp(L, tl)A;,p(L, t2)} (49)

andE{-} denotes the expectation operator. As will be shown, therlaxpression can be written as a function of the time
differencer = t; — t2. We will suppress the infinite limits for notational convence. We have
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We see that the complete autocorrelation function will ¢stnsf four terms

R=R,+ Ry+ R3s+ R4 (51)




where
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These four terms in the autocorrelation will give rise torfalifferent terms in the total PSD, which we denote @y, 1,
Gy p2, Gz p3, andG, , 4, respectively. We need to find these four terms individually

A. The random variables

It is seen that in[(B2)E(%5), all terms except thand ¢ are deterministic. In order to carry out the expectationrafien,
in this section we therefore need to investigate these randwiables.

The¢ and¢ are complex independent Gaussian random variables of anitnce, i.e. E{¢;} = 0, E{¢2} = 0, E{|&[*} =1,
Vk. Analogous expressions hold fg¢. Using this, we can simplify the six-dimensional suins| (88} in the following way.
First assume that one of the summation variables,isdyas a value different from all other summation variables, k is
unigue. Due to the independence, we then have

E{&&&nEnlinbmy = B{&:} B{&E, iy = 0. (56)

An identical argument holds if some of tlfeare replaced by. This implies that the expected value is always zero when
one of the summation variables is unique. Thus, we have thdition that no summation variable can be unique. Second we
assume that no summation variable is unique, but there aee {tairwise equal values, where each pair has a unique.value
Assume for example that = I, k'=1I', m = m’. Then

E{&&&n Goiiém} = B{ & Eiéivém )} = E{&k&r} E{GEG} B{EEm) = E{E} E{(&)* Y E{|énl} = 0. (57)

We conclude that each random variable must be paired up hétltemplex conjugated version of the same random variable.
This conclusion reduces the dimensionality of the summaticthree or less. However, the dimensionality cannot be tlean
three, because then the expression, — 0 as fo — 0. To see this we first notice that

|Gz,p| < |Gz,p,1| + |Gz,p,2| + |Gm,p,3| =+ |Gm,p74|7 (58)

and since all terms behave similarly in this respect, we tadyssay,G 1. Let us select the one-dimensional cése [ =
m = k'=1"=m’ We then have

Ry =E {fé” > |ckkk|2ei2”’“f°T|sk|ﬁGi<kfo)} = 13D 1 [P T B |6 Y G (R fo). (59)
k k



We get
Guopr = f3 Y [Cuc* E{IEI"Y G2 (kfo)5(f — kfo)- (60)
k
We see thaty, , 1 — 0 as fo — 0 by identifying the Riemann sum and writing the expression as

Gop1 = fg/|C(flaflafl)|2E{|§k|6}Gi(f1)5(f — fi)dfi = fFIC(f, f, PP E{&IPYGL (). (61)

Remembering that the value @f|? is upper bounded by a constant, the fact tiat, ; — 0 is now obvious. An analogous
argument can be made for the case of a two-dimensional suntoWgude that the summation must have dimension exactly
three, i.e., each random variable must be paired up with dingptex conjugated version of the same random variable dnd al
three pairs must have unigue values.

B. The first term in the PSD

We now study the first expression, i.€, , 1(f) = F[R1(7)]. Following the above rules for how the indices can be chosen,
we have six possible combinations:
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We need to study these different possibilities individyall
1) The casé = k', I =1', m = m" We then have

Ry =E {f03 > |cmm|2ei2”<’“+l-m>f°“e-”’f(’““—’")fotz|§k|2|sl|2|£m|20m(kfo>Gm<lfo>Gw<mfo>}
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k,l,m

Gapa(f) = f8 D |Cum PGk fo) Ga(Lfo) G (mfo)d(f — (k +1—m) fo). (64)

k,l,m

Letting fo — 0, we get
Gopa(f) = / / IC(fu, for f3) PG (F)Ga(f2)Ca(f5)S(F — fi — fo + f) dfsdfodfs
- / / CUfvs for fi + o — DPCa(f)Gal )G (s + fo — f) dfadlfo. (65)

2) The other casesCompared to the case above, the chse !/, | = &/, m = m/ is obtained by swapping’ and!’. Since
Crim = Ciemn, @nd the rest of the expression is clearly invariant undex thiange, this yields an identical result as the case
above. The other four cases are all equivalent to the kasé’, [ = m, m’= 1" We get

e {fo3 > Ckllczl/zfem(k”_l)f‘)tle_i%(ﬂl/_l/)'f‘)tz51@51575725?751'\/(;1(kfo)Gz(lfo)Gz(lfo)Gz(kfo)Gw(l'fo)Gm(llfO)}
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= f8 Y CuuClune>™ TG (I fo) G (1fo) G (U'fo), (66)
kil

