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A new approximate solution to the quantum-classical Liouville equation is derived

starting from the formal solution of this equation in forward-backward form. The

time evolution of a mixed quantum-classical system described by this equation is

obtained in a coherent state basis using the mapping representation, which expresses

N quantum degrees of freedom in a 2N -dimensional phase space. The solution yields

a simple non-Hamiltonian dynamics in which a set of N coherent state coordinates

evolve in forward and backward trajectories while the bath coordinates evolve under

the influence of the mean potential that depends on these forward and backward tra-

jectories. It is shown that the solution satisfies the differential form of the quantum-

classical Liouville equation exactly. Relations to other mixed quantum-classical and

semi-classical schemes are discussed.
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I. INTRODUCTION

Nonadiabatic processes are at the core of many physical phenomena, including population

transfer among electronic system states, quantum coherent evolution of a system interacting

with environmental degrees of freedom, electron and proton transfer reactions in condensed

phase and biological systems, among others. In investigating such phenomena one often

focuses on certain quantum degrees of freedom whose dynamics is of primary interest. These

may be the electronic degrees of freedom of a chromophore excited by radiation to prepare

the initial state of the system, the exciton states of a light harvesting system, or even the

electron or proton degrees of freedom involved in the transfer of these particles. In such cases

we are led to consider how these quantum degrees of freedom interact with the environment

in which they reside. Interactions with the environment can lead to the breakdown of the

Born-Oppenheimer approximation and one must consider nonadiabatic dynamics in such

open quantum systems.

A number of different approaches have been developed to describe nonadiabatic dynam-

ics. These include mean-field and a variety of surface-hopping schemes1–7, methods based

on semi-classical evaluations of path integral formulations of quantum mechanics8–20 and

descriptions based on the quantum-classical Liouville equation21. An important ingredi-

ent in any approach dealing with nonadiabatic dynamics is the manner in which quantum

coherence and decoherence are taken into account in the dynamics. The description of nona-

diabtic dynamics necessarily entails dealing with coherence that is generated and destroyed

as the system evolves while interacting with its environment. Many of the various nonadi-

abatic approaches that have been constructed deal with the issue of decoherence in various

ways22–25.

Another characteristic of nonadiabatic schemes is the manner in which the environment

is modeled. At the simplest level, the environment may be treated as a stochastic bath,

which leads to reduced descriptions that do not explicitly include the environmental degrees

of freedom in the evolution. Their effect only appears in certain parameters and terms that

characterize the coupling to the environment. Schemes of this type include various quan-

tum master equations26, the Lindblad equation27 and the Redfield and Bloch equations28,29.

Other methods explicitly account for the environmental degrees of freedom. It is challenging

to treat large and complex systems fully quantum mechanically, although there are devel-
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opments along these lines30–35. Some methods, for example, some path integral methods,

begin with a full quantum treatment and then make semi-classical approximations to obtain

tractable solutions17–20,36. Often the environment in which the quantum dynamics of inter-

est occurs can be described by classical dynamics to a high degree of accuracy and this has

spawned a number of mixed quantum-classical descriptions of nonadiabatic dynamics. Many

surface-hopping schemes fall in this category as do some approximations to semi-classical

path integral formulations and mean-field methods17,37,38. Here we focus on descriptions

based on the quantum-classical Liouville equation (QCLE).

The QCLE employs a partial Wigner representation of the environmental (bath) degrees

of freedom and may be derived from full quantum dynamics by truncating the quantum evo-

lution operator to first order in a small parameter related to the ratio of the characteristic

masses of quantum and bath degrees of freedom39. It may also be derived from partially

linearized path integral formulations40,41, indicating the close connection between these dif-

ferent starting points. This equation has been shown to provide an accurate description of

nonadiabtic dynamics in many applications and to account for quantum decoherence21. A

number of different methods, whose structure depends on the basis chosen to represent the

quantum degrees of freedom, have been devised for its simulation42–48. Simulation methods

that utilize an adiabatic basis can be cast into the form of surface-hopping dynamics, but in

a way that includes coherent evolution segments that account for creation and destruction

of coherence in a proper manner. More recently, as in some semi-classical approaches17, the

mapping basis49 was used to describe the quantum degrees of freedom in the QCLE in a

continuous classical-like manner, leading to a trajectory description in the full system phase

space50–52.

In this paper we also utilize the mapping representation but instead of dealing directly

with the solution of the QCLE using a Liouville propagator, we start with its solution

in terms of forward-backward quantum-classical propagators constructed some time ago53.

With this starting point and the introduction of a coherent state basis54 we are able to obtain

a solution of the QCLE that involves forward-backward trajectories of the coherent state

variables, coupled to the evolution of the bath phase space variables. Formally, both forward

and backward trajectories are propagated forward in time. The two sets of trajectories are

distinguished and named by their association with the forward and backward quantum-

classical propagators, respectively. This formulation leads to a simple set of non-Hamiltonian
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equations that describe the nonadiabatic dynamics of the system.

The outline of the paper is as follows: In Sec. II we sketch the important features of

the QCLE, its representation in the mapping basis and formal solution in forward-backward

form needed for our calculation. The forward-backward trajectory solution is constructed

in Sec. III, which contains the most important results of the paper. A discussion of the

results is presented in Sec. IV, while the Appendices give additional technical details of the

calculation.

II. QUANTUM-CLASSICAL LIOUVILLE EQUATION

We consider a quantum subsystem coupled to a bath. We assume that the dynamics

of such a system is described by the quantum-classical Liouville equation39,42,46,55–59. For

a quantum operator B̂W (X), which depends on the classical phase space variables X =

(R,P ) = (R1, R2, ..., RNb , P1, P2, ..., PNb) of the bath, this evolution equation takes the form,

d

dt
B̂W (X, t) = iL̂B̂W (X, t), (1)

where the quantum-classical Liouville operator is

iL̂· = i

h̄
[ĤW , ·]−

1

2
({ĤW , ·} − {·, ĤW}). (2)

Here the subscript W refers to a partial Wigner transform over the bath degrees of freedom

(DOF), ĤW (X) is the partial Wigner transform of the total Hamiltonian of the system,

[·, ·] is the commutator and {·, ·} is the Poisson bracket in the phase space of the classical

variables X. The total Hamiltonian may be written as the sum of bath, subsystem and

coupling terms,

ĤW (X) = Hb(X) + ĥs + V̂c(R) ≡ Hb(X) + ĥ(R), (3)

where Hb(X) = P 2/2M + Vb(R) is the bath Hamiltonian with Vb(R) the bath potential

energy, ĥs = p̂2/2m+ V̂s is the subsystem Hamiltonian with p̂ and V̂s the subsystem momen-

tum and potential energy operators, and V̂c(R) is the coupling potential energy operator.

