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Analytical Modeling of Nonlinear Propagation in a
Strongly Dispersive Optical Communication System

Pontus Johannisson

Abstract

Recently an analytical model was presented that treats the nonlinear signal distortion from the Kerr nonlinearity in optical
transmission systems as additive white Gaussian noise. This important model predicts the impact of the Kerr nonlinearity in
systems operating at a high symbol rate and where the accumulated dispersion at the receiver is large. Starting from the suggested
model for the propagating signal, we here give an independent and different calculation of the main result. The analysisis based
on the Manakov equation with attenuation included and a complete and detailed derivation is given using a perturbation analysis.
As in the case with the published model, in addition to assuming that the input signal can be written on a specific form, two
further assumptions are necessary; the nonlinearity is weak and the signal-noise interaction is neglected. The resultis then found
without any further approximations.

Index Terms
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I. I NTRODUCTION

IN AN OPTICAL transmission system operating at a high symbol rate, the propagating signal is rapidly evolving due to
chromatic dispersion (CD). It has been found numerically that after a relatively short distance of propagation, the probability

density function of all four quadratures of a polarization-multiplexed signal become Gaussian with zero mean and a variance
related to the signal power [1]. This can also be shown analytically by using the central limit theorem and is intuitively
understandable since the dispersed signal at every point intime can be viewed as a coherent superposition of many signal
pulses. During the propagation, a nonlinear phase shift is induced in proportion to the local power by the Kerr nonlinearity.
As the CD is compensated in the receiver, this phase shift will give rise to a residual signal distortion. Numerically, ithas
been observed that this distortion is very similar to additive white Gaussian noise (AWGN) [1]. This observation is of great
importance as it suggests that if no attempt is made to compensate for the nonlinear effects, then modeling the nonlinearsignal
distortion as AWGN is possible.

In 2011, an analytical model was presented that calculates the noise-like nonlinear distortion for a quite general wavelength
division multiplexing (WDM) system [2], [3]. This signal distortion was namednonlinear interference(NLI) and recently an
extensive paper on the same topic was published [4]. The workreported here is closely related to these publications but it
should be pointed out that there are many results in the literature that address the same or similar questions. To name one
example, the work for OFDM by Chen and Shieh [5] has many similarities in both the approach and the results. However, the
previous work in the area seems to be well described in the introduction of [4] and we will not further elaborate this topic
here.

In the publications [2]–[4], a suggestion is given for how tomodel the signal, the four-wave mixing (FWM) of the different
signal spectral components is calculated, and the corresponding power spectral density (PSD) is found. However, the derivation
of the main result is quite short. Partly this is because known FWM results are used [6]. In this paper, an independent detailed
derivation of the resulting PSD is carried out. The calculation starts from the Manakov equation with power gain and attenuation
included and we use the signal model suggested in [2]. The calculation is based on a perturbation approach previously used,
e.g., to investigate intrachannel cross-phase modulation(XPM) and intrachannel FWM, which gives rise to “ghost pulses” in
systems using on-off keying [7]–[9]. This approach has later been used both to analytically study systems, see for example [10],
[11], and to compensate for the NLI, see for example [12]. Using the perturbation approach, we here present a self-contained
calculation of the PSD of the NLI directly from the model equation. This work also goes beyond [4] since, as described in
Section II-B, we perform the calculation for a more general system.

The organization of this paper is as follows: In Section II, the perturbation analysis is introduced and a formal solution that
is valid for all input signals is given. In Section III, we findthe solution corresponding to the specific input signal suggested
in [2], which is then used in Section IV to calculate the NLI, i.e., the PSD of the perturbation. We then calculate the PSD
corresponding to the result in [4, Eq. (18)] by studying a specific system choice in Section V. Finally, we conclude.
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II. PERTURBATION ANALYSIS

The calculation of the NLI in [2] assumes that the FWM is a weakeffect. This assumption is stated explicitly as “the
pump is undepleted”. We proceed in a similar way by introducing the complex envelope of the electric field in thex andy
polarizations according toA = (Ax, Ay)

T and writing this asA = Al + Ap, whereAl is the linearly propagating signal,
i.e., the signal in the absence of any Kerr nonlinearity, andAp is a small perturbation. This implies that the nonlinear effects
may not become significant and this constitutes the first assumption of the model. The second assumption is that the input
signal can be written on the form suggested in [2]. The range of validity for this signal model is a separate question and we
do not discuss this question here. A third assumption is thatthe signal-noise interaction is neglected as the calculation of the
NLI does not involve amplifier noise in any way. This is also anassumption of [2] and in order to account for amplifier noise
under this assumption, noise corresponding to the total AWGN from the amplification is added just before the receiver. These
three assumptions are sufficient and no further approximations are necessary to carry out the analysis.