Gopa(f) = 18> CuCiunGa(kfo)Ga(lfo)Ga(U'fo)5(f — K fo). (67)

kLl



Letting fo — 0, we get
G (f) = / / / U, For J2)C (s fs f3) G (F1)Ga(fo)Go(f2)5(F — f1) dfsdlfadf
= //C(fanafQ)C*(fvf&fS)Gm(f)Gw(fQ)Gm(f?))dedf?)' (68)

However

L
C(fr. for f2) = Cfrs fr f3) = Cfor i, f2) = C(fs fr. f3) = /0 Y (=2)p(=) d= = Co, (69)

which is a real number. This gives

G (f) = C2Ga(f) / / G (f2)Gaf) dfadlfs = C2C(f) / G (f) df / Gu(fs)dfs = C2P2GL(f).  (70)

3) The total PSD for the first termThe six possible index selection cases split into two groofpdegeneracy two and
four, respectively. We get the total expression

Gapa(f) = 2/ IC(f1, fo, fr + f2 = PP Ga(f1)Ga(fo)Ga(fi + fo — [) dfrdfa + 4CTP2Go(f). (71)

C. The second term in the PSD

We now study the second expression, i@,,, 2(f) = F[Rz(7)]. Following the above rules for how the indices can be
chosen, we have two combinations

k=k" l=m m'=0l

k=m 1=k m'=l (72)
The reason that we have fewer possibilities is that the espe contains botlh and ¢, which are independent.
1) The casé = k', | = m, m’= 1" We then have
Ry =E {fg’ > CkllCszz/emkfotle_iz’rk/f‘)tz|§k|2|§l|2|<l'|20m(ka)Gw(lfO)Gy(l'fO)}
kLU
=18 Y CenCiue™™ 7 G (kfo) G (Lfo) Gy (Ufo), (73)
kLU
Gaop2(f) = 13 Y CuuCimGa(kfo)Ga(lfo) Gy (UFo)5(f — kfo). (74)

kLU

Letting fo — 0, we get

Gopalf) = / / / Cfr. for f2)C (1. fs. £3)Go(11)Cn (J2) Gy (F3)(F — 1) dfadlfadlfs

_¢2 / / Go(f)Ga(f2) Gy (f) dfadfs
= C2P,P,G.(f). (75)

2) The casé = m, | =k, m’=1" We notice that this case is obtained from the above case bymmagk and! and will
therefore give the same result.
3) The total PSD for the second territVe get the final expression

Gopa(f) = 205 Pu Py Ga(f).- (76)

D. The third term in the PSD
We now study the third expression, i.&; , 3(f) = F[Rs(7)]. Following the above rules for how the indices can be chosen,
we now have two combinations
k=K Il=m m'=10
k=0 Il=m m'=F
The first case is identical to the first case for the second terthe PSD. The second case is obtained from the first case by
swappingk’ and!’ and will therefore give the same result. We get

Gepa(f) =2C2P.P,G.(f). (78)

(77)
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E. The fourth term in the PSD

We now study the fourth expression, i.€, , 4(f) = F[R4(7)]. Following the above rules for how the indices can be
chosen, we have two combinations

k=FK 1= m=m

k=k l=m m'=l (79)
1) The casek = k', | =I', m = m" We then have
Ry=E {fS’ > ICmmIQe””(’““m”“’l&|2ICz|2|<mIQGm(kfo)Gy(lfo)Gy(mfo)}
k,l,m
=13 Z [Chim|?e2™ K H=MIOT G (K £0) Gy (1fo) Gy (m fo), (80)
k,l,m
Gapalf) = f(:))) Z |Cklm|2G:E(ka)Gy(lfO)Gy(me)é(f — (k+1—=m)fo). (81)
k,l,m
Letting fo — 0, we get
Gapalh) = [[[ 16001, fa FIPGLRIG (G (F3(S = i = fu + fo) s
= / IC(f1, f2, fr + fo = [)PGa(f1)Gy(f2)Gy(f1 + f2 — [) dfrdfo. (82)
2) The casék =k, | =m, m'=1" We get
Ry=E {fo3 Z Ckuczl«pei%kf”t]e_i%kfotz|§k|2|§l|2|Cl'|2Gm(kfo)Gy(lfo)Gy(llfo)}
kLU
= f8 Y CenCiue®™ 7 G (kfo) Gy (Lfo) Gy (Ufo), (83)
kU
Gapa(f) = 13D CuCiunGa(k fo) Gy (Lfo)Gy (Ufo)3(f — K fo)- (84)
NG
Letting fo — 0, we get
Gepalf) = // C(f1, f2, f2)C (f1, f3, f3) G (f1)Gy(f2) Gy (f3)0(f — f1) dfidfadfs
— [[ €t 120 207G o 16 (G 21 (1) s
= PG (f)- (85)
3) The total PSD for the fourth terniWe get the final expression
Gapo(f) = / C(f1, fo, fr + fo = PG (f1)Gy (f2)Gy(fi + f2 = f) dfrdfz + CEPGa(f). (86)
F. The total PSD
We can now find the total PSD by summing up all the terms acogrth
Gw,p = Gw,p,l + Gm,p,? + Gw,p,3 + Gw,p,4
=2 [[ 161 facfr 4+ f2 = DPGH()G (G + o~
+ [[160s oot fa = DPCLRIG G, (1 + fo ~ 1) dids
+ C3(4P; 4+ 4P, P, + P))G.(f). (87)

