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A modification of the Gay-Berne potential is proposed which is about 10% to 20%

more speed efficient (that is, the original potential runs 15% to 25% slower, depending

on architecture) and statistically more accurate in reproducing the energy of inter-

action of two linear Lennard-Jones tetratomics when averaged over all orientations.

For the special cases of end-to-end and side-by-side configurations, the new potential

is equivalent to the Gay-Berne one.
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The Gay-Berne potential1 is a coarse-grained potential designed specifically to reproduce

the energy of interaction between two linear, tetratomic Lennard-Jones molecules. As such,

it allows the approximate treatment of a linear, rigid polyatomic segment by use of a single

interaction site, reducing the amount of looping – and hence the calculational effort – drasti-

cally when calculating energies, forces and torques in molecular mechanics. The Gay-Berne

potential is not the only single-site potential for linear molecules or molecular moieties lack-

ing substantial electric multipole momoments,2–9 but it is arguably the most widely used.

In this Note, we present a variation of the Gay-Berne potential which undeniably improves

even further on the computational economy and also on the accuracy. For ease of reference

and of comparison, the original functions are also reproduced.

The Gay-Berne potential, for intermolecular distance r, is given in eq. (1).

V (û1, û2, r̂) = ε(û1, û2, r̂)

( σ0
r − σ(û1, û2, r̂) + σ0

)12

−
(

σ0
r − σ(û1, û2, r̂) + σ0

)6
 . (1)

In this equation the ε(û1, û2, r̂) and σ(û1, û2, r̂) are auxiliary functions that depend both the

molecular orientations, expressed through the unit vectors û1 and û2, and on the orientation

of the intermolecular vector, expressed by r̂. Gay and Berne1 provide the following forms

for these functions:

σ(û1, û2, r̂) = σ0

(
1− χ

2

{
(r̂ · û1 + r̂ · û2)2

1 + χ(û1 · û2)
+

(r̂ · û1 − r̂ · û2)2

1− χ(û1 · û2)

})− 1
2

(2)

ε(û1, û2, r̂) = ε0
[
1− χ2(û1 · û2)2

]− 1
2

{
1− χ′

2

[
(r̂ · û1 + r̂ · û2)2

1 + χ′(û1 · û2)
+

(r̂ · û1 − r̂ · û2)2

1− χ′(û1 · û2)

]}2

(3)

where σ0 and ε0 are constants, and χ and χ′ relate to the anisotropy of the interaction and

are defined by χ = (l2 − 1)/(l2 + 1) and χ′ = (
√
d − 1)/(

√
d + 1), where l is the steric

length-to-breadth ratio (the axial ratio) and d is the ratio of the binding energy in the side-

by-side configuration to that of the end-to-end configuration. A comparison of the energy

of interaction between the model system it was designed to replicate, and the Gay-Berne

potential itself is shown in Figure 1, using the original parameter set advocated by Gay

and Berne themselves. We shall keep the general form of eq. (1), but replace the auxiliary

functions σ and ε by more efficient alternatives.

The choices for σ and ε that we make are inspired by Ref. 10, in which the equipotential

surface of the Lennard-Jones potential was redefined to that of an ellipsoid. There, the

philosophy of Berne and Pechukas6 and of Kihara3 – that the anisotropic intermolecular
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FIG. 1. Energy of interaction of two linear, tetratomic Lennard-Jones molecules of bond length

2σ/3 (full line) and their Gay-Berne approximation (dashed line) with l = 3 and d = 0.2. The

binding energy of the side-by-side configuration is set to unity in both cases. The unit of length is

σ of the Lennard-Jones interaction.

potential is obtained by replacing the distance scale by an anisotropic function – was strictly

adhered to. In abandoning that principle for the prescription of Gay and Berne,1 so that

we displace rather than dilate the interaction potential, using the anisotropic σ function of

Ref. 10 and its close analog for the ε function in eq (1), we arrive at the modified Gay-Berne

potential. To avoid a notational cluttering and as confusion is unlikely to arise, we do not

distinguish these new functions through notation from their Gay-Berne counterparts. The

new angular functions are represented by

σ(û1, û2, r̂) = σ0

[
1 +

l − 1

2
(|r̂ · û1|+ |r̂ · û2|)

]
(4)

ε(û1, û2, r̂) = ε0

[
1 +

d− 1

2
(|r̂ · û1|+ |r̂ · û2|)

]
(5)

These new functions give the same dashed curves in Figure 1 as the original ones. Important

as such agreement might be, those two geometries only represent a subset of all possibil-

ities, a more thorough test of the model is to calculate its average error over all possible

configurations. The average absolute error, defined by 〈|Eexact/Emodel − 1|〉 where the angle

brackets denote an unweighted angular average, is shown in Table I for both the original
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and the modified Gay-Berne potential as a function of intermolecular separation. Eexact is

the energy of the dimer of the linear tetratomic, as used in the original paper,1 and Emodel

is the energy of interaction of the Gay-Berne potential, original or modified, in the same

geometry. Both energies are normalized by their respective side-by-side binding energy. It

is worth pointing out that this comparison is made with the original Gay-Berne parameter

set, optimized for this situation, and that further improvement is perhaps possible with ad-

justments. It is a chief strength of the modification that it does not need reparametrization

to improve upon the original.

TABLE I. Angular-averaged unsigned errors for selected intermolecular distances r for the original

and modified Gay-Berne potential with respect to the linear Lennard-Jones tetratomic, obtained

by unbiased Monte Carlo sampling over 108 cycles. Identical values of l = 3 and d = 0.2 are used

in the comparison.

r/σ Error, original Error, modified

1.5 1300000 5.2

2.0 2.9 1.1

2.5 2.0 0.96

3.0 1.2 0.72

3.5 1.3 0.62

4.0 1.3 0.51

4.5 1.4 0.41

5.0 1.4 0.33

5.5 1.4 0.35

6.0 1.5 0.47

In closing, we make a quick comparison of the computational complexity of the modified

and original potential. It is clear that eqs (2) and (3) require a much greater number

of arithmetic operations than do eqs (4) and (5). Eqs (2) and (3) also require the non-

elementary square-root operation. In contrast, eqs (4) and (5) require only the elementary

arithmetic operations multiplication and addition. In the author’s hands, the subroutine for

the original potential requires approximately 15% to 25% more computer processing time

(tested on two different computers). Using fast floating-point (e. g. less accurate) libraries
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is likely to diminish this difference somewhat. In actual simulations, the speed benefit will

be somewhat less depending on system size.
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