A. The perturbation equation from the Manakov equation

In order to describe transmission using polarization multiplexing, we start from the Manakov equation [13] and include
power gain and attenuation. It should be noted that the Manakov equation is obtained by averaging over the polarization
rotations which are assumed to be fast and this equation doesnot take polarization mode dispersion into account. Denoting
the group-velocity dispersion byβ2(z), the power gain byg(z), and the power attenuation byα(z) we have

i
∂A

∂z
=
β2(z)

2

∂2A

∂t2
− γ(z)(AH

A)A+ i
g(z)− α(z)

2
A, (1)

whereA
H
A = |Ax|2 + |Ay|2 is the sum of the power in thex and y polarizations and the nonlinear parameterγ(z) =

(8/9)(k0n2/Aeff). In the expression forγ, k0 is the wavenumber corresponding to the center frequency,n2 is the Kerr
coefficient, andAeff is the effective area of the optical fiber. The power gaing(z), which is set up using erbium-doped fiber
amplifiers (EDFAs) and/or Raman amplification, is assumed tohave no frequency dependence, i.e., the gain is flat over the
bandwidth of the signal. The perturbation is introduced according to

A = Al +Ap =

(

Ax,l

Ay,l

)

+

(

Ax,p

Ay,p

)

, (2)

whereAl(z, t) solves the linear equation obtained by settingγ = 0 in (1). We find that

(AH
A)A = (|Ax,l + Ax,p|2 + |Ay,l +Ay,p|2)

(

Ax,l +Ax,p

Ay,l +Ay,p

)

. (3)

Our intention is to studyAx and we will consider the two cases that either (i)|Ax,l| and|Ay,l| are of the same order of magnitude
(transmission using polarization multiplexing) or (ii)Ay,l = 0 (single-polarization transmission). The first assumptionabove
can then be strictly formulated as|Ax,p| ≪ |Ax,l| and |Ay,p| ≪ |Ax,l|. This allows us to approximate the nonlinear term to
leading order according to

(AH
A)A ≈ (|Ax,l|2 + |Ay,l|2)

(

Ax,l

Ay,l

)

. (4)

Inserting this into the Manakov equation, we obtain

i
∂

∂z

(

Ax,l +Ax,p

Ay,l +Ay,p

)

=
β2
2

∂2

∂t2

(

Ax,l +Ax,p

Ay,l +Ay,p

)

− γ(|Ax,l|2 + |Ay,l|2)
(

Ax,l

Ay,l

)

+ i
g − α

2

(

Ax,l +Ax,p

Ay,l +Ay,p

)

, (5)

where thez-dependence is now implicit for compactness. The fact thatAl solves (1) whenγ = 0, implies that

i
∂

∂z

(

Ax,p

Ay,p

)

=
β2
2

∂2

∂t2

(

Ax,p

Ay,p

)

− γ(|Ax,l|2 + |Ay,l|2)
(

Ax,l

Ay,l

)

+ i
g − α

2

(

Ax,p

Ay,p

)

. (6)

We will study thex-polarized perturbation, which is described by

∂Ax,p

∂z
= −iβ2

2

∂2Ax,p

∂t2
+ iγ(|Ax,l|2 + |Ay,l|2)Ax,l +

g − α

2
Ax,p. (7)

For compactness, we temporarily introduceS(z, t) = iγ(|Ax,l|2+|Ay,l|2)Ax,l to denote the source term in the partial differential
equation for the perturbation, which is then written

∂Ax,p

∂z
+ i

β2
2

∂2Ax,p

∂t2
− g − α

2
Ax,p = S. (8)
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B. Formal solution

We now derive a general formal solution without any assumptions about the input signal or the system parameters. To
describe the power evolution, we introduceP (z) as a function that satisfies the equation

dP

dz
= [g(z)− α(z)]P. (9)

In the absence of any Raman amplification this function varies ase−αz between the amplifiers. The EDFA gain can be modeled
by aδ-function ing(z) to obtain the discontinuities inP (z) at eachz corresponding to the location of an amplifier. Introducing
Ax,p(z, t) =

√

P (z)ψ(z, t), we obtain the equation

g − α

2

√
Pψ +

√
P
∂ψ

∂z
+ i

β2
2

√
P
∂2ψ

∂t2
− g − α

2

√
Pψ = S, (10)

or

∂ψ

∂z
+ i

β2
2

∂2ψ

∂t2
=

S√
P
. (11)

We proceed by describing the accumulated dispersion,B(z), by a function that satisfies

dB

dz
= β2(z). (12)

If there is lumped dispersion compensation (such as a chirped fiber Bragg grating), thenB will have discontinuities. This can
be modeled by aδ-function in β2(z) to obtain

B(z) =

∫ z

0

β2(ζ) dζ. (13)

Fourier transforming1 the equation, and denoting this operation by tilde, we obtain

∂ψ̃

∂z
− i(2πf)2

β2
2
ψ̃ =

S̃√
P
, (14)

which can be written

∂

∂z

(

e−i(2πf)2B/2ψ̃
)

= e−i(2πf)2B/2 S̃√
P
. (15)

Integrating
∫ z

0 · dζ, we use
[

e−i(2πf)2B/2ψ̃
]ζ=z

ζ=0
= {ψ̃(0, f) = 0} = e−i(2πf)2B(z)/2ψ̃(z, f) (16)

to obtain

ψ̃(z, f) = ei(2πf)
2B(z)/2

∫ z

0

e−i(2πf)2B(ζ)/2 S̃(ζ, f)
√

P (ζ)
dζ. (17)

The final perturbation at the receiver is described byψ̃(L, f), whereL is the total system length (possibly containing many
spans with fibers and amplifiers). Assuming that perfect EDC is performed, the exponential before the integration is canceled
and we obtain