The masses of the subsystem and bath particles are m and M , respectively. The evolution

equation for the density matrix ρ̂W (X, t) is analogous to Eq. (1) with a change in sign of

the evolution operator.
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A. Formal solution

The QCLE may also be written in a form that is analogous to the quantum Liouville

equation53:
d

dt
B̂W (X, t) =

i

h̄

( →
HΛ B̂W − B̂W

←
HΛ

)
, (4)

where operators
→
HΛ and

←
HΛ are given by

→
HΛ = ĤW

(
1 +

h̄Λ

2i

)
,

←
HΛ =

(
1 +

h̄Λ

2i

)
ĤW , (5)

with Λ the negative of the Poisson bracket operator, Λ =
←
∇P ·

→
∇R −

←
∇R ·

→
∇P .

The formal solution of the QCLE can be expressed in either of two forms as

B̂W (X, t) = eiL̂tB̂W (X) (6)

= S
(
ei
→
HΛt/h̄B̂W (X)e−i

←
HΛt/h̄

)
.

The first equality follows from the formal solution of Eq. (1) while the second equality

follows from Eq. (4). The S in this latter form simply specifies the order in which products

of the left and right operators act in order to be identical with the first from involving

the QCL operator. In particular, a general term S
(

(
→
HΛ)jB̂W (

←
HΛ)k

)
in the expansion of

the exponential operators is composed of (j+k)!
j!k!

separate terms each with a prefactor of

j!k!
(j+k)!

. Each of these separate terms corresponds to a specific order in which the
→
HΛ and

←
HΛ

operators act on B̂W . This formal solution will be used in the calculations presented below.

B. Mapping representation

We will be concerned with the representation of the QCLE in the quantum subsystem

basis and its equivalent representation in the mapping basis. The subsystem basis, {|λ〉;λ =

1, . . . , N}, is defined by the eigenvalue problem ĥs|λ〉 = ελ|λ〉, and a matrix element of an

operator B̂W (X) is given by Bλλ′
W (X) = 〈λ|B̂W (X)|λ′〉.

The |λ〉 eigenfunctions of an N -state quantum subsystem can be replaced with eigenfunc-

tions of N fictitious harmonic oscillators17,49, |mλ〉, having occupation numbers which are

limited to 0 or 1: |λ〉 → |mλ〉 = |01, · · · , 1λ, · · · 0N〉. Creation and annihilation operators on

these states, â†λ and âλ, respectively, are defined as

â†λ =
1√
2h̄

(q̂λ − ip̂λ) , âλ =
1√
2h̄

(q̂λ + ip̂λ) , (7)
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and satisfy the commutation relation [âλ, â
†
λ′ ] = δλ,λ′ . The actions of these operators on the

single-excitation mapping states are â†λ |0〉 = |mλ〉 and âλ |mλ〉 = |0〉, where |0〉 = |01 . . . 0N〉

is the ground state of the mapping basis.

We may then define mapping versions of operators, B̂m(X), given by

B̂m(X) = Bλλ′

W (X)â†λâλ′ , (8)

so that a matrix element of B̂W in the subsystem basis is equal to the matrix element of

the corresponding mapping operator in the mapping single-excitation basis: Bλλ′
W (X) =

〈λ|B̂W (X)|λ′〉 = 〈mλ|B̂m(X)|mλ′〉. (The Einstein summation convention will used through-

out although sometimes sums will be explicitly written if there is the possibility of confusion.)

In particular, the mapping Hamiltonian operator is

Ĥm = Hb(X) + hλλ
′
(R)â†λâλ′ ≡ Hb(X) + ĥm, (9)

where we applied the mapping transformation only on the part of the Hamiltonian that

involves the subsystem DOF in Eq. (9). The pure bath term, Ĥb(X) in Eq. (3), acts as an

identity operator in the subsystem basis and is mapped onto the identity operator of the

mapping space.

The QCLE (4) may now be written in terms of mapping operators as

d

dt
B̂m(X, t) =

i

h̄

( →
Hm

Λ B̂m − B̂m

←
Hm

Λ

)
, (10)

where
→
Hm

Λ is given by
→
Hm

Λ = Ĥm(1 + h̄Λ/2i), with an analogous definition for
←
Hm

Λ . One

may verify that the mapping space matrix elements of this equation are identical to the

subsystem matrix elements of Eq. (4). Consequently, the formal solution of this equation is

similar to that in Eq. (6) and is given by

B̂m(X, t) = S
(
ei
→
HmΛ t/h̄B̂m(X)e−i

←
HmΛ t/h̄

)
. (11)

This equation will form the starting point for the explicit solution of the QCLE in terms of

forward-backward trajectories.
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III. FORWARD-BACKWARD TRAJECTORY SOLUTION

The formal solution of the QCLE can be written in terms of a sequence of M short-time

propagators acting on the initial value of the operator:

B̂W (X, t) = eiL̂∆t1eiL̂∆t2 . . . eiL̂∆tM B̂W (X), (12)

where ∆tj = tj − tj−1 = τ for all j with t0 = 0 and tM = t. (When information about a

specific time step is needed we use the ∆tj notation, otherwise the common value τ will be

used.) Consequently, in view of Eq. (11), the formal solution applies in each time segment

so B̂W (X, t) may also be written as

B̂m(X, t) = S
(
ei∆t1

→
HmΛ /h̄S

(
ei∆t2

→
HmΛ /h̄ . . .

S
(
ei∆tM

→
HmΛ /h̄B̂m(X)e−i∆tM

←
HmΛ /h̄

)
. . . e−i∆t2

←
HmΛ /h̄

)
e−i∆t1

←
HmΛ /h̄

)
, (13)

where there are M concatenated S (· · · ) brackets.

A. Representation in coherent states

In order to proceed with the evaluation we must consider the computation of the forward

and backward propagators in this expression. To order τ 2 we have

eiτ
→
HmΛ /h̄ = eĤmΛτ/2eiĤmτ/h̄ +O(τ 2). (14)

Also, to order τ 2 we may write the first exponential operator as

eĤmΛτ/2 = 1 +
τ

2
ĤmΛ + . . . , (15)

= 1 +
τ

2
Hb(X)Λ +

τ

2
hλλ

′
â†λâλ′Λ + . . . ,

= 1 +
τ

2
Hb(X)Λ +

τ

2

(
hλλ

′
âλ′ â

†
λ − Trs h

)
Λ + . . . ,

where we have reversed the normal-ordered product of annihilation and creation opera-

tors into an anti-normal order form using their commutation relation. The by-product of

reversing the ordering of creation and annihilation operators is the emergence of a trace

term in the last line of this equation. Since the trace term is independent of the quantum
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state, it may be combined with the bath potential, V0(R) = Vb(R) − Trs h(R), to give

H0(X) = P 2/2M + V0(R) so that we have the simpler form of Eq. (15),

eĤmΛτ/2 = 1 +
τ

2
H0(X)Λ +

τ

2
hλλ

′
âλ′ â

†
λΛ +O(τ 2). (16)

In this form, the propagator can be expressed conveniently in coherent states54.