We notice that ther polarization acting on itself is twice as effective as thpolarization acting on the polarization. As is
clear from the derivation, the reason for this is the levetlefieneracy. This is similar to the case of the double inflearic
XPM as compared to SPM, when the nonlinear Schrodingerteouis approximated by a coupled system with one equation
for each WDM channe[[15, p. 264]. The final term bf(87) is of samsequence for the transmission. The origin of this term
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is the phase modulation from the entire propagating fielthgatn itself. In practice, we expect this to just cause atimta
of the received signal constellations. However, in theyregtion analysis, this type of phase modulation gives tasthese
extra terms in the PSD. AE(B7) can be considered the maitt fsthis calculation, we repeat the expression fofor ease
of reference

L
Clfisfor i+ 2= 1) = / Ye)p(e)e T I DUENEE g, (88)
0

It should be noticed thaf is determined when the physical parameters of the chaneededected an¢C|? is a measure of
the FWM efficiency. Then, by choosing the input signal PSD Ww&im the PSD of the NLI.

V. TRANSMISSION SYSTEM EXAMPLE

We now calculate the resulting expression for a system otythe considered in [2]. The system consistsNafyr Spans,
each containing a standard single-mode fiber (SMF) follotedn EDFA. There are no dispersion-compensating fibers JDCF
or any other optical dispersion compensation. InsteadCewill be compensated for by using DSP in the receiver. Thst fir
span starts at = zp = 0 and the last span ends at= zng,.. The fiber parameters, 3, and~y are assumed to have no
z-dependence. Furthermore, we assume that identical sigmallaunched in the two polarizations, i€, = G, = G1x and
we remove the terms that are not due to FWM to rewfité (87) as

Gup = 3/ C(f1s fos f1 + fo = PG (f1) Grx(f2) Grx(f1 + fo — [) dfrdfo. (89)
We haveB(z) = 2z and temporarily introducing = 472(f; — f)(f2 — f) we find

L .
Clfifo i+t fo—f)= /O ype~ "B gy

Nsmr
Nsmr
— _# E (e—a(zn—zn,l)e—iﬁ,@gzn _ e—imﬁgzn,l)
a4+ ik
+ 1Ko —
Nsmr

_ 2 E (e*aLSMFe*iﬁfanSMF _ e*iﬁfb(n*l)llsmr)
a + ikfs ‘
n=

1 — e~ i"B2LsmrNsme

v _ p—aLswr,—iKxB2 Lsmr
o+ ik (1-e ‘ ) 1 — e—infalswe ’ (%0)
where we also used the assumption that all SMFs have the sargth) denoted b¥.sur = 2z, — z,—1. We find
1 — e—aLsurp—irfB2Lsur 2 1 — e~ B2LsurNsur 2
C —NIE=42 .
IC(fis fos i+ fo= )P =~ ot inb ‘ | — o inBalowr
_ 72 1 — e—aLsurp—irf2Lsur 2 SiHQ(KﬁQLSMFNSMF/2) (91)
o+ i’{ﬂQ Sin2 (HBQLSMF/2)

We then find

_ 37 // 1 — e—aLsur—idn®(fi—f)(f2—f)B2Lsur 2 sin2[2ﬂ'2(f1 — )(f2 — F)B2LsweNsme]
G a+ildn?(fr — f)(f2 = f)B2 sin®[272(f1 — f)(f2 — f)B2Lswe]
x Grx(f1)Grx(f2)Grx(f1 + f2 — f) df1dfa. (92)

In order to compare this expression with the coherent egmesn [4, Eq. (18)], we must account for the fact that a défe
convention for the Manakov equation is used[ih [4]. Thus, wechto replaces with 8v/9. However, a difference of a factor
of four in the constant in front of the integral remains al$®rathis substitution. Furthermore, there seems to befardiiice

in how the attenuation is defined. For the definition used ,heeerefer to [(1) and[{9). We have not been able to find the
reason for these differences.

VI. CONCLUSION

We have presented a derivation of the power spectral deofsttye nonlinear interference under the assumptions thét€i
nonlinear effects are weak, (i) the signal can be writtersaggested in[[2], and (iii) the signal-noise interaction te
neglected. Using these three assumptions, we obtain a fBial éxpression that is very similar to that presented in H]-[
Compared to this result, there is a factor of four differeircéhe scale factor and there also seems to be a differencevin h
the attenuation parameter is defined.
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