ψ̃(L, f) =

∫ L

0

e−i(2πf)2B(z)/2 S̃(z, f)
√

P (z)
dz. (18)

Assuming that the power atz = L is equal to the power at the transmitter,P0, we haveAx,p(L, t) =
√

P (L)ψ(L, t) =√
P0 ψ(L, t) and we can write the general expression for the perturbationas

Ãx,p(L, f) =

∫ L

0

e−i(2πf)2B(z)/2 S̃(z, f)
√

P (z)

√

P0 dz =

∫ L

0

e−i(2πf)2B(z)/2 S̃(z, f)
√

p(z)
dz, (19)

wherep(z) = P (z)/P0 has been introduced. This function describes the normalized power evolution through the system.
Using the definition ofS, we find

Ãx,p(L, f) =

∫ L

0

e−i(2πf)2B(z)/2

√

p(z)
F [iγ(|Ax,l|2 + |Ay,l|2)Ax,l] dz, (20)

whereF denotes Fourier transformation.

1We use the same definition for the Fourier transform as Proakis [14], i.e.,ũ(f) =
∫
∞

−∞
u(t)e−i2πftdt andu(t) =

∫
∞

−∞
ũ(f)ei2πftdf .
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III. S IGNAL MODEL

Provided that the first assumption is fulfilled, (20) is the solution to (1) without further approximations. However, we need
to choose the system parameters, select the boundary condition at z = 0, i.e., the input signal, and perform the integration.
When trying to do this with an accurate modeling of the signalpulses, the calculations become cumbersome and the final
expression needs to be averaged over the data. We here instead use the second assumption, i.e., we write the initial field in
the way suggested in [2]. This model is

Ãx,l(0, f) =
√

f0

∞
∑

k=−∞

ξk
√

Gx(kf0) δ(f − kf0), (21)

Ãy,l(0, f) =
√

f0

∞
∑

k=−∞

ζk

√

Gy(kf0) δ(f − kf0), (22)

whereξk andζk are complex independent Gaussian random variables of unit variance and the input signal PSD of thex andy
polarizations are denoted byGx(f) andGy(f), respectively. In the following, we will suppress the infinite summation limits
for notational convenience. We account for dispersion and power variations during the propagation by modifying this to

Ãx,l(z, f) =
√

f0p(z)
∑

k

ξk
√

Gx(kf0) δ(f − kf0)e
i(2πkf0)

2B(z)/2, (23)

Ãy,l(z, f) =
√

f0p(z)
∑

k

ζk

√

Gy(kf0) δ(f − kf0)e
i(2πkf0)

2B(z)/2. (24)

Using this linear solution, we can now calculate the perturbation using (20). In order to do this we need the expression

F [iγ(|Ax,l|2 + |Ay,l|2)Ax,l] = iγF [A2
x,lA

∗

x,l] + iγF [Ax,lAy,lA
∗

y,l]. (25)

The solution (20) can be written

Ãx,p(L, f) = i

∫ L

0

γe−i(2πf)2B/2
F [A2

x,lA
∗

x,l]√
p

dz + i

∫ L

0

γe−i(2πf)2B/2
F [Ax,lAy,lA

∗

y,l]√
p

dz, (26)

where we again omit thez dependence for notational compactness. We have

Ax,l(z, t) =
√

f0p
∑

k

ξk
√

Gx(kf0) e
i(2πkf0)tei(2πkf0)

2B/2, (27)

Ay,l(z, t) =
√

f0p
∑

k

ζk

√

Gy(kf0) e
i(2πkf0)tei(2πkf0)

2B/2, (28)

and get

A2
x,lA

∗

x,l =

(

√

f0p
∑

k

ξk
√

Gx(kf0) e
i(2πkf0)tei(2πkf0)

2B/2

)(

√

f0p
∑

l

ξl
√

Gx(lf0) e
i(2πlf0)tei(2πlf0)

2B/2

)

×
(

√

f0p
∑

m

ξ∗m
√

Gx(mf0) e
−i(2πmf0)te−i(2πmf0)

2B/2

)

, (29)

Ax,lAy,lA
∗

y,l =

(

√

f0p
∑

k

ξk
√

Gx(kf0) e
i(2πkf0)tei(2πkf0)

2B/2

)(

√

f0p
∑

l

ζl

√

Gy(lf0) e
i(2πlf0)tei(2πlf0)

2B/2

)

×
(

√

f0p
∑

m

ζ∗m

√

Gy(mf0) e
−i(2πmf0)te−i(2πmf0)

2B/2

)

. (30)

These expressions can be simplified to

A2
x,lA

∗

x,l = (f0p)
3/2

∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0)e
i2π(k+l−m)f0tei(2π)

2(k2+l2−m2)f2

0
B/2, (31)

Ax,lAy,lA
∗

y,l = (f0p)
3/2

∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0)e
i2π(k+l−m)f0tei(2π)

2(k2+l2−m2)f2

0
B/2. (32)
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The Fourier transforms are

F [A2
x,lA

∗

x,l] = (f0p)
3/2

∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0)δ(f − (k + l −m)f0)e
i(2π)2(k2+l2−m2)f2