We define the coherent states |z〉 in the mapping space,

âλ |z〉 = zλ |z〉 , 〈z| â†λ = z∗λ 〈z| , (17)

where |z〉 is a coherent state with N degrees of freedom and the eigenvalue is zλ = (qλ +

ipλ)/
√

2h̄. The variables q = (q1, . . . , qN) and p = (p1, . . . , pN) are mean coordinates and

momenta of the harmonic oscillators in the state |z〉, respectively; i.e., we have 〈z| q̂λ |z〉 = qλ

and 〈z| p̂λ |z〉 = pλ.

The coherent states form an overcomplete basis; thus, we have to specify the inner product

between any pair of coherent states and the resolution of identity54. The inner product is

〈z| z′〉 = e−
1
2

(|z|2+|z′|2)+z∗·z′

= e−
1
2

(|z−z′|2)−i=(z·z′∗). (18)

The norm of the inner product measures how far away the two coherent states |z〉 and |z′〉

are in the phase space of coherent state variables. The resolution of the identity is

1 =

∫
d2z

πN
|z〉 〈z| , (19)

where d2z = d(<(z))d(=(z)) = dqdp/(2h̄)N .

Given these properties of the coherent states, we may insert the resolution of the identity

in the bath Hamiltonian terms and between the âλ′ and â†λ operators in Eq. (16) to obtain

e
τ
2
ĤmΛ = (1 +

τ

2
H0(X)Λ)

∫
d2z

πN
|z〉 〈z|

+
τ

2

∫
d2z

πN
hλλ

′
âλ′ |z〉 〈z| â†λΛ +O(τ 2)

=

∫
d2z

πN
|z〉
(

1 +
τ

2
(H0(X) + hλλ

′
z∗λzλ′)Λ

+O(τ 2)
)
〈z|

=

∫
d2z

πN
|z〉 e

τ
2
Hcl(X,z)Λ 〈z|+O(τ 2). (20)
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In this calculation we used Eq. (17) to eliminate the annihilation and creation operators in

Eq. (20). Note that hλλ
′
z∗λzλ′ = 1

2h̄
hλλ

′
(qλ′qλ +pλpλ′) since hλλ

′
is symmetric. In the last line

of Eq. (20) we defined the “classical” Hamiltonian

Hcl(X, z) = H0(X) + hλλ
′
z∗λzλ′ ≡ H0(X) + hcl(R, z)

=
P 2

2M
+ hs,cl(z) + Vcl(R, z), (21)

where Vcl(R, z) = V0(R) + V λλ′
c (R)z∗λzλ′ .

The operator Hcl(X, z)Λ acts on all bath phase space variables to its right. Therefore, it

is convenient to introduce a notation that makes this action evident. More specifically, we

let

Hcl(X, z)Λ =
∂Hcl

∂P
·
→
∂

∂R
− ∂Hcl

∂R
·
→
∂

∂P
≡ i

→
L (X, z), (22)

so that

e
τ
2
ĤmΛ =

∫
d2z

πN
|z〉 ei

→
L(X,z)τ/2 〈z|+O(τ 2). (23)

Similarly we can define

ΛHcl(X, z) =

←
∂

∂P
· ∂Hcl

∂R
−

←
∂

∂R
· ∂Hcl

∂P
≡ −i

←
L (X, z), (24)

and

e−
τ
2

ΛĤm =

∫
d2z

πN
|z〉 ei

←
L(X,z)τ/2 〈z|+O(τ 2). (25)

The other quantity that will enter in the evaluation of the time evolution is the action of

the exponential operator eiĤm(X)τ/h̄ on a coherent state. In Appendices A and B we show

that

e−iĤm(X)τ/h̄ |z〉 = e−iHb(X)τ/h̄e−iĥm(R)τ/h̄ |z〉 ,

= e−iHb(X)τ/h̄ |z(τ)〉 , (26)

with z(τ) determined from the solution of the evolution equation,

dzλ
dt

= − i
h̄

∂hcl
∂z∗λ

. (27)

9



B. Time evolution of an operator

These results may now be used to compute the value of the matrix elements of an operator

B̂W (X, t) in the subsystem basis: Bλλ′
W (X, t) = 〈mλ|B̂m(X, t)|mλ′〉. We have

Bλλ′

W (X, t) =
∑
µµ′

∫ M∏
i=1

d2zi
πN

d2z′i
πN

〈mλ |z1〉 S
(
ei
→
L(X,z1)

∆t1
2 〈z1| eiĤm

∆t1
h̄ |z2〉

S
(
ei
→
L(X,z2)

∆t2
2 〈z2| eiĤm

∆t2
h̄ . . . |zM〉

S
(
ei
→
L(X,zM )

∆tM
2 〈zM | eiĤm

∆tM
h̄ |mµ〉

Bµµ′

W (X)〈mµ′|e−iĤm
∆tM
h̄ |z′M〉 ei

←
L(X,z′M )

∆tM
2

)
〈z′M | . . . e−iĤm

∆t2
h̄ |z′2〉 ei

←
L(X,z′2)

∆t2
2

)
〈z′2| e−iĤm

∆t1
h̄ |z′1〉 ei

←
L(X,z′1)

∆t1
2

)
〈z′1|mλ′〉, (28)

We may now make use of the definition of the S operator to rewrite the actions of the

right and left operators acting on the bath coordinates of an arbitrary operator ÂW (X) in

terms of a single effective operator Le(X, z, z′) that depends on the coherent state variables

z and z′ associated with the forward and backward propagators, respectively. In Appendix

C we show that

S
(
ei
→
L(X,z) τ

2 ÂW (X)ei
←
L(X,z′) τ

2

)
(29)

= eiLe(X,z,z
′)τ ÂW (X) ≡ ÂW (Xτ ).

The explicit form of iLe(X, z, z′) is

iLe(X, z, z′) =
P

M
· ∂
∂R
− ∂Ve(X, z, z

′)

∂R
· ∂
∂P

, (30)

where Ve(X, z, z
′) = (Vcl(R, z) + Vcl(R, z

′))/2. From Eqs. (29) and (30) we can see that the

time evolution of the bath coordinates under the effective Liouville operator is given by the

solutions of the equations

dR

dt
=

P

M
,

dP

dt
= −∂Ve(X, z, z

′)

∂R
. (31)
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These results may be used in the expression for Bλλ′
W (X, t) in Eq. (28) to give

Bλλ′

W (X, t) =
∑
µµ′

∫ M∏
i=1

d2zi
πN

d2z′i
πN
〈mλ |z1〉 〈z′1|mλ′〉

eiLe(X,z1,z
′
1)

∆t1
2

(
〈z1| eiĤm

∆t1
h̄ |z2〉

eiLe(X,z2,z
′
2)

∆t2
2

(
〈z2| eiĤm

∆t2
h̄ . . . |zM〉

eiLe(X,zM ,z
′
M )

∆tM
2

(
〈zM | eiĤm

∆tM
h̄ |mµ〉

Bµµ′

W (X)〈mµ′|e−iĤm
∆tM
h̄ |z′M〉

)
(32)

〈z′M | . . . e−iĤm
∆t2
h̄ |z′2〉

)
〈z′2| e−iĤm

∆t1
h̄ |z′1〉

)
.

