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MULTI BUNCH GMMA RAY GENERATION EXPERIMENT AT ATF∗ 
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Graduate School of Advanced Sciences of Matter Hiroshima University, 1-3-1Kagamiya Higashi-

Hiroshima, 739-8530, Japan 

We construct a new detector to monitor γ yields in bunch by bunch basis for the Laser Compton 
experiment at the KEK ATF which is capable to separate γ rays in 5.6ns-spacing multi-bunch 
operation of the KEK ATF. In this article we report a result of measurement of multi bunch γ ray 
detection for the first time at the KEK ATF.   

1 Introduction 

The polarized beams are powerful tool for physics at the International Linear Collider 
(ILC) since we can choose helicity Eigen states for the initial election-positron system. 
The ILC is designed to provide polarized electron beams using a DC gun with GaAs 
photo-cathode. In addition to the polarized electron, it is highly desirable to use polarized 
positron beams since it increase the effective polarization of the ILC[1],  where effective 
polarization is defined as;  
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For example, 80% polarization of the electron and 60% positron polarization yield the 
effective polarization of  95%. The ILC is planned to construct the positron source by the 
undulator scheme. In the undulator scheme, polarized γ rays of O(10MeV) are generated 
by feeding high energy electron beams in the main LINAC into a more than 150m long 
helical undulator, then γ rays are impinged into the metal target to generate positrons[2]. 
An optional scheme to make polarized γ rays is the Compton scheme. In Compton 
scheme, γ rays are generated via Compton scattering of laser photons off electrons. The 
Compton scheme has several advantages such as; the electron energy necessary for 
O(10MeV) photons is O(1GeV) which is much lower than those for the undulator scheme, 
the polarization of γ rays are easily controlled by the laser polarization. The principle of 
the Laser Compton scheme has been demonstrated by previous works [3]. While it is  
attractive for the polarized positron sources for the ILC , a price to pay for the Compton 
scheme is the intensity of the γ rays. We need high intensity and with high repetition laser 
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pulses such as O(100mJ/pulse) with O(100MHz) repetition. We plan to achieve the 
required performance using a laser pulse stacking cavity in which laser pulses are 
accumulated coherently and its energy are enhanced inside the cavity. We have 
developed and tested prototype cavity at the KEK-ATF as was reported in [4].  
 One of the important issues for the ILC positron source is to generate multi-bunch 
positrons with stable intensity. The temporal bunch separation of the KEK-ATF is 5.6 ns 
and it is operative for 1 to 10 bunches per train, however,  in the previous experiment, the 
γ ray detector equipped with CsI crystal did not have capability to observe γ rays from 
each bunch separately, because the decay constant of fluorescence is about 20ns even 
after filtering out faster component.  Therefore we improved detection system to separate 
γ rays from laser-electron scattering which happen every 5.6 ns. In this article, we report 
preliminary results of multi-bunch photon detection from the laser Compton experiment 
for the first time at the KEK-ATF . 

2 Experimental Setup 

2.1. Optical Resonant Cavity 

 The schematic of the optical resonant cavity and laser optics are shown in Figure 1.  

 
Figure 1.  Schematic of the optical system for the optical resonant cavity. 
 
We used a Mode Locked pulsed laser (COURGAR, Time-Bandwidth Products). The 
wave length of the laser is 1064 nm. The pulse energy is 25 nW with the repetition of 357 
MHz. The optical resonant cavity is a 2 mirror Fabry-Perot type. The finesse of the cavity 
was measured to be 1800 which corresponds to the power enhancement factor of about 
600. It was consistent with expectation from the reflectivity of mirrors of the cavity. A 
feedback system was constructed to keep the optical cavity on resonance with the laser 
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pulse as well as to synchronize laser pulses with the electron bunches in the ATF. The 
schematic o the feedback system is shown in Figure 2.  

 
Figure 1.Diagram of the feedback  and timing synchronization system. 
 
