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Electron-Dominated Spontaneous Bifurcation of Harris Equilibrium
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In this letter the spontaneous bifurcation of Harris equilibrium current sheet is reported. The
collisionless current bifurcation is simulated by a 2D particle-in-cell approach. Explicit particle
advancing method is used to resolve the transient electron dynamics. Unlike previous implicit
investigations no initial perturbations is applied to trigger current bifurcation. Instead, an electron-
dominated spontaneously bifurcation is observed. Electromagnetic fluctuations grow from thermal
noise initially. Soon the noise triggers the eigenmodes and eventually causes current sheet bifurca-
tion. The relative entropy of the bifurcated state exceeds the value of initial Harris equilibrium. It is
also found that the Helmholtz free energy decreases in the bifurcation process. Hence it is concluded
that Harris equilibrium evolves toward a more stable (smaller free energy) bifurcated state.

PACS numbers: 05.70.-a, 05.70.Ce, 52.35.Ra:

Current sheet evolution plays a central role in astro-
and laboratory- magnetic reconnection [1]. An analytical
one-dimensional current sheet equilibrium was proposed
by Harris [2] which has been since widely used as an ini-
tial configuration for space and laboratory current sheets.
Satellite observations of space current sheets, however,

revealed in addition to single-peaked (Harris type) sheets,
the existence of double- or multiple-peaked (bifurcated
type) current sheet structures. The first in-situ evidence
of magnetotail current sheet bifurcation was reported
back in 1993 [3]. Statistical study of the spacecraft cross-
ings in the terrestrial magnetotail pointed out that bifur-
cated current sheets are frequently observed [4][5]. Re-
cently current sheet crossing data of other planets were
revisited, e.g. the Jovian magnetotail crossing, back in
the 1970’s and 1990’s by the Voyager-2 and Galileo space-
crafts. It was confirmed the existence of bifurcated cur-
rent structures there [6]. These investigations indicate
the multi-peak structures might be a rather typical cur-
rent structures.
Assuming magnetic reconnection BCS has sometimes

been interpreted as the indication of a pair of slow shocks
in the outflow region [7][4][5] or as a tearing mode insta-
bility in elongated current sheets [8].
In addition to the interpretation of BCSs in magnetic

reconnection, however, there is also observational evi-
dence that BCS can exist at minimum plasma inflow
condition. During a quiet solar wind condition magnetic
reconnection is not expected to occur due to minimum
inflow [9]. Up to now the detailed plasma transport in
the original single-peaked current sheet is still an open
question. Since BCSs might be due to different phenom-
ena, there is no unified model for their formation.
Statistical magnetotail observation combined with

MHD simulations interpreted BCS as an indication of
magnetic reconnection [7]. The formation of BCS with-
out plasma inflow, typical for reconnection, is however
still under debate. In the current direction Daughton
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et al. [10] considered anomalous momentum transport
due to the lower hybrid drift instability (LHDI), which
is driven by pressure-gradient across current sheet [11].
In their work a semi-implicit numerical scheme was used
and indeed, the LHDI eventually caused a bifurcation of
the Harris current sheet. In the direction perpendicu-
lar to current direction a Harris equilibrium can evolve
into BCS due to tearing mode instability [12]. In their
2D particle-in-cell (PIC) simulation an implicit numerical
method is used for a faster particle advancing, and per-
turbations are imposed initially as seeds for the growth
of tearing instability. The authors claimed that current
sheet bifurcation took place after the tearing instabil-
ity saturates. Assuming initial sheet boundary pressing,
which is inspired by the satellite observations of BCS dur-
ing strong solar wind condition, Schindler and Hesse [13]
performed a one-dimensional particle-in-cell (1D PIC)
simulation and concluded that current sheet bifurcation
follows quasisteady boundary compression.
We conjecture that, despite of those simulations with