This expression can be evaluated by applying the operators from left to right. For example,

the action of the first effective bath operator updates the bath phase space coordinates from

X = Xt0 to Xt1 . Thus,

Bλλ′

W (X, t) =
∑
µµ′

∫ M∏
i=1

d2zi
πN

d2z′i
πN
〈mλ |z1〉 〈z′1|mλ′〉(

〈z1| eiĤm(Xt1 )
∆t1
h̄ |z2〉

. . . Bµµ′

W (Xt1) . . . 〈z′2| e−iĤm(Xt1 )
∆t1
h̄ |z′1〉

)
, (33)

The coherent state matrix elements can now be evaluated using Eq. (26) to give

Bλλ′

W (X, t) =
∑
µµ′

∫ M∏
i=1

d2zi
πN

d2z′i
πN
〈mλ |z1〉 〈z′1|mλ′〉(

eiHb(Xt1 )∆t1/h̄〈z1(t1) |z2〉 eiLe(Xt1 ,z2,z
′
2)

∆t2
2

(
〈z2| . . .

Bµµ′

W (Xt1) . . . |z′2〉
)
e−iHb(Xt1 )∆t1/h̄ 〈z′2| z′1(t1)〉

)
=
∑
µµ′

∫
d2zi
πN

d2z′i
πN
〈mλ |z1〉 〈z′1|mλ′〉(

〈z1(t1) |z2〉 eiLe(Xt1 ,z2,z
′
2)

∆t2
2

(
〈z2| . . .

Bµµ′

W (Xt1) . . . |z′2〉
)
〈z′2| z′1(t1)〉

)
. (34)

In writing the last equality we canceled the phase factors involving Hb(Xt1).

At this point we can see how a description involving continuous trajectories may be con-

structed. The classical bath propagator for the next time step from t1 to t2, eiLe(Xt1 ,z2,z
′
2)

∆t2
2 ,

involves the coherent state phase space variables z2 and z′2 which may take any values
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from the set of coherent state values. The coherent states involved in the matrix elements

〈z1(t1) |z2〉 and 〈z′2| z′1(t1)〉 are not orthogonal since the coherent states are overcomplete.

However, in view of Eq. (18), we see that the overlap between two coherent states decays

rapidly if their phase space coordinates differ significantly. Consequently we assume that

〈z1(t1) |z2〉 ≈ πNδ(z2 − z1(t1)) and 〈z′2| z′1(t1)〉 ≈ πNδ(z′2 − z′1(t1)). Then performing the

integrals over z2 and z′2 we obtain

Bλλ′

W (X, t) =
∑
µµ′

∫
d2z1

πN
d2z′1
πN
〈mλ |z1〉 〈z′1|mλ′〉 (35)

∫ M∏
i=3

d2zi
πN

d2z′i
πN

(
eiLe(Xt1 ,z1(t1),z′1(t1))

∆t2
2

×
(
〈z1(t1)| . . . Bµµ′

W (Xt1) . . . |z′1(t1)〉
))
.

All coherent state and bath phase space variables have now been updated to time t1 and

process can now be repeated for all M time steps, starting with the application of the

effective bath evolution operator for the time step ∆t2. The result of this process is the

simple expression

Bλλ′

W (X, t) =
∑
µµ′

∫
d2z1

πN
d2z′1
πN
〈mλ |z1〉 〈z′1|mλ′〉 (36)

×
(
〈z1(t)|mµ〉Bµµ′

W (Xt)〈mµ′ |z′1(t)〉
))
.

The matrix elements between coherent states and the single-excitation mapping states may

be evaluated explicitly to give

〈mλ |z〉 = zλe
−|z|2/2. (37)

Writing this expression in terms of the x = (q, p) variables, and using the fact that
∑

ν(q
2
ν +

p2
ν) is conserved under coherent state dynamics, we obtain

Bλλ′

W (X, t) =
∑
µµ′

∫
dxdx′φ(x)φ(x′)

× 1

2h̄
(qλ + ipλ)(q

′
λ′ − ip′λ′)B

µµ′

W (Xt)

× 1

2h̄
(qµ(t)− ipµ(t))(q′µ′(t) + ip′µ′(t)), (38)

where φ(x) = (2πh̄)−N e−
∑
ν(q2

ν+p2
ν)/2h̄ is the normalized Gaussian distribution function and

we have removed the subscript 1 from the dummy coherent state variables. The coupled

12



equations of motion governing this evolution are

dqλ
dt

=
∂Hcl(R,P, q, p)

∂pλ
,

dpλ
dt

= −∂Hcl(R,P, q, p)

∂qλ
dq′λ
dt

=
∂Hcl(R,P, q

′, p′)

∂p′λ
,

dp′λ
dt

= −∂Hcl(R,P, q
′, p′)

∂q′λ
dR

dt
=

P

M
,

dP

dt
= −∂He(R,P, q, p, q

′, p′)

∂R
, (39)

where

He(R,P, q, p, q
′, p′) = (40)

1

2
(Hcl(R,P, q, p) +Hcl(R,P, q

′, p′)).

Equation (38) and the associated evolution equations (39) are the results we set out to derive.

They constitute a simple algorithm for obtaining a solution to the QCLE. Figure 1 presents

a schematic picture that depicts the dynamics of coordinates prescribed by the evolution

equations (39). As noted earlier, although both forward and backward trajectories are

propagated forward in time, the two sets of trajectories arise from the forward and backward

quantum-classical propagators, respectively.

Earlier it was shown that the solution to the QCLE in the mapping basis can be given

in terms of an ensemble of entangled trajectories52. The solution in Eq. (39) is consistent

with this interpretation in that the forward and backward trajectories of the coherent state

variables are linked by the evolution of the bath variables and the evolution equations are

in non-Hamiltonian form. A more detailed link between these two different approaches to

the QCLE in the mapping basis is a topic that merits further study.