0
B/2, (33)

F [Ax,lAy,lA
∗

y,l] = (f0p)
3/2

∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0)δ(f − (k + l −m)f0)e
i(2π)2(k2+l2−m2)f2

0
B/2. (34)

The integrands of (26) can then be written

γe−i(2πf)2B/2
F [A2

x,lA
∗

x,l]√
p

= γe−i(2πf)2B/2f
3/2
0 p

∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0)

× δ(f − (k + l −m)f0)e
i(2π)2(k2+l2−m2)f2

0
B/2, (35)

γe−i(2πf)2B/2
F [Ax,lAy,lA

∗

y,l]√
p

= γe−i(2πf)2B/2f
3/2
0 p

∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0)

× δ(f − (k + l −m)f0)e
i(2π)2(k2+l2−m2)f2

0
B/2. (36)

We can move the exponential functions containingB after the summation signs to obtain

γe−i(2πf)2B/2
F [A2

x,lA
∗

x,l]√
p

= f
3/2
0 γp

∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0)

× δ(f − (k + l −m)f0)e
i(2π)2(k2+l2−m2)f2

0
B/2e−i(2π)2(k+l−m)2f2

0
B/2, (37)

γe−i(2πf)2B/2
F [Ax,lAy,lA

∗

y,l]√
p

= f
3/2
0 γp

∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0)

× δ(f − (k + l −m)f0)e
i(2π)2(k2+l2−m2)f2

0
B/2e−i(2π)2(k+l−m)2f2

0
B/2. (38)

We use that

(k2 + l2 −m2)− (k + l −m)2 = −2(k −m)(l −m) (39)

to obtain

γe−i(2πf)2B/2
F [A2

x,lA
∗

x,l]√
p

= f
3/2
0 γp

∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0)

× δ(f − (k + l −m)f0)e
−i4π2(k−m)(l−m)f2

0
B (40)

γe−i(2πf)2B/2
F [Ax,lAy,lA

∗

y,l]√
p

= f
3/2
0 γp

∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0)

× δ(f − (k + l −m)f0)e
−i4π2(k−m)(l−m)f2

0
B. (41)

The solution can therefore be written

Ãx,p(L, f) = i

∫ L

0

f
3/2
0 γp

∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0) δ(f − (k + l −m)f0)e
−i4π2(k−m)(l−m)f2

0
B dz

+ i

∫ L

0

f
3/2
0 γp

∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0) δ(f − (k + l −m)f0)e
−i4π2(k−m)(l−m)f2

0
B dz. (42)

Inverse Fourier transformation gives

Ax,p(L, t) = if
3/2
0

∫ L

0

γp
∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0)e
i2π(k+l−m)f0te−i4π2(k−m)(l−m)f2

0
B dz

+ if
3/2
0

∫ L

0

γp
∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0)e
i2π(k+l−m)f0te−i4π2(k−m)(l−m)f2

0
B dz. (43)
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We can also rearrange integration and summation to obtain

Ax,p(L, t) = if
3/2
0

∑

k,l,m

ξkξlξ
∗

m

√

Gx(kf0)Gx(lf0)Gx(mf0)e
i2π(k+l−m)f0t

∫ L

0

γpe−i4π2(k−m)(l−m)f2

0
B dz

+ if
3/2
0

∑

k,l,m

ξkζlζ
∗

m

√

Gx(kf0)Gy(lf0)Gy(mf0)e
i2π(k+l−m)f0t

∫ L

0

γpe−i4π2(k−m)(l−m)f2

0
B dz. (44)

Consideringγ(z), p(z), B(z), andL to be given system parameters, we introduce

Cklm ≡ C(kf0, lf0,mf0) ≡
∫ L

0

γpe−i4π2(k−m)(l−m)f2

0
B dz (45)

to write this as

Ax,p(L, t) = if
3/2
0

∑

k,l,m

Cklmξkξlξ∗m
√

Gx(kf0)Gx(lf0)Gx(mf0)e
i2π(k+l−m)f0t

+ if
3/2
0

∑

k,l,m

Cklmξkζlζ∗m
√

Gx(kf0)Gy(lf0)Gy(mf0)e
i2π(k+l−m)f0t

= if
3/2
0

∑

k,l,m

Cklmei2π(k+l−m)f0tξk
√

Gx(kf0)

(

ξlξ
∗

m

√

Gx(lf0)Gx(mf0) + ζlζ
∗

m

√

Gy(lf0)Gy(mf0)

)

. (46)

For later use we notice that

|Cklm| ≤
∫ L

0

∣

∣

∣
γpe−i4π2(k−m)(l−m)f2

0
B
∣

∣

∣
dz =

∫ L

0

γp dz ≤ γ̂p̂L, (47)

wherep̂ and γ̂ are the maximum values ofp(z) andγ(z) in the intervalz ∈ [0, L]. This means that|Cklm| is upper bounded
by a constant ask, l, m, andf0 are changed.