the applied initial perturbation or boundary compres-
sion, spontaneous bifurcation can take place without dis-
turbance on initial equilibrium. This is mainly due to
the observational evidence that magnetotail current can
bifurcate without obvious perturbations. Among the un-
solved questions is the role of the electron in the bi-
furcation. An electromagnetic two dimensional particle-
in-cell simulation (2D PIC) code is used to investigate
the collisionless plasma dynamics in a single-peak Harris
equilibrium. The numerical code implements an explicit
scheme, i.e. it resolves the electron dynamics up to elec-
tron plasma/cyclotron frequency (ωpe and Ωce).
The simulation background setup is a pure Harris

sheet. The current sheet half-width λ is set to ion in-
ertial length (λ = di) to cover the ion dissipation region
of the current sheet. The equilibrium magnetic field is
By(x) = B0tanh(x/di) =

√
4µkBTN0tanh(x/di) where

kB, T = Ti = Te, B0 and N0 are the Boltzmann con-
stant, ion/electron temperatures, asymptotic magnetic
field and number density at the center, respectively. By
choosing T and N0 the equilibrium magnetic field B0 is
determined. The ratio of electron plasma frequency to
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FIG. 1. The current profiles integrated in simulation y direction at different simulation times

electron cyclotron frequency is ωpe/Ωce = 2.87. The ion
to electron mass ratio used is mi/me = 180, which is suf-
ficient to separate the electron and ion dynamics. The
grid should resolve the electron motion, therefore it size
is set to Debye length dx = dy = λDe = (ε0T/Ne2)1/2.
The simulation domain across the inhomogeneity is Lx =
23di, while the length along the current sheet magnetic
field By(x) = By,0tanh(x/di) is Ly = 46di direction.
In order not to suppress the possible growth of tearing
instability, the length Ly is chosen to allow the devel-
opment of tearing instability with highest growth rate,
which is predicted by the linear normal mode of Harris
sheet (see Eq.(23) in [14]). The boundary conditions for
the particles and fields are periodic in the y direction.
Conducting wall with full particle reflection are imposed
as the x boundary condition.

In order to consider the complete electron dynamics,
an explicit numerical scheme is used for time advancing.
For the time step used dt = 0.0436ω−1

pe the Courant con-
dition is fullfiled. This is much smaller than the time step
used in the similar work with implicit numerical scheme
[12] where dt = 0.1ω−1

pi ≈ 1.34ω−1

pe is used for a mass

ratio mi/me = 180. There is no initial perturbation im-
posed, which is different from the setup used e.g. in [12].
There reconnection was triggered by an initial perturba-
tion of tearing mode scale. Also, our boundary condition
prevents plasma compression imposed in the previous 1D
PIC simulation of current bifurcation [13], where the ini-
tial boundary pressing (see Fig.1 therein) disturbs the
initial Harris equilibrium and eventually causes bifurca-
tion. The evolution of the Harris current density is shown
in Fig.1. The current profiles are integrated along the
y direction and they are shown as functions of x. The
current profile exhibits a flattening of the density peak
starting as early as at t = 174ω−1

pe . Split double-peaked
current sheet is the next phase of flattening of current
density. The gap between them also grows deeper at this
phase. At the late stage t = 2616ω−1

pe the two current
peaks are completely separated. Interestingly, the fully
developed current bifurcation observed here has devel-
oped fully at a relative early stage, which takes only a few
ion cyclotron periods (ion cyclotron period is equivalent
to Alfvén time, as used in [13]) t = 872ω−1

pe ≈ 1.6886ω−1

ci .
The bifurcation due to boundary pressing [13] appeared

at t ≈ 400ω−1

ci . The 2D PIC result shown here therefore
proceeds faster. In [13] it was claimed that a current
bifurcation must generally occur by quasisteady bound-
ary compression if the initial current sheet is sufficiently
wide. The question arises, what is the alternative driving
force - if there in no boundary pressing - that disturbs
the initial equilibrium?

To find out the alternative driving force for sponta-
neous bifurcation, it is appropriate to analyze the cur-
rent distribution pattern in the simulation domain. As a
result successively modulated current density was found,
recognized as eigenmodes intrinsic of the Harris equilib-
rium. Due to the propagating eigenmodes in the Har-
ris current sheet, where intrinsic waves can be triggered
by thermal noises, the initial single-peaked current sheet
splits and evolves into a more stable state. The charac-
teristics of the linear eigenmodes are as follows.