C. Back to Differential Form

In this section we show that the solution constructed above is indeed a solution of the

QCLE. We do this by deriving the QCLE in the subsystem basis by constructing a finite-

difference expression for the time evolution of Bλλ′
W (X, t). We first write the matrix element

for 〈λ| B̂W (X, t+ τ) |λ′〉 using Eq. (36),

Bλ,λ′

W (X, t+ τ) =
∑
µµ′

∫
d2z(t)d2z′(t)φ(z)φ(z′) (41)

×zλ(t)z′∗λ′(t)z∗µ(t+ τ)z′µ′(t+ τ)
(
eiLeτBµµ′

W (X, t)
)
,

13



where φ(z) = π−Ne−|z|
2/2. We then expand to first order in τ to obtain

Bλ,λ′

W (X, t+ τ) ≈
∑
µµ′

∫
d2z(t)d2z′(t)φ(z)φ(z′)

×zλ(t)z′∗λ′(t)
[
z∗µ(t)z′µ′(t)B

µµ′

W (X, t)

+τ
(
z∗µ(t)

∂z′µ′

∂t
+ z′µ′(t)

∂z∗µ
∂t

)
Bµµ′

W (X, t)

+τz∗µ(t)z′µ′(t)iLeB
µµ′

W (X, t)
]

+O(τ 2). (42)

The integrals over z(t) and z′(t) may be performed and, after rearranging terms and taking

the limit τ → 0, the result is (some details are given in Appendix D),

lim
τ→0

Bλλ′
W (t+ τ)−Bλλ′

W (t)

τ
=

d

dt
Bλλ′

W (t) (43)

= 〈λ| i
h̄

[
ĤW , B̂W

]
|λ′〉

−1

2

(
〈λ|
{
ĤW , B̂W

}
−
{
B̂W , ĤW

}
|λ′〉
)
,

which is the QCLE.

The QCLE in the subsystem basis is a first order differential equation with respect to time;

therefore, it only describes how the matrix elements of B̂W (X, t) at the beginning and the end

of a time step are related. That our solution is found to satisfy the QCLE is consistent with

the fact that all approximations used to derive the evolution in a single time step are exact

to O(τ 2). However, in order to connect the trajectories of coherent state phase variables

from adjacent time steps, we made the approximation, 〈zi(τ)| zi+1〉 ≈ πNδ(zi+1− zi(τ)). To

understand the effects of this approximation, we consider how our solution would be modified

if the approximation were not made. One way to re-formulate the solution is to insert a

set of single-excitation mapping states between every inner product of coherent states, i.e.

〈zi(τ)| zi+1〉 =
∑

µi
〈zi(τ)|mµi〉 〈mµi | zi+1〉. Once the mapping states are inserted, one loses

the continuous trajectory picture in the coherent state phase space but one can formally

integrate out the zi and z′i variables in sequential (or chronological) order. This sequence of

formal integrations is equivalent to evaluations of the matrix elements of B̂W (X, t) at every

time step. Computationally, this is a very demanding task because one needs to sample,

propagate and integrate out coherent state trajectories at every time step. However, this

prescription (a continuous evolution of matrix elements) coincides exactly with the dynamics

one would expect from the QCLE in the subsystem basis.

14



At this point, it is obvious that the coherent-state orthogonality approximation re-

places the continuous evolution of the matrix elements, Bλλ′
W (X, t), with continuous tra-

jectories, z(t) and z′(t). Instead of taking Bµµ′

W (X, t − τ) as the starting point to compute

Bλλ′
W (X, t) at the next time step. The orthogonality approximation actually takes the oper-

ator |z(t− τ)〉 〈z(0)| B̂m(X, 0) |z′(0)〉 〈z′(t− τ)| as the starting point and further propagates

trajectories from the previous time step to obtain |z(t)〉 〈z(0)| B̂m(X, 0) |z′(0)〉 〈z′(t)|. Al-

though the orthogonality approximation inevitably yields nonlocal errors, it does provide a

computationally efficient way to simulate the dynamics. Other semi-classical approaches for

solving the system-bath dynamics indicate that this is a sensible approximation to make.

For instance, if we do not use the orthogonality approximation then we can write our solu-

tion in the form of a standard coherent state path integral. Application of the stationary

phase approximation will yield the same set of equations of motion for the coherent state

phase variables. Similar coherent state dynamics was obtained in the context of a different

semi-classical framework20.

Finally, we comment on the fact that the semiclassical analysis yields exact quantum

mechanical solution for quadratic Hamiltonians. This is certainly true when the system is

isolated from the bath. The same also holds true for our solution; if there are no bath terms

then there is no need to make the orthogonality approximation. However, when a bath

is present, the semi-classical analysis is equivalent to implicitly making the orthogonality

approximation, which becomes exact in the limit h̄ → 0 in view of Eq. (18). The potential

source of errors, which arises from the system-bath interactions, can easily be overlooked

because it is eliminated as soon as semi-classical conditions are imposed.

IV. DISCUSSION

The results derived above provide a simple simulation algorithm for the dynamics de-

scribed by the QCLE. Most often it is the average value of an operator (or correlation

function) that is of interest. The average value of a quantum operator B̂W (X, t) is given by

B(t) =

∫
dX Tr (B̂W (X)ρ̂W (X, t)) (44)

=

∫
dX Bλλ′

W (X, t)ρλ
′λ
W (X),
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where the trace is taken in the quantum subsystem space. Using Eq. (36) for the time

evolution of Bλλ′
W (X, t), the average value may be computed by sampling over the coherent

state variables and initial density matrix element ρλ
′λ
W (X).

Our solution for Bλλ′
W (X, t) has a number of elements in common with other approaches

that have been devised to simulate nonadiabatic dynamics and it is instructive to make

comparisons with methods that have been constructed in a similar spirit.

A. Comparison with partially linearized path integral methods

First, we draw comparisons between two mixed quantum-classical formalisms: the QCLE

and partially linearized path integral methods. The formal equivalence between the two

formalisms was established in a general setting41 when the subsystem DOF are expressed as

quantum operators. Therefore, the close resemblance between our solution and that of Huo

and Coker20 is expected, since they are approximate solutions to the QCLE and a particular

form of the partially linearized path integral, respectively. However, in view of the derivation

of our solution presented above, the result in Ref. [20] is not an exact solution of QCLE.

In our formalism, Hcl defined in Eq. (21) contains V0(R) = Vb(R) − Trsĥ instead of simply

the bath potential Vb(R). Recall that the trace term arose from the commutation relation

for the annihilation and creation operators and the need to use an anti-normal order for

the product of these operators to evaluate the short-time propagator. If this trace term is

absent one can show that the solution does not satisfy the differential form of the QCLE.