The laser spot size inside the cavity at the laser-electron interaction point was about 30 
µm (1 σ) which was estimated from the measured angular divergence the laser pulses 
outside the cavity. The laser power in the cavity was calculated from the measured 
transmitted power outside of the cavity. It was monitored during the experiment and was 
about 1.5kW during the experiment.  

2.2. Detector and Data Acquisition system 

To detect γ rays in bunch by bunch basis, we installed new detector consisting of a BaF2 
scintillator and a Photo-Multiplier Tube (PMT) R3377 (Hamamatsu Photonics). Because 
the BaF2 crystal has two scintillation components with different wave length and decay 
constant, 310nm/600ns and 220nm/0.8ns, an optical filter was inserted between the 
crystal and the PMT to eliminate the slower component. The rise time of the PMT is 0.7 
ns when operating at nominal high voltage. Prior to the beam experiment, detector was 
calibrated using cosmic rays. According to expected number of γ rays in the Compton 
experiment, the detector would be saturated if it was operated with the nominal voltage. 
Since the time response of the detector could be deteriorated for lower voltage, we took a 
cosmic ray data for pulse height as well as rise time with various high voltages and 
determined operation voltage during the beam experiment. 

The waveform from the PMT for each laser electron beam interaction was recorded by a 
digital oscilloscope DSO5054a (Agilent Technologies) which has the bandwidth of 
500MHz and the maximum sampling frequency 4GHz. The oscilloscope was placed 
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close to the detector to avoid attenuation of higher frequency component in the signal. In 
parallel to the waveform, detector signal was sent to the ADC and total charge from a 
pulse train was recorded. The data acquisition system was triggered by the clock signal 
from the ATF accelerator which is synchronized with the ATF beam revolution.  

3. Result 

A typical waveform recorded in the experiment is shown in Figure 3 which was recorded 
during 10 bunch operation of the ATF. 

 

 
Figure 3.  A typical waveform for 10 bunch data. The blue line is the raw detector signal. 
A result of a fitting taking the fluorescence and the detector response into account is 
overlaid by a green smooth line.  
 
 We clearly observed spikes of 5.6 ns separation in the waveform which correspond to γ 
rays from each bunch in a train. A broad shift of the baseline can be understood as a 
contribution of leakage of the slower component of fluorescence from the optical filter.  

 To estimate number of photons we fitted the waveform with a function which takes into 
account time dependence of the fluorescence in the BaF2 crystal, light correction in the 
crystal and detector response. A result of fitting is superimposed on the waveform in 
Figure 3.  The beam current for each train in the ATF was measured the DC Current 
Transformer (DCCT) while relative intensity of between electron bunches was monitored 
by the Wall Current Monitor (WCM).  

 The number of γ rays for bunch by bunch basis normalized the laser power and the 
electron intensity is shown in Figure 6.  
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Figure 4.  Normalized γ ray yields from each bunch for the 10 bunch operation. The 
dashed line is an expectation from numerical calculation  
 
The expected γ ray yields was estimated by CAIN [5] program with the laser and the 
electron beam parameters.  The γ ray yields were consistent with the expectation within 
the error and no bunch dependence for γ ray yield was observed.  

4. Summary   

The detector system of the laser Compton experiment at the KEK-ATF was improved to 
separate γ rays from each electron bunch in multi-bunch operation. The γ ray yields were 
observed with bunch by bunch basis up to 10 bunches/train. Observed γ ray yields were 
consistent with numerical expectation and no bunch dependence of the yield was 
observed. It was an encouraging step for the positron source R&D. Several works are in 
progress to improve performance of the detector and the data acquisition system toward 
future experiments; 
 
 New optical filter will be inserted between the BaF2 crystal and the photo cathode 

of the PMT to cut leakage of slower component from BaF2 crystal. 
 The signal output circuit of the PMT will be modified to avoid saturation for more 

intense γ ray yield which will be expected in future experiment.   
 New data acquisition system is under development to record the data for every 

beam revolution in the ATF.  
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