First the evolution of current distribution in simula-
tion is examined for which the current density in the
out-of-plan direction (Iz) is plotted (see Fig.2). Both
the total current (upper panels) and the electron contri-
bution (lower panels) are shown at different simulation
times. Initially the Harris current is concentrated near
the center as it can be seen in the first column. At sim-
ulation time t = 87.2ω−1

pe the wavs in the current distri-
bution appear, shown as symmetric current patterns. At
t = 174.4ω−1

pe the amplitude of symmetric waves (about
y = 0) becomes less pronounced. At the same time the
current densities start to separate from each other dis-
tinctly. For the right column (t = 1090ω−1

pe ) a clearly
developed bifurcation can be seen. The wavy current
sheet pattern has disappeared at this stage, indicating
its role as an intermediate state for moving the system
away from its original equilibrium. As already seen in
integrated current profiles (Fig.1) the ions do not par-
ticipate in the bifurcation process, therefore we do not
show them here. This result confirms that even for an
ion-to-electron mass ratio mi/me = 180 the electron and
ion dynamics are well separated. Note here that at later
time (t ≈ 6000ω−1

pe ) the ion current contribution also
bifurcates, similar to the simulation result obtained by
using implicit numerical schemes or boundary compres-
sion/initial perturbations [12] [13]. In the following our
simulation analysis will focus on the spontaneous bifur-
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FIG. 2. The current distributions for different simulation times. The upper panels are the distributions for total current, and
the lower panels are the electron contributions of the currents.

cation that is self-generated and dominated by the elec-
tron dynamics. The simulated current patterns should be
compared with the eigenmodes of a Harris sheet. We use
the linearized MHD dispersion relation for the eigenmode
reconstruction. A generalized MHD dispersion relation
for waves propating in non-uniform plasma was derived
in [15]:

d

dz

(

f(z)
dξz
dz

)

= ε(z)ξz (1)

where f(z) and ε(z) are defined in field-line coordinates

f(z) = −ρ(C2

S + C2

A)
(ω2 − k2||C

2

A)(ω
2 − k2||C

2

cp)

(ω2 − k2||C
2

1
)(ω2 − k2||C

2

2
)

(2)

ε(z) = ρ(ω2 − k2||C
2

A) (3)

C1, C2 are Vf/cos(θ) and Vs/cos(θ). There Vf and Vs are
phase velocities of fast- and slow- waves, and θ is the an-

gle between ~k and ~B. In the above equations C2

S = γP/ρ,
C2

A = B2/µ0ρ and C2

cp = C2

SC
2

A/(C
2

S + C2

A) are the local
sound speed, Alfvén speed and cusp speed of the cur-
rent sheet, respectively. Eq.(1) is a 2nd order ordinary
differential equation whose solution can be found for ap-
propriate initial and boundary conditions. Finding the
solution of Eq.(1) is equivalent to solving the eigenvalue
problem. Symmetric eigenmodes can be found for the
boundary conditions: 1) ξz = a and dξz/dz = 0 at cur-
rent sheet center, for which it is a nonzero value, and 2)
ξz = 0 at the current sheet edges. The first even eigen-
modes are shown in Fig.3. The current density of the
eigenmodes is distributed in a way as obtained by the
simulation at its early stage (see column 2 of Fig.2). In
both simulation and eigenmode calculation the pertur-
bations propagate in the ±y direction, appearing as suc-
cessively changing current intensity in Fig.2 and Fig.3.
The wavelength of the modes is about λy ≈ 20di and the
current patterns agree well with each other. Note that
the kinetic wave modes found in our PIC simulation do
not directly correspond to the MHD eigenmodes of Harris
sheet [15]. In fact, the charge separation and associated
local electric fields are not described by MHD. Hence the

FIG. 3. Eigenmode of pure Harris sheet calculated according
to [15]. The color indicates the current density of this mode,
and the magnetic field is superposed.