The system Hamiltonian, ĤW (X) = Hb(X) + ĥ(R), can be written in an equivalent form

ĤW (X) = Hb(X) + (Trsĥ(R))/N + ˆ̄h(R), where ˆ̄h(R) is traceless. Since this is an identity,

the QCLE is independent of the choice of the form which is used in this equation. Our

solution is also independent of the way the Hamiltonian is written, although the equations

of motion take a somewhat different form. If the Hamiltonian with the trace removed is

used in the derivation, the evolution equations have the same structure as is in Eq. (39)

but Hcl(X, z) in Eq. (21) is replaced by Hcl(X, z) = H0(X) + h̄λλ
′
z∗λzλ′ with H0(X) →

Hb(X) + (Trsĥ(R))/N .60 When the calculation given in Sec. III C is repeated with this form

of the Hamiltonian the QCLE is again obtained, confirming that the different but equivalent

forms of the Hamiltonian yield the same evolution.

However, this is not the case when other approximate theories are considered. In partic-
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ular, it was shown52 that the choice of Hamiltonian form is crucial in the Poisson Bracket

Mapping Equation (PBME) approximation to the QCLE (discussed below). When the

traceless form is used, dynamical instabilities that arise in the course of the evolution can

be tamed, while if the original form of the Hamiltonian is used the instabilities can lead to

difficulties.

The form of the Hamiltonian also affects the nature of the dynamics in the semi-classical

approach used in Ref. [20]. While the evolution equations in this approach differ from those

in Eq. (39), the equivalence is restored between the two solutions if the traceless form of

the Hamiltonian is used. The reason that the partially linearized path integral solution

depends sensitively on the form of the Hamiltonian is due to the semi-classical approach

used to solve the dynamics. According to the semi-classical calculation, the dynamics of the

bath momenta are governed by the force, −1
2

(
∂H̃cl(X, z)/∂R + ∂H̃cl(X, z

′)/∂R
)

, where

H̃cl(X, z) = Hb(X) + hcl(R, z). The Hamiltonian H̃cl(X, z) misses the term −Trsĥ(R) in

Hcl(X, z) in Eq. (21) in the current formulation. This extra term is required to restore the

equivalence between the solution using the original Hamiltonian and that using the traceless

form of the Hamiltonian.

B. Comparison with Poisson bracket mapping equation

Next, we compare the current solution to the PBME approximation to the quantum-

classical Liouville equation50–52, which is obtained from the mapping form of the QCLE by

dropping an excess coupling term51. In the case of an isolated subsystem, one can perform

a change of variables z̄ = (z + z′)/2 and ∆z = z − z′ and show that both the mean, z̄, and

the difference, ∆z, variables follow exactly the same Hamiltonian dynamics, as described in

Eq. (27) with no R dependence. This implies that if z̄(0) = ∆z(0) then z̄ = ∆z(t) for all t.

Since the computation of the time evolution of an operator in the subsystem basis requires

integration over the entire coherent state phase space, as prescribed in Eq. (38), ∆z becomes

a redundant variable. A direct comparison between the two methods can be made if one
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either integrates out ∆z or replaces the integral of ∆z by integral of z̄ as follows,∫
d2z̄

πN
e−2|z̄|2 z̄λz̄µ(t)

∫
d2∆z

πN
e−

1
2
|∆z|2∆zµ′(t)∆zλ′ =

2N
∫
d2z̄

πN
e−2|z̄|2 (z̄λz̄∗µ(t)z̄µ′(t)z̄

∗
λ′ − z̄λz̄∗λ′δµ,µ′

+
1

4
δλ,λ′δµ,µ′

)
. (45)

The above identity can be easily proved in a basis that diagonalizes the Hamiltonian, followed

by transformation of the resulting identity back to the original basis, in the same spirit as

the computation of the exact coherent state dynamics in Appendix A.

After properly removing ∆z, one can show that Eq. (38) reduces to

Bλλ′

W (X, t) =
∑
µ,µ′

∫
dx

(
z̄λz̄
∗
λ′ z̄
∗
µ(t)z̄µ′(t)−

1

4
z̄λz̄
∗
λ′δµ,µ′

−1

2
z̄µ(t)z̄∗µ′(t)δλ,λ′ +

1

8
δλ,λ′δµ,µ′

)
4φ(x)Bµµ′

W (X, t),

=
∑
µ,µ′

∫
dxgλ,λ′(x)Bµµ′

W (X, t)cµµ′(x(t)), (46)

where x = (q =
√

2h̄<z̄, p =
√

2h̄=z̄) and the functions52 gλλ′(x) ≡ (|mλ〉 〈mλ′ |)W and

cµµ′(x) ≡ (â†λâλ′)W represent the Wigner transformation (.)W of the outer product of states

and a pair of annihilation and creation operators, respectively. The last expression in

Eq. (46) is exactly the evolution of Bλλ′
W (X, t) in the PBME method. Furthermore, the

Wigner transformation variables, x, in the PBME method follow the same Hamiltonian dy-

namics derived above for the mean coordinates of the coherent state variables. Despite the

very different starting points of the two solutions, this comparison reveals the close relation

between the dynamics of Wigner transformed coordinates and the mean coordinates in the

coherent state phase space. Although, this close relation can only be made obvious after

the effects of difference variables are properly taken into account of and removed (either

explicitly integrated out or replaced using Eq. (45)). Essentially, the dynamical information

encoded in the coherent states variables of 2N harmonic oscillators can be merged and be

encoded in N Wigner transformed coordinates.

We next comment on the comparison to the PBME method in the presence of a bath. One

may linearize the bath potential Ve(X, z, z
′) ≈ (Vcl(R, z̄) + ∂Vcl

∂z̄
∆z+ Vcl(R, z̄)− ∂Vcl

∂z̄
∆z)/2 =

Vcl(R, z̄) such that the dynamics of the bath variables only depends on the mean coordinates

z̄. The bath potential linearization allows one to properly remove the difference variables
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and encode the approximate dynamics in N harmonic oscillators. Repeating the same

calculations and using the coherent-state orthogonality approximation, one can show that

Eq. (46) still holds in the general mixed quantum-classical setting.

C. Comparison with semi-classical schemes

Finally, we compare our results to some semi-classical schemes. The mapping repre-

sentation consolidates the way subsystem dynamics is handled in the QCLE and in some

semi-classical schemes. For instance, in the case of a linearized bath potential, the Hamil-

tonian dynamics prescribed by our solution is also identical to that in the semi-classical

path integral approach of Stock and Thoss13,17 as well as the linearized semi-classical initial

value representation (LSC-IVR) of Miller8,15,61. Furthermore, the full version of the current

solution also handles the subsystem dynamics in ways similar to the forward-backward semi-

classical initial value representation (FB-IVR) approaches14,62,63 that uses the Herman-Kluk

propagator. One difference is that the forward and backward trajectories are not linked in

the present solution.