IV. POWER SPECTRAL DENSITY

When the input signal is modeled by (21) and (22), then the perturbation is given by (46). The next step is to calculate the
corresponding PSD. Using the Wiener-Khinchin theorem [14,p. 67], we have that the PSD is the Fourier transform of the
autocorrelation according to

Gx,p(f) = F [R(τ)] =

∫

∞

−∞

R(τ)e−i2πfτ dτ, (48)

where

R = E{Ax,p(L, t1)A
∗

x,p(L, t2)} (49)

andE{·} denotes the expectation operator. As will be shown, the latter expression can be written as a function of the time
differenceτ = t1 − t2. We will suppress the infinite limits for notational convenience. We have

Ax,p(L, t1)A
∗

x,p(L, t2) = (50)


if
3/2
0

∑

k,l,m

Cklmei2π(k+l−m)f0t1ξk
√

Gx(kf0)

(

ξlξ
∗

m

√

Gx(lf0)Gx(mf0) + ζlζ
∗

m

√

Gy(lf0)Gy(mf0)

)



×



−if3/2
0

∑

k′,l′,m′

C∗

k′l′m′e−i2π(k′+l′−m′)f0t2ξ∗k′

√

Gx(k′f0)

(

ξ∗l′ξm′

√

Gx(l′f0)Gx(m′f0) + ζ∗l′ζm′

√

Gy(l′f0)Gy(m′f0)

)



 =

f3
0

∑

k,l,m
k′,l′,m′

CklmC∗

k′l′m′ei2π(k+l−m)f0t1e−i2π(k′+l′−m′)f0t2ξkξ
∗

k′

√

Gx(kf0)
√

Gx(k′f0)×

(

ξlξ
∗

m

√

Gx(lf0)Gx(mf0) + ζlζ
∗

m

√

Gy(lf0)Gy(mf0)

)(

ξ∗l′ξm′

√

Gx(l′f0)Gx(m′f0) + ζ∗l′ζm′

√

Gy(l′f0)Gy(m′f0)

)

.

We see that the complete autocorrelation function will consist of four terms

R = R1 +R2 +R3 +R4 (51)
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where

R1 = E

{

f3
0

∑

k,l,m
k′,l′,m′

CklmC∗

k′l′m′ei2π(k+l−m)f0t1e−i2π(k′+l′−m′)f0t2

× ξkξlξ
∗

mξ
∗

k′ξ∗l′ξm′

√

Gx(kf0)Gx(lf0)Gx(mf0)Gx(k′f0)Gx(l′f0)Gx(m′f0)

}

, (52)

R2 = E

{

f3
0

∑

k,l,m
k′,l′,m′

CklmC∗

k′l′m′ei2π(k+l−m)f0t1e−i2π(k′+l′−m′)f0t2

× ξkξlξ
∗

mξ
∗

k′ζ∗l′ζm′

√

Gx(kf0)Gx(lf0)Gx(mf0)Gx(k′f0)Gy(l′f0)Gy(m′f0)

}

, (53)

R3 = E

{

f3
0

∑

k,l,m
k′,l′,m′

CklmC∗

k′l′m′ei2π(k+l−m)f0t1e−i2π(k′+l′−m′)f0t2

× ξkζlζ
∗

mξ
∗

k′ξ∗l′ξm′

√

Gx(kf0)Gy(lf0)Gy(mf0)Gx(k′f0)Gx(l′f0)Gx(m′f0)

}

, (54)

R4 = E

{

f3
0

∑

k,l,m
k′,l′,m′

CklmC∗

k′l′m′ei2π(k+l−m)f0t1e−i2π(k′+l′−m′)f0t2

× ξkζlζ
∗

mξ
∗

k′ζ∗l′ζm′

√

Gx(kf0)Gy(lf0)Gy(mf0)Gx(k′f0)Gy(l′f0)Gy(m′f0)

}

. (55)

These four terms in the autocorrelation will give rise to four different terms in the total PSD, which we denote byGx,p,1,
Gx,p,2, Gx,p,3, andGx,p,4, respectively. We need to find these four terms individually.

A. The random variables

It is seen that in (52)–(55), all terms except theξ and ζ are deterministic. In order to carry out the expectation operation,
in this section we therefore need to investigate these random variables.

Theξ andζ are complex independent Gaussian random variables of unit variance, i.e.,E{ξk} = 0, E{ξ2k} = 0, E{|ξk|2} = 1,
∀k. Analogous expressions hold forζk. Using this, we can simplify the six-dimensional sums (52)–(55) in the following way.
First assume that one of the summation variables, sayk, has a value different from all other summation variables, i.e., k is
unique. Due to the independence, we then have

E{ξkξlξ∗mξ∗k′ξ∗l′ξm′} = E{ξk}E{ξlξ∗mξ∗k′ξ∗l′ξm′} = 0. (56)

An identical argument holds if some of theξ are replaced byζ. This implies that the expected value is always zero when
one of the summation variables is unique. Thus, we have the condition that no summation variable can be unique. Second we
assume that no summation variable is unique, but there are three pairwise equal values, where each pair has a unique value.
Assume for example thatk = l, k′= l′, m = m′. Then

E{ξkξlξ∗mξ∗k′ξ∗l′ξm′} = E{ξkξkξ∗mξ∗k′ξ∗k′ξm} = E{ξkξk}E{ξ∗k′ξ∗k′}E{ξ∗mξm} = E{ξ2k}E{(ξ∗k′)2}E{|ξm|2} = 0. (57)