Harris sheet eigenmodes should be described in a multi-
fluid approach, which separately considers the ion and
electron dynamics. To some extent the eigenmodes cal-
culated from MHD dispersion relation, however, demon-
strate the excited waves are intrinsic to the system with
higher chances to survive.

Harris current sheet is a one-dimensional analytical
equilibrium which assumed drift-Maxwellian distribu-
tions for electrons and ions with zero electric field [2]. Al-
ternative, including non-analytical equilibria, have been
long considered as more realistic for current sheets, if
the restrictions of local drift-Maxwellian and zero electric
field are removed [16]. A study of possible plasma dis-
tribution of current sheet equilibrium has been surveyed
e.g. in [17]. The current density of proposed alternative
equilibria has usually been solved numerically. Campo-
reale and Lapenta [12] have found numerous double- or
multiple-peaked current sheet equilibria that are solu-
tions of Vlasov-Maxwell equations.
Comparing the simulated current sheet bifurcation

with numerically calculated equilibria, the bifurcated
electron current sheet is similar to the one shown as case
(b) in [12], with a single-peaked ion current and double-
peaked electron current profile. Electron dominated cur-
rent bifurcations are obtained also by magnetotail in-situ
measurements. A statistical study of the current bifurca-
tion using CLUSTER data has concluded that, the main
carriers of bifurcated currents are electrons [18].
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FIG. 4. Relative entropy of total distribution (left panel) and
of individual electron (upper right panel) and ion (lower right
panel).

Entropy is a quantity that measures the level of order
in a system. For a plasma with continuous particle dis-
tribution, it is appropriate to consider a relative entropy
which makes sure the entropy is always positive [19]. The
relative entropy is defined as the Kullback-Leibler diver-
gence SKL(t) with respect to a reference distribution q(v)
at t = 0.

SKL(t) =

∫ ∞

−∞

dvf(v, t)ln(
f(v, t)

q(v)|t=0

)

The entropy of a system in thermodynamical equilib-
rium has the highest entropy [20]. Indeed the relative
entropy of the simulated 2D current sheet, the entropy
of total distribution is increasing in the course of current
sheet bifurcation (cf. Fig.4). The electron and ion en-
tropies are plotted in the right columns. The entropy of
electron is increasing while the ion/electron entropy os-
cillates. This is reasonable since the single species is not
an isolated system. The total distribution is the sum of

ions and electrons, and, therefore the total entropy of the
current sheet increases in the course of bifurcation.
Equilibria are steady state solutions (∂/∂t = 0) of the

Vlasov equation. Steady state solutions, however, might
not correspond to a thermodynamical equilibrium but in-
stead they are subject to various kinds of instabilities. A
stability study of steady state equilibria can be done by
calculating the Helmholtz free energy F = U −TS of the
system [21], in which the internal energy U is the sum
of particle kinetic energy and the field energy, T is the
temperature and S is the entropy. A more stable (or ”less
unstable”) equilibrium corresponds to minimum free en-
ergy. In the bifurcation process, the internal energy U
is conserved and T and S are increasing. Therefore, the
bifurcated system has a lower free energy. This explains
why the final bifurcated current sheet is a more favorable
stable state than the single-peaked Harris equilibrium.
This 2D PIC simulation of an original Harris equilib-

rium has demonstrated that a spontaneous current bi-
furcation is a natural process which does not necessarily
impose an initial perturbation to trigger tearing mode or
another instability. Instead the electron causes a sponta-
neous bifurcation at an early stage of a Harris sheet evo-
lution. This role of electron can be only found by using
an explicit numerical scheme. This effect is even stronger
if a real mass ratio is used. Intrinsic eigenmodes of the
Harris sheet, self-consistently grown from thermal noise,
act as perturbation and move the system away from its
original equilibrium. This effect might explain the fre-
quent observations of current sheet bifurcation even at
locations, where the plasma inflow is small and magnetic
reconnection is not expected.
The authors are grateful to the Max-Planck Society
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