Finally, we observe that the classical-like system-bath dynamics prescribed in our solution

could be similar to that of a mixed semi-classical scheme64 in which the bath DOF and sub-

system DOF are treated with LSC-IVR and the FB-IVR, respectively. Further investigations

into the subtle connections between the our solution of the QCLE and other semi-classical

schemes might inspire further developments in nonadiabatic quantum dynamics.
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APPENDIX A: EXACT EVOLUTION OF COHERENT STATES

We restrict this analysis to real-valued, symmetric, quadratic Hamiltonian operators, ĥm,

which are the only type of Hamiltonian encountered in the mapping formalism. It is always
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possible to diagonalize such a Hamiltonian matrix, to obtain

ĥm =
∑
λ,λ′

hλλ
′
â†λâλ′ =

∑
λ,λ′

∑
µ

Mλµh
d
µM

T
µλ′ â

†
λâλ′ ,

=
∑
µ

hdµ

(∑
λ

â†λMλµ

)(∑
λ′

MT
µλâλ′

)
=
∑
µ

hdµb̂
†
µb̂µ ≡ ĥdm, (47)

where the operators b̂†µ and b̂µ are defined in the second line of the equation. We use the

superscript d to emphasize that the Hamiltonian is now put in the diagonal form with respect

to operators b̂µ and b̂†µ. Since the Hamiltonian is real and symmetric, the matrix M is an

orthogonal matrix.

With respect to the new operators b̂µ and b̂†µ, we define the coherent state |y〉 by

b̂µ |y〉 = yµ |y〉 , 〈y| b̂†µ = 〈y| y∗µ, (48)

where yµ = 1√
2h̄

(q̃µ + ip̃µ).

Consider time evolution of the coherent state |y〉 with N degrees of freedom,

e−
i
h̄
ĥdmt |y〉 = e−

i
h̄
ĥdmt ⊗Nν=1

{
e−|yν |

2
∞∑
m=0

ymν√
m!
|m〉ν

}
,

= ⊗Nν=1

{
e−|yν |

2
∞∑
m=0

(yie
− ν
h̄
hdνt)m√
m!

|m〉ν

}
,

= |y(t)〉 , (49)

where yν(t) = yν(0)e−
ihdν
h̄
t. In this calculation we used the expansion of a coherent state in

terms of a complete set of harmonic oscillator states:

|yν〉 = e−|yν |
2
∞∑
m=0

ymν√
m!
|m〉ν . (50)

Equation (49) implies the equation of motion,

dyν
dt

= − i
h̄
hdνyν(t) = − i

h̄

∂h̃dcl
∂y∗ν

, (51)

where h̃dcl =
∑

µ h
d
µy
∗
µyµ. If we substitute in the variables q̃ and p̃ into the equation of motion

for y then we get the usual Hamilton’s equation for q̃ and p̃.

20



Next, we prove that Hamilton’s equation is invariant under the linear transformation,

yµ =
∑

λM
T
µλzλ, and y∗µ =

∑
λ z
∗
λMλµ. This proceeds as follows:

dzλ
dt

=
∑
µ

Mλµ
dyµ
dt

= − i
h̄

∑
µ

Mλµ
∂h̃dcl
∂y∗µ

= − i
h̄

∑
µ

Mλµh
d
µyµ = − i

h̄

∑
µ,λ′

Mλ,µh
d
µM

T
µλ′zλ′

= − i
h̄

∑
λ′

hλλ
′
zλ′ = − i

h̄

∂hcl
∂z∗λ

. (52)

APPENDIX B: MATRIX ELEMENTS OF THE UNITARY EVOLUTION

OPERATOR IN THE SINGLE EXCITATION SUBSPACE

In this Appendix we evaluate matrix elements of the form 〈mλ| e−
it
h̄
ĥm |mλ′〉, where ĥm is

still the real-valued and symmetric Hamiltonian considered in Appendix A. We evaluate this

matrix element in two ways: directly and also in terms of matrix elements 〈m̃λ| e−
i
h̄
ĥdmt |m̃λ′〉

via a linear transformation. The state |m̃λ〉 = |01 . . . 1λ̃ . . . 0N〉 is an N-harmonic-oscillator

state with a single excitation on the λ-th oscillator, hdλb̂
†
λb̂λ.

First, we prove that |mλ〉 =
∑

µM
T
µλ |m̃µ〉. This is straightforward since |mλ〉 = â†λ |0〉

and |m̃µ〉 = b̂†µ |0〉, where |0〉 is the common ground state. Therefore, the two states are

related by the orthogonal matrix M , which was used to establish the linear transformation

between â†λ and b̂†µ. The evaluation proceeds as follows:

〈mλ′| e−
it
h̄
ĥm |mλ〉 = 〈m̃µ′|Mλ′µ′e

− it
h̄
ĥdmMT

µλ |m̃µ〉

=

∫
dx̃

(2πh̄)N
Mλ′µ′M

T
µλ 〈m̃µ′| e−

it
h̄
ĥdm |y〉 〈y| m̃µ〉

=

∫
dx̃

(2πh̄)N
Mλ′µ′M

T
µλ 〈m̃µ′| y(t)〉 〈y| m̃µ〉 (53)

=

∫
dx̃

(2πh̄)N
MλµM

T
µ′λ′yµ′(t)y

∗
µe
− 1

2
|y(t)|2e−

1
2
|y|2 ,

=

∫
dx̃

(2πh̄)N
zλ′(t)z

∗
λe
−|z|2 =

∫
dx

(2πh̄)N
zλ′(t)z

∗
λe
−|z|2 ,

where dx̃ = dq̃dp̃ and dx = dqdp. To obtain the above result we used the relation zµ =

MT
νµyν = Mµνyν to re-express the y variables in terms of z variables and employed the volume

element transformation, dx̃ = dx |det [∂yα/∂zβ]| = dx |detM | = dx, since |detM | = 1.

Since the y(t) variables satisfy Hamilton’s equations, |y(t)|2 = |y|2. Finally, we note that
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|y|2 =
∑

λ y
∗
λyλ =

∑
λ,µ,µ′M

T
µ′λMλµz

∗
µ′zµ =

∑
µ z
∗
µzµ = |z|2, completing the results needed to

obtain Eq. (53).

Next, we compute e−
it
h̄
ĥm|z〉 directly, where |z〉 is defined by âλ |z〉 = zλ |z〉. To carry out

this calculation we reconsider Eq. (53),

〈mλ′ | e−
i
h̄
ĥmt |mλ〉 =

∫
dx

(2πh̄)N
〈mλ′| e−

i
h̄
ĥmt |z〉 〈z |mλ〉

=

∫
dx

(2πh̄)N
〈mλ′| e−

i
h̄
ĥmt |z〉 z∗λe−

1
2
|z|2 . (54)

Comparing the last lines of Eqs. (53) and (54), we see that 〈mλ′| e−
i
h̄
ĥmt |z〉 = zλ′(t)e

− 1
2
|z(t)|2 =

〈mλ′ | z(t)〉. Since the identities hold for all possible 〈mλ′ | and |z〉, we can identify e−
i
h̄
ĥmt |z〉 =

|z(t)〉.