We conclude that each random variable must be paired up with the complex conjugated version of the same random variable.
This conclusion reduces the dimensionality of the summation to three or less. However, the dimensionality cannot be less than
three, because then the expressionGx,p → 0 asf0 → 0. To see this we first notice that

|Gx,p| ≤ |Gx,p,1|+ |Gx,p,2|+ |Gx,p,3|+ |Gx,p,4|, (58)

and since all terms behave similarly in this respect, we can study, say,Gx,p,1. Let us select the one-dimensional casek = l =
m = k′= l′= m′. We then have

R1 = E

{

f3
0

∑

k

|Ckkk|2ei2πkf0τ |ξk|6G3
x(kf0)

}

= f3
0

∑

k

|Ckkk|2ei2πkf0τ E{|ξk|6}G3
x(kf0). (59)



8

We get

Gx,p,1 = f3
0

∑

k

|Ckkk |2 E{|ξk|6}G3
x(kf0)δ(f − kf0). (60)

We see thatGx,p,1 → 0 asf0 → 0 by identifying the Riemann sum and writing the expression as

Gx,p,1 = f2
0

∫

|C(f1, f1, f1)|2 E{|ξk|6}G3
x(f1)δ(f − f1) df1 = f2

0 |C(f, f, f)|2 E{|ξk|6}G3
x(f). (61)

Remembering that the value of|C|2 is upper bounded by a constant, the fact thatGx,p,1 → 0 is now obvious. An analogous
argument can be made for the case of a two-dimensional sum. Weconclude that the summation must have dimension exactly
three, i.e., each random variable must be paired up with the complex conjugated version of the same random variable and all
three pairs must have unique values.

B. The first term in the PSD

We now study the first expression, i.e.,Gx,p,1(f) = F [R1(τ)]. Following the above rules for how the indices can be chosen,
we have six possible combinations:

k = k′ l = l′ m = m′,
k = k′ l = m m′= l′,
k = l′ l = k′ m = m′,
k = l′ l = m m′= k′,
k = m l = k′ m′= l′,
k = m l = l′ m′= k′.

(62)

We need to study these different possibilities individually.
1) The casek = k′, l = l′, m = m′: We then have

R1 = E







f3
0

∑

k,l,m

|Cklm|2ei2π(k+l−m)f0t1e−i2π(k+l−m)f0t2 |ξk|2|ξl|2|ξm|2Gx(kf0)Gx(lf0)Gx(mf0)







= f3
0

∑

k,l,m

|Cklm|2ei2π(k+l−m)f0τGx(kf0)Gx(lf0)Gx(mf0), (63)

Gx,p,1(f) = f3
0

∑

k,l,m

|Cklm|2Gx(kf0)Gx(lf0)Gx(mf0)δ(f − (k + l −m)f0). (64)

Letting f0 → 0, we get

Gx,p,1(f) =

∫∫∫

|C(f1, f2, f3)|2Gx(f1)Gx(f2)Gx(f3)δ(f − f1 − f2 + f3) df1df2df3

=

∫∫

|C(f1, f2, f1 + f2 − f)|2Gx(f1)Gx(f2)Gx(f1 + f2 − f) df1df2. (65)

2) The other cases:Compared to the case above, the casek = l′, l = k′, m = m′ is obtained by swappingk′ and l′. Since
Cklm = Clkm and the rest of the expression is clearly invariant under this change, this yields an identical result as the case
above. The other four cases are all equivalent to the casek = k′, l = m, m′= l′. We get

R1 = E

{

f3
0

∑

kll′

CkllC∗

kl′l′e
i2π(k+l−l)f0t1e−i2π(k+l′−l′)f0t2ξkξlξ

∗

l ξ
∗

kξ
∗

l′ξl′
√

Gx(kf0)Gx(lf0)Gx(lf0)Gx(kf0)Gx(l′f0)Gx(l′f0)

}

= E

{

f3
0

∑

kll′

CkllC∗

kl′l′e
i2πkf0t1e−i2πkf0t2 |ξk|2|ξl|2|ξl′|2Gx(kf0)Gx(lf0)Gx(l

′f0)

}

= f3
0

∑

kll′

CkllC∗

kl′l′e
i2πkf0τGx(kf0)Gx(lf0)Gx(l

′f0), (66)

Gx,p,1(f) = f3
0

∑

kll′

CkllC∗

kl′l′Gx(kf0)Gx(lf0)Gx(l
′f0)δ(f − kf0). (67)
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Letting f0 → 0, we get

Gx,p,1(f) =

∫∫∫

C(f1, f2, f2)C∗(f1, f3, f3)Gx(f1)Gx(f2)Gx(f3)δ(f − f1) df1df2df3

=

∫∫

C(f, f2, f2)C∗(f, f3, f3)Gx(f)Gx(f2)Gx(f3) df2df3. (68)

However

C(f1, f2, f2) = C(f1, f3, f3) = C(f2, f1, f2) = C(f3, f1, f3) =
∫ L

0

γ(z)p(z) dz ≡ C0, (69)

which is a real number. This gives

Gx,p,1(f) = C2
0Gx(f)

∫∫

Gx(f2)Gx(f3) df2df3 = C2
0Gx(f)

∫

Gx(f2) df2

∫

Gx(f3) df3 = C2
0P

2
xGx(f). (70)

3) The total PSD for the first term:The six possible index selection cases split into two groupsof degeneracy two and
four, respectively. We get the total expression