APPENDIX C: EFFECTIVE LIOUVILLE OPERATOR

Below, we prove the identity in Eq. (29) that relates the forward and backward bath

propagators to the effective Liouville operator:

S
(
ei
→
L(X,x) τ

2 ÂW (X)ei
←
L(X,x′) τ

2

)
=
∞∑
j=0

j∑
k=0

(iτ/2)j

(j − k)!k!
S

(
(
→
L)kÂW (

←
L′)j−k

)

=
∞∑
j=0

(iτ/2)j

j!

j∑
k=0

 j

k

S

(
(
→
L)kÂW (

←
L′)j−k

)

=
∞∑
j=0

(iτ/2)j

j!

j∑
k=0

∑
{p}

→
L

(p1)→
L

(p2)

· · ·
→
L′

(pj)

ÂW

=
∞∑
j=0

(iτ)j

j!

(
1

2
(
→
L +

→
L′)
)j
ÂW (X)

= eiLe(X,x,x
′)τ ÂW . (55)

In these expressions we used the shorthand notations,
→
L=

→
L (X, x) and

←
L′=

←
L (X, x′), and

the definition of S in going from the third to fourth lines. The sum on {p} denotes a sum

over all permutations.
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APPENDIX D: DIFFERENTIAL FORM

The term zeroth order in τ in Eq. (42) is easily computed by performing the integrals

over z(t) and z′(t) and the result is simply Bµµ′

W (X, t). The first term of order τ , which we

call I1, involves time derivatives coherent state variables. Using the equations of motion for

the coherent state variables and performing the integrals we find

I1 =
i

h̄
〈λ| [ĥ, B̂W (X, t)] |λ′〉

=
i

h̄
〈λ| [ĤW , B̂W (X, t)] |λ′〉 , (56)

which is the first term in the QCL operator in Eq. (2).

Next, we consider the first-order term involving the evolution of the spatial coordinates

of the bath as given by the effective Liouville operator. Inserting its definition in Eq. (30),

iLe(X, z, z′) = P
M
· ∂
∂R
− ∂Ve(X,z,z′)

∂R
· ∂
∂P

, the evaluation of the term involving
∂Bµµ

′
W

∂R
· P
M

is straightforward since it does not contain the coherent state variables. Performing the

integrals over these variables yields I2 =
∂Bλλ

′
W

∂R
· P
M

. The remaining terms require more

attention since they involves the force acting on the bath variables, which depends on the

effective potential where Ve(X, z, z
′) = (Vcl(R, z) + Vcl(R, z

′))/2. Denoting this contribution

I3, we have

I3 = −
∑
µµ′

∫
d2z(t)d2z′(t)φ(z)φ(z′)

×zλ(t)z′∗λ′(t)z∗µ(t)z′µ′(t)
∂Bµµ′

W

∂P
· ∂He(R, z, z

′)

∂R

= −
∑
µµ′

∫
d2z(t)d2z′(t)φ(z)φ(z′)

×zλ(t)z′∗λ′(t)z∗µ(t)z′µ′(t)
∂Bµµ′

W

∂P
·[

∂V0(R)

∂R
+

1

2

∂Vcl(R, z)

∂R
+

1

2

∂Vcl(R, z
′)

∂R

]
= −∂B

λλ′
W

∂P

∂V0(R)

∂R
+ I31 + I32 , (57)
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The I31 integral may be evaluated as follows:

I31 = −1

2

∑
µµ′

∫
d2z(t)d2z′(t)φ(z)φ(z′)

×zλ(t)z′∗λ′(t)z∗µ(t)z′µ′(t)
∂Bµµ′

W

∂P

∂Vcl(R, z)

∂R

= − 1

4h̄

∑
µαα′

∫
d2z(t)φ(z)zλ(t)z

∗
µ(t)

∂Bµλ′

W

∂P
· ∂V

αα′
c (R, z)

∂R
zα(t)z∗α′(t)

= − 1

4h̄

∑
µαα′

∫
d2z(t)φ(z)

∂Bµλ′

W

∂P
· ∂V

αα′
c (R, z)

∂R[
|zλ(t)|2|zα(t)|2δαα′δµλ (1− δαλ)

+|zλ(t)|2|zµ(t)|2δαλδα′µ (1− δαα′)

+|zλ(t)|4δαα′δαλδµλ
]

Performing the z integrals we find

I31 = −1

2

(∑
α 6=λ

∂V αα
c

∂R

∂Bλλ′
W

∂P
+
∑
µ6=λ

∂V λµ
c

∂R

∂Bµλ′

W

∂P

+2
∂V λλ

c

∂R

∂Bλλ′
W

∂P

)
= −1

2
〈λ|
(∂V̂c
∂R

∂B̂W

∂P
+
∂TrsV̂c
∂R

∂B̂W

∂P

)
|λ′〉

= −1

2
〈λ|
( ∂ĥ
∂R

∂B̂W

∂P
+
∂Trsĥ

∂R

∂B̂W

∂P

)
|λ′〉 . (58)

In writing the last line of this equation we used the fact that the subsystem Hamiltonian is

independent of R so V̂c and be replaced by ĥ.

Similarly, the I32 integral can be evaluated to give,

I32 = −1

2
〈λ|

(
∂B̂W

∂P

∂ĥ

∂R
+
∂B̂W

∂P

∂Trsĥ

∂R

)
|λ′〉 . (59)

Recall that V0(R) = Vb(R)−Trsĥ so that
∂Bλλ

′
W

∂P
∂V0(R)
∂R

=
∂Bλλ

′
W

∂P
∂Vb(R)
∂R
− ∂Bλλ

′
W

∂P
∂Trsĥ
∂R

. Given these

results the entire I3 integral is

I3 = −1

2

(
〈λ|
{
ĤW , B̂W

}
−
{
B̂W , ĤW

}
|λ′〉
)
, (60)

where the Trsĥ terms arising from the V0, I31 and I32 canceled.
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FIG. 1. (Color online) Schematic diagram of the time evolution of the bath coordinates X = (R,P )

(the green line), the forward coherent state coordinates x = (q, p) (the blue line), and the backward

coherent state coordinates x′ = (q′, p′) (the red line). The vertical axis denotes the time. At

each time step i, the classical Hamiltonians Hcl(Xi, xi) and Hcl(Xi, x
′
i) are parametrized with the

updated coordinates. The wiggly, orange lines represent the direct coupling between the evolutions

of different sets of phase space coordinates under the influence of the classical Hamiltonians. As

shown, the two sets of coherent state variables are only coupled via the bath coordinates.
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