Gx,p,1(f) = 2

∫∫

|C(f1, f2, f1 + f2 − f)|2Gx(f1)Gx(f2)Gx(f1 + f2 − f) df1df2 + 4C2
0P

2
xGx(f). (71)

C. The second term in the PSD

We now study the second expression, i.e.,Gx,p,2(f) = F [R2(τ)]. Following the above rules for how the indices can be
chosen, we have two combinations

k = k′ l = m m′= l′

k = m l = k′ m′= l′
(72)

The reason that we have fewer possibilities is that the expression contains bothξ andζ, which are independent.
1) The casek = k′, l = m, m′= l′: We then have

R2 = E







f3
0

∑

k,l,l′

CkllC∗

kl′l′e
i2πkf0t1e−i2πk′f0t2 |ξk|2|ξl|2|ζl′|2Gx(kf0)Gx(lf0)Gy(l

′f0)







= f3
0

∑

k,l,l′

CkllC∗

kl′l′e
i2πkf0τGx(kf0)Gx(lf0)Gy(l

′f0), (73)

Gx,p,2(f) = f3
0

∑

k,l,l′

CkllC∗

kl′l′Gx(kf0)Gx(lf0)Gy(l
′f0)δ(f − kf0). (74)

Letting f0 → 0, we get

Gx,p,2(f) =

∫∫∫

C(f1, f2, f2)C∗(f1, f3, f3)Gx(f1)Gx(f2)Gy(f3)δ(f − f1) df1df2df3

= C2
0

∫∫

Gx(f)Gx(f2)Gy(f3) df2df3

= C2
0PxPyGx(f). (75)

2) The casek = m, l = k′, m′= l′: We notice that this case is obtained from the above case by swappingk and l and will
therefore give the same result.

3) The total PSD for the second term:We get the final expression

Gx,p,2(f) = 2C2
0PxPyGx(f). (76)

D. The third term in the PSD

We now study the third expression, i.e.,Gx,p,3(f) = F [R3(τ)]. Following the above rules for how the indices can be chosen,
we now have two combinations

k = k′ l = m m′= l′

k = l′ l = m m′= k′
(77)

The first case is identical to the first case for the second termin the PSD. The second case is obtained from the first case by
swappingk′ and l′ and will therefore give the same result. We get

Gx,p,3(f) = 2C2
0PxPyGx(f). (78)
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E. The fourth term in the PSD

We now study the fourth expression, i.e.,Gx,p,4(f) = F [R4(τ)]. Following the above rules for how the indices can be
chosen, we have two combinations

k = k′ l = l′ m = m′

k = k′ l = m m′= l′
(79)

1) The casek = k′, l = l′, m = m′: We then have

R4 = E







f3
0

∑

k,l,m

|Cklm|2ei2π(k+l−m)f0τ |ξk|2|ζl|2|ζm|2Gx(kf0)Gy(lf0)Gy(mf0)







= f3
0

∑

k,l,m

|Cklm|2ei2π(k+l−m)f0τGx(kf0)Gy(lf0)Gy(mf0), (80)

Gx,p,4(f) = f3
0

∑

k,l,m

|Cklm|2Gx(kf0)Gy(lf0)Gy(mf0)δ(f − (k + l −m)f0). (81)

Letting f0 → 0, we get

Gx,p,4(f) =

∫∫∫

|C(f1, f2, f3)|2Gx(f1)Gy(f2)Gy(f3)δ(f − f1 − f2 + f3) df1df2df3

=

∫∫

|C(f1, f2, f1 + f2 − f)|2Gx(f1)Gy(f2)Gy(f1 + f2 − f) df1df2. (82)

2) The casek = k′, l = m, m′= l′: We get

R4 = E







f3
0

∑

k,l,l′

CkllC∗

kl′l′e
i2πkf0t1e−i2πkf0t2 |ξk|2|ζl|2|ζl′|2Gx(kf0)Gy(lf0)Gy(l

′f0)







= f3
0

∑

k,l,l′

CkllC∗

kl′l′e
i2πkf0τGx(kf0)Gy(lf0)Gy(l

′f0), (83)

Gx,p,4(f) = f3
0

∑

k,l,l′

CkllC∗

kl′l′Gx(kf0)Gy(lf0)Gy(l
′f0)δ(f − kf0). (84)

Letting f0 → 0, we get

Gx,p,4(f) =

∫∫∫

C(f1, f2, f2)C∗(f1, f3, f3)Gx(f1)Gy(f2)Gy(f3)δ(f − f1) df1df2df3

=

∫∫

C(f, f2, f2)C∗(f, f3, f3)Gx(f)Gy(f2)Gy(f3) df2df3

= C2
0P

2
yGx(f). (85)

3) The total PSD for the fourth term:We get the final expression

Gx,p,2(f) =

∫∫

|C(f1, f2, f1 + f2 − f)|2Gx(f1)Gy(f2)Gy(f1 + f2 − f) df1df2 + C2
0P

2
yGx(f). (86)

F. The total PSD

We can now find the total PSD by summing up all the terms according to

Gx,p = Gx,p,1 +Gx,p,2 +Gx,p,3 +Gx,p,4

= 2

∫∫

|C(f1, f2, f1 + f2 − f)|2Gx(f1)Gx(f2)Gx(f1 + f2 − f) df1df2

+

∫∫

|C(f1, f2, f1 + f2 − f)|2Gx(f1)Gy(f2)Gy(f1 + f2 − f) df1df2

+ C2
0(4P

2
x + 4PxPy + P 2

y )Gx(f). (87)

We notice that thex polarization acting on itself is twice as effective as they polarization acting on thex polarization. As is
clear from the derivation, the reason for this is the level ofdegeneracy. This is similar to the case of the double influence of
XPM as compared to SPM, when the nonlinear Schrödinger equation is approximated by a coupled system with one equation
for each WDM channel [15, p. 264]. The final term of (87) is of noconsequence for the transmission. The origin of this term
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is the phase modulation from the entire propagating field acting on itself. In practice, we expect this to just cause a rotation
of the received signal constellations. However, in the perturbation analysis, this type of phase modulation gives riseto these
extra terms in the PSD. As (87) can be considered the main result of this calculation, we repeat the expression forC for ease
of reference

C(f1, f2, f1 + f2 − f) ≡
∫ L

0

γ(z)p(z)e−i4π2(f1−f)(f2−f)B(z) dz. (88)

It should be noticed thatC is determined when the physical parameters of the channel are selected and|C|2 is a measure of
the FWM efficiency. Then, by choosing the input signal PSD we obtain the PSD of the NLI.

V. TRANSMISSION SYSTEM EXAMPLE

We now calculate the resulting expression for a system of thetype considered in [2]. The system consists ofNSMF spans,
each containing a standard single-mode fiber (SMF) followedby an EDFA. There are no dispersion-compensating fibers (DCF)
or any other optical dispersion compensation. Instead, theCD will be compensated for by using DSP in the receiver. The first
span starts atz = z0 = 0 and the last span ends atz = zNSMF. The fiber parametersα, β2, andγ are assumed to have no
z-dependence. Furthermore, we assume that identical signals are launched in the two polarizations, i.e.,Gx = Gy = GTx and
we remove the terms that are not due to FWM to rewrite (87) as

Gx,p = 3

∫∫

|C(f1, f2, f1 + f2 − f)|2GTx(f1)GTx(f2)GTx(f1 + f2 − f) df1df2. (89)

We haveB(z) = β2z and temporarily introducingκ = 4π2(f1 − f)(f2 − f) we find

C(f1, f2, f1 + f2 − f) =

∫ L

0

γpe−iκB(z) dz

= γ

NSMF
∑

n=1

∫ zn

zn−1

e−α(z−zn−1)e−iκβ2z dz

= − γ

α+ iκβ2

NSMF
∑

n=1

(

e−α(zn−zn−1)e−iκβ2zn − e−iκβ2zn−1

)

= − γ

α+ iκβ2

NSMF
∑

n=1

(

e−αLSMFe−iκβ2nLSMF − e−iκβ2(n−1)LSMF

)

=
γ

α+ iκβ2
(1− e−αLSMFe−iκβ2LSMF)

1 − e−iκβ2LSMFNSMF

1− e−iκβ2LSMF
, (90)

where we also used the assumption that all SMFs have the same length, denoted byLSMF = zn − zn−1. We find

|C(f1, f2, f1 + f2 − f)|2 = γ2
∣

∣

∣

∣

1− e−αLSMFe−iκβ2LSMF

α+ iκβ2

∣

∣

∣

∣

2 ∣
∣

∣

∣

1− e−iκβ2LSMFNSMF

1− e−iκβ2LSMF

∣

∣

∣

∣

2

= γ2
∣

∣

∣

∣

1− e−αLSMFe−iκβ2LSMF

α+ iκβ2

∣

∣

∣

∣

2
sin2(κβ2LSMFNSMF/2)

sin2(κβ2LSMF/2)
. (91)

We then find

Gx,p = 3γ2
∫∫

∣

∣

∣

∣

∣

1− e−αLSMF−i4π2(f1−f)(f2−f)β2LSMF

α+ i4π2(f1 − f)(f2 − f)β2

∣

∣

∣

∣

∣

2
sin2[2π2(f1 − f)(f2 − f)β2LSMFNSMF]

sin2[2π2(f1 − f)(f2 − f)β2LSMF]

×GTx(f1)GTx(f2)GTx(f1 + f2 − f) df1df2. (92)

In order to compare this expression with the coherent expression in [4, Eq. (18)], we must account for the fact that a different
convention for the Manakov equation is used in [4]. Thus, we need to replaceγ with 8γ/9. However, a difference of a factor
of four in the constant in front of the integral remains also after this substitution. Furthermore, there seems to be a difference
in how the attenuation is defined. For the definition used here, we refer to (1) and (9). We have not been able to find the
reason for these differences.

VI. CONCLUSION

We have presented a derivation of the power spectral densityof the nonlinear interference under the assumptions that (i) the
nonlinear effects are weak, (ii) the signal can be written assuggested in [2], and (iii) the signal–noise interaction can be
neglected. Using these three assumptions, we obtain a final PSD expression that is very similar to that presented in [2]–[4].
Compared to this result, there is a factor of four differencein the scale factor and there also seems to be a difference in how
the attenuation parameter is